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Abstract
The present paper focuses on the reflectance spectral imaging of painted surfaces in
the visible-near infrared spectral region (400–2500 nm). Other spectral ranges and
methods are mentioned, to contextualize the spectral investigation of works of art.
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BR-RIS Broad spectral range reflectance imaging spectroscopy
CCD Charge-coupled device
EDS Energy dispersive spectroscopy
EMCCD Electron-multiplying CCD
FORS Fiber optics reflectance spectroscopy
FOV Field of view
FPA Focal plane array
FT Fourier transform
FT-IR Fourier transform infrared
FWHM Full width at half maximum
G Green
HS Hyperspectral
HS-RIS Hyperspectral reflectance imaging spectroscopy
HSI Hyperspectral imaging
ICCD intensified CCD
InGaAs Indium gallium arsenide
IRR Infrared reflectography
IS Imaging spectroscopy
LWIR Longwave infrared
MA-XRF Macro X-Ray fluorescence
MA-XRF-SR Synchrotron-based macro X-ray fluorescence
MB Multiband
MCD Multi-channel detector
MCT Mercury cadmium telluride
MNF Minimum noise factor transform
MS Multispectral
MS-RIS Multispectral reflectance imaging spectroscopy
MSI Multispectral imaging
MWIR Midwave infrared
NG National Gallery
NIR Near infrared
OCT Optical coherence tomography
OPD Optical path difference
PAI Photoacoustic imaging
PCA Principle component analysis
PD Photodiode
PLM Polarized light microscopy
PMT Photomultiplier tube
R Red
RF Radio frequency
RIS Reflectance imaging spectroscopy
RTI Reflectance transformation imaging
SCD Single-channel detector
SAM Spectral angle mapper
SCM Spectral correlation mapping
sCMOS Scientific complementary metal–oxide semiconductor
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SEM Scanning electron microscopy
SMACC Sequential maximum-angle convex cone
SNR Signal to noise ratio
SR-XRF Synchrotron radiation X-Ray fluorescence
SWIR Shortwave infrared
THz-TDS Terahertz time-domain spectroscopy
US Ultrasound
UVVISNIR Ultraviolet, visible and near-infrared
VIS Visible
XFM X-Ray fluorescence microscopy
XRF X-Ray fluorescence
XRR X-ray radiography

1 Introduction

Imaging Spectroscopy (IS) is the acquisition of images in many contiguous spectral
bands utilizing either reflectance (Reflectance Imaging Spectroscopy—RIS) or lumi-
nescence, based respectively on the diffusion or spontaneous emission of light [1].
In a more widely accepted sense, IS is the study of the interaction between matter
and electromagnetic radiation (study of the absorption and emission of radiation by
matter the wavelength of the radiation), displayed point by point as an image. Later,
the concept was expanded greatly to include any interaction with radiative energy
as a function of its wavelength or frequency, predominantly in the electromagnetic
spectrum, though matter waves and acoustic waves can also be considered forms of
radiative energy [2]. More recently, the definition has been expanded to include the
study of the interactions between particles such as electrons, protons, and ions, as
well as their interaction with other particles as a function of their collision energy.
Newly, even gravitational waves have been associated with a spectral signature in the
context of the Laser Interferometer Gravitational-Wave Observatory (LIGO) and laser
interferometry. Spectroscopy, primarily in the electromagnetic spectrum, is a funda-
mental exploratory tool in the fields of physics, chemistry, and astronomy, allowing the
composition, physical structure and electronic structure of matter to be investigated at
atomic-, molecular-, macro- scale, and over astronomical distances. Important appli-
cations arise from biomedical spectroscopy in the areas of tissue analysis and medical
imaging. In the remote sensing community, IS has many names including imaging
spectrometry, hyperspectral and ultraspectral imaging [3], even though Ball in his
book Spectroscopy (1995) argues that spectrometry be limited to measurement not
including photons, as in mass spectrometry [4], but definitively claimed by Clark as
appropriate [3].

The prefix “spectro-” derives from the Latin word spectrum, which means “image”
or “apparition”, including the meaning “spectre” (ghost), and it is used to form words
relating to spectra. Its meaning “visible band showing the successive colours, formed
from a beam of light passed through a prism” is first recorded in the 1670s by Newton.
Figurative sense of “entire range of something” is from the beginning of the 1990s.
The suffix “-scopy” originates from Greek, i.e. “analysis, observation, examination”.
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Fig. 1 Multiband imaging with bandpass filters (FWHM > 100 nm)

A spectrometer is, then, a device used to record spectra and spectroscopy is the use of
a spectrometer for chemical analysis.

Terminology and definitions evolve over time. RIS, multiband, multispectral and
hyperspectral imaging (resp. MBI, MSI and HSI) can carry a range of definitions
depending essentially on the application. Reflectance refers to the light reflected or
scattered by a material relative to the incident light and the reflectance spectrum is a
curve illustrating the amount of reflectance at each wavelength over a defined spectral
range [5].

MBI (Fig. 1) generally refers to the acquisition of uncalibrated images with very
broad bandwidths (> 100 nm) captured using a CCD camera (e.g. a modified digital
single lens reflex - SLR camera) and bandpass filters. In its basic definition, a colour
image itself can be considered as aMB image, being the composition of a red (R), green
(G) and blue (B) image (meaning images obtainedwith broad-band filters selecting the
red, green, blue light, respectively). MBI captures characteristic spectral information
about objects, however, the uncalibrated image set cannot produce reflectance spectra.
Both MSI (Fig. 2) and HSI (Fig. 3) are considered RIS, defined as the collection of
images at many different wavelengths to obtain reflectance spectra over a large spatial
area [6]. In specific, Ricciardi et al. [6] define MSI as the acquisition of calibrated
images with bandwidths of tens to hundreds of nanometers and HSI with bandwidths
of a few nanometers or less. The number of bands is inversely proportional to their full
width at half maximum (FWHM) (i.e. the smaller the FWHM, the higher the number
of bands).

In this respect, the term MBI, MSI or HSI describes a system capable to acquire
respectively a few broad bands (FWHM> 100 nm), a few tens ofmedium-width bands
(10–100 nm FWHM) bands or hundreds/thousands narrow bands (FWHM < 10 nm).
[7]Whatever definition is adopted, the basic concept underlying RIS is the acquisition
of a stack of images generated by measuring the radiation backscattered by a surface
when illuminated with a broadband source. Each image is characterized by a wave-
length (an energy) interval whose way of selection defines the typology of instrument
used. Even though only HS devices can be properly considered imaging spectrome-
ters, MS instruments perform a low spectral resolution spectrometry, therefore fall in
the category of imaging spectrometers.
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Fig. 2 Multispectral imaging (10 nm < FWHM < 100 nm)

Fig. 3 Hyperspectral imaging (FWHM < 10 nm)

The result of a RIS measurement is the so-called datacube or spectral cube (the
adjective multi- or hyper- is often added, resulting in MS or HS cube), which contains
one spectral reflectance image for each wavelength band. It can be visualized as a
three-dimensional (3D) set of data composed of stacked images of the same scene
seen at adjacent wavelengths, containing, thus, two spatial (coordinates x and y) and
one spectral (wavelength l) dimensions. Therefore, its interpretation is two-fold:

1. reflectance imaging, i.e. each wavelength channel provides a monochromatic two-
dimensional (2D) image;

2. reflectance spectroscopy, i.e. the pixel values at the same pixel coordinate in all
images of the datacube correspond to an entire reflectance spectrum of the object
at the corresponding location.

2 Spectroscopy: from lab to remote sensing

The history of spectroscopy, intended as the study of the interaction between matter
and electromagnetic radiation, originated through the study of visible light dispersed
into its wavelength. Its origin traces back to the optics experiments of Sir Isaac Newton
who, in 1665, demonstrated that white light could be split up into component colours
by a prism. Newton applied the word “spectrum” to describe the rainbow of colours
that combine to form white light and that are revealed when the white light is passed
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through a prism: this latter phenomenon is at the basis of the optomechanical hardware
of a spectrometer, thus marking the beginning of the history of spectroscopy. In 1800,
Sir Frederick William Herschel, the German-born British astronomer, pioneered the
use of astronomical spectrophotometry using a prism and a temperature-measuring
equipment to measure the individual temperatures of each colour of the spectrum
obtained from the wavelength distribution of stellar spectra. In the course of these
investigations, Herschel discovered IR radiation: to his surprise, he found the highest
temperature of all in this new spectral region where no sunlight was visible. New
designs in optics, specifically diffraction grating, enabled systematic observations
of the solar spectrum. During the early 1800s, Joseph von Fraunhofer conducted
experiments with dispersive spectrometers that enabled spectroscopy to become a
more precise and quantitative scientific technique, leading, in 1814, to the discovery
of the dark absorption lines in the spectrum of the sun, now known as Fraunhofer
lines. Since then, spectroscopy has played a significant role in chemistry, physics and
astronomy.The subsequent history of spectroscopy provided the empirical foundations
for atomic and molecular physics [8], whereas in modern physics, the discipline of
studying light and interaction of light with matter is called optics [9].

For decades, spectroscopy has been usedmainly in the laboratory to identify, under-
stand, and quantify solid, liquid, or gaseous materials, based on the detection of
absorption features due to specific chemical bonds. [10,11] Spectroscopic measure-
ments have a long history in the study of the Earth and planets for remote sensing to
spectrally identify and spatially map materials. [1,3,12] Up to the 1990s, MSI instru-
ments/experiments collecting high quality images in a few, broad spectral bands have
dominated in this field. [13] The technological progress led to a new generation of
sensors that made it possible to combine imaging with spectroscopy to create the
new discipline of IS [14] in its modern acceptation. This novel generation of imag-
ing spectrometers allowed to acquire data with enough spectral range, resolution,
and sampling at every pixel in a raster image so that individual absorption features
could be identified and spatially mapped (direct identification of surface materials
on a picture-element basis accomplished by proper sampling of absorption features
in the reflectance spectrum). The ability to acquire laboratory-like spectra remotely
is a major advance in remote sensing capability. Concomitant advances in computer
technology for the reduction and storage of such potentially massive data sets are at
hand, and new analytic techniques are being developed to extract the full informa-
tion content of the data. Remote sensing evolved almost half a century ago, mainly
with the intention of distant terrestrial measurements and mapping of the Earth with
space imagery, which was only marginally related to spectroscopic studies due to the
initial very poor spectral resolution [15–17]. During the past three decades, the tech-
nological and computational advancements in the process of remote imaging procured
with fine wavelength resolution [18–21], providing in situ spectroscopy from space to
obtain information on the atomic and molecular compositions of terrestrial materials.
Significant achievements in IS are attributed to airborne instruments, particularly aris-
ing in the early 1980s and 1990s [1,22]. However, it was not until 1999 that the first
imaging spectrometer was launched in space, the NASAModerate-resolution Imaging
Spectroradiometer (MODIS) [23]
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The remote observation of the Earth resulted, then, in the development of new tech-
nologies that revolutionized the field of remote sensing. In the 90s, the first commercial
spectrometers appeared on the market, making their use other than for aerospatial
remote sensing possible: this was the kick-start for spreading IS out to other fields,
such as pharmaceutical [24], agri-food [25], biology [26], medicine [27], chemistry
[28], industrial sorting [29], quality control [30], surveillance [31], geology [3], foren-
sic science [32,33]. Once it became awell-established technique, its use in the heritage
science (HS) turned out possible, however, it is not until 2000 that the first applica-
tion in a museum appeared for the analysis, documentation and diagnosis of paintings
[34,35]. The peculiarity, unicity, frailness of works of art together with the necessity
of having movable instruments to reach museums, churches and conservation centres
hampered IS application of painted surfaces and brought out the need to redesign the
instruments both to safeguard the objects during measurements and to ensure porta-
bility [36–38].

2.1 Development of imaging spectroscopy in heritage science

The driving force that triggered the research on IS applied in heritage science has
been the desire to extend the potential of infrared reflectography (IRR), a consolidated
technique for the diagnostics of paintings for the identification of details underlying
the pictorial layer and not visible to the naked eye. Van Asperen De Boer [39] laid its
theoretical and experimental bases in the wide-band modality, introducing the use of
PbS Vidicon cameras, characterized by a broad spectral sensitivity (up to 2 micron).
IRR consists in irradiating the painting/surface with an IR source, and in detecting the
back-scattered radiation with a suitable device. Thanks to the transparency properties
of most pigments to the IR radiation, it allows the visualization of features underneath
the painting’s surface, such as the underdrawing (a preliminary sketch made by the
painter on a preparation ground, prior to painting), the pentimenti (an underlying image
providing evidence of revision by the artist), subsequent retouchings or overpaintings
(generally speaking, foreignmaterials added at a later stage formodifying the artwork’s
painted surface or structure), restoration intervention (the process of re-establishing
the artwork legibility through selective removal of patina, consolidation of ancient
materials and eventual reconstruction of missing pieces).

In the 80s, studies carried out at the National Gallery (NG) in London have imple-
mented a colorimeter coupled to standard photographic imaging to detect chromatic
changes. The first analogic broad-band imaging spectroscope was then realized with
a set of RGB filters in front of the camera lens, and a further progress was reached by
acquiring also the IR image. With the advent of CCD cameras, the very first attempt
of imaging spectrometer was a 4-band device (RGB and IR) developed in 1988, once
more at the NG [40].

In the early 1990s, a low-resolution IS (< 10 spectral bands) was first applied in
situ to image paintings at the NG in London [41,42]. Initially used for qualitative
comparison between bands and to improve image colour accuracy, it became properly
an IS technique for pigment identification in the late 1990s [43–46].
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The research supported by several EU fundedprojects focused, then, on colorimetric
analysis for accurate colour reproduction and for monitoring chromatic variations due
to aging. The pioneer prototype VASARI, homonymous of the EU VASARI project
(Visual art systems for archiving and retrieval of images, FP2-ESPRIT 2, 1989–1992)
aimed at colour measurement, colour fidelity reproduction, and damage assessment
[47]. The resulting two MS prototypes, providing 7 bands in 400-700 nm range, are
kept at the NG (London) and the Döerner Institute (Munich), respectively. Within
the subsequent EU MARC project (Methodology for Arts Reproduction in Colour,
FP3-ESPRIT 3, 1992–1995), an integrated system for the digital acquisition, storage
and handling of high-definition images of paintings for printing purposes was built
and used to produce high-quality catalogues (not a spectral-based system). Driven by
the need to increase public awareness of art images as well as by business opportu-
nities appertaining to the printing of art images and building on VASARI’s legacy,
the MARC project produced, among others, a catalogue showcasing paintings from
different European museums to promote the established methodology. [48,49]

In the same period, the EU MUSA project (Use of Multimedia for Protecting
Europe’s Cultural Heritage, FP3-ESPRIT 3, 1992–1994) fostered the development
of new software tools for the conservation and dissemination of works of art, based
on high-quality images and data. [50]

The last endeavour in the series, the CRISATEL project (Conservation Restoration
Innovation Systems for image capture and digital Archiving to enhance Training,
Education and lifelong Learning, FP5-IST, 2001–2005) developed technologies to
preserve paintings by ultra-high qualityMS digitisation, enabling the use of the images
as surrogates to assist conservation of the originals. Two systems were devised in 400–
1000 nm range: the laboratory version in use at the NG and the JumboScan camera.
The former is based on an off-the-shelf monochrome digital camera (1300 × 1030
pixel, pixel size 6.7 micron), mounted on an X–Y scanning stage for micro scanning
mode (3900× 3900 pixel), fitted with 13 band-pass filters (10 in VIS, FWHM=40 nm;
3 in NIR, FWHM=100 nm). The camera is refocused automatically with each change
of filter because of filter’s thickness variation. The 80 mm lens focal length results in a
20 pixels/mm resolution on the painting at the closest object distance [51]. The latter
MS scanner, the JumboScan, is based on a 12000 pixel linear array mounted vertically
and mechanically displaced to scan 30000 horizontal positions (images up to 12000
× 30000 pixels). The sensor is equipped with the same filter wheel as the NG device
[52,53]. Both in Europe and in the US, CRISATEL prototype examined a variety of
famous paintings such as the Mona Lisa [54,55] and the Van Gogh’s Self-portrait at
the NG of Art, Washington D. C. [56], paving the way for IS in the heritage science.

Yet in early 2000s, the achieved spectral information was not completely satis-
factory, either for digital archiving or for colorimetric measurements, fostering the
research towards higher spectral resolution. The pioneer study by Baronti et al. [43,44]
proposed a MS system based on a Vidicon camera equipped with a set of interferen-
tial filters on a rotating wheel (420–1550 nm spectral range). Bacci et al. [57] report
on a PbS Vidicon camera system equipped with 32 interferential filters covering the
400–1700 nm spectral range at 10 nm spectral resolution. Based on point-wise detec-
tion, a novel scanning device was developed in the 380–800 nm spectral range. [58]
The detector, a customized linear multi-anode photomultiplier, was composed of 32
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elements, equipped with 10 nm wide interferential filters of 10 or 20 nm spacing. The
image was captured by scanning the painting surface point-by-point, and MS acqui-
sition was performed through a standard multimode fiber (200/250 micron core/clad
diameter, NA = 0.22) coupled with a catoptric adapter, made of parabolic and cylindri-
cal mirrors, which shaped a rectangular beam on the photomultiplier [58]. The authors
further extended the spectral range by adding a separate IR module and acquiring the
raster image by scanning the surface with a 4-by-4 square-shaped fiber bundle, cou-
pled to a set of InGaAs photodiodes preceded by interferential filters [59,60]. The MS
scanner underwent multiple improvements in the following years [61–63] reaching its
present 32 bands arrangement and up to 2500 nm spectral coverage [64–66].

The research on MBI [67] and MSI [68–70] proliferated, producing a flourishing
method for relevant applications on cultural heritage objects [46,57,71,72]. Delaney
et al. [68] first extended the spectral range up to 2500 nm, whereas Mansfield et al.
[73] introduced the use of tunable filters.

Parallel to the development of these MB and MS devices, the characterization
of constituent materials and degradation products in artworks was carried out by
fibre optic reflectance spectroscopy (FORS), demonstrating its power as non-invasive
diagnostic tool [73–80] with relevant spectral database [81]. In this respect, the HSI
can be seen as the two-dimensional (2D) implementation of FORS. [82–84]

Many instruments have been projected by different research groups all over the
world. To name just a few, Casini et al. [35,85] proposed a HS camera operating in
the 400–900 nm spectral range coupled with a prism-grating-prism line-spectrograph
resulting in a 500 bands device (FWHM= 1 nm) and 100micron spatial sampling. The
system was implemented with an InGaAs camera to cover also 900-1700 nm range
[36,37,86]. Another Italian group set up a device for colour measurements based on
the commercial spectrograph Imspector, working in 400–730 nm spectral range [87].
Balas et al. [34] proposed in 2003 a HS device, called HySI, operating in the 380–
1000 nm range based on a tunable filter as monochromator, patented in 2006 [88]. The
spectral range was extended to 1550 nm within the EU MUSIS project (Multispectral
terahertz, infrared, visible imaging and spectroscopy, 2008–2012, FP7-ICT STREP)
[89]. Liang et al. [90,91] developed a MSI/HSI PRISMS (Portable Remote Imaging
System for Multispectral Scanning) system specifically designed for remote imaging
of wall paintings. The device operates in a VIS/NIR (400–880 nm, 10 filters, FWHM=
40 nm in the VIS, 70 nm in the NIR) as well as in a SWIR (900–1700 nm, best spectral
resolution = 10 nm) range. Recently, Delaney et al. [38] combined two commercial
HS cameras to cover the 441-1680 nm spectral range (260 bands). Lastly, the authors
have extended the spectral range out to 2500 nm. [92,93]

This scenario proves RIS for the investigation of works of art has reached the
stage of mature technology, evidenced by the appearance of a few devices on the
market [94]. Nowadays, MB, MS and HS devices, all suited for the non-invasive
diagnostics and documentation of painted surfaces, differ in terms of transportability,
price, spectral sensitivity, spatial and spectral resolution, ease-of-use, dimensions,
weight, user-friendly interface, etc.). High spatial resolution is a crucial parameter for
obtaining high quality images, whereas the possibility to identify pictorial materials
strictly depends on the spectral resolution and on the extent of the spectral region
investigated. At the same time, increasing the sampling step both in the spatial and in
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the spectral domain entails huge data sets as well as long acquisition time. Therefore,
a compromise between high-quality data and ease of data management should be
reached. [36]

The introduction of MSI/HSI in heritage science boosted an informatics research
branch focused on pigment identification andmapping [38,95–97], automated classifi-
cation of data [98,99], materials characterization [100], virtual restoration [101–103],
machine learning analysis [104], automatic registration and mosaicking [105], web
visualization and archiving [90,91,106,107].

3 Instrumental set-ups for imaging spectroscopy

Imaging spectrometers generate digital images in a number of contiguous spectral
bands. Therefore, the HSI/MSI data collection can be seen as a three-dimensional (3D)
system, consisting of two spatial (XY) and one spectral (λ) dimension. By considering
only a single spectral dimension, we exclude UV fluorescence and IR luminescence
spectral imaging, which feature two spectral dimensions describing both the excitation
and the emission wavelength. Hereinafter, a spectral dataset, with two spatial and one
spectral dimension, will be indicated with the term spectral imaging cube or simply
spectral cube or data cube.

To collect a stack of spectral images requires acquisition in both the spectral and
the spatial domain. In the most schematic approach, a HSI/MSI system for the survey
of artworks is generally composed of:

1. a lighting system (necessary for indoor applications),
2. optics (either lens or mirrors based, for the collection of the radiation),
3. a device for the spectral division of the radiation: a connotative element that char-

acterizes the spectrometer and affects different instrumental designs,
4. a detector.

Many are the taxonomies for the HSI/MSI systems, basing on the different work-
ing principles and components. The sequential and simultaneous spectral collection of
images is respectively referred to asmonochromatic or polychromatic. One can further
distinguish betweenhomogeneous andheterogeneous acquisition. In the homogeneous
acquisition, the same spectral filtering is applied to all sensor elements in each record-
ing. In the latter case, the light, reaching different sensor elements in a recording, is
filtered in different ways. Simultaneous spectral collection can be performed in a het-
erogeneous modality if different filters are placed in front of individual pixels [108],
entailing the monochrome CCD sensor modification, which can be expensive.

3.1 Wavelength filtering

Systems based on an image sensor acquire a near-instantaneous snapshot of an area
without scanning. Using a lens to form an image at the focal plane, at which the image
is sharply defined, and a set of filters for wavelength selection, are called staring,
framing or wide-field systems, see Fig. 4
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Fig. 4 Wide-field acquisition with λ selection through filters

In this case, the 2D detector acquires simultaneously the two spatial dimensions
of the data cube and the spectral information is acquired in a time interval [109,110].
The main disadvantage of filter-based spectral imaging is the low light throughput and
prolonged imaging times due to the fact that only one filter channel is collected at a
time and the rest of the photons are discarded. Filter-based wavelength selection can
be achieved through the light path of

• the illumination (before the light hits the object) or
• the imaging (between the object and the sensor).

In the first case, only a selected wavelength range, obtained by placing interference
filters in front of a white source (quartz-tungsten halogen lamp), is incident on the
object and the backscattered radiation is collected by means of a monochrome off-
the-shelf digital camera. The main drawback of this configuration is the chromatic
aberration entailing that images collected at different wavelengths have different focal
lengths, resulting in a different magnification [111] that needs to be corrected in a
post-processing. An option not requiring the use of filters is the use of Light Emitting
Diodes (LED) generating sequences of spectral bands [112].

In the second case, wavelength selection on the imaging light path can be performed
through filtering or dispersing elements, as well as Fourier Transform (FT) interferom-
eters. Band-pass interference filters are generally interposed between the lens and the
detector [34,44,51,53,68], mounted on a motorised computer-controlled filter-wheel.
As a matter of fact, placing a filter in front of the lens is unpractical due to vignetting,
unless filters of large numerical aperture are chosen, which usually are not from stock.
There is a trade of between their low cost and slow speed and a limited number of
wavelengths. Moreover, a small tilt in their position results in a conspicuous image
shift. Tunable filters such as

• Acousto-Optical Tunable Filters (AOTF),
• Liquid Crystal Tunable Filters (LCTF), and
• Fabry-Perot etalon

are more expensive than interference filters, but allow for a much higher tuning speed
and number of wavelengths [113,114].

An AOTF consists of an anisotropic birefringent crystal bound to a piezoelectric
transducer generating a high-frequency vibrational (acoustic) wave that propagates
into the crystal, in response to the application of an oscillating radio frequency (RF)
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signal. Due to the photo-elastic properties of the crystal, the travelling ultrasonic (US)
wave produces a periodic modulation of the refractive index generated by the alter-
nating planes of compression and rarefaction: the crystal acts, then, as a transmission
grating, causing the diffraction of light. Changing the frequency of the transducer
signal applied to the crystal alters the period of the refractive index variation, and
therefore, the wavelength of light that is diffracted. The result is an optical filter elec-
tronically, tunable over a wide spectral range (from the ultraviolet to the long wave
infrared), which is compact, with no moving parts and fast frequency-tuning. How-
ever, the full spectral range is limited by the angular aperture (the larger the angular
aperture, the smaller the full spectral range), and the possible crystal heating causes a
shift in the diffracted wavelength [115].

A LCTF filter is essentially an electrically variable retardance, which provides the
means to tune the center wavelength by changing the voltage applied onto the filter.
It works on the principle of polarization dispersion, that is a broadening of the input
pulse generated by a phase delay between input polarization states. It is based on a Lyot
filter, which is a birefringent liquid crystal sandwiched between two polarizers whose
axes are parallel to each other. The input polarizer converts incoming unpolarized light
into linearly polarized light, which passes through the birefringent crystal that splits
it into ordinary and extraordinary beams. The crystal also introduces a phase delay
between the two beams (and hence, a retardance) proportional to the wavelength.
By changing the voltage, selection of a specific wavelength, at the exclusion of all
others, is achieved. LCTFs have relatively large acceptance angle and apertures, good
compactness, simplicity of driving and no moving parts, but the spectral tuning range
of this type of filter is narrower than those of the AOTFs [116].

The Fabry Perot etalon is composed of two plane, parallel highly reflecting and
partially transmitting surfaces, with a given spacing between them. A beam incident
at given angle generates a number of secondary reflected and transmitted beams of
decreasing intensity. Light waves travelling a large number of round-trips between the
two mirrors interfere constructively or destructively, depending on the phase relation.
Spectral tuning is performed by adjusting either the reflecting surfaces spacing or the
angle of incidence the input beam with respect to etalon. Limiting characteristics of
the tuned etalon spectral imagers are: low throughput (consequent need of multiple
frame averages to get a good signal to noise ratio - SNR), limited field of view (FOV)
and sensitivity to temperature variation [117].

3.2 Wavelength dispersion

Wavelength dispersion can be achieved by means of a prism or a grating: the former is
a refractive element working in transmission, whereas the latter is a diffractive element
working in either reflection or transmission. Generally, designs based on prisms tend to
be considerably more complex than the grating-based ones. Dispersive spectrometers
can offer a higher spectral resolution with respect to filter-based systems, at the cost
of a high demand in the chromatic aberration tolerance of the lens. By coupling the
dispersing grating or prism with a 2D array of detectors, a spectral image is formed
such that the spatial information is along one axis and spectral information is along the
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other. The dispersing element is combined with a slit through an input optics to focus
the radiation on it, a collimating optic to bring parallel rays to the dispersing element,
and then a focusing optic to focus the dispersed radiation on the detector. The slit is
an opening that controls how much light enters the spectrometer. It is critical to the
spectrometer’s performance: the amount of light (photon flux) that enters the optical
path and the spectral resolution, i.e. the narrower the slit, the higher the resolution and
the decreased the signal strength. These two factors must be balanced when selecting a
slit size, and careful matching of the detector size and the slit is necessary for optimum
performance [118]. The resolving power of a prism spectrometer is proportional to the
base-length of the prism and to the variation in the refractive index with wavelength:
the larger the prism and the higher the dispersion of the material, the finer the spectral
resolvingpower.However, highlydispersivematerials havehigh absorption, producing
a reduction of the throughput of the system. In a grating spectrometer, the spectral
resolution is proportional to the order and to the number of lines in the grating and is
constant on the image plane for a constant incident angle of the radiation. Generally,
designs based on prisms tend to be considerably more complex than the grating-based
ones. Dispersive spectrometers can offer a higher spectral resolution with respect to
filter-based systems, at the cost of a high demand in the chromatic aberration tolerance
of the lens.

FT spectrometers are based on either a Michelson or a Sagnac interferometer: the
common principle consists in splitting the radiation from a source into two beams and
recombining them, after introducing a controlled phase shift. The combined beam is
focused on a detector and the intensity of the light is modulated by the path difference
of the two beams. In the former interferometer, the two mirrors are orthogonal to the
optical path of the respective wavetrains and measurements at multiple optical path
difference (OPD) values are obtained by scanning one mirror. In the latter interferom-
eter, the twomirrors are not orthogonal to the optical path of the respective wavetrains,
but they have a fixed angle between them, a fixed position (no moving parts) and iden-
tical distances from the beamsplitter. The reflected and transmitted rays follow exactly
the same path, but in opposite directions. The beamsplitter provides the phase shift
between the two coherent interfering rays so that the optical path difference changes
linearly with variation of the angle of the entering ray with respect to the instrument
optical axis [91,114,119]. The Sagnac spectrometer has relatively low resolution, but
good mechanical stability and compactness (the lack of moving parts significantly
reduces the sensitivity to vibrations). In a Michelson spectrometer, the spectrum is
built up in a time interval: the finer the spectral resolution, the longer it takes to col-
lect the interferogram; the lower the temporal resolution, the higher the SNR. In both
cases, a FT to recover the spectrum is needed [120].

Whateverwavelength selection is achieved, scanning-based imaging spectrometers,
which employ a sensor with a narrow FOV that sweeps over the area to build up and
produce a 2D image of the surface, fall into two basic categories: whiskbroom and
pushbroom scanners.
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Fig. 5 Whiskbroom (single-point) scanning mode

3.3 Whisk- and Push-broom Scanners

Whiskbroom devices scan the surface in a series of lines oriented perpendicular to the
direction of motion of the platform as seen in Fig. 5, which coincides with the flight
direction for airborne/spaceborne operation, i.e. across the swath. These systems are
then also referred to as across-track, spotlight or single-point scanners. Each line is
scanned from one side of the sensor to the other, using a rotating mirror to collect
measurements from one pixel in the image at a time, and as the platform moves
forward over the surface (an active scan mechanism is required to scan the spatial
dimension orthogonal to the direction of the motion of the platform), successive scans
build up a 2D image of the surface.

Therefore, the surface is scanned point by point and line after line, following a
boustrophedon movement. The instantaneous FOV of the instrument determines pixel
size. The light from each pixel is passed through a dispersion element and measured
using a linear (1D) array, aligned such that radiation of different wavelength ranges
falls on different elements of the array. For each platform position, radiation is dis-
persed and its intensity is recorded in as many spectral channels as the number of
detector elements in the line array [121]. The moving parts render this type of sensor
expensive andmore likely to wear out. A special device that combines thewhiskbroom
scanning with filtering is the multispectral scanner developed at the National Research
Council–National Institute of Optics (CNR-INO). Simultaneous wavelength collec-
tion is performed through a square-shaped fibre bundle, which collects the reflected
light froma single point and distributes it to a set of photodiodes (Fig. 6), each equipped
with a different interferential filter. Basing on illuminating a very small area around the
measured point, light scattering and surface heating are reduced. Moreover, the use of
catoptric lens and single-point detection ensures aberration-free images, compensating
for the limited speed of capture [58–61,66].

Pushbroom scanners also use the forward motion of the platform to record suc-
cessive scan lines and build up a 2D image, perpendicular to the platform direction.
However, instead of a scanning mirror, they use a 2D-array of detectors located at
the focal plane of the image formed by the optics, which are “pushed” along in the
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Fig. 6 Single-point acquisition through a set of 32 photodiodes (multispectral scanner CNR-INO). The red
circle highlights the 5 cm diameter area around the measured point (250 micron)

Fig. 7 Pushbroom (line) scanning mode

track direction (i.e. along track): pixels are then recorded line by line, using forward
motion of sensor (the motion of the detector array is analogous to a broom being
pushed along a floor). Figure 7 shows as a separate linear array measures each spectral
band or channel: the second dimension of the detector collects simultaneously all the
spectral information [121,122].

Compared to whiskbroom scanners, pushbroom devices are smaller and lighter and
they have better spatial and radiometric resolution. Special provisions have to be taken
to avoid or compensate any chromatic aberration of the imaging system over the entire
wavelength range, in order to avoid a reduction of the spatial and spectral resolution
of the system. For all devices, the usual trade-off of spatial resolution vs. SNR and
geometric distortions is valid. [123] With respect to wide-field imaging, scanning
approaches provide improved spectral resolution by collecting a highly resolved spec-
trum at each point (whisk-) or line (push-) of pixels on the sample (Fig. 8). The spectral
range of photographic systems is restricted to the VIS and NIR regions whileMSI/HSI
systems can extend this range into the IR. Photographic systems use separate optical
systems (lens, filters) to acquire each spectral band, possibly causing problems both
in ensuring that the different bands are spatially and radiometrically comparable, and
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Fig. 8 Acquisition modality: (left) wide-field and (center, right) whisk- and push-broom scanning

in registration of the multiple images (post-processing to correct for distortion and
aberration is necessary). MSI/HSI systems acquire all spectral bands simultaneously
through the same optical system to alleviate these problems (even though not solving
them).

3.4 Detectors

The detector material sets the spectral sensitivity of the instrument as shows Fig. 9,
together with the wavelength selection component. Silicon detectors are used in the
200–1000 nm range, and for low-noise detection, cooling systems are added (com-
mon cooling techniques involve thermoelectric i.e. Peltier, whereas cryogenic cooling
using liquid nitrogen are used for very low-noise devices). For cultural heritage appli-
cations, the use of Indium Gallium Arsenide (InGaAs) detectors is widespread for
their high sensitivity (900–1700 nm range) and low cost. Extended InGaAs detectors
have sensitivity up to 2.5 μm but they require two-stage cooling for good SNR. Ger-
manium (Ge) detectors have sensitivity similar to InGaAs detectors, but their use is
hampered by the high cost. HgCdTe (also called MCT, mercury cadmium telluride)
detectors are sensitive in a broad spectral range (1–10 μm, 2–20 μm depending on
the element composition), but they are very expensive. For IR spectroscopy in the IR,
other materials well suited are PbS (lead sulphide, 1–2.8 μm), PbSe (lead selenide,
1–4.5 μm) and InSb (indium antimonide, 2–5.5 μm), PbO-PbS (900 nm–2.2 μm)
but are not used as frequently, mainly due to their high cost. Each arrangement has
advantages and disadvantages, and it is the application/experimental requirement that
defines which configuration is the most suitable (e.g. basing on gain, noise factor,
response in a specific wavelength range of interest, ease of operation, necessity of
liquid nitrogen cooling, light levels, etc.).

Optical detectors used in spectroscopic instruments can be either single- or multi-
channel detectors (resp. SCD and MCD). SCDs have one active sensing element
that acts as a single transducer. Photons reaching the detector, within its oper-
ating wavelength range, are absorbed by the active material and encoded as an
electrical signal that varies according to the detector specifications (i.e. analogue
or digital domain). In contrast, MCDs have multiple active sensing areas, which
collect photons independently and simultaneously. A variety of array detectors
are suited for image spectroscopy devices, such as photomultiplier tubes (PMT),
avalanche photodiodes (APD), charge-coupled devices (CCD), intensified CCDs
(ICCD), electron-multiplying CCDs (EMCCD) and scientific complementary metal–
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Fig. 9 Detector materials in relation with their spectral sensitivity

oxide semiconductor (sCMOS). Among them, the PMT is the most sensitive detector
but suffers from a low dynamic range and high cost, prohibiting the manufacturing
of high-pixel arrays (i.e. low-pixel (1×32 and 8×8 arrays are available at reasonable
costs). APDs, though slightly less sensitive than PMTs, are much less expensive and
exhibit superior dynamic range. CCDs are often used for spectral imaging: the large
number of pixels in CCD arrays can be utilized for flexible tuning of spectral resolution
by binning adjacent pixels (in the spectral direction).

High performance array detectors for the UV and visible region (CCD and CMOS)
are readily commercially available with low background, high sensitivity at relatively
low cost because they are based on well developed technology. Conversely, IR array
detectors or IR cameras (also known as IR focal plane arrays, FPAs) were originally
developed for military applications and surveillance and have only become commer-
cially available recently. Furthermore, they are based on a technology that is relatively
less developed than that for UV and visible cameras. However, as demand for these
FPAs increases, concomitantly with recent advances in material sciences, optics and
electronics, newer and high performance FPAs are being developed at much lower
cost and larger size, better performance, wider spectral response, and faster read out.

4 Measured quantity

4.1 Reflectance

The reflectance is a parameter used for quantifying the ability of bodies, materials,
or surfaces to reflect the radiation reaching them. According to the standard EN ISO
9488 [124], reflectance (ρ) is defined as the ratio of the radiant flux reflected from a
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surface, φr , to that of the incident radiant flux, φi ,

ρ(λ) = φr (λ)/φi (λ), (1)

where all quantities are expressed as a function of the wavelength (λ). Reflectance
is dependent on the angle of incident and light polarization, as well, but considering the
case of spectrometers with a fixed configuration geometry and not-polarized sources,
the former dependence can be omitted. Being the ratio of two homogeneous radiomet-
ric parameters, ρ is a dimensionless quantity ranging from 0 to 1. While the amount
of reflected radiation is a property of materials, its angular distribution is related to
the microscopic flatness or roughness surface of the material. Therefore, reflectance is
distinguished into specular or diffuse reflectance. Specular reflectance, defined as the
ratio of the energy flux reflected by a surface in the specular direction (i.e. at the same
angle as the incident one) to the radiation incident on it, describes the case of reflection
on a perfectly flat or planar surface (i.e. with roughness much less than the radiation
wavelength) [125]. In this case, diffusion and diffraction phenomena are negligible.
Diffuse reflectance occurs whenever the bundle of light is diffusely scattered in all
directions in the plane of incidence. ρ(λ) is defined as a function of the radiant flux,
therefore the totality of the radiation reflected in a solid angle, � = 2π , has to be
considered, which corresponds to a hemisphere limited by the reflecting surface.

To define the spectral reflectance factor - R(λ), i.e. the output of a spectral
reflectance spectroscopic measurement - the radiometric reflectance ρ has to be
referred to a perfect (ideal Lambertian) reflecting diffuser. Being this latter an ideal
representation, a reference standard is used,whose reflectance is certified and traceable
(ρre f ). R(λ) is then a relative parameter defined as the ratio between the spectral radi-
ant flux reflected by the sample point, φsample,r (λ), in a certain direction and within a
solid angle� and the spectral radiant flux reflected by a Lambertian reference surface,
(φre f ,r (λ)), in the same illumination/observation conditions:

R(λ) = ρsample(λ)

ρre f (λ)
= φsample,r (λ)

φre f ,r (λ)
(2)

For � → 2π , R(λ) → ρ(λ), the spectral reflectance factor of the perfect reflective
diffuser is equal to 1.

In conventional image sensor, all pixel values are output once at the fixed interval
(T ) that is the maximum integration time. The output voltage, when measuring the
sample surface (Vsample), is then proportional to T, following the formula

Vsample(λ) = kφsample,r (λ)T + Vdark(λ), (3)

where k is a constant value that depends on the detector and Vdark is measured in the
same lighting and geometric conditions as the sample, but closing the entrance of the
instrument with a black stopper/cap. The dark image represents the dark current of
the detector, therefore it is considered as a fixed bias that has to be eliminated when
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acquiring images. The same relation holds when measuring the reference voltage, i.e.

Vre f (λ) = kφre f ,r (λ)T + Vdark(λ). (4)

During the reference standard acquisition, it is important not to saturate the detector
in order not to lose linearity. In case of saturation, lower exposure time or reduced
aperture should be used. The spectral radiant fluxes for the sample and reference
standard (resp. φsample,r and φre f ,r derived from the equations 3 and 4), substituted
in the R(λ) definition (Eq. 2), result in the following relation:

R(λ) = ρre f (λ)
Isample(λ) − Idark(λ)

Ire f (λ) − Idark(λ)
, (5)

where the true spectral reflectance of the spectral standard ρre f (λ) has been introduced
as its value is strictly equal to 1 at every λ just for the ideal perfect reflective diffuser.
The parameter I (light counts) is used instead of V, having a direct proportionality. The
quantity in the denominator is the average computed over a set number of pixel. To
obtain optimal results, the instrument should be in the same setup (lens, device output
bit depth, gain, ROI, down-sampling, light conditions, etc.) during the acquisition of
calibration images (Isample, Idark , Ire f ).

Themeasurement has to be performed in a specific illumination/detection geometry
[126], which for the majority of instruments for reflectance imaging spectroscopy
is 45◦/0◦: light impinges on the sample at 45◦ and the back-scattered radiation is
collected at 0◦ (all angles are measured with respect to the axis orthogonal to the
surface). For object colour measurement, deviations from the standard geometry can
cause significant error. To ensure such errors are not significant, the tolerances for the
standard geometries are recommended in the CIE International Standard [127].

The acquisition of the spectral image of a scene (the spectral cube) requires the
measure of the spectral reflectance factor in every pixel. Depending on the instru-
ment, a few correction factors have to be introduced: the flat-field correction (FFC) is
used to correct the differences of light sensitivity between the pixels of a camera, the
differences in the transmission of light through the lens and the differences of illu-
mination intensities in the field-of-view. FFC corresponds to correcting the combined
optical-system and CCD throughput at each pixel so that each pixel on the CCDwould
respond equally to a source with the same photon flux. Flat fielding removes the effect
of the pixel-to-pixel sensitivity variations across the array as well as the effect of dust
or scratches on the CCD window, and vignetting. A flat field frame must be produced
for each filter/dispersion element—lens—detector combination. The goal is to correct
the pixels of the captured (raw) images in such a way that when a uniform background
is captured by the system (camera and lens), the resulting output image is uniform.
The flat image is an image of a uniform target covering the whole FOV: once the
lens aperture and the illumination intensity are adjusted to obtain the brightest possi-
ble image providing that no pixels are saturated not to enter the non-linear response
regime, several images are acquired and the average response for each pixel of the
array is computed (the more and brighter frames, the better). [91] Detector nonlinear-
ity is another source of error: if the nonlinearity is found as a function of integration
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time or count level for the pixels, the raw signal (counts) can be corrected using a fit
function. If no correction is made, they should be included in the uncertainty budget.
Another error source occurs when a grating has a leaked higher-order response: it may
be useful to check the non-existence of the second-order diffraction. Stray light can
cause significant error in chromaticity: this is critical for colour sources that have no
emission in some spectral regions, such as LEDs.

Bandpass of spectrometers can cause significant errors in colour measurement if
the bandwidth is larger than 5 nm. Even with a 5 nm bandwidth, the errors can be con-
siderable for special samples and for applications that require low uncertainties. Some
methods of correction for bandpass error are introduced. For colorimetric computa-
tions, in order not to apply any data deconvolution, CIE suggests a spectral bandwidth
equal to the spectral sampling, both ≤ 5 nm. This is usually the case for HS devices,
whereas for MS data the Stearns and Stearns rule has to be applied [128], as well as
1 nm interpolation. Other methods are also available, depending on the spectral data
interval and bandpass shape of the instrument [129].

MS instruments based on filtering suffer from a scaling error among images, in case
filters do not have the same optical thickness. Moreover, a tilt in the position of the
filter by a fraction of a degree can result in an image shift. Shift between wavelength
channels is not present for tunable filtering. Chromatic aberration affects both MS
and HS systems: standard lenses do not focus all wavelengths on to an image plane
at the same location, especially in the IR range where also low dispersion glasses
hardly compensate on a huge spectral range. The multispectral scanner developed at
CNR-INO [66] overcomes all the above-mentioned corrections: based on the point-
wise detection, the device images a sample point on the measured surface through
a catoptric lens, avoiding the chromatic aberration. The ROI is very small (a square
1.5 mm wide) compared to the lighted spot (about 5 cm diameter), therefore uniform
lighting is guaranteed. The image is formed onto the entrance end of a fiber bundle (6
by 6 fibers in a square-shape array as shown in Fig. 6) whose output end is filtered by
a set of 36 interferential filters placed in front of 36 separate detectors. Therefore, no
FFC is necessary. The lighting systems is integral with the collecting optics, perform-
ing a boustrophedon movement across the surface, minimizing thus surface heating
(maximum temperature increase is 2.5 ◦C during scanning). Due to the poor spectral
bandwidth and sampling, the Stearns and Stearns formula as well as 1 nm interpolation
are necessary for colorimetric computation.

4.2 Reflectance spectroscopy

Reflectance spectroscopy (RS) measures the spectral composition of the radiation
specularly or diffusely reflected by the object surface. RS usually deals with diffuse
radiation therefore the experiments are planned so as to avoid the specular component.
RIS in the visible to near infrared (400–1000 nm) provides information on electronic
transitions. Observed electronic transitions (i.e., between different electronic levels)
can be classified as follows [40]:

1. Between delocalized molecular orbitals. These transitions are characteristic of
organic dyes and pigments having conjugate double bonds, possibly with electron-
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donor/electron-acceptor pairs far from each other, permitting electron delocaliza-
tion over a wide space interval. Their energy levels are separated by energies
corresponding to those in the VIS range thus generating very intense transition
bands. Some examples include indigo, alizarin, curcumin.

2. Charge transfer transitions, in which a real electron transfer occurs between molec-
ular orbitals localized in different sites of the molecule or crystal.

3. Ligand field transition, taking place between levels localized mainly on (transition)
metal ion constituting elements of the material such as inorganic pigments (i.e.,
azurite, malachite, verdigris, smalt, cobalt violet, Egyptian blue) or gems (i.e., ruby,
emerald). Five d orbitals of the metal ion are acted upon by the field generated by
the ligand ions that surround the metal ion. A typical example can be Co2+ ion
coordinated by 4 oxygen atoms in a near tetrahedral geometry in smalt, generating
transition in the VIS region.

4. Energy band transitions occurring in metals and semiconductors. The molecular
orbitals resulting from the interaction of the atomic orbitals of each atom are close
one to another to yield a continuum, i.e. energy band. In semiconductors, the valence
(filled) and conduction (empty) bands are separated by the energy gap. The energy
quantumcorresponding to such energy gap is than the starting point for a continuous
absorption of energy to yield a “S” shaped absorption band.

Extended range beyond visible to near- and short-wave (SWIR) infrared spectrum
up to 2500 nm enables access to vibrational overtones and combinations, which are
distinctive of functional groups such as carbonates, hydroxyls, sulphates, and methyl
groups, facilitating the identification of number of compounds. RIS is thus providing
information about the chemical structure and presence of certain functional groups for
both organic and inorganic compounds. The work by Rosi et al. [130] demonstrated
the utility to exploit even longer wavelength (mid-infrared) HS imaging.

The absorption bands seen in the NIR spectral range arise from overtones and
combination bands of stretching and bending vibrations (Fig. 10). The combinations
bands are the sum of several different fundamental vibrations whereas the overtones
are multiples of fundamental vibrations frequencies. Their intensities are weaker by a
factor of 10–100 and are inversely proportional to the order of overtone.

Reflectance maxima can be considered for a first inspection, although more reli-
able information derives from apparent absorbance maxima, which can be obtained
through Kubelka–Munk or Log(1/R) transformation. Every spectrum is described as a
two columns set of data, containing wavelengths and reflectance values, respectively.
Pigment identification using visible reflectance may be hampered by the high depen-
dence ofRSon (i) the pigment particles size, (ii) the pigment/binding ratio, (iii) the type
of binding medium, and (iv) scattering and autoabsorption phenomena. These factors
can contribute to a change in spectral shape, a shifting of the bands, and a variation
of relative band intensities. The presence of varnish and dirt can affect the reflection
measurements due to absorption of reflected light [131]. Unsupervised methods, such
as Hierarchical Cluster Analysis (HCA) or Principal Components Analysis (PCA),
can be used to classify reflectance spectra into different classes [132]. Classification
should be performed among painted areas of a same hue, otherwise differences among
hues would prevail over differences among colourants of similar hue. Data transfor-
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Fig. 10 Scheme of overtone and combination band spectral features. Modified from [133]

mation can be crucial to obtain significant results, for example a simple Z-scores
transformation can be useful to avoid differences induced from the surface roughness
of the sample. Normalisation should be performed along spectrum rather than along
wavelength, in order not to lose typical spectral features. Another useful method is
to perform classification on Log(1/R) data instead than on R data: this accounts for
differences induced by colourant concentration.

RIS is successfully applied to study a variety of materials, including painted
surfaces, paper, parchment, textile and plastics and their degradation products and
mechanisms. It is especially suitable for identifying blue, green, white and red pig-
ments as most yellow and black pigments do not exhibit sufficiently distinct spectral
features (except for iron-based pigments). Binding media and varnishes can be gener-
ally classified, however, attentionmust be paid to account for the contribution from the
support. Textile fibres—i.e. wool, silk, cotton and bast, constituting canvas, tapestries,
historic carpets—can be distinguished as well. Paper can be discerned from parch-
ment, and degradation mechanisms of the two materials can be followed. RIS can also
contribute to the characterization of materials composing contemporary art. [134]

Hyperspectral data volumes are very large, implying certain requirements for stor-
age and further image processing and analyses. The primary aim of data analyses is
therefore a reduction step to decrease data size. To process the huge amount of data,
multivariate analysis methods such as Principal Component analysis (PCA), Max-
imum Noise Fraction (MNF), Non-negative Matrix Factorization (NMF), Spectral
Angle and Spectral Correlation Mappers (SAM and SCM), automated classifica-
tion methods, such as neural networks, t-Distributed Stochastic Neighbor Embedding
(t-DSNE) and Unifrom Manifold Approximation and Projection (UMAP) for dimen-
sion reduction (UMAP) are applied to group and map artist’s materials based on their
spectral features [135].

The pioneering work by Baronti et al. [43] applied PCA to map pigments of a 16th

century Italian painting, however the association of principal components with specific
pigments or physical quantities is not straightforward. Comelli et al. [137] integrated
the information gained using PCAwith that obtained through SAM algorithm to study
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in depth Italian Renaissance paintings by Masolino da Panicale. The method further
developed into the application of the automatic end-member extraction obtained with
sequential maximum-angle convex cone (SMACC) to be complemented with theman-
ual selection of additional end-members to completely describe complex spectral data
sets. In fact, Cesaratto et al. [131] demonstrated that MS imaging data with SMACC
and SAM algorithms are efficient in segmenting data into different areas that reflect
diverse composition.

SAM and SCM algorithms are indeed among the most commonly applied methods
providing information about the distribution of the pigment across the painting, as
documented in Sect. 5 (RIS inmultimodal analysis). SAM considers spectra as vectors
in N-dimensional space, where N corresponds to the number of spectral bands. The
angle between the reference (r) and target (t) spectra, Eq. 6, measures their similarity.
The angle is used to build the similarity maps, where a smaller value, expressed in
radians < 0, π >, suggests a higher degree of similarity. [131,136]

α = cos−1 �λrλtλ
(�λt2λ)1/2(�λr2λ)1/2

(6)

The main difference between SAM and SCM is that the latter centralizes the data
in its mean (Eq. 7) considering also the negative correlation. In fact, SCM relies on
the calculation of similarity (−1 < R < 1), where 1 means total correlation, through
the Pearson’s correlation coefficient, yielding more accurate classification results.

R = �λ(rλ − r)(tλ − t)

(�λ(rλ − r)2)1/2(�λ(tλ − t)2)1/2
(7)

Spectral Angle Mapper (SAM) considers spectra as vectors with dimensionality
corresponding to the number of bands. By calculating the angle between the reference
and target spectra, itmeasures their similarity. In SAM images, the pixel value intensity
is proportional to the angle between the vector representing the spectrum of each pixel
and the endmember (EM) being mapped. A small angle means a close match and a
high intensity value in the image plot. Therefore, the SAM algorithm identifies pixels
in the image cube whose reflectance spectra match those of the reference (or EM)
within a specified angle tolerance.

Many researchers rely on ENVI software (ENVI, Exelis VIS, Boulder, CO) with
implemented algorithms. [138–140] One of the most used is the hourglass paradigm
that entails three major steps. The first consists in the determination of the spectral
diversity through the minimum noise fraction (MNF) algorithm. This returns the eigen
images, orthogonal projections of the pixels in the image cube, whose maximum
numbers corresponds to the number of spectral bands. Through the purity pixel index
algorithm, in the second step, the image pixels are grouped based on their spectral
similarity. A convex geometry hyperspectral processing algorithm can be used to find
a spectral basis set (i.e., EM) of pigments and binders. Themethod utilizes both PCA to
determine the diversity of the image cubes and convex geometry to find unique spectral
components. The reflectance spectra identified by the convex geometry algorithm are
manually clustered in principal component space [141]. The resulting hyperspectral
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maps show the spatial distribution of the EM. The maps are false-colour images where
each colour denotes one endmember, and the colour intensity represents the degree of
match. The histogram of the image maps are set to values of 0.1–1.0 (i.e. poor to high
degree of match).

5 RIS in multimodal analyses

In the last years, RIS has been used in combination with other non-invasive/non-
destructive techniques to achieve a comprehensive knowledge of the analysed artwork.
As pointed out in previous reviews [91,142,143], this multi-analytical approach has
often involved the application of punctual, areal and 3D analyses, to provide chemical,
morphological, and structural information on the object and its constituting materials.
Most studies aimed at obtaining detailed information for the chemical characterization
and mapping of painting materials- i.e. pigments, binders, colorants and smalts-, and
this was attained by combining punctual spectroscopic analyses with complementary
point-wise and areal measurements. 2D and 3D imaging techniques were often applied
jointly to visualize hidden details underneath the paint layers, identify and localize
retouched areas, and determine the state of conservation of the object through the
detection of defects inside the material structure. Finally, 3D methods provided shape
models and cross-sectional images of painted artworks, turning useful for deeply
understanding the artistic technique and the object’s genesis, as well as monitoring its
structural and morphological condition.

In this section, we report on the state of the art synergic application of RIS in the
UV–VIS–NIR-midIR region and other non-destructive techniques for the analysis of
artworks. The overview covers the main focus and objectives reached by each research
line in the last decades subdived as follows:

• Point-wise and areal analyses of painting materials
• 2D imaging of hidden details
• 3D and cross-sectional survey.

Firstly, contents of each section are briefly summarized, and then case studies are
reported in chronological order.

5.1 Point and areal analyses of paintingmaterials

The non-destructive identification and mapping of the constituting materials is often
based on MS/HS reflectance point-wise and areal analyses. These are often combined
with other point-mapping and/or wide-field imaging techniques, such as Raman spec-
troscopy, X-ray fluorescence (XRF) spectroscopy, UV–VIS spectrophotometry, and
Fourier-Transformed Infrared (FT-IR) spectroscopy. Data post-processed by means
of multivariate analysis can reveal the areal distribution of the materials. In some
cases, micro-destructive technique—i.e. involving micro-sampling, such as scanning
electron microscopy/energy dispersive spectroscopy (SEM/EDS) and polarized light
microscopy (PLM)—are used to confirm compositional information provided by RIS.
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Fig. 11 P. Picassos Harlequin Musician (1924): (left) VIS colour image; (top left) VNIR/SWIR HS cube
and (bottom left) cluster map used to define the primary end members; (centre) A plot of the reflectance
spectra of the end members and (right) their associated spatial distributions in the painting. Modified from
[38]

The combined application of complementary spectral point-wise techniques,
namely UV–VIS reflectance spectroscopy, Raman and FT-IR microspectroscopy,
demonstrated that such multimodal approach may provide a rapid and unequivocal
way to identify ancient pigments [76]. The pre-Columbian pigment Maya blue was in
fact identified on archaeological samples, based on the detection of significant spectral
differences between indigo as pure crystalline solid or as complexed by palygorskite.
Later, a selection of 12th century manuscripts was analysed by means of IRR, Raman
spectroscopy (in situ and laboratory measurements), XRF, and UV-fluorescence pho-
tography in order to localize the presence of retouched areas on the basis of the
chemical composition of the pigments. Apart from historical pigments, two synthetic
azo-pigments, PR4 and PR176, could be identified, suggesting that the manuscript
underwent some restoration in the past, even though no previous conservative inter-
vention was documented [144].

In 2010, primary colorants and, in some case, pigments mixtures used by Picasso
in the painting Harlequin Musician were identified by combining VIS-SWIR HS and
MS luminescence imaging [38]. Reflectance spectra of colorants displaying unique
luminescence properties, called endmembers, were used to compute the associated
spatial maps by means of HS image processing algorithms (Fig. 11). Results were
compared with those from other more traditional methods, such as in situ XRF and
polarized light microscopy (PLM) on micro-sample analysis, SEM/EDS, and FT-IR.
It was observed that many of the primary colorants could be effectively identified
and mapped by RIS only when extending the spectral range into the SWIR and when
including information obtained with luminescence IS. In fact, the omission of part
of the NIR and SWIR portion of the reflectance image cube was found to reduce
the degree of discrimination among the colourants. Furthermore, the assignment of
pigments was confirmed by complementing the results of reflection and luminescence
IS with XRF data, enabling to characterize and map the pigments used by Picasso.
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Fig. 12 E. Steichen The Sunflower(image courtesy of the Board of Trustees, NG of Art, Washington, D.C):
a visible image, black numbered points indicate XRF analyses; b false colour NIR luminescence image:
650 nm (blue), 800 nm (green), and 950 nm (red) formed using the registered and radiometrically calibrated
spectral image cube using a linear contrast stretch; c spatial distribution of end members. Modified from
[145]

In 2011, Thoury et al. [145] attained the non-invasive identification and mapping
of cadmium pigments in painting, based on the combined application of FORS and
luminescence IS. A homemade illumination and MS camera system operating from
650 to 950 nm provided image cubes calibrated to the relative radiance of test panels
and paintings. The unique spectral properties of pigments highlighted by this method
enabled to map the distribution of cadmium pigments of different hues in a painting by
Steichen (Fig. 12a), which was confirmed by XRF. Luminescence spectra across the
painting were extracted from images collected in seven spectral bands from 650 to 950
nm while exciting with blue-green light. The false colour image reported in Fig. 12b,
constructed by using three bands at 650 nm (blue), 800 nm (green), and 950 nm (red),
revealed a varied and complex set of emissions in the red to NIR range, showing the
diversity of luminescent materials on the painting and giving insight on their relative
luminescence yields. The spectral maps computed on the basis of the endmembers’
luminescence spectra well-described the spectral diversity of the various luminescent
materials, thus providing a good discrimination among them (Fig. 12c).

In 2012, a protocol involving a sequence of complementary techniques was pro-
posed for the non-invasive identification of materials in miniature paintings. [132]
The combined application of UV-VIS reflectance spectrophotometry and optical
microscopy followed by Raman spectroscopy and XRF enabled to characterize both
the spectral properties of pigments and metal layers, verify the presence of overlap-
ping layers, identify mordants in lakes, and recognize minor components yielding
information concerning provenance.

The effectiveness of a synergic combination of point-like analytical and imag-
ing methods for the study of complex polychromatic artworks was demonstrated by
Cesaratto et al. [131] on a painting on paper by Van Gogh, analysed by MS imaging
and micro-Raman spectroscopy. The corrected MS data cube of the entire painting
was post-processed using multivariate statistical analysis, including the sequential
maximum-angle convex cone (SMACC) algorithm to extract automatically the spec-
tral endmembers. Then, the spectral angle mapper (SAM) was applied to visualize
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the similarity of the reflectance factors of the dataset with each endmember, thus
enabling to differentiate the presence of pigment mixtures on the painting surface.
Complementary analytical information was obtained through portable Raman spec-
troscopy, performed on a few selected points of the painting, corroborating the results
obtained with reflectance spectroscopy and completing the characterization of Van
Gogh’s palette.

The potential of whiskbroom line RIS in NIR range in providing insight into the
complex mixing and layering of pigments was explored on a series of panel paintings
byCosimoTura. [141]Mapping and assignment of organic (egg yolk and glue) binders
was performed in situ. The proteinaceous component of both binders has similar
spectral fingerprint in the region from 1650–2500 nm, whereas that associated with
lipids differ. In fact, egg yolk can be discerned from glue through its lipid distinctive
features localized at different wavelength and at higher intensity than for glue.

Each resulting image cube from RIS was post-processed with HS convex geometry
algorithms providing the spectral endmembers. The analysis highlighted the presence
of two binders, i.e. egg yolk and animal skin glue, whose distribution was ascribed
to specific pigments on the basis of their X-ray density. Results, underscoring the
strength of the imaging capability of RS, suggested that the artist used egg yolk as
the binder for high X-ray density pigments (such as lead white and red/brown iron
earth pigments), whereas glue was used for low X-ray density blue (mainly azurite)
and white pigments (such as calcium carbonate).

In 2014, RIS in VIS-NIR range and XRF imaging was applied to identify pigments
and determine their spatial distribution on another painting by Cosimo Tura [146].
The fusion of data from the two imaging modalities, based respectively on molecular
and elemental spectroscopy, allowed for the disclosure of the preparatory design of
the painting, as well as for the characterization of the materials with higher confidence
than from either technique alone.

The analytical suitability of HSI, in combination with other non-invasive meth-
ods for identifying original pigments, was evaluated two years later on a number of
paintings by Goya [147]. Two different HSI systems were compared in terms of their
performance: pushbrooom providing high quality images, suitable for post process-
ing, and mirror-scanning enabling the instrument’s mobility thanks to its low weight
and dimensions (at the expense of low lighting uniformity). Data obtained with the
two systems led to the identification of most pigments and the discrimination between
retouched and original areas. Due to the presence of pigments mixtures, the charac-
terization required the support of Raman Spectroscopy and XRF, with portable and
hand-held devices, respectively.

Later, the same authors [148] explored the advantages of HSI over point-by-point
spectroscopic analyses—i.e. handheld XRF and Raman spectroscopy. For that pur-
pose, three paintings by Goya were examined to determine the best non-invasive
technique for pigment identification. Each of the applied methods provided different
and complementary information, thus demonstrating that a multi-modal non-invasive
approach may effectively yield the comprehensive characterization of pigments on
paintings. HSI gives general information facilitating the representativeness of the
results regarding the entire artwork. In contrast, point-by-point analyses seem to pro-
vide more specific data.
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Fig. 13 Rembrandts painting: detail of Sauls turban (a) visible light image (b) cross-correlation HS RIS
map of smalt (threshold (0.5–1.0 confidence) normalized); c MA-XRF CoK map. Modified from [150]

Such approach proved successful for the study of illuminated manuscripts [149].
Data obtainedwithfilter-basedNIRRIS,XRFmapping, andRaman spectroscopywere
post-processed with multivariate methods, including principal component analysis
(PCA) and non-negative matrix factorization (NMF), to separate contributions from
different pigments in complex images. On one hand, XRF mapping combined with
Raman point analysis enabled to detect the spatial distribution of pigments in both
surface and hidden layers. On the other, integration of XRF and RIS data allowed to
identify all the locally investigated pigments.

Diffuse whiskbroom HS VIS-NIR RIS was applied jointly with macro XRF (MA-
XRF) scanning and quantitative electron microprobe analysis to identify the presence
of cobalt-containingmaterials on the painting Saul andDavid (Fig. 13a) byRembrandt
[150]. The strong electronic transitions of smalt in the NIR were used for mapping
three types of cobalt-based pigments, assessed in comparison with XRF maps of Co,
Ni and As. The distribution of smalt obtained by NIR RIS (Fig. 13b) on a painting’s
detail overlapped only partially with the Co-K XRF map (Fig. 13c). In particular, the
turban, from the left brow to the top right, showed strong CoXRF signal, but low smalt
correlation in the RIS map. In fact, only the XRF map of the Ni-richer smalt found
in Saul’s turban matched well with the smalt mapped by the RIS. Further observation
with cross-sectional analysis revealed the presence of thick layers of smalt in the areas
rich of Ni, while other pigments (such as iron ochres and black pigments) were present
at significantly lower levels. It was concluded that, compared to the other areas where
elemental Co was found by XRF, these high Ni content areas should have had an
optical appearance closer in colour to that of blue smalt. Furthermore, the presence
of two types of smalt not only supported the recent re-attribution of the painting to
Rembrandt, but also revealed that the picture was painted in two phases.

In 2017, macroscale multimodal chemical imaging was exploited for the first time
to shed light on the production technology of an 1800-year-old encaustic painting
(Fig. 14a). [92] HS pushbroom line-scanning diffuse reflectance (400–2500 nm) and
luminescence (400–1000 nm), and XRF (2–25 keV) mapping were processed in con-
junction for non-invasive characterization of the heterogeneous painting system. This
approach was found effective in disclosing the build-up sequences of the painting, the
underdrawings and the original contours and formsof the depictedfigures. Specifically,
co-registred data cubes from the combined HSI modalities enabled the joint interpre-
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Fig. 14 Detail of Greco-Roman paintingPortrait of aWoman, 2nd century AD a colour image, b reflectance
spectral endmembers in the 2230–2360 nm spectral region, c chemical map of spectral signatures fromwax-
related endmembers. Modified from [92]

tation of reflectance, luminescence, and XRF features at each pixel in the image for
the entire painting. Such merging of data allowed for a more thorough identifica-
tion and mapping of the painting’s organic and inorganic constituents. Specifically,
spectral endmembers extracted from HSI reflectance datasets gave a discriminating
absorption feature indicative of wax with characteristic doublet at 2311 and 2352 nm,
due to a combination band of asymmetric/symmetric stretching and bending of the
methylenic (CH2) groups (Fig. 14b, c). The abundance and widespread distribution
of wax throughout the painting, except for areas of paint loss or areas having high
concentration of black pigments, combined with the distinctive textured surface of the
paint layer, indicated the use of melted beeswax as the binding medium mixed with
pigments. Finally, the elemental MA-XRF mapping of Fe in specific areas revealed
features in the painting not discernible by the naked eye or the HSI, due to the low
reflectance value.

In the same year, NIR RIS in combination with MA-XRF found evidence for the
presence of oil and alkyd paints in a “drip” painting Number 1 by Pollock (Fig. 15a).
[139] Both the oil and alkyd spectra exhibit common features of a drying oil. The
identification of the latter is based on presence of the aromatic C–H overtone at 1675
nm and aromatic C=C and C–H combination band at 2265 nm (Fig. 15b). Further-
more, integration of RIS with MA-XRF allowed associating the use of a binder to
specific pigments (Fig. 15c). Reflectance properties highlighted in white paint spectra
suggested the presence of a mixture of titanium white (anatase and rutile) and zinc
white. Representative XRF maps from the white oil and white alkyd paints (Fig. 15c–
f) supported this assumption, revealing the presence of both zinc and titanium, along
with barium only in the oil paint. The observed high reflectance in the NIR of both
zinc and titanium whites ensured that the NIR spectral absorptions used for mapping
the oil medium were not influenced by the pigments present.

A significant step towards the fusion of RS andXRF data for the analysis of painting
materials was the development of an integrated imaging spectroscopic scanner capa-
ble of collecting both the RS and the XRF image cubes (Fig. 16a) [93]. In specific,
a stationary, single pixel XRF and FORS spectrometers compose the scanner. The
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Fig. 15 Pollock’s Number 1: a colour image, b reflectance spectra of linseed oil in red and soy-based alkyd
resin in blue, c false-colour image map of the endmember derivative spectra of oil and alkyd, in red and
blue, respectively, corresponding to white paint; XRF element maps of d titanium, e zinc, and f barium.
Modified from [139]

artwork is moved in a raster mode in front of the two detection systems through a 2D
position-controlled easel enabling data acquisition at moderate spatial resolution (1
and 3 mm respectively for XRF and FORS). The set-up was characterized by a broad
spectral sensitivity (400–2500 nm) in the FORS modality, overcoming the necessity
of two HS reflectance cameras to cover such wide spectral range. The performance
of the dual-mode device was demonstrated by analysing Haymakers at Montfermeil
painting by Seurat (Fig. 16b). Despite the relatively low reflectance spatial sampling,
satisfactory pigment identification and relevant distribution maps were yielded, yet
some aspects as the positioning in focus could be improved (see false colour image
in Fig. 16c). The complementarity of the two techniques enabled to identify cobalt
blue, lead white and an iron oxide pigment in the analysed point reported in red in
Fig. 16b), not possible by either of the singlemethod. In fact, the strongNIR absorption
of cobalt blue in the reflectance spectrum (Fig. 16d) nearly masks the weak absorption
at 1445 nm, typical of the hydroxyl group of basic lead white. The latter pigment is
instead perfectly detectable in the XRF spectrum (Fig. 16e), where the lead peaks are
the most intense. Lower spatial resolution and longer collection times are obtained
with such constructed dual imaging modality XRF and FORS scanner as compared
with HS reflectance imaging cameras. Using FORS instrument makes, however, for a
relatively lower cost.

Whiskbroom VIS-NIR MSI, complemented by XRF mapping, aimed at chemical
and spatial characterization of pigments in two Madonna of the Rabbit paintings: by
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Fig. 16 a Integrated FORS and XRF scanner. Seurat’s Haymakers at Montfermeil (1882): b colour image,
spectra acquisition point marked with a red dot; c false-colour image (450, 550, 620 nm) created from
FORS cube; single spectra from d FORS and e XRF data. Modified from [93]

Titian (1525 and 1530) and by Manet (1856) [66]. In collaboration with the Czech
Academy of Science, the researchers proposed the methodology based on advanced
techniques of data-processing to analyze inhomogeneous datasets. This approach was
demonstrated on datasets related to two aforementioned paintings examined in differ-
ent contexts, times and partially different techniques. The spatially registeredVIS-NIR
data from the scanner, facilitated their processing by spectral correlation mapping
(SCM) and feed-forward artificial neural network (ANN) algorithm (based on sup-
pressingVIS information content from that contained inNIR), respectively for pigment
mapping and improved visibility of pentimenti and of underdrawing style. The data
provided several key elements for the comparison with a homonymous original work
by Titian studied within the ARCHive LABoratory (ARCHLAB) transnational access
project. By combining the results from XRF, spectrophotometric analyses and micro-
scopic observation, it emerged that different blue pigments were employed by the two
artists - i.e. lapis lazuli and azurite by Titian; Prussian, cobalt and cerulean blues by
Manet. In Fig. 17 on left, SCM map of two main blue pigments in Manet’s artwork
is shown. The FORS and Vis-NIR scanner spectra (Fig. 17, right) acquired on blue
areas exhibit reflectance features ascribable to cobalt and Prussian blue, correspond-
ing to the pale and electric blue areas, respectively, in the SCM map. The chemical
composition was confirmed by XRF Co and Fe elemental maps.

Results shown are in line with those reported by Amato et al. [151] on the paintings
by Manet conserved in the Courtauld Gallery, investigated for the first time using a
range of non-invasive in situ analyses. The non-invasive approach, including MA-
XRF, RIS, UV–VIS–NIR, Raman and reflection FTIR spectroscopies, proved to be
well suited to investigate the painting’s compositional complexity allowing for the
visualisation of the distribution of elements indicative of the pigments used. It was
found that Manet used cobalt and Prussian blues in Dejeuner sur l’herbe, a painting
almost coeval with Madonna of the Rabbit, whereas cerulean blue was detected in A
Bar at the Folies-Bergere and Banks of the Seine at Argenteuil, along with the two
aforementioned pigments. Results on the latter painting are reported in Fig. 18a–d.
The distribution of cerulean blue was mapped by MA-XRF based on the co-localised
XRF detection of cobalt and tin (Fig. 18b), while the pigment cobalt blue was conclu-
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Fig. 17 Manet’sMadonna of the Rabbit painting. (Left) SCM of cobalt (shawl) and Prussian blues (mantle)
in pale and electric blue codification, (right) relative FORS and VIS-NIR scanner spectra. Modified from
[66]

Fig. 18 Manet’s Banks of the Seine at Argenteuil painting (1874): a colour image; b false-colour showing
the distribution of cobalt (red) and tin (blue); c false-colour image (R = 950 nm, G = 1230 nm, B = 1705
nm) showing cobalt blue in pink and cerulean blue in orange; d false-colour image showing the distribution
of arsenic (red) and copper (blue). Modified from [151]

sively assigned by reflection spectroscopy, thanks to its recognizable features. False
colour images produced using NIR channels at 950, 1230, and 1705 nm enabled the
discrimination of both pigments (Fig. 18c), based on their peculiar absorption proper-
ties. The use of green pigments such as Scheele’s green, emerald green, chrome green
and viridian was suggested by the detection of copper, arsenic, and chrome XRF
signals (Fig. 18d), which was confirmed by the absorption features highlighted by
reflectance spectroscopy in the visible range. Finally, the combination of reflectance
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spectral data and antimony and iron XRF signals acquired on yellow areas enabled to
identify Naples yellow.

A further multi-analytical approach involving complementary imaging and point-
wise techniques examined the realization of two drawings on paper by Redon [152].
Both artworks date to the period in his career in which he was transitioning between
two stylistic modes. RIS and MA-XRF complemented with Raman spectroscopy and
FORS evidenced the benefits of a top-down research framework, whereby imaging
techniques are employed first for the survey of the whole object, followed by investi-
gation in areas of interest with site-specificmethods, to non-invasively characterize the
constituting materials. The identification and mapping of six black drawing materials
demonstrated the potential of these complementary techniques to distinguish between
similar components within a single object. Based on multivariate post-processing of
spectral data, the array of drawing materials used by Redon was identified, many of
which containing synthetic colorants.

In 2019, broad spectral range (BR) RIS— i.e. from the near UV through the mid–
IR (350 nm-25 μm)—was tested as an in-situ imaging modality to provide maps of
organic and inorganic artists’materials in illuminatedmanuscripts. [140]Two separate,
stationary spectrophotometers, each for a different spectral portion, composed the set-
up: a FORS for the UV to NIR (350–2500 nm), and a FTIR spectrometer for the
mid-IR (1818 nm-25 μm). The great amount of electronic and vibrational transitions
within inorganic compounds and organic functional groups that can be detected in this
spectral region makes BR-RIS a powerful tool for the identification and mapping of
pigments, paint binders, fillers, and substrates used for lake pigments. To prove the
potential of BR-RIS, 3D image cubes (2D spatial and 1D spectral) were collected first
on mock-ups and then on early Italian Renaissance illuminated manuscripts (Fig. 19a)
using this simple single-pixel scanner and a computer-controlled easel to move the
artwork. Pigments and their associated binding media were identified by merging the
spectral information obtained on the broad spectral range with macroscale imaging
(Fig. 19) and the reliability of the results was confirmed with XRF spectroscopy. Of
particular interest was the identification, through the (CH2) combination band, of egg
yolk tempera paint binder to realize the figure of prophet. The wavelength position of
this hydrocarbon band can be used to discriminate binders as glue (2282 nm), drying
oil (2304 nm), egg yolk (2309 nm), or wax (2312 nm).

The study demonstrated that BR-RIS offers a larger amount of information formap-
ping artists’ materials than VIS-NIR, mid-IR, or XRF imaging spectroscopy alone.
A clear drawback of the proposed system was the relatively slow scan rate (0.2–1
mm/s) for a 1–2 mm2 spatial sampling (i.e. 1m2 painting in several months). Sug-
gested solutions are either decreasing the integration time for single-pixel scanners
or multiplexing by increasing the number of spatial pixels collected at the same time
from 1 pixel to 100 s. Scan rates of 10 mm/s for 1 mm2 sampling would result in
30 h to scan a 1m2 painting, comparable in time to high-quality XRF scanners. An
alternative is the use of imaging spectrometers or HS cameras for portions of mid-IR,
at higher costs due to increased complexity of the spectrometer and the mid-IR focal
planes, that are currently, however, not providing the needed sensitivity. [140]

Dal Fovo et al. [153] applied three non-invasive transportable devices to analyse
polychrome fragments of mural painting from two recently discovered Roman villas.
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Fig. 19 L. Monaco Praying Prophet: a colour image; b CaCO3 map; overlay of the maps obtained the
spectral features of c the pink lake and CaCO3 (d). e The yellow lake and CaCO3 (f); (g) the yellow lake,
azurite, and CaCO3 (h). Modified from [140]

Fig. 20 Roman fresco fragment (Pozzuoli): XRF elemental maps of aK and c Fe, combined with the SCMs
in b and d, points of spectra acquisition indicated in the RGB image e, yellow circle for K and black circle
for Fe. From [153]

MA-XRF elemental mapping,MSRIS, and FORSwere exploited to display the distri-
butions of the different pictorialmaterials,while assessing the chemical composition of
the pigments present. MA-XRF elemental maps were complemented with the spectral
correlation maps computed from the Vis-NIR images acquired with the multispectral
scanner. The synergic use of the three techniques, as well as the correlation between
point-wise data and post-processed images, enabled to acquire complementary spec-
tral and chemical information, leading to the identification of different pigments. An
example of this application is reported in Fig. 20. The main elemental components
of the ivy crown on the man’s head analysed by MA-XRF resulted Fe and K, but
with different distribution (Fig. 20a, c), bringing into question the use of the same
pigment. The SCMs, based on the spectra acquired in the reference points highlighted
in Fig. 20e, confirmed the presence of the same pigment in all the crown’s leaves,
identified with green earth, based on its spectral features and the comparison with a
reference spectrum. The results showed that SCmapping is an effective and fast imag-
ing method that can be used to verify the distribution of a pigment on a wide pictorial
surface or on several painted objects simultaneously. Based on the so-obtained spectral
data, more detailed chemical analysis can be performed byMA-XRF on limited areas.
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In a comprehensive survey on the paintingMadonna of the Basket byRubens and its
presumed textile copy, a tapestry by Fevère, SCMs from MS-RIS, FORS and Raman
spectroscopy shed light onto the artworks’ history [154]. Combined approach proved
powerful in showing a good correspondence between the two artworks in terms of
colour distribution of red pigments, while numerous differences were observed as
regards the distribution and composition of green and blue colours. Furthermore, the
geometric overlap of multi-spectral images provided evidence of the significant icono-
graphic similarity, suggesting that Fevère may have indeed referred to the same carton
used by Rubens for his oil painting. Finally, the ratio between themeasured reflectance
values in the 1500–1600 nm spectral range was used to discriminate between silk and
wool used by Fevère to create shine and matte effects on the tapestry.

Recently, VIS-NIR MS data were fused with XRF single spot analysis for the
examination of a painting by Carpaccio [155]. A workflow based on PCA analysis
of integrated data aimed at mapping pigments in large paintings. After the fusion of
XRF and RIS datasets, PCA was applied to evaluate the effectiveness of this com-
bined approach compared to the PCA analysis of the two data-set separately. The
first proposed method allowed to identify well-defined clusters linked to the different
red pigments used by the artist and to the conservation history of the painting. These
clusters were not detectable when analysing the dataset independently.

5.2 Two-dimensional imaging of hidden details

In the last years, the non-invasive investigation on multi-layered painted objects has
involved RIS in combination with other imaging/mapping techniques for the visu-
alization of underpaintings/underdrawings not visible to the naked eye. Generally,
mosaicking algorithms and multi-variate analyses, while significantly improving the
interpretation of the results, also demonstrated the complementary nature of various
imaging techniques in revealing the presence of internal materials and hidden icono-
graphic features. One of the first reviews on non-destructive optical techniques for
the analysis of artworks, and specifically for the unveiling of underdrawings, penti-
menti and hidden signatures, was presented in 2003 [156]. Main attention was paid
to NIR reflectography to reveal underdrawings containing carbon, UV fluorescence
to highlight retouched or newly repainted areas, and X-ray radiography (XRR) to
give insight into older compositions. These methods applied jointly could provide
exhaustive knowledge of details not visible to the naked eye.

In 2015, the effectiveness of combining different imaging modalities for the visu-
alization of inner details in paintings led to the definition of a multimodal registration
and mosaicking algorithm, enabling the accurate alignment of imaging data to refer-
ence colour images taken at high spatial sampling (300–500 pixels per inch). [105]
By registering different data, such as MS IR images, X-radiographs, HS RIS and XRF
image cubes, onto the reference images of the examined surface, several hidden fea-
tures were revealed. The new algorithm was applied, for instance, to the X-radiograph
and the IR image of a painting by Vermeer, which were superposed to the reference
colour image. The IR image revealed an upside-down hat paintedwith an IR-absorbing
pigment, whereas the X-radiograph showed an upside-down face of a man (in addition
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to the girl), partially painted with lead white. The accurate registration of these images
allowed the construction of a composite image, which evidences both the man’s hat
and face of the underlying composition. Thanks to the merging of IR image and the
X-radiograph, it was observed that the painting style of the reversed portrait differed
significantly from that of Vermeer, thus suggesting the authorship of a different artist.

The painting Belle Ferronnière by Leonardo was examined through a combined
imaging approach, involving RIS and MA-XRF, to determine the state of conserva-
tion in view of restoring interventions and to deepen the knowledge of the artwork’s
genesis [157]. Data provided by a new XRF scanning system complemented with RIS
shed light on the technique to obtain the flesh tone, revealing the composition of the
superimposed painting layers realized in two consequent steps. Furthermore, micro-
scope examinations of specific areas unfolded materials’ alteration in the superficial
layers, probably ascribable to a previous inappropriate cleaning. The integration of
RIS and XRF approach proved powerful for a routine use in a museum environment
to determine in this specific case the extension in-depth of such damage found to be
confined to the upper layers. These results reinforced the decision to undertake a very
subtle retouching of the damaged area in order to spatially reintegrate it.

A relevant disclosure of hidden paintings/underdrawings was presented by Thur-
rowgood et al. [158] on a painting by Degas. The analyses involved the combined
application of conventional IRR, a high definition synchrotron radiation X-ray Flu-
orescence Microscopy (SR-XFM) and X-ray Raman scattering. The XRF elemental
maps were post-processed with a novel methodology to achieve detailed technical
understanding of the painting, which could not be resolved by conventional tech-
niques. Specifically, basing on the traces visualized by IRR (Fig. 21a), the hidden
portrait of a woman, attributed to the same author, was unveiled under the visible
one. A false colour image of the underlying painting (Fig. 21c) was created using a
methodology for layering multiple elemental maps. This latter was generated using
custom-written software for merging the high resolution, high dynamic range ele-
mental images (Fig. 21b), which were manually assigned with colours most likely
associated with each element (e.g., red for Hg, blue for Co).

The effectiveness of the synergic application of XRR and HSI in reflectance and
transmissionmodewas further demonstrated byVan der Snickt et al. [159] by revealing
underlying figurative composition in a painting by Magritte (Fig. 22a). A portable
dual channel NIR (400–1000nm) and SWIR (1000–2450 nm) whiskbroom HSI in
the transmission mode provided more information about the hidden pictorial features
than imaging in reflectance mode. Principle component analysis using a minimum
noise factor transform (PCA-MNF) was used to maximize the clarity of the features
and to reduce the presence of noise in the eigenimages. The combination of HSI and
MA-XRF (Fig. 22b) clearly showed the complementary nature of the two modalities,
allowing to visualize the overall shape and several details of the female figure in the
areas overpainted with lead white rich paints. Moreover, the transmission mode NIR
and reflectance spectroscopic data enabled the identification of a number of pigments,
supported by the results obtained with macroscopic and/or handheld XRF.

Similar results were obtained by combining MS-IRR and HS-RIS and SR-XRF
mapping to analyse the painting The Blue Room (1901) by Picasso, uncovering the
existence of a hidden male portrait. [160] IRR was performed with an InGaAs camera
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Fig. 21 E. Degas Portrait of a Woman: a IR reflectogram (detail); the obscured upside-down sitter’s face is
indicated with a dotted line. bXRF elemntal maps providing an overview of the construction of the painting.
c False colour reconstruction of Degas hidden portrait (detail), created from the SR-XRF elemental maps.
Modified from [158]

Fig. 22 R. Magritte Le portrait: a rotated photograph, b composite image obtained by overlaying the first
eigenimage of MNF of 1000–1550 nm in transmission mode with Cr (light blue), Fe (red), and Hg (also
red) MA-XRF maps, making visible the under painted female figure. Modified from [159]

and liquid nitrogen-cooled analog InSb to cover range up to 2450 nm. For the HS-
RIS, an optimized whiskbroom scanner with EMCCD and an InGaAs array to cover
respectively range in 380–1000 nm and 967–1680 nm. The tandem use of micro-
analytical methods, RIS, and SR-XRF, revealed important information about the early
Blue period painting and the untitled portrait beneath it, that would have been inac-
cessible to any one of the techniques applied separately. In fact, it was underlined
that no individual technique could have completely characterized Picasso’s palette or
reconstruct the hidden portrait, mainly due to similarities in the materials used for
the two superimposed compositions. In some cases, the absence of an intermediary
ground layer made difficult the interpretation of the RIS results, while the zinc white
pigment layer throughout the surface hampered in part the detection of SR-XRF signal
from the underlying painting.

In 2017, three complementary non-invasive techniques—i.e. HSI, MA-XRF, and
Raman spectroscopy – enabled a comprehensive study of the The violin player (1922)
by Van Dongen. [161] HSI measurements were performed with a pushbroom scan-
ner equipped with Specim camera covering 1000–2500 nm. The combined analysis
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facilitated not only the characterization of the pigments palette, but also the identifi-
cation of the painting materials used for realizing details not visible to the naked eye,
allowing to uncover a hidden portrait of a woman under the painting. Such portrait
resulted especially visible in the 2250–2500 nm spectral range, showing some stylistic
features similar to another Dongen’s portraits. MA-XRF mapping, while allowing for
the identification of pigments in combination with Raman spectroscopy, provided the
XRF elemental map of zinc, which turned particularly relevant in highlighting the
traits of the hidden female portrait, as well as revealing its composition based of zinc
oxide pigments.

The pushbroom Resonon Pika II HSI system (400–900 nm), portable MA-XRF,
together with SR-XRF results were post-processed jointly to reveal the biography of a
degraded manuscript recycled as binding material for a 16th century printed edition of
Hesiod’s Works and Days [162]. The information contained in the datasets acquired
on site were fused using a machine learning process for an enhanced analytical result.
This method enabled to visualize the hidden text, as well as identify pigments and
inks proposing thus an innovative method for improving imaging of hidden text using
portable devices.

A year later, another 15th century illuminated manuscript was investigated with
a combination of in situ non-invasive techniques, namely XRF mapping and point
analysis, and VIS–NIR pushbroom Specim (Oulu, Finland) HSI camera [163]. The
VIS–NIR HS system allows for a 400–1000 nm coverage with 212 wavelength chan-
nels with a spectral sampling of 2.8 nm and 1600 spatial pixels. Depending on the
objectives, spatial sampling of 250 μm or 40 μm could be achieved. Semi-automatic
HS data treatment with MNF-PCA transform and SCM provided an overview of the
pigments distribution.The combined approach led to unprecedented informationon the
manuscript, providing new clues for its attribution by revealing hidden iconographic
features, as well as describing the illuminator’s palette and techniques in detail.

In 2017, IRRwas complementedwithXRRandMA-XRFscanning for assessing the
authenticity of a painting attributed to a young Van Dyck [164]. The authors employed
Osiris IR camera (Opus Instruments, UK) equipped with an InGaAs array operating
in 900–1700 nm to record six reflectograms stitched together in Photomerge in Adobe
Photoshop CS5. Data provided by the multi-analytical approach enabled to highlight
technical details, which were considered atypical for Van Dyck’s early period. Main
observed points opposing to the authenticity of the painting were the average quality
of the support, the reddish ground layers, the absence of an iron-based earth pigment
in the fluid sketching medium and the usage of the blue pigment smalt in the drapery
(instead of indigo). Nevertheless, the authors did not exclude a seventeenth-century
origin of the painting, since materials and painting technique did not depart in any
significant way from the standard practice of that period.

In 2019, comprehensive analysis of underdrawings and pentimenti in a painting
by Sacchi was performed using MS IRR and XRR. [165] A modified reflex (NIR
converted NikonD7100 with 1 IR cut and 3 long pass filters) and TE cooled InGaAs
cameras (XENICS Xeva1.7640”) provided for IRR in VIS-NIR (370–1700 nm). The
imageswere registered in ImageJ andprocessed inMatLab integratedwithHypertools,
a free graphical user interface for Hyperspectral Image Analysis. The authors high-
lighted the limitation of the univariate versus a more exhaustive multivariate approach.
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Post-processing of RIS images, including non-conventional false-colour images and
chemometricmethods, revealed important spectral features not discernible in raw data.
Especially PCA proved crucial in underscoring spectral variances, confirmed also by
radiographic images.

Recently, Tserevelakis et al. [166] has focused on overcoming the limits of RIS
in the visualization of hidden features, due to highly absorbing/opaque over-paint
layers, by testing the performance of the cutting-edge photoacoustic imaging (PAI).
The method, widely employed in biomedical research, is based on the photoacous-
tic effect, which exploits the presence of opaque media inside the painting. In fact,
when the light from a pulsed or intensity modulated source, irradiating the painted
object from its backside, is absorbed by the materials (such as those generally used
for underdrawings), ultrasonic acoustic waves are generated. Acoustic signal can be
collected from the other side of the painting, thus revealing the spatial distribution of
the absorbing components. The method was tested on a series of mock-up oil paint
samples with underdrawings made of different materials, whose absorption proper-
ties were previously analysed by UV–VIS-NIR spectrophotometry. Then, the output
of PAI was evaluated in comparison with NIR multispectral imaging. Noteworthy,
photoacoustic techniques not only resulted effective in providing the visualization of
underpaintings, but also enabled the 3D survey of the superimposed painting layers in
the modality of signal attenuation (PAcSAI) imaging. Thickness measurements were
based on the frequency analysis of the transmitted photoacoustic waves, undergoing
an exponential attenuation effect as they propagate through the material [167].

5.3 3D and cross-sectional survey

A number of studies have illustrated the advantages of combining RIS with other
optical techniques for the morphological and cross-sectional survey of paintings. First
examples report on the integration of visible colour, IR, UV and 3D data, for assessing
the conservation state of a 16th century panel painting attributed to Leonardo da Vinci
[168] and a panel painting byAntonio Pisano [169]. Shapemeasurements were carried
out using a high-resolution laser scanning micro-profilometer, whereas 2D data were
provided by UV fluorescence multispectral image acquisition system and a scanning
device for simultaneous RGB colour imaging and IR reflectography. The registration
and merging of 2D images with the micrometric 3D map of the surface allowed to
precisely locate and quantify the presence of overpaintings, detachments or abrasions,
as well as to evaluate the painting’s conservation state in view of any conservation
treatments.

A few years later, Optical Coherence Tomography (OCT), a low coherence interfer-
ometric technique originally applied in ophthalmology, was introduced for the cross
sectional analysis of painted objects. [170,171] In 2011, MS RIS results, obtained
with the PRISMS device (Portable Remote Imaging System for Multispectral Scan-
ning), were successfully integrated with those provided by OCT. [172] The PRISM
was specifically designed for in situ, simultaneous high-resolution spectral and 3D
topographic imaging of large painted surfaces, specifically wall paintings. Imaging
could be performed at sub-mm resolution both at close range and remote distances
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(up to 10 m), by using a lens or a small telescope, respectively. The collection system
was equipped with 10 interference filters in the 400–900 nm with bandwidth of 40 nm
(the 880 nm filter has a bandwidth of 70 nm). In the short wave infrared (SWIR) range
of 900–1700 nm, an AOTF spectrograph, tunable to any wavelenght with adjustable
bandwindth, was used along with an InGaAs camera. The idea of combining the two
techniques came from the need to merge spectral information with cross-sectional
images of the subsurface microstructures. In this manner, colour information and pig-
ments identification could be easily derived from spectral reflectance measurements,
whereas the scattering and absorption properties of paints investigated by OCT could
give additional information for pigments’ identification. Furthermore, OCT probing
of the amount of scattering within the varnish layer provided an indication of the state
of degradation of the varnish.

In 2013, Liang et al. [173] investigated the best spectral window for the en-face
imaging of subsurface materials in painting with IRR and OCT. Based on the spectral
properties of a set of historic artists’ pigments/paints, the 2.2μmwavelength turned out
to be the most suitable for visualizing preparatory sketches, both for direct infrared
imaging and OCT, suggesting that broadband sources at around 2 μm are highly
desirable for OCT applications in art and in material science in general.

Further implementation of the PRISMS device [174] proved effective in providing
images at transverse resolutions of tens of microns remotely (from distances up to
35 m), making high-resolution imaging possible from the ground for areas at hardly
accessible heights. The proposed scanning system bypassed the need of additional
devices for distancemeasurement, being the focusing distance a by-product of spectral
imaging, achieving a distance accuracy of a fewmillimetres on wall painting targets at
distances of around 10m.Thanks to the capability of PRISM to register simultaneously
3D shape, spectral reflectance and colour images, extra processing procedures for
the co-registration of 3D data and spectral images could as well be avoided. The
performance of the device was tested for the large-scale recording of quantitative
data and detailed examination of specific parts of a wall painting in a Buddhist cave
temple from the 10th–11th century, capturing images at the ground level of a patch of
the ceiling. The colour image, derived from the MS images, was then automatically
stitched into a seamless mosaic using a cross-correlation routine. [174]

The combination of RIS and 3D survey proved especially useful for the documen-
tation and monitoring of restoring operations, which may cause irreversible chromatic
andmorphological variations - e.g. the cleaning process. It was demonstrated that such
changes could be monitored on several types of painted artworks, through the joint
application of non-invasive optical technique, includingMS RIS, OCT and laser scan-
ning micro-profilometry [175,176]. On the one hand, OCT provided the visualisation
of the painting stratigraphy, thus allowing for a quantification of the patina thickness
before and after the cleaning. On the other hand, the superficial morphology of the
painting surface was analysed through scanning micro-profilometry and displayed by
means of topographic maps, highlighting variations in roughness due to the removal
of the material.

Later, Targowski et al. [177] illustrated the effectiveness of combining VIS-NIR
reflectance and UV fluorescence imaging with OCT, to provide non-invasively strati-
graphic information on the painting The Landsdowne Virgin of the Yarnwinder by
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Leonardo. OCT tomograms, in the form of both cross-sections and en-face images,
were software-registered onto the relevant areas of high resolution visible, UV-induced
fluorescence and NIR images. The ambiguities in interpreting features observed by
UV-induced fluorescence as alterations was overcome by integration of OCT data,
revealing the structure of the painting’s superficial layers and quantifying and dis-
criminating between varnish layers and retouchings.

The successful integration of 2D and 3D data for the acquisition of iconographic,
morphological, structural, and compositional information on two artworks possibly
linked by the same iconographic subject—i.e., a panel painting by Rubens and a
tapestry by Févère—was shown by Dal Fovo et al. [154]. Three-dimensional mapping
of the painting surface allowed for the quantification of warps and deformations char-
acterizing the wooden support and affecting its current appearance. Then, 3D coloured
models of selected areas of the tapestry were obtained by merging the topographic
maps and RGB images generated by the multi-spectral scanner for exact measurement
and correlation of 3D features of the warp threads with the RGB images (Fig. 16).

Another way to obtain 3Dmodels of artworks for conservative purposes is based on
combined application of reflectance transformation imaging (RTI) and shearography
[178]. The first technique is a digital acquisition process that captures a set of images
of a subject from a single view under varying lighting conditions: given a static object
and a fixed camera view, view-dependent per-pixel reflectance functions are modelled
from captured data [179]. The second is a full-field speckle interferometric technique
for determination of surface displacement derivatives, suitable for measurement of the
object’s shape, analysis of vibrational modes, as well as measurements of curvature
and twist [180]. In [178], a customized shearography system, synchronized with an IR
camera to provide thermal maps, was tested for temporal characterization of strains
that occur on canvas paintings when subjected to changes in exhibition conditions.
The detection capabilities of the proposed shearographic system were evaluated on a
painting by comparison with gradients of displacement of surface topology obtained
by reflectance transformation imaging. It was demonstrated that damage or alteration
in the layered structure could be clearly located, providing insight into the time-
based thermodynamics of painted surfaces by mapping the actual magnitude and
direction of displacements. Furthermore, the integration with RTI enabled to correlate
the detected discontinuities with morphological features visible on the paint surface.
Results reported in Fig. 23 shows a clear correspondence between the strong gradient
of displacement of the paint surface provided by shearographv and the presence of a
high spatial slope indicative of a crack highlighted by RTI.

Alternative 3Dmethodswere introduced for the cross-sectional survey of paintings,
when near infrared imaging was found not successful in visualizing inner features and
stratigraphy in paintings, due to the presence of superimposed opaque layers [181,182].
Among others, terahertz (THz) imaging and THz time-domain spectroscopy (TDS)
were tested for visualizing and measuring the substructure of paintings on canvas and
drawings [183]. These techniqueswere applied in comparisonwith themore traditional
IRR and XRR valuate their effectiveness [184–186]). In [186], measurements were
carried out on a mock-up painting on canvas consisting of several stripes of raw
umber drawing covered with lead white. Although the hidden paint strokes were
vaguely revealed by RIS from the canvas support side of the painting (Fig. 24c), THz
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Fig. 23 Oil on canvas painting, unknown artist, private collection: a the area measured by shearography and
RTI (dashed rectangle); b side-by-side comparison of a shearography-generated gradient of displacement
mapwith ghost overlay, cRTI-generated views of the same paint surface as seenwith specular enhancement,
d and as a contrast-enhanced surface normal map. Modified from [178]

Fig. 24 Paint sample: a time separation between the 2nd and the 3rd positive peak in the reflected THz
signal, as a function of position on the canvas, which is a measure of the optical thickness of the raw umber
strokes, bX-ray transmission image: the presence of the lead white paint obstructs the penetration of X-ray,
hampering the visualization of the underpainting, c IRR allows to identify the raw umber strokes, which
are visualized through the canvas but with a limited contrast. Modified from [186]

imaging provided information on the thickness of the hidden paint layers (Fig. 24a).
Specifically, bymonitoring the timedelay between reflections off different inner layers,
it was possible to measure their optical thickness, thus obtaining the in-depth survey
of the painting. Moreover, it was observed that, contrary to THz-rays, X-rays did not
penetrate the lead white paint and, thus, could not be used to image the underpainting
(Fig. 24b). The study demonstrated that, in presence of highly opaque overpainting,
THz-TDS imaging may enable the visualization of hidden painting layers (even if at
lower spatial resolution than IRR), as well as providing 3D information, such as paint
layer thickness.

Further combined VIS–IR HS RIS and THz imaging investigations carried out on
a 17th century fresco painting on tavella by Gherardini [187]. The HS data made
it possible to determine the state of conservation, revealing the presence of several
cracks on the paint layers and in the outer part of the plaster, as well as making
visible traces of inhomogeneous underdrawings. Furthermore, from the reflectance
features observed in the 400–900 and 950–1650 nm spectral ranges, it was possible
to identify the presence of smalt, a cobalt-based silicate glass, and other pigments,
such as natural and burnt Sienna and umber earths. Furthermore, reflection imaging
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performed at 97 GHz provided a qualitative evaluation of the position of defects inside
the tavella.

6 Future perspectives

Nowadays, a significant number of scientific articles are published annually on HS
and MS imaging for various applications in heritage science field. RIS technique is
for its intrinsic characteristics expected to become an indispensable method in the
heritage science domain. RIS is a complex multidisciplinary method defined as the
simultaneous acquisition of spatial images in spectrally contiguous bands. Rather than
collecting a single spectrum at a single site, as in spectroscopy, HIS records a spectral
volume containing a complete spectrum for every measured pixel. The so-obtained
chemical images allow for the visualization of different chemical constituents based
on their spectral signatures. The spectral specificity enables to detect and distinguish
many different compounds in spite of their similar colour, morphology or overlap-
ping spectra. The build-up of the chemical maps permits the identification of different
entities simultaneously. Its main value lies in the ability to spatially resolve hetero-
geneous samples, provided that the materials exhibit characteristic spectral features
and are present at a minimum concentration or converge in a pixel. To reduce the
huge amount of data generated by HIS, data reduction algorithms to select specific
wavelengths and/or region of interest are implemented. Measurements throughout the
visible, near-infrared and shortwave regions of the electromagnetic spectrum make
RIS a powerful technique for characterizing artwork materials and the trend is to
stretch further the spectral range to encompass as broad spectral interval as possible.

Key advantage of RIS is the integration of spectroscopic and imaging approach for
disclosing hidden features, for differentiation/classification of various components and
their spatial distribution in a noninvasive way. Indeed, recent significant improvements
in instrumentation for NIR spectroscopy, with enhanced detection sensitivity, lowered
background noise and extended spectral range, lead to the increased availability of
commercial devices. Moreover, several manufacturers have specialized in producing
the entire hyperspectral imaging units. RIS sensors combined to chemometric soft-
ware tools (in-line soft sensors) are expected to be routinely applied for manufacturing
process understanding and control. Other strategies could foresee the implementation
of various machine learning algorithms for classification, pattern recognition and pre-
diction derived from existing data. Future projects may be also oriented towards the
development of systems for screening of large and non-planar cultural assets where
traditional whisk- or push- broom scanners may face experimental constraints.

RIS method alone has robust but not exhaustive capacity for the complete charac-
terisation of the composite painted systems constituting artworks. However, RIS can
be easily combined with other spectroscopic or non-spectroscopic sensors to measure
a larger variety of properties. This trend will advance and, as a consequence, data
complexity will further grow through combination of multiple and multivariate sen-
sors. Advanced methods of data analysis will necessarily need to be developed for
proper data treatment in order to draw the correct conclusions. Due to the increased
association of multimodal sensors, another rapidly evolving field will concern on one
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hand the development of scanners producing already registered (multimodal) datasets
and on the other hand data fusion methodologies. It is likely that these two lines will
proceed in parallel.

References

1. A.F. Goetz, G. Vane, J.E. Solomon, B.N. Rock, Science 4704, 1147–53 (1985)
2. G.J. Tserevelakis, I. Vrouvaki, P. Siozos, K. Melessanaki, K. Hatzigiannakis, C. Fotakis et al., Sci.

Rep. 7, 747 (2017). https://doi.org/10.1038/s41598-017-00873-7
3. R. N. Clark, Chapter 1: Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy, in

VOLUME 3 Remote Sensing for the Earth Sciences, edited by A.N. Rencz (John Wiley and Sons,
New York), pp. 3–58 (1999)

4. D.W. Ball, Spectroscopy 10, 16–18 (1995)
5. C. Fischer, I. Kakoulli, Stud. Conserv. 51, 3–16 (2006)
6. P. Ricciardi, A. Pallipurath, K. Rose, Anal. Methods 5, 3819 (2013)
7. C. Cucci, A. Casini, Hyperspectral imaging for artworks investigation, in Data Handl. Sci. Techn.,

Hyperspectral Imaging, edited by J.M. Amigo (2020 Elsevier) 32, pp. 583–604
8. M. Born, E. Wolf, Principles of optics: electromagnetic theory of propagation, interference,

and diffraction of light (Cambridge University Press, Cambridge, 1999). https://doi.org/10.1017/
CBO9781139644181

9. G. ElMasry, D. Sun, Chapter 1 - Principles of Hyperspectral Imaging Technology, in Hyperspectral
Imaging for Food Quality Analysis and Control, edited by Da-Wen Sun (Elsevier), pp. 3–43 (2010).
https://doi.org/10.1016/C2009-0-01853-4

10. G.R. Hunt, Geophysics 42, 501–513 (1977)
11. R.N. Clark, T.V.V. King, M. Klejwa, G.A. Swayze, N.J. Vergo, Geophys Res. 95, 653–680 (1990)
12. C.M. Pieters, W.E. Englert, Remote geochemical analysis: elemental and mineralogical composition

(Cambridge University Press, New York, 1993)
13. R.N. Clark, G.A. Swayze, Mapping minerals, amorphous materials environmental materials, vege-

tation, water, ice and snow, and other materials: The USGS Tricorder algorithm, in Summaries of
the Fifth Annual JPL Airborne Earth Science Workshop, edited by Green R.O. (Jet Propul. Lab.,
Pasadena, Calif.) pp. 39–40 (1995)

14. A.N. Rencz, Manual of remote sensing, vol. 707 (Wiley, New York, 1999)
15. G.K. Moore, Hydrolog. Sci. Bull. 24, 477–485 (1979)
16. W.G. Rees, Physical principles of remote sensing (Cambridge University Press, Cambridge, 2001)
17. J.R. Jensen, remote sensing of the environment: an earth resource perspective, (Pearson Education

Singapore Pte. Ltd., Indian Branch: New Delhi) (2004)
18. G. Vane, A.F.H. Goetz, Rem. Sens. Environ. 24, 1–29 (1988)
19. G. Vane, A.F.H. Goetz, Rem. Sens. Environ. 44, 117–126 (1993)
20. A.F.H. Goetz, Rem. Sens. Environ. 113, S5–S16 (2009)
21. M.E. Schaepman, S.L. Ustin, A.J. Plaza, T.H. Painter, J. Verrelst, S. Liang, Rem. Sens. Environ. 113,

S123–S137 (2009)
22. P.N. Slater, Rem. Sens. Environ. 17, 85–102 (1985)
23. https://modis.gsfc.nasa.gov/. Accessed 18 May 2020
24. H.F. Grahn, P. Geladi, Techniques and applications of hyperspectral image analysis, (Wiley, The

Atrium, Southern Gate, Chichester) (2007). https://doi.org/10.1002/9780470010884
25. B. Park, K.C. Lawrence, W.R. Windham, D.P. Smith, P.W. Feldner, Hyperspectral imaging for food

processing automation, in Proc. SPIE 4816, Imaging Spectrometry VIII, edited by Shen S.S. (The
International Society for Optical Engineering), pp. 308–316 (2002)

26. J. Burger, P. Geladi, The Analyst 131, 1152–1160 (2006)
27. C. Balas, IEEE Trans. Biomed. Eng. 48, 96–104 (2001)
28. P. Geladi, H. F. Grahn, Multivariate and Hyperspectral Image Analysis, in Encyclopedia of Analytical

Chemistry, edited by Meyers R. A. (John Wiley and Sons Ltd), pp. 14349–14374 (2008)
29. E. Herrala, T. Hyvarinen, O. Voutilainen, J. Lammasniemi, Sens. Actuat. A Phys. 61, 335–338 (1997)
30. J. Xing, C. Bravo, T. Pál, H. Jancsók, J. Ramon, J.D. Baerdemaeker, Biosyst. Eng. 90, 27–36 (2005)

123

https://doi.org/10.1038/s41598-017-00873-7
https://doi.org/10.1017/CBO9781139644181
https://doi.org/10.1017/CBO9781139644181
https://doi.org/10.1016/C2009-0-01853-4
https://modis.gsfc.nasa.gov/
https://doi.org/10.1002/9780470010884


Reflectance imaging spectroscopy in heritage science 559

31. P.W.T. Yuen, M. Richardson, Imaging Sci. J. 58, 241–253 (2010). https://doi.org/10.1179/
174313110X12771950995716

32. G.M. Miskelly, J.H. Wagner, Foren. Sci. Int. 155, 112–118 (2005)
33. G. Payne, C. Wallace, B. Reedy, C. Lennard, R. Schuler, D. Exline, C. Roux, Talanta 67, 334–344

(2005)
34. C. Balas, V. Papadakis, N. Papadakis, A. Papadakis, E. Vazgiouraki, G.A. Themelis, J. Cult. Herit. 4,

330–227 (2003). https://doi.org/10.1016/S1296-2074(02)01216-5
35. A. Casini, M. Bacci, C. Cucci, F. Lotti, S. Porcinai, M. Picollo, B. Radicati, M. Poggesi, L. Stefani,

Fiber optic reflectance spectroscopy andhyper-spectral image spectroscopy: two integrated techniques
for the study of theMadonna dei Fusi, inProc. SPIE 5857, OpticalMethods for Arts and Archaeology,
edited by Salimbeni R. and Pezzati L. (The International Society for Optical Engineering), (2005),
https://doi.org/10.1117/12.611500

36. C. Cucci, A. Casini, M. Picollo, M. Poggesi, L. Stefani, Open issues in hyperspectral imaging for
diagnostics on paintings: when high-spectral and spatial resolution turns into data redundancy, in
Proc. SPIE 8084, O3A: Optics for Arts, Architecture, and Archaeology III, 808408, edited by Pezzati
L. and Salimbeni R. (The International Society for Optical Engineering), (2011), https://doi.org/10.
1117/12.889460

37. C. Cucci, J.K. Delaney, M. Picollo, Acc. Chem. Res. 49, 2070–2079 (2016). https://doi.org/10.1021/
acs.accounts.6b00048

38. J.K. Delaney, J.G. Zeibel, M. Thoury, R. Littleton, M. Palmer, K.M. Morales, A. Hoenigswald, Appl.
Spectrosc. 64, 584–594 (2010). https://doi.org/10.1366/000370210791414443

39. J.R.J. Van De Asperen Boer, Appl. Opt. 7, 1711–1714 (1968). https://doi.org/10.1364/AO.7.001711
40. E. Ciliberto, Modern Analytical Methods in Art and Archaeology, in Analytical Methods in Art and

Archaeology, edited by Ciliberto E. and Spoto G. (Wiley, New York), (2000)
41. A. Burmester, J. Cupitt, H. Derrien, N. Dessipris, A. Hamber, K. Martinez, M. Müller, D. Saunders,

The examination of paintings by digital image analysis, in 3rd International Conference on Non
Destructive Testing, Microanalytical Methods and Environmental Evaluation for Study and Conser-
vation of Works of Art Rome, edited by Marabelli M. and Santopadre P. (The International Society
for Optical Engineering), pp. 199–214 (1992)

42. K. Martinez, J. Cupitt, D. Saunders, High resolution colorimetric imaging of paintings, in Proc SPIE
1901, Cameras, Scanners, and Image Acquisition Systems,edited by Marz H. and Nielsen R.L. (The
International Society for Optical Engineering), pp. 25–36 (1993), https://doi.org/10.1117/12.144795

43. S. Baronti, A. Casini, F. Lotti, S. Porcinai, Chemom. Intell. Lab. Syst. 2, 103–114 (1997). https://doi.
org/10.1016/S0169-7439(97)00047-6

44. S. Baronti, A. Casini, F. Lotti, S. Porcinai, Appl. Opt. 8, 1299–1309 (1998). https://doi.org/10.1364/
AO.37.001299

45. H. Maitre, F. Schmitt, J.-P. Crettez, Y. Wu, J.Y. Hardeberg, D. Saunders, Spectrophotometric image
analysis of fine art paintings, in Proc IST and SID Fourth Colour Imaging Conference edited by Marz
H. and Nielsen R.L. (Society for Imaging Science and Technology), pp. 50–53 (1996), https://doi.
org/10.1117/12.144795

46. A. Casini, F. Lotti, M. Picollo, L. Stefani, E. Buzzegoli, Stud. Conserv. 44, 39–48 (1999). https://doi.
org/10.1007/s11045-016-0429-9

47. D. Saunders, J. Cupitt, Natl. Gallery Tech. Bull. 14, 72–85 (1993)
48. H. Derrien, Inf. Serv. Use 13(4), 357–369 (1993)
49. J. Cupitt, K. Martinez, D. Saunders, Comput. Hist. 6, 1–20 (1996)
50. K. Martinez, J. Cupitt, D. Saunders, R. Pillay, Proc. IEEE 90(1), 28–41 (2002). https://doi.org/10.

1109/5.982403
51. H. Liang, D. Saunders, J. Cupitt, JIST 49(6), 551–562 (2005)
52. C. Lahanier, G. Alquié, P. Cotte, C. Christofides, C. De Deyne, R. Pillay, D. Saunders, F. Schmitt,

CRISATEL: High definition spectral digital imaging of paintings with simulation of varnish removal,
in Proc. 3rd triennal meeting ICOM-CC, Rio de Janeiro, 22–27 September 2002 (London: James and
James), edited by Vontobel R., pp. 295–300 (2002)

53. A. Ribés, H. Brettel, F. Schmitt, H. Liang, D. Saunders, Color and multispectral imaging with the
CRISATEL multispectral system, in Proc PICS, the digital photography conference: processing
images, image quality, capturing images, systems (NY: society for imaging science and technology),
edited by Vontobel R., pp. 215–219 (2003)

123

https://doi.org/10.1179/174313110X12771950995716
https://doi.org/10.1179/174313110X12771950995716
https://doi.org/10.1016/S1296-2074(02)01216-5
https://doi.org/10.1117/12.611500
https://doi.org/10.1117/12.889460
https://doi.org/10.1117/12.889460
https://doi.org/10.1021/acs.accounts.6b00048
https://doi.org/10.1021/acs.accounts.6b00048
https://doi.org/10.1366/000370210791414443
https://doi.org/10.1364/AO.7.001711
https://doi.org/10.1117/12.144795
https://doi.org/10.1016/S0169-7439(97)00047-6
https://doi.org/10.1016/S0169-7439(97)00047-6
https://doi.org/10.1364/AO.37.001299
https://doi.org/10.1364/AO.37.001299
https://doi.org/10.1117/12.144795
https://doi.org/10.1117/12.144795
https://doi.org/10.1007/s11045-016-0429-9
https://doi.org/10.1007/s11045-016-0429-9
https://doi.org/10.1109/5.982403
https://doi.org/10.1109/5.982403


560 J. Striova et al.

54. P. Cotte, D. Dupraz, Spectral imaging of Leonardo Da Vinci’s Mona Lisa: An authentic smile at 1523
dpi with additional infrared data in Proc. IST PICS Conference Archiving 06 (Society for Imaging
Science and Technology), pp. 228–235(8), (2006)

55. A. Ribés, R. Pillay, F. Schmitt, C. Lahanier, IEEE Signal Process. Mag. 25(4), 14–26 (2008)
56. F. Imai, M. Rosen, R. Berns, Multispectral imaging of Van Gogh’s self-portrait at the National

Gallery of Art, Washington, D.C. in Proc. IST PICS Conference Montreal, Quebec, Canada (Society
for Imaging Science and Technology), pp. 185–189 (2001)

57. M. Bacci, A. Casini, C. Cucci, A. Muzzi, S. Porcinai, J. Cult. Herit. 6, 329–36 (2005). https://doi.
org/10.1016/j.culher.2005.07.002

58. P. Carcagnì, Patria, A. Della, R. Fontana, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L.
Pezzati, Opt. Lasers Eng. 45, 360–367 (2007)

59. R. Fontana, D. Bencini, P. Carcagnì, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L.
Pezzati, Multi-spectral IR reflectography, in Proc. SPIE 6618, Optical Methods for Arts and Archae-
ology, edited by Salimbeni R. and Pezzati L. (The International Society for Optical Engineering), pp.
661813–15 (2007)

60. C. Bonifazzi, P. Carcagnì, R. Fontana, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L.
Pezzati, D. Bencini, J. Opt. A Pure Appl. Opt. 10(6), 064011 (2008)

61. C. Daffara, E. Pampaloni, L. Pezzati, M. Barucci, R. Fontana, Acc. Chem. Res. 43(6), 847–856
(2010). https://doi.org/10.1021/ar900268t

62. R. Fontana, M. Barucci, P. Carcagn, C. Daffara, E. Pampaloni, L. Pezzati, Autofocus laser system for
multi-NIR scanning imaging of painting surfaces, in Proc. SPIE 8084, Optics for Arts, Architecture,
and Archaeology III, edited by Pezzati L. and Salimbeni R. (The International Society for Optical
Engineering), pp. 808405 (2011)

63. C. Daffara, R. Fontana, Microsc. Microanal 17, 691–695 (2011)
64. R. Fontana, M. Barucci, E. Pampaloni, J. Striova, L. Pezzati, From Leonardo to Raffaello: insights

by Vis-IR reflectography, in Acta Artis Academica, Interpretation of Fine Art’s analysis in diverse
contexts, edited by D. Hradil, J. Hradilova (Academy of Fine Arts, Prague), pp. 15–26 (2014)

65. R. Fontana, J. Striova, M. Barucci, E. Pampaloni, M. Raffaelli, L. Pezzati, P. Mariotti, Limewashed
mural paintings as seen by VIS-IR reflectography, in Proc. SPIE 9527, Optics for Arts, Architecture,
and Archaeology V, edited by Pezzati L. and Targowski P. (The International Society for Optical
Engineering), pp. 9527 (2015)

66. J. Striova, C. Ruberto, M. Barucci, J. Blažek, D. Kunzelman, A. Dal Fovo, E. Pampaloni, R. Fontana,
Angew. Chem. 57, 1–6 (2018). https://doi.org/10.1002/anie.201800624

67. A. Pelagotti, A. Del Mastio, A. De Rosa, A. Piva, IEEE Signal Process. Mag. 25, 27–36 (2008)
68. J.K. Delaney, E. Walmsley, B. H. Berrie, C.F. Fletcher, Multispectral imaging of paintings in the

infrared to detect and to map blue pigments, in Sackler NAS Colloquium, Scientific Examination of
art: Modern Techniques in Conservation and Analysis, edited by Pezzati L. and Targowski P. (The
National Academies press, Washington, D.C.), pp. 120–136 (2005)

69. J.R. Mansfield, M. Attas, C. Majzels, E. Cloutis, C. Collins, H.H. Mantsch, Vib. Spectrosc. 28(1),
59–66 (2002)

70. S. Kogou, A. Lucian, S. Bellesia, L. Burgio, K. Bailey, C. Brooks et al., Appl. Phys. A 15, (2015).
https://doi.org/10.1007/s00339-015-9425-4

71. M. Bacci, F. Baldini, R. Carla, R. Linari, Appl. Spectrosc. 45, 26–31 (1991)
72. M. Attas, E. Cloutis, C. Collins, D. Goltz, C. Majzels, J.R. Mansfield, H.H. Mantsch, J. Cult. Herit.

4, 127–136 (2003)
73. J.R. Mansfield, M.G. Sowa, C. Majzels, C. Collins, E. Cloutis, H.H. Mantsch, Vib. Spectrosc. 19,

33–45 (1999)
74. M. Picollo, M. Bacci, A. Casini, F. Lotti, S. Porciani, B. Radicati, L. Stefani, Fiber Optics Reflectance

Spectroscopy: a non-destructive technique for the analysis of works of art, in Optical sensors and
microsystems, edited by Martellucci S., Chester A.N. and Mignani A.G (Springer, Boston, MA), pp.
259–265 (2002)

75. M. Leona, J. Winter, Stud. Conserv. 46, 153–162 (2001)
76. M. Leona, F. Casadio, M. Bacci, M.J. Picollo, Am. Inst. Conservat. 43, 39–54 (2004)
77. G. Dupuis, M. Elias, L. Simonot, Appl. Spectrosc. 56, 1329–36 (2002)
78. C. Cucci, G. Bartolozzi, M. De Vita, V. Marchiafava, M. Picollo, F. Casadio, Appl. Spectrosc. 70,

186–96 (2016). https://doi.org/10.1177/0003702815615346

123

https://doi.org/10.1016/j.culher.2005.07.002
https://doi.org/10.1016/j.culher.2005.07.002
https://doi.org/10.1021/ar900268t
https://doi.org/10.1002/anie.201800624
https://doi.org/10.1007/s00339-015-9425-4
https://doi.org/10.1177/0003702815615346


Reflectance imaging spectroscopy in heritage science 561

79. M. Bacci, M. Picollo, G. Trumpy, M. Tsukada, J. Kunzelman, Am. Inst. Conservat. 46, 27–37 (2007).
https://doi.org/10.1179/019713607806112413

80. M. Bacci, A. Casini, C. Cucci, M. Piccolo, B. Radicati, M. Vervat, J. Cult. Herit. 4, 329–36 (2003).
https://doi.org/10.1016/j.culher.2003.09.003

81. http://fors.ifac.cnr.it/. Accessed 18 May 2020
82. M.Kubik,Hyperspectral imaging: a new technique for the non-invasive study of artworks, inPhysical

Techniques in the Study of Art, Archaeology and Cultural Heritage, edited by Creagh D. and Bradley
D. (Elsevier Science, The Netherlands), pp. 199–271 (2007)

83. J.K. Delaney, J.G. Zeibel, M. Thoury, R. Littleton, K.M. Morales, M. Palmer et al., Visible and
infrared reflectance imaging spectroscopy of paintings: pigment mapping and improved infrared
reflectography, in Proc. SPIE 7391, Optics for Arts, Architecture, and Archaeology II, edited by
Pezzati L. and Salimbeni R. (The International Society for Optical Engineering), pp. 739103 (2009),
https://doi.org/10.1117/12.82749

84. L.W. MacDonald, T. Vitorino, M. Picollo, R. Pillay, M. Obarzanowski, J. Sobczyk, S. Nascimento,
J. Linhares, Herit. Sci., 5, https://doi.org/10.1186/s40494-017-0154-1, (2017)

85. M. Kubik, Hyperspectral image spectroscopy: a 2D approach to the investigation of polychrome
surfaces, in Proc. Conserv. Sci., edited by Townsend J., Toniolo L. and Capitelli F. (Archetype pub-
lications), pp. 10 (2007)

86. C. Cucci, A. Casini,M. Picollo, L. Stefani, ExtendingHyperSpectral Imaging fromVis toNIR spectral
regions: a novel scanner for the indepth analysis of polychrome surfaces, in Proc SPIE 8790, Optics
for Arts, Architecture, and Archaeology IV, edited by Pezzati L. and Targowski P. (The International
Society for Optical Engineering), (2015)

87. G. Antonioli, F. Fermi, C. Oleari, R. Riverberi, Spectrophotometric scanner for imaging of paintings
and other works of art, in Proc. CGIV 2nd European Conf. on Color in Graphics, Imaging, and Vision,
(Society for Imaging Science and Technology, Springfield), pp. 219–224 (2004)

88. C. Balas, D. Pelecoudas, International Patent App., Patent No.: US 7,042,567 B2, PCT/GR00/00039
(2006)

89. O. Theodoropoulou, G. Tsairis, Non-destructive analysis of two post-Byzantine icons by use of the
multi spectral imaging system (MU.S.I.S. 2007, in Optics and Lasers in Biomedicine and Culture,
edited Fotakis C., Papazoglou T.G. and Kalpouzos C. (Springer-Verlag Berlin Heidelberg), (2000)

90. H. Liang, K. Keita, T. Vajzovic, PRISMS: a portable multispectral imaging system for remote in situ
examination of wall paintings, in Proc. SPIE 661815, O3A: Optics for Arts, Architecture, and Archae-
ology, edited by Salimbeni R. and Pezzati L. (The International Society for Optical Engineering),
(2007)

91. H. Liang, Appl. Phys. A 106, 309–323 (2012). https://doi.org/10.1007/s00339-011-6689-1
92. J.K. Delaney, K.A. Dooley, R. Radpour, I. Kakoulli, Sci. Rep. 7, 115509 (2017)
93. J.K. Delaney, D.M. Conover, L. Glinsman, K. Janssens, M. Loew, Herit. Sci. 6, (2018). https://doi.

org/10.1186/s40494-018-0197-y
94. C. Cucci, A. Casini, L. Stefani, M. Picollo, J. Jussila, Bridging research with innovative products: a

compact hyperspectral camera for investigating artworks: a feasibility study, in Proc. SPIE 10331,
O3A: Optics for Arts, Architecture, and Archaeology VI, edited by Pezzati L. and Targowski P. (The
International Society for Optical Engineering), 1–13 (2017)

95. Z. Wang, D. Lu, D. Zhang, M. Sun, Y. Zhou, Multidim. Syst. Sign. Process 27, 1031–1044 (2016).
https://doi.org/10.1007/s11045-016-0429-9

96. S. Kogou, A. Lucian, S. Bellesia, L. Burgio, K. Bailey, C. Brooks et al., Appl. Phys. A 15, (2015).
https://doi.org/10.1007/s00339-015-9425-4

97. S. Kogou, S. Neate, C. Coveney, A. Miles, D. Boocock, L. Burgio et al., Herit. Sci. 4, (2016). https://
doi.org/10.1186/s40494-016-0098-x

98. A. Polak, T. Kelman, P. Murray, S. Marshall, D.J. Stothard, N. Eastaugh, F. Eastaugh, J. Cult. Herit.
26, 1–11 (2017). https://doi.org/10.1016/j.culher.2017.01.013

99. J. Blažek, J. Striova, R. Fontana, B. Zitova, Digit. Signal Process. 60, 140–151 (2017). https://doi.
org/10.1016/j.dsp.2016.09.007

100. P. Ricciardi, J.K. Delaney,M. Facini, L. Glinsman, P J. Am. Inst. Conservat. 52, 13–29 (2013). https://
doi.org/10.1179/0197136012Z.0000000004

101. G. Maino, M. Monti, Color Management and Virtual Restoration of Artworks, in Color Image and
Video Enhancement, edited by Celebi E., Lecca M. and Smolka B. (Springer), pp. 183–231 (2015)

123

https://doi.org/10.1179/019713607806112413
https://doi.org/10.1016/j.culher.2003.09.003
http://fors.ifac.cnr.it/
https://doi.org/10.1117/12.82749
https://doi.org/10.1186/s40494-017-0154-1
https://doi.org/10.1007/s00339-011-6689-1
https://doi.org/10.1186/s40494-018-0197-y
https://doi.org/10.1186/s40494-018-0197-y
https://doi.org/10.1007/s11045-016-0429-9
https://doi.org/10.1007/s00339-015-9425-4
https://doi.org/10.1186/s40494-016-0098-x
https://doi.org/10.1186/s40494-016-0098-x
https://doi.org/10.1016/j.culher.2017.01.013
https://doi.org/10.1016/j.dsp.2016.09.007
https://doi.org/10.1016/j.dsp.2016.09.007
https://doi.org/10.1179/0197136012Z.0000000004
https://doi.org/10.1179/0197136012Z.0000000004


562 J. Striova et al.

102. M. Monti, G. Maino, Image Processing and a Virtual Restoration Hypothesis for Mosaics and Their
Cartoons, in Image Analysis and Processing – ICIAP, edited byMaino G. and Foresti G.L. (Springer),
(2011)

103. D. Riccio, S. Caggiano, M. DeMarsico, R. Distasi, M. Nappi, Mosaic+: tools to assist virtual restora-
tions, in The 21st International Conference on Distributed Multimedia Systems, edited by Maino G.
and Foresti G.L. (Springer), pp. 284–291 (2015), https://doi.org/10.18293/DMS2015-049

104. L. Butler, S. Kogou, Y. Li, C.S. Cheung, H. Liang, A.T. Gallop, P. Garside, C. Duffy, Machine learn-
ing analysis of illuminated Southeast Asian manuscripts using complementary noninvasive imaging
techniques, in Proc. SPIE 11058, O3A: Optics for Arts, Architecture, and Archaeology VII, 110581M,
edited by Liang H., Groves R. and Targowski P. (The International Society for Optical Engineering),
(2019), https://doi.org/10.1117/12.25275760

105. D.M. Conover, J.K. Delaney, M.H. Loew, Appl. Phys. A 119, 1567–157 (2015). https://doi.org/10.
1007/s00339-015-9140-1

106. F. Micheletti, L. Stefani, C. Cucci, M. Picollo, CNR Retrieval of Images from Hyper-Spectral Data
through Interactive Network Access (CRISTINA), in Proceedings of Electronic Imaging and the
Visual Arts EVA, edited by V. Cappellini (Firenze University Press, Florence), 140–145 (2013)

107. E. Bertin, R. Pillay, C. Marmo, Astron. Comput. 10, 43–53 (2015). https://doi.org/10.1016/j.ascom.
2014.12.006

108. M. Eichenholz, N. Barnett, Y. Juang, D. Fish, S. Spano, E. Lindsley, D.L. Farkas, Real-timemegapixel
multispectral bioimaging, in Proc. SPIE 7568, Imaging,Manipulation, and Analysis of Biomolecules,
Cells, and Tissues VIII, edited by Farkas D.L., Nicolau D.V. and Leif R.C. (The International Society
for Optical Engineering), (2010), https://doi.org/10.1117/12.842563

109. J. Olson, R. Jungquist, Z. Ninkov, Tunable multi-spectral imaging system technology for airborne
applications, in Proc. SPIE 2480, Imaging Spectrometry, edited by Descour M.R., Mooney J.M.,
Perry D.L. and Illing L.R. (The International Society for Optical Engineering), (1995), https://doi.
org/10.1117/12.210882

110. C. Rothmann, I. Bar-Am, Z. Malik, Histol. Histopathol. 13, 921–926 (1998)
111. M. Klein, B. Aalderink, R. Padoan, G. De Bruin, T. Steemers, Sensors 8, 4476 (2008)
112. L. Fauch, E. Nippolainen, V. Teplov, A.A. Kamshilin, Opt. Express 18, 23394 (2010)
113. N.A.Hagen,M.W.Kudenov,Opt. Eng. 52, 090901 (2013). https://doi.org/10.1117/1.OE.52.9.090901
114. J. Kerekes, J. Schott, in Hyperspectral data exploitation-theory and applications edited by Chang

C.I. (Wiley, New York), (2007)
115. C.D. Tran, Appl. Spectrosc. Rev. 38, 133–153 (2013)
116. J. Call, R.A. Lodder, Application of a liquid crystal tunable filter to near-infrared spectral searches,

in Proc. SETICon02 (2002)
117. W.J. Marinelli, C.M. Gittins, A.H. Gelb, B.D. Green, Tunable Fabry-Perot etalon-based long-

wavelength infrared imaging spectroradiometer. Appl. Opt. 38, 2594 (1999)
118. P. Mouroulis, R.O. Green, T.G. Chrien, Design of pushbroom imaging spectrometers for optimum

recovery of spectroscopic and spatial information. Appl. Opt. 39, 2210–2220 (2000)
119. A. Casini, F. Lotti, M. Picollo, L. Stefani, A. Aldrovandi, Fourier transform interferometric imag-

ingspectrometry: a new tool for the study of reflectance and fluorescence of polychrome surfaces.
Cons. Sci. 38, 248 (2002)

120. F. Vagni, Survey of hyperspectral and multispectral imaging technologies, RTO Technical Report
TR-SET-065-P3, (2007), (AC/323(SET-065)TP/44 NATO)

121. R.P. Gupta, Tunable multi-spectral imaging system technology for airborne applications (Springer-
Verlag GmbH Germany), (2017), https://doi.org/10.1007/978-3-662-05283-9

122. D.W. Coulter, P.L. Hauff, W.L. Kerby, Airborne Hyperspectral Remote Sensing, Advances in Air-
borne Geophysics, in Proc. Exploration 07: Fifth Decennial International Conference on Mineral
Exploration, edited by Milkereit B., 375-386 (2007)

123. T. Lillesand, R.W. Kiefer, J. Chipman, Remote sensing and image interpretation, (John Wiley and
Sons), 736p (2015)

124. EN ISO 9488, Solar energy—vocabulary, (Brussels: European Committee for Standardization
(CEN)), (1999)

125. A. Fernandez-Garcia, F. Sutter, M. Montecchi, F. Sallaberry, A. Heimsath, C. Heras, E. Le Baron,
A. Soum-Glaude, Parameters and method to evaluate the solar reflectance properties of reflector
materials for concentrating solar power technology, (SolarPACES Guidelines, Official Reflectance
Guideline Version 3.0), (2018)

123

https://doi.org/10.18293/DMS2015-049
https://doi.org/10.1117/12.25275760
https://doi.org/10.1007/s00339-015-9140-1
https://doi.org/10.1007/s00339-015-9140-1
https://doi.org/10.1016/j.ascom.2014.12.006
https://doi.org/10.1016/j.ascom.2014.12.006
https://doi.org/10.1117/12.842563
https://doi.org/10.1117/12.210882
https://doi.org/10.1117/12.210882
https://doi.org/10.1117/1.OE.52.9.090901
https://doi.org/10.1007/978-3-662-05283-9


Reflectance imaging spectroscopy in heritage science 563

126. Commission Internationale de l’éclairage (CIE), Colorimetry, (3rd Edition, CIE Publication 15),
(2004)

127. ISO/CIE, Colorimetry—Part 3: CIE tristimulus values, 11664-3, (The International Organization for
Standardization), (2019)

128. E.I. Stearns, R.E. Stearns, An example of a method for correcting radiance data for bandpass error.
Color Res. Appl. 13, 257–259 (1988)

129. ASTM E308-01, Standard Practice for Computing the Colors of Objects by Using the CIE System,
Color Res. Appl., ICS Code Number 17.180.20 (2001), https://doi.org/10.1520/E0308-01

130. F. Rosi, C. Miliani, R. Braun, R. Harig, D. Sali, B.G. Brunetti, A. Sgamellotti, Noninvasive Analysis
of Paintings by Mid-infrared Hyperspectral Imaging, Angew. Chem. Int. Ed., 52, 5258 –5261 (2013),
https://doi.org/10.1002/anie.201209929; 2013, 52,

131. A. Cesaratto, A. Nevin, G. Valentini, L. Brambilla, C. Castiglioni, L. Toniolo et al., A novel classifica-
tion method for multispectral imaging combined with portable Raman spectroscopy for the analysis
of a painting by Vincent Van Gogh. Appl. Spectrosc. 67, 1234–1241 (2013). https://doi.org/10.1366/
13-07032

132. M. Aceto, A. Agostino, G. Fenoglio, M. Gulmini, V. Bianco, E. Pellizzi, Non invasive analysis of
miniature paintings: proposal for an analytical protocol. Spectrochim. Acta A 91, 352–359 (2012)

133. AG.Metrohm,MetrohmMonograph 8.108.5026EN –A guide to near-infrared spectroscopic analysis
of industrial manufacturing processes. CH-9101 Herisau, Switzerland, (2014)

134. AnalyticalMethodsCommitteeAMCTBNo75,UV-visible-NIR reflectance spectrophotometry in cul-
tural heritage:Backgroundpaper,Anal.Methods8, 5894 (2016), https://doi.org/10.1039/c6ay90112c

135. M. Picollo, C. Cucci, A. Casini, L. Stefani, Hyper-spectral imaging technique in the cultural heritage
field: new possible scenarios. Sensors 8, 5894 (2020). https://doi.org/10.1039/c6ay90112c

136. H. Deborah, S. George, J.Y. Hardeberg, Pigment Mapping of the Scream (1893) Based on Hyper-
spectral Imaging, in Proc. Image and Signal Processing, ICISP, edited by Elmoataz A., Lezoray O.,
Nouboud F. and Mammass D.(Springer), pp. 248 (2014)

137. D. Comelli, A. Nevin, G. Valentini, I. Osticioli, E.M. Castellucci, L. Toniolo, D. Gulotta, R. Cubedu,
Insights into Masolino’s wall paintings in Castiglione Olona: advanced reflectance and fluorescence
imaging analysis. J. Cult. Herit. 12, 11–18 (2011). https://doi.org/10.1016/j.culher.2010.06.003

138. J.K. Delaney, P. Ricciardi, L. Glinsman, M. Facini, M. Thoury, M. Palmer, E.Rene de la Rie, Use
of imaging spectroscopy, fiber optic reflectance spectroscopy, and X-ray fluorescence to map and
identify pigments in illuminated manuscripts. Stud. Conserv. 59, 91–101 (2014). https://doi.org/10.
1179/2047058412Y.0000000078

139. K.A. Dooley, J. Coddington, J. Kreuger, D.M. Conover, M. Loew, J.K. Delaney, Standoff chemical
imaging finds evidence for Jackson Pollock’s selective use of alkyd and oil binding media in a famous
‘drip’ painting. Anal. Methods 9, 28–37 (2017)

140. F. Gabrieli, K. Dooley,M. Facini, J.K. Delaney, Near-UV tomid-IR reflectance imaging spectroscopy
of paintings on themacroscale. Sci.Adv.5, eaaw7794 (2019). https://doi.org/10.1126/sciadv.aaw7794

141. A. Dooley, S. Lomax, J.G. Zeibel, C. Miliani, P. Ricciardi, A. Hoenigswald et al., Mapping of egg
yolk and animal skin glue paint binders in Early Renaissance paintings using near infrared reflectance
imaging spectroscopy. Analyst 138, 4838–4848 (2013). https://doi.org/10.1039/c3an00926b

142. S.Mosca, R. Alberti, T. Frizzi, A. Nevin, G. Valentini, D. Comelli, D. Comelli, Awhole spectroscopic
mapping approach for studying the spatial distribution of pigments in paintings. Appl. Phys. AMater.
Sci. Process. 122, 815 (2016). https://doi.org/10.1007/s00339-016-0345-8

143. S. Legrand, F. Vanmeert, G. Van der Snickt, M. Alfeld, W. De Nolf, J. Dik et al., Examination
of historical paintings by state-of-the-art hyperspectral imaging methods: from scanning infra-red
spectroscopy to computed X-ray laminograph. Herit. Sci. 2, 13 (2014). https://doi.org/10.1186/2050-
7445-2-13

144. A. Deneckere, M. De Reu, M.P. Martens, K. De Coene, B. Vekemans, L. Vincze, P. De Mayer, P.
Vandenabeele, L. Moens, The use of a multi-method approach to identify the pigments in the 12th
century manuscript Liber Floridus. Spectrochim. Acta A. 80, 1125–132 (2011)

145. M. Thoury, J.K. Delaney, E.R. De La Rie, M. Palmer, K. Morales, J. Krueger, Near-infrared lumi-
nescence of cadmium pigments: in situ identification and mapping in paintings. Appl. Spectrosc.
65(8939–951), 939–951 (2011). https://doi.org/10.1366/11-06230

146. A. Dooley, D.M. Conover, L.D. Glinsman, J.K. Delaney, Complementary standoff chemical imaging
to map and identify artist materials in an early Italian Renaissance panel painting. Angew. Chem.
126, 13995–13999 (2014). https://doi.org/10.1002/anie.201407893

123

https://doi.org/10.1520/E0308-01
https://doi.org/10.1002/anie.201209929
https://doi.org/10.1366/13-07032
https://doi.org/10.1366/13-07032
https://doi.org/10.1039/c6ay90112c
https://doi.org/10.1039/c6ay90112c
https://doi.org/10.1016/j.culher.2010.06.003
https://doi.org/10.1179/2047058412Y.0000000078
https://doi.org/10.1179/2047058412Y.0000000078
https://doi.org/10.1126/sciadv.aaw7794
https://doi.org/10.1039/c3an00926b
https://doi.org/10.1007/s00339-016-0345-8
https://doi.org/10.1186/2050-7445-2-13
https://doi.org/10.1186/2050-7445-2-13
https://doi.org/10.1366/11-06230
https://doi.org/10.1002/anie.201407893


564 J. Striova et al.

147. F. Daniel, A. Mounier, J. Pérez-Arantegui, C. Pardos, N. Prieto-Taboada, Vallejuelo S. De Fdez-
Ortiz, K. Castro, Hyperspectral imaging applied to the analysis of Goya paintings in the Museum of
Zaragoza (Spain). Microchem. J. 126, 13995–13999 (2016). https://doi.org/10.1016/j.microc.2015.
11.04

148. F. Daniel, A.Mounier, J. Pérez-Arantegui, C. Pardos, N. Prieto-Taboada, Vallejuelo S. De Fdez-Ortiz,
K. Castro, Comparison between non-invasive methods used on paintings by Goya and his contempo-
raries: hyperspectral imaging vs. point-by-point spectroscopic analysis. Anal. Bioanal. Chem. 409,
4047–4056 (2017). https://doi.org/10.1007/s00216-017-0351-5

149. S. Mosca, T. Frizzi, M. Pontone, R. Alberti, L. Bombelli, V. Capogrosso, Identification of pigments in
different layers of illuminated manuscripts by X-ray fluorescence mapping and Raman spectroscopy.
Microchem. J. 124, 775–784 (2016). https://doi.org/10.1016/j.microc.2015.10.038

150. K. Janssens, G. Van Der Snickt, M. Alfeld, P. Noble, A. Van Loon, J.K. Delaney, D. Conover, J.
Zeibel, J. Dik, Rembrandt’s “Saul and David”: use of multiple types of smalt evidenced by means
of non-destructive imaging. Microchem. J. 126, 515–523 (2016). https://doi.org/10.1016/j.microc.
2016.01.013

151. S.R. Amato, A. Burnstock, M. Cross, K. Janssens, F. Rosi, L. Cartechini, R. Fontana, A. Dal Fovo, M.
Paolantoni, C. Grazia, A. Romani, Interpreting technical evidence from spectral imaging of paintings
by douard Manet in the Courtauld Gallery. X-ray Spectrom. 48, 282–292 (2019)

152. N.S. Daly, M. Sullivan, L. Lee, J.K. Delaney, K. Trentelman, Odilon Redon’s noir drawings: char-
acterization of materials and methods using noninvasive imaging and spectroscopies. Herit. Sci. 7,
1–43 (2019). https://doi.org/10.1186/s40494-019-0286-6

153. A. Dal Fovo, A. Mazzinghi, S. Omarini, E. Pampaloni, J. Striova, R. Fontana, Non-invasive mapping
methods for pigments analysis of Roman mural paintings. J. Cult. Herit. 43, 311–318 (2020). https://
doi.org/10.1016/j.culher.2019.12.00

154. A. Dal Fovo, J. Striova, E. Pampaloni, A. Fedele, M. Morita, D. Amaya, F. Grazzi, M. Cimò, C.
Cirrincione, R. Fontana, Rubens’ painting as inspiration of a later tapestry: non-invasive analyses
provide insight into artworks’ history. Microchem. J. 153, 104472 (2020). https://doi.org/10.1016/j.
microc.2019.104472

155. N. De Manincor, G. Marchioro, E. Fiorin, M. Raffaelli, O. Salvadori, C. Daffara, Integration of
multispectral visible-infrared imaging and pointwise X-ray fluorescence data for the analysis of a
large canvas painting by Carpaccio. Microchem. J. 153, 104469 (2020). https://doi.org/10.1016/j.
microc.2019.104469

156. M. Hain, J. Bartl, V. Jacko, Multispectral analysis of cultural heritage artefacts. Meas. Sci. Rev. 3,
9–12 (2003)

157. E. Ravaud, L. Pichon, E. Laval, V. Gonzalez, M. Eveno, T. Calligaro, Development of a versatile
XRF scanner for the elemental imaging of paintworks. Appl. Phys. A 122, 17 (2016). https://doi.org/
10.1007/s00339-015-9522-4

158. D. Thurrowgood, D. Paterson, M.D. De Jonge, R. Kirkham, S. Thurrowgood, D.L. Howard, A hidden
portrait by Edgar Degas. Sci. Rep. 6, 29594 (2016). https://doi.org/10.1038/srep29594

159. G. Van der Snickt, A. Martins, J.K. Delaney, K. Janssens, J. Zeibel, M. Duffy, C. McGlinchey, B. Van
Driel, J. Dik, Exploring a hidden painting below the surface of René Magritte’s Le Portrait. Appl.
Spectrosc. 70, 57–67 (2016). https://doi.org/10.1177/0003702815617123

160. P.A. Favero, J. Mass, J.K. Delaney, A.R.Woll, A.M. Hull, K.A. Dooley, A.C. Finnefrock, Reflectance
imaging spectroscopy and synchrotron radiation X-ray fluorescencemapping used in a technical study
of The Blue Room by Pablo Picasso. Herit. Sci. 5, 13 (2017). https://doi.org/10.1186/s40494-017-
0126-5

161. E. Herens, C. Defeyt, P. Walter, D. Strivay, Discovery of a woman portrait behind La Violoniste by
Kees van Dongen through hyperspectral imaging. Herit. Sci. 5, 14 (2017). https://doi.org/10.1186/
s40494-017-0127-4

162. E. Pouyet, S. Devine, T. Grafakos, R. Kieckhefer, J. Salvant, L. Smieska, A. Woll, A. Katsaggelos,
O. Cossairt, M. Walton, Revealing the biography of a hidden medievalmanuscript using synchrotron
and conventional imaging techniques. Anal. Chim. Acta 982, 20–30 (2017). https://doi.org/10.1016/
j.aca.2017.06.016

163. L. DeVaguerie, S. Rochut,M.Alfeld, P.Walter, S. Astier, V. Gontero, F. Boulc’h,XRF and reflectance
hyperspectral imaging on a 15th century illuminatedmanuscript: combining imaging and quantitative
analysis to understand the artist’s technique,Herit. Sci, 6, 11 (2018) https://doi.org/10.1186/s40494-
018-0177-2

123

https://doi.org/10.1016/j.microc.2015.11.04
https://doi.org/10.1016/j.microc.2015.11.04
https://doi.org/10.1007/s00216-017-0351-5
https://doi.org/10.1016/j.microc.2015.10.038
https://doi.org/10.1016/j.microc.2016.01.013
https://doi.org/10.1016/j.microc.2016.01.013
https://doi.org/10.1186/s40494-019-0286-6
https://doi.org/10.1016/j.culher.2019.12.00
https://doi.org/10.1016/j.culher.2019.12.00
https://doi.org/10.1016/j.microc.2019.104472
https://doi.org/10.1016/j.microc.2019.104472
https://doi.org/10.1016/j.microc.2019.104469
https://doi.org/10.1016/j.microc.2019.104469
https://doi.org/10.1007/s00339-015-9522-4
https://doi.org/10.1007/s00339-015-9522-4
https://doi.org/10.1038/srep29594
https://doi.org/10.1177/0003702815617123
https://doi.org/10.1186/s40494-017-0126-5
https://doi.org/10.1186/s40494-017-0126-5
https://doi.org/10.1186/s40494-017-0127-4
https://doi.org/10.1186/s40494-017-0127-4
https://doi.org/10.1016/j.aca.2017.06.016
https://doi.org/10.1016/j.aca.2017.06.016
https://doi.org/10.1186/s40494-018-0177-2
https://doi.org/10.1186/s40494-018-0177-2


Reflectance imaging spectroscopy in heritage science 565

164. A. Harth, G. Van Der Snickt, O. Schalm, K. Janssens, G. Blanckaert, The young Van Dyck’s finger-
print: a technical approach to assess the authenticity of a disputed painting. Herit. Sci 5, 22 (2017).
https://doi.org/10.1186/s40494-017-0136-3

165. L. Pronti, M. Romani, G. Verona-Rinati, O. Tarquini, F. Colao, M. Colapietro, A. Pifferi, M. Cestelli-
Guidi, M. Marinelli, Post-processing of VIS, NIR, and SWIR multispectral images of paintings.
New discovery on the the drunkenness of Noah, Painted by Andrea Sacchi, Stored at Palazzo Chigi
(Ariccia, Rome). Heritage 2, 2275–2286 (2019). https://doi.org/10.3390/heritage2030139

166. G.J. Tserevelakis, I. Vrouvaki, P. Siozos, K. Melessanaki, K. Hatzigiannakis, C. Fotakis, G.
Zacharakis, Photoacoustic imaging reveals hiddenunderdrawings in paintings. Sci.Rep.7, 747 (2017).
https://doi.org/10.1038/s41598-017-00873-7

167. A.Dal Fovo, G.J. Tserevelakis, A. Papanikolaou, G. Zacharakis, R. Fontana, Combined photoacoustic
imaging to delineate the internal structure of paintings. Opt. Lett. 44, 919–922 (2019)

168. R. Fontana, M.C. Gambino, M. Greco, L. Marras, M. Materazzi, E. Pampaloni, A. Pelagotti, L.
Pezzati, P. Poggi, C. Sanapo, 2D and 3D optical diagnostic techniques applied to Madonna dei Fusi
by Leonardo da Vinci, in Proc. SPIE 5857, Optics for Arts, Architecture, and Archaeology, edited by
Salimbeni R. and Pezzati L. (The International Society for Optical Engineering), pp. 58570L (2005),
https://doi.org/10.1117/12.612535

169. R. Bellucci, P.L. Carcagni, A.D. Patrib, R. Fontana, C. Frosinini, M.C. Gambino, M. Greco, M.
Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, Integration of image data from 2D and 3D
optical techniques for painting conservation applications. Imaging Sci. J. 55, 80–89 (2007)

170. H. Liang, B. Peric,M.Hughes, A. Podoleanu,M. Spring, D. Saunders,Optical coherence tomography
for art conservation and archaeology, in Proc. SPIE 6618, Optics for Arts, Architecture, and Archae-
ology, edited by Salimbeni R. and Pezzati L. (The International Society for Optical Engineering), p.
661805 (2007), https://doi.org/10.1117/12.726032

171. P. Targowski, M. Iwanicka, Optical coherence tomography: its role in the non-invasive structural
examination and conservation of cultural heritage objects–a review. Appl. Phys. A 106, 2265–277
(2012)

172. H. Liang, R. Lange, H. Howard, J. Spooner, Non-invasive investigations of a wall painting using
optical coherence tomography and hyperspectral imaging, in Proc. SPIE 8084, Optics for Arts,
Architecture, andArchaeology III, edited by Fotakis C., Pezzati L. and Salimbeni R. (The International
Society for Optical Engineering), p. 8084F (2011), https://doi.org/10.1117/12.890088

173. H. Liang, R. Lange, B. Peric, M. Spring, Optimum spectral window for imaging of art with optical
coherence tomography. Appl. Phys. B 106, 4589–602 (2013)

174. H. Liang, A. Lucian, R. Lange, C.S. Cheung, B. Su, Remote spectral imaging with simultaneous
extraction of 3D topography for historical wall paintings. ISPRS J. Photogramm. 95, 13–22 (2014).
https://doi.org/10.1016/j.isprsjprs.2014.05.011

175. R. Fontana, A. Dal Fovo, J. Striova, L. Pezzati, E. Pampaloni, M. Raffaelli, M. Barucci, Application
of non-invasive optical monitoring methodologies to follow and record painting cleaning processes.
Appl. Phys. A 121, 957–966 (2015)

176. J. Striova, R. Fontana, M. Barucci, A. Felici, E. Marconi, E. Pampaloni, M. Raffaelli, C. Riminesi,
Optical devices provide unprecedented insights into the laser cleaning of calcium oxalate layers.
Microchem. J. 124, 331–337 (2016)

177. P. Targowski, M. Iwanicka, M. Sylwestrzak, C. Frosinini, J. Striova, R. Fontana, Using optical coher-
ence tomography to reveal the hiddenhistoryof theLandsdowneVirgin of theYarnwinder byLeonardo
da Vinci and Studio. Angew. Chem. 57, 7396–7400 (2018)

178. P. Klausmeyer, M. Cushman, I. Dobrev, M. Khaleghi, E.J. Harrington, X. Chen, C. Furlong, Quanti-
fying and mapping induced strain in canvas paintings using laser shearography, in The Noninvasive
Analysis of Painted Surfaces: Scientific Impact and Conservation Practice, edited by Nevin A. and
Doherty T. (Smithsonian Contribution to Museum Conservation), pp. 1–3 (2016)

179. G. Palma, M. Corsini, P. Cignoni, R. Scopigno, M. Mudge, Dynamic shading enhancement for
reflectance transformation imaging. J. Comput. Cult. Heritage 3, 1–20 (2010)

180. D. Francis, R.P. Tatam, R.M. Groves, Shearography technology and applications: a review. Meas.
Sci. Technol. 21, 102001 (2010)

181. M. Alfeld, J.A.C. Broekaert, Mobile depth profiling and sub-surface imaging techniques for historical
paintings—a review. Spectrochim. Acta B 88, 211–230 (2013). https://doi.org/10.1016/j.sab.2013.
07.009

123

https://doi.org/10.1186/s40494-017-0136-3
https://doi.org/10.3390/heritage2030139
https://doi.org/10.1038/s41598-017-00873-7
https://doi.org/10.1117/12.612535
https://doi.org/10.1117/12.726032
https://doi.org/10.1117/12.890088
https://doi.org/10.1016/j.isprsjprs.2014.05.011
https://doi.org/10.1016/j.sab.2013.07.009
https://doi.org/10.1016/j.sab.2013.07.009


566 J. Striova et al.

182. K. Janssens, J. Dik, M. Cotte, J. Susini, Photon-based techniques for nondestructive subsurface
analysis of painted cultural heritage artifacts. Acc. Chem. Res. 43, 814–825 (2010)

183. J. Tasseva, A. Taschin, P. Bartolini, J. Striova, R. Fontana, R. Torre, Thin layered drawing media
probed by THz time-domain spectroscopy. Analyst 142, 42–47 (2017)

184. K. Fukunaga, Y. Ogawa, S.I. Hayashi, I. Hosako, Terahertz spectroscopy for art conservation. IEICE
Electron. Express 4, 258–263 (2007)

185. J.-M. Manceau, A. Nevin, C. Fotakis, S. Tzortzakis, Terahertz time domain spectroscopy for the
analysis of cultural heritage related materials. Appl. Phys. B 90, 365–368 (2008)

186. A.J.L. Adam, P.C.M. Planken, S. Meloni, J. Dik, TeraHertz imaging of hidden paint layers on canvas.
Opt. Express 17, 3407–3416 (2009)

187. J. Doria, G.P. Gallerano, E. Giovenale, A. Casini, C. Cucci, M. Picollo, M. Poggesi, L. Stefani,
K. Fukunaga, M. Tamassia, Vis-NIR hyperspectral and terahertz imaging investigations on a fresco
painting on “Tavella” by Alessandro Gherardini. J. Infrared, Millimeter TerahertzWaves 38, 390–402
(2017). https://doi.org/10.1007/s10762-017-0357-2

123

https://doi.org/10.1007/s10762-017-0357-2

	Reflectance imaging spectroscopy in heritage science
	Abstract
	1 Introduction
	2 Spectroscopy: from lab to remote sensing
	2.1 Development of imaging spectroscopy in heritage science

	3 Instrumental set-ups for imaging spectroscopy
	3.1 Wavelength filtering
	3.2 Wavelength dispersion
	3.3 Whisk- and Push-broom Scanners
	3.4 Detectors

	4 Measured quantity
	4.1 Reflectance
	4.2 Reflectance spectroscopy

	5 RIS in multimodal analyses
	5.1 Point and areal analyses of painting materials
	5.2 Two-dimensional imaging of hidden details
	5.3 3D and cross-sectional survey

	6 Future perspectives
	References




