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Abstract
This article consists of a very short introduction to classical and quantum informa-
tion theory. Basic properties of the classical Shannon entropy and the quantum von
Neumann entropy are described, along with related concepts such as classical and
quantum relative entropy, conditional entropy, and mutual information. A few more
detailed topics are considered in the quantum case.
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188 E. Witten

1 Introduction

This article is intended as a very short introduction to some basic aspects of classical
and quantum information theory.1

Section 2 contains a very short introduction to classical information theory, focus-
ing on the definition of Shannon entropy and related concepts such as conditional
entropy, relative entropy, and mutual information. Section 3 describes the corre-
sponding quantum concepts—the von Neumann entropy and the quantum conditional
entropy, relative entropy, and mutual information. Section 4 is devoted to some more
detailed topics in the quantum case, chosen to explore the extent to which the quantum
concepts match the intuition that their names suggest.

In this article, we only consider topics that are fairly closely related to entropy. For
other matters such as Bell’s inequality, the reader will have to look elsewhere. There
are several excellent introductory books on classical and quantum information theory,
for instance [1–3]. Another excellent place to start is the lecture notes [4], especially
chapter 10.

2 Classical information theory

2.1 Shannon entropy

We begin with a basic introduction to classical information theory. Suppose that one
receives a message that consists of a string of symbols a or b, say

aababbaaaab · · · (2.1)

And let us suppose that a occurs with probability p, and b with probability 1 − p.
How many bits of information can one extract from a long message of this kind, say
with N letters?

For large N , the message will consist very nearly of pN occurrences of a and
(1 − p)N occurrences of b. The number of such messages is

N !
(pN )!((1 − p)N )! ∼ NN

(pN )pN ((1 − p)N )(1−p)N

= 1

ppN (1 − p)(1−p)N
= 2NS (2.2)

where S is the Shannon entropy per letter [5]

S = −p log p − (1 − p) log(1 − p). (2.3)

(In information theory, one usually measures entropy in bits and uses logarithms in
base 2.)

1 The article is based on a lecture at the 2018 summer program Prospects in Theoretical Physics at the
Institute for Advanced Study.
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Amini-introduction to information theory 189

The total number of messages of length N , given our knowledge of the relative
probability of letters a and b, is roughly

2NS (2.4)

and so the number of bits of information one gains in actually observing such amessage
is

NS. (2.5)

This is an asymptotic formula for large S, since we used only the leading term in
Stirling’s formula to estimate the number of possible messages, and we ignored fluc-
tuations in the frequencies of the letters.

Supposemore generally that themessage is taken from an alphabet with k letters a1,
a2, . . ., ak , where the probability to observe ai is pi , for i = 1, . . . , k. We write A for
this probability distribution. In a long message with N � 1 letters, the symbol ai will
occur approximately Npi times, and the number of such messages is asymptotically

N !
(p1N )!(p2N )! . . . (pk N )! ∼ NN

∏k
i=1(pi N )pi N

= 2NSA (2.6)

where now the entropy per letter is

SA = −
k∑

i=1

pi log pi . (2.7)

This is the general definition of the Shannon entropy of a probability distribution for
a random variable A that takes values a1, . . . , ak with probabilities p1, . . . , pk . The
number of bits of information that one can extract from a message with N symbols is
again

NSA. (2.8)

From the derivation, since the number 2NSA of possible messages is certainly at least
1, we have

SA ≥ 0 (2.9)

for any probability distribution. To get SA = 0, there has to be only 1 possiblemessage,
meaning that one of the letters has probability 1 and the others have probability 0. The
maximum possible entropy, for an alphabet with k letters, occurs if the pi are all 1/k
and is

SA = −
k∑

i=1

(1/k) log(1/k) = log k. (2.10)
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190 E. Witten

The reader can prove this by using the method of Lagrange multipliers to maximize
SA = −∑

i pi log pi with the constraint
∑

i pi = 1.
In engineering applications, NSA is the number of bits to which a message with

N letters can be compressed. In such applications, the message is typically not really
random but contains information that one wishes to convey. However, in “lossless
encoding,” the encoding program does not understand the message and treats it as
random. It is easy to imagine a situation in which one can make a better model by
incorporating short range correlations between the letters. (For instance, the “letters”
might be words in a message in the English language; then English grammar and
syntax would dictate short range correlations. This situation was actually considered
by Shannon in his original paper on this subject.) A model incorporating such corre-
lations would be a 1-dimensional classical spin chain of some kind with short range
interactions. Estimating the entropy of a long message of N letters would be a prob-
lem in classical statistical mechanics. But in the ideal gas limit, in which we ignore
correlations, the entropy of a long message is just NS where S is the entropy of a
message consisting of only one letter.

Even in the ideal gas model, we are making statements that are only natural in
the limit of large N . To formalize the analogy with statistical mechanics, one could
introduce a classical Hamiltonian H whose value for the i th symbol ai is − log pi , so
that the probability of the i th symbol in the thermodynamic ensemble is 2−H(ai ) = pi .
Notice then that in estimating the number of possiblemessages for large N , we ignored
the difference between the canonical ensemble (defined by probabilities 2−H ) and the
microcanonical ensemble (in which one specifies the precise numbers of occurrences
of different letters). As is usual in statistical mechanics, the different ensembles are
equivalent for large N . The equivalence between the different ensembles is important
in classical and quantum information theory.

2.2 Conditional entropy

Now let us consider the following situation. Alice is trying to communicate with Bob,
and she sends a message that consists of many letters, each being an instance of a
random variable2 X whose possible values are x1, . . . , xk . She sends the message
over a noisy telephone connection, and what Bob receives is many copies of a random
variable Y , drawn from an alphabet with letters y1, . . . , yr . (Bob might confuse some
of Alice’s letters and misunderstand others.) How many bits of information does Bob
gain after Alice has transmitted a message with N letters?

To analyze this, let us suppose that PX ,Y (xi , y j ) is the probability that, in a given
occurrence, Alice sends X = xi and Bob hears Y = y j . The probability that Bob
hears Y = y j , summing over all choices of what Alice intended, is

PY (y j ) =
∑

i

PX ,Y (xi , y j ). (2.11)

2 Generically, a random variable will be denoted X , Y , Z , etc. The probability to observe X = x is denoted
PX (x), so if xi , i = 1, . . . , n are the possible values of X , then

∑
i PX (xi ) = 1. Similarly, if X , Y are two

random variables, the probability to observe X = x , Y = y will be denoted PX ,Y (x, y).
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Amini-introduction to information theory 191

If Bob does hear Y = y j , his estimate of the probability that Alice sent xi is the
conditional probability

PX |Y (xi |y j ) = PX ,Y (xi , y j )

PY (y j )
. (2.12)

From Bob’s point of view, once he has heard Y = y j , his estimate of the remain-
ing entropy in Alice’s signal is the Shannon entropy of the conditional probability
distribution. This is

SX |Y=y j = −
∑

i

PX |Y (xi |y j ) log(PX |Y (xi |y j )). (2.13)

Averaging over all possible values of Y , the average remaining entropy, once Bob
has heard Y , is

∑

j

PY (y j )SX |Y=y j = −
∑

j

PY (y j )
∑

i

PX ,Y (xi , y j )

PY (y j )
log

(
PX ,Y (xi , y j )

PY (y j )

)

= −
∑

i, j

PX ,Y (xi , y j ) log PX ,Y (xi , y j ) +
∑

i, j

PX ,Y (xi , y j ) log PY (y j )

= SXY − SY . (2.14)

Here SXY is the entropy of the joint distribution PX ,Y (xi , y j ) for the pair X ,Y and SY
is the entropy of the probability distribution PY (y j ) = ∑

i PX ,Y (xi , y j ) for Y only.
The left hand side of Eq. (2.14), which as we see equals SXY − SY , is called the

conditional entropy SX |Y or S(X |Y ); it is the entropy that remains in the probability
distribution X once Y is known. Since it was obtained as a sum of ordinary entropies
SX |Y=y j with positive coefficients, it is clearly positive:

SXY − SY ≥ 0. (2.15)

(The analogous statement is not true quantum mechanically!) Since SX is the total
information content in Alice’s message, and SXY − SY is the information content that
Bob still does not have after observing Y , it follows that the information about X that
Bob does gain when he receives Y is the difference or

I (X; Y ) = SX − SXY + SY . (2.16)

Here I (X; Y ) is called the mutual information between X and Y . It measures how
much we learn about X by observing Y .

This interpretation convinces us that I (X; Y ) must be nonnegative. One can prove
this directly but instead I want to deduce it from the properties of one more quantity,
the relative entropy. This will complete our cast of characters.
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192 E. Witten

2.3 Relative entropy

One can motivate the definition of relative entropy as follows. Suppose that we are
observing a randomvariable X , for example the final state in the decays of a radioactive
nucleus.We have a theory that predicts a probability distribution QX for the final state,
say the prediction is that the probability to observe final state X = xi , where i runs
over a set of possible outcomes {1, 2, . . . s}, is qi = QX (xi ). But maybe our theory is
wrong and the decay is actually described by some different probability distribution
PX , such that the probability of X = xi is pi = PX (xi ). After observing the decays
of N atoms, how sure could we be that the initial hypothesis is wrong?

If the correct probability distribution is PX , then after observing N decays, we will
see outcome xi approximately pi N times. Believing QX to be the correct distribution,
we will judge the probability of what we have seen to be3

P =
s∏

i=1

q pi N
i

N !
∏s

j=1(p j N )! . (2.17)

We already calculated that for large N

N !
∏s

j=1(p j N )! ∼ 2−N
∑

i pi log pi (2.18)

so

P ∼ 2−N
∑

i pi (log pi−log qi ). (2.19)

This is 2−NS(P||Q) where the relative entropy (per observation) or Kullback-Liebler
divergence is defined as

S(PX ||QX ) =
∑

i

pi (log pi − log qi ). (2.20)

From the derivation, S(PX ||QX ) is clearly nonnegative, and zero only if PX = QX ,
that is if the initial hypothesis is correct. If the initial hypothesis is wrong, we will be
sure of this once

NS(PX ||QX ) � 1. (2.21)

Suppose that one does an experiment and the data obtained agrees with the hypoth-
esis Q less than would be expected 95% of the time, assuming that hypothesis Q is
correct. Then one customarily says that hypothesis Q is excluded at 95% confidence.
This way of saying things is a convenient shorthand for saying that 95% of the time,
the data would have agreed with hypothesis Q better than it did, if the hypothesis

3 Here N !∏s
j=1(p j N )! is the number of sequences in which outcome xi occurs pi N times, and

∏s
i=1 q

pi N
i

is the probability of any specific such sequence, assuming that the initial hypothesis QX is correct.
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Amini-introduction to information theory 193

is correct. With the same manner of speaking, we may say in the above-described
situation that if hypothesis Q is incorrect and hypothesis P is correct, then a typical
experimental outcome after N trials would exclude hypothesis Q with confidence
level 1 − ε, where ε would decay for large N as 2−NS(PX ||QX ). (Later we will more
loosely say that the confidence in excluding the wrong hypothesis is controlled by
2−NS(PX ||QX ).) In this analysis, we have ignored noise in the observations. What we
learned earlier about conditional entropy would give us a start in including the effects
of noise.

S(PX ||QX ) is an important measure of the difference between two probability
distributions PX and QX , but notice that it is asymmetric in PX and QX . We broke
the symmetry by assuming that QX was our initial hypothesis and PX was the correct
answer.

Now we will use positivity of the relative entropy to prove positivity of the mutual
information. We consider a pair of random variables X , Y and we consider two differ-
ent probability distributions. One, which we will call PX ,Y , is defined by a possibly
correlated joint probability distribution

PX ,Y (xi , y j ). (2.22)

Given such a joint probability distribution, the separate probability distributions for
X and for Y are obtained by “integrating out” or summing over the other variable:

PX (xi ) =
∑

j

PX ,Y (xi , y j ), PY (y j ) =
∑

i

PX ,Y (xi , y j ). (2.23)

This is an important operation which will frequently recur. We define a second prob-
ability distribution for X ,Y by ignoring the correlations between them:

QX ,Y (xi , y j ) = PX (xi )PY (y j ). (2.24)

Now we calculate the relative entropy between these two distributions:

S(PX ,Y ||QX ,Y ) =
∑

i, j

PX ,Y (xi , y j )(log PX ,Y (xi , y j ) − log(PX (xi )PY (y j )))

=
∑

i, j

PX ,Y (xi , y j )(log PX ,Y (xi , y j ) − log PX (xi ) − log PY (y j ))

= SX + SY − SXY = I (X; Y ). (2.25)

Thus I (X; Y ) ≥ 0, with equality only if the two distributions are the same, meaning
that X and Y were uncorrelated to begin with.

The property

SX + SY − SXY ≥ 0 (2.26)

is called subadditivity of entropy.
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194 E. Witten

2.4 Monotonicity of relative entropy

Now there is one more very important property of relative entropy that I want to
explain, and this will more or less conclude our introduction to classical information
theory. Suppose that X and Y are two random variables. Let PX ,Y and QX ,Y be two
probability distributions, described by functions PX ,Y (xi , y j ) and QX ,Y (xi , y j ). If we
start with a hypothesis QX ,Y for the joint probability, then after many trials in which
we observe X and Y , our confidence that we are wrong (assuming that PX ,Y is the
correct answer) is determined by S(PX ,Y ||QX ,Y ). But suppose that we only observe X
and not Y . The reduced distributions PX and QX for X only are described by functions

PX (xi ) =
∑

j

PX ,Y (xi , y j ), QX (xi ) =
∑

j

QX ,Y (xi , y j ). (2.27)

If we observe X only, then the confidence after many trials that the initial hypothesis
is wrong is controlled by S(PX ||QX ).

It is harder to disprove the initial hypothesis if we observe only X , so

S(PX ,Y ||QX ,Y ) ≥ S(PX ||QX ). (2.28)

This is called monotonicity of relative entropy.
Concretely, if we observe a sequence xi1 , xi2 , . . . xiN in N trials, then to estimate

how unlikely this is, wewill imagine a sequence of y’s that minimizes the unlikelihood
of the joint sequence

(xi1 , yi1), (xi2 , yi2), . . . , (xiN , yiN ). (2.29)

An actual sequence of y’s that we might observe can only be more unlikely than
this. So observing Y as well as X can only increase our estimate of how unlikely the
outcome was, given the sequence of the x’s. Thus, the relative entropy only goes down
upon “integrating out” some variables and not observing them.

Hopefully, the reader has found this explanation compelling, but it is also not
difficult to give a proof in formulas. The inequality S(PX ,Y ||QX ,Y )− S(PX ||QX ) ≥ 0
can be written

∑

i, j

PX ,Y (xi , y j )

(

log

(
PX ,Y (xi , y j )

QX ,Y (xi , y j )

)

− log

(
PX (xi )

QX (xi )

))

≥ 0. (2.30)

Equivalently

∑

i

PX (xi )
∑

j

PX ,Y (xi , y j )

PX (xi )
log

(
PX ,Y (xi , y j )/PX (xi )

QX ,Y (xi , y j )/QX (xi )

)

≥ 0. (2.31)
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Amini-introduction to information theory 195

The left hand side is a sum of positive terms, since it is
∑

i

PX (xi )S(PY |X=xi ||QY |X=xi ), (2.32)

where we define probability distributions PY |X=xi , QY |X=xi conditional on observing
X = xi :

PY |X=xi (y j ) = PX ,Y (xi , y j )/PX (xi ), QY |X=xi (y j ) = QX ,Y (xi , y j )/QX (xi ).

(2.33)

So this establishes monotonicity of relative entropy.4 An important special case is
strong subadditivity of entropy. For this, we consider three randomvariables X ,Y , Z .
The combined system has a joint probability distribution PX ,Y ,Z (xi , y j , zk). Alterna-
tively, we could forget the correlations between X and Y Z , defining a probability
distribution QX ,Y ,Z for the system XY Z by

QX ,Y ,Z (xi , y j , zk) = PX (xi )PY ,Z (y j , zk) (2.34)

where as usual

PX (xi ) =
∑

j,k

PX ,Y ,Z (xi , y j , zk), PY ,Z (y j , zk) =
∑

i

PX ,Y ,Z (xi , y j , zk).

(2.35)

The relative entropy is S(PX ,Y ,Z ||QX ,Y ,Z ). But what if we only observe the subsystem
XY ? Then we replace PX ,Y ,Z and QX ,Y ,Z by probability distributions PX ,Y , QX ,Y

with

PX ,Y (xi , y j ) =
∑

k

PX ,Y ,Z (xi , y j , zk),

QX ,Y (xi , y j ) =
∑

k

QX ,Y ,Z (xi , y j , zk) = PX (xi )PY (y j ) (2.36)

and we can define the relative entropy S(PX ,Y ||QX ,Y ). Monotonicity of relative
entropy tells us that

S(PX ,Y ,Z ||QX ,Y ,Z ) ≥ S(PX ,Y ||QX ,Y ). (2.37)

But the relation between relative entropy and mutual information that we discussed
a moment ago gives

S(PX ,Y ,Z ||QX ,Y ,Z ) = I (X; Y Z) = SX − SXY Z + SY Z (2.38)

4 What we have described is not the most general statement of monotonicity of relative entropy in classical
information theory. More generally, relative entropy is monotonic under an arbitrary stochastic map. We
will not explain this here, though later we will explain the quantum analog (quantum relative entropy is
monotonic in any quantum channel).
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196 E. Witten

and

S(PX ,Y ||QX ,Y ) = I (X; Y ) = SX − SXY + SY . (2.39)

So

SX − SXY Z + SY Z ≥ SX − SXY + SY (2.40)

or

SXY + SY Z ≥ SY + SXY Z , (2.41)

which is called strong subadditivity. Remarkably, the same statement turns out to be
true in quantum mechanics, where it is both powerful and surprising.

Equivalently, the comparison of Eqs. (2.38) and (2.39) gives

I (X; Y Z) ≥ I (X; Y ), (2.42)

which is called monotonicity of mutual information. The intuition is that what one
learns about a random variable X by observing both Y and Z is at least as much as
one could learn by observing Y only.

We conclude this mini-introduction to classical information theory with one last
remark. We repeatedly made use of the ability to define a conditional probability
distribution, conditional on some observation. This has no really close analog in the
quantum mechanical case5 and it is something of a miracle that many of the conclu-
sions nonetheless have quantum mechanical analogs. The greatest miracle is strong
subadditivity of quantum entropy.

3 Quantum information theory: basic ingredients

3.1 Density matrices

Now we turn to quantum information theory. Quantum mechanics always deals with
probabilities, but the real quantum analog of a classical probability distribution is not
a quantum state but a density matrix. Depending on one’s view of quantummechanics,
one might believe that the whole universe is described by a quantum mechanical pure
state that depends on all the available degrees of freedom. Even if this is true, one
usually studies a subsystem that cannot be described by a pure state.

For an idealized case, let A be a subsystem of interest, with Hilbert spaceHA. And
let B be everything else of relevance, or possibly all of the rest of the universe, with
Hilbert spaceHB . The combinedHilbert space is the tensor productHAB = HA⊗HB .
The simple case is that a state vectorψAB of the combined system is the tensor product
of a state vector ψA ∈ HA and another state vector ψB ∈ HB :

5 See, however, [6] for a partial substitute.

123



Amini-introduction to information theory 197

ψAB = ψA ⊗ ψB . (3.1)

If ψAB is a unit vector, we can choose ψA and ψB to also be unit vectors. In the case
of such a product state, predictions about the A system can be made by forgetting
about the B system and using the state vector ψA. Indeed, if OA is any operator on
HA, then the corresponding operator on HAB is OA ⊗ 1B , and its expectation value
in a factorized state ψAB = ψA ⊗ ψB is

〈
ψAB |OA ⊗ 1B |ψAB

〉 = 〈
ψA|OA|ψA

〉〈
ψB |1B |ψB

〉 = 〈
ψA|OA|ψA

〉
. (3.2)

However, a generic pure state ψAB ∈ HAB is not a product state; instead it is
“entangled.” If HA and HB have dimensions N and M , then a generic state in HAB

can be presented as an N × M matrix, for example in the 2 × 3 case

ψAB =
(∗ ∗ ∗

∗ ∗ ∗
)

. (3.3)

By unitary transformations on HA and on HB , we can transform ψAB to

ψAB → UψABV (3.4)

where U and V are N × N and M × M unitaries. The canonical form of a matrix
under that operation is a diagonal matrix, with positive numbers on the diagonal, and
extra rows or columns of zeroes, for example

(√
p1 0 0
0

√
p2 0

)

.

A slightly more invariant way to say this is that any pure state can be written

ψAB =
∑

i

√
piψ

i
A ⊗ ψ i

B, (3.5)

where we can assume that ψ i
A and ψ i

B are orthonormal,

〈
ψ i

A, ψ
j
A

〉 = 〈
ψ i

B, ψ
j
B

〉 = δi j (3.6)

and that pi > 0. (The ψ i
A and ψ i

B may not be bases ofHA orHB , because there may
not be enough of them.) The condition for ψAB to be a unit vector is that

∑

i

pi = 1, (3.7)

so we can think of the pi as probabilities. Equation (3.5) is called the Schmidt decom-
position.

What is the expectation value in such a state of an operator OA that only acts on
A? It is
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198 E. Witten

〈
ψAB |OA ⊗ 1B |ψAB

〉 =
∑

i, j

√
pi p j

〈
ψ i

A|OA|ψ j
A

〉 〈
ψ i

B |1B |ψ j
B

〉

=
∑

i

pi
〈
ψ i

A|OA|ψ i
A

〉
. (3.8)

This is the same as

TrHA ρAOA, (3.9)

where ρA is the density matrix

ρA =
∑

i

pi
∣
∣ψ i

A

〉〈
ψ i

A

∣
∣. (3.10)

Thus, if we are only going to make measurements on system A, we do not need a
wavefunction of the universe: it is sufficient to have a density matrix for system A.

From the definition

ρA =
∑

i

pi
∣
∣ψ i

A

〉〈
ψ i

A

∣
∣ (3.11)

we see that ρA is hermitian and positive semi-definite. Because
∑

i pi = 1, ρA has
trace 1:

TrHA ρA = 1. (3.12)

Conversely, every matrix with those properties can be “purified,” meaning that it is
the density matrix of some pure state on some “bipartite” (or two-part) system AB.
For this, we first observe that any hermitian matrix ρA can be diagonalized, meaning
that in a suitable basis it takes the form of Eq. (3.11); moreover, if ρA ≥ 0, then the
pi are likewise positive (if one of the pi vanishes, we omit it from the sum). Having
gotten this far, to realize ρA as a density matrix we simply introduce another Hilbert
spaceHB with orthonormal states ψ i

B and observe that ρA is the density matrix of the
pure state

ψAB =
∑

i

√
piψ

i
A ⊗ ψ i

B ∈ HA ⊗ HB . (3.13)

In this situation,ψAB is called a “purification” of the density matrix ρA. The existence
of purifications is a nice property of quantum mechanics that has no classical analog:
the classical analog of a density matrix is a probability distribution, and there is no
notion of purifying a probability distribution.

The purificationψAB of a density matrix ρA is far from unique (even if the auxiliary
system B is specified), because there is freedom in choosing the orthonormal states
ψ i

B in Eq. (3.13). However, any other set of orthonormal vectors inHB can be obtained
from a given choice ψ i

B by a unitary transformation ofHB , so we learn the following
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important fact: any two purifications of the same density matrix ρA on system A by
pure states of a bipartite system AB are equivalent under a unitary transformation of
system B.

In general, a density matrix is just a nonnegative self-adjoint matrix ρ whose trace
is 1. The above derivation shows that every such matrix is the density matrix of some
bipartite pure state. The conditions satisfied by a density matrix are preserved under
“mixing,” that is under taking a linear combination with positive coefficients. So for
example if ρ1 and ρ2 are densitymatrices, then so is ρ = tρ1+(1−t)ρ2, for 0 ≤ t ≤ 1.

If there is more than one term in the expansion

ψAB =
∑

i

√
piψ

i
A ⊗ ψ i

B ∈ HA ⊗ HB, (3.14)

we say that systems A and B are entangled in the state ψAB . If there is only one term,
the expansion reduces to

ψAB = ψA ⊗ ψB, (3.15)

an “unentangled” tensor product state. Then system A can be described by the pure
state ψA and the density matrix is of rank 1:

ρA = ∣
∣ψA

〉〈
ψA

∣
∣.

If ρA has rank higher than 1, we say that system A is in a mixed state. If ρA is a
multiple of the identity, we say that A is maximally mixed.

In the general case

ρA =
∑

i

pi
∣
∣ψ i

A

〉〈
ψ i

A

∣
∣ (3.16)

one will describe all measurements of system A correctly if one says that system A is
in the state ψ i

A with probability pi . However, one has to be careful here because the
decomposition of Eq. (3.16) is not unique. It is unique if the pi are all distinct and one
wants the number of terms in the expansion to be as small as possible, or equivalently if
one wants the ψ i

A to be orthonormal. But if one relaxes those conditions, then (except
for a pure state) there are many ways to make this expansion. This means that if Alice
prepares a quantum system to be in the pure state ψ i

A with probability pi , then there is
no way to determine the pi or the ψ i

A by measurements, even if one is provided with
many identical copies to measure. Any measurement of the system will depend only
on ρA = ∑

i pi |ψ i
A〉〈ψ i

A|. There is no way to get additional information about how
the system was prepared.

So far, when we have discussed a bipartite system AB, we have assumed that the
combined system is in a pure state ψAB , and we have discussed density matrices ρA

and ρB for systems A and B. More generally, we should allow for the possibility
that the combined system AB is described to begin with by a density matrix ρAB .
Consideration of this situation leads to the following very fundamental definition.
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Just as for classical probability distributions, for density matrices we can always
“integrate out” an unobserved system and get a reduced densitymatrix for a subsystem.
Classically, given a joint probability distribution PX ,Y (xi , y j ) for a bipartite system
XY , we “integrated out” Y to get a probability distribution for X only:

PX (xi ) =
∑

j

PX ,Y (xi , y j ). (3.17)

The quantum analog of that is a partial trace. Suppose that AB is a bipartite systemwith
Hilbert space HA ⊗ HB and a density matrix ρAB . Concretely, if |i〉A, i = 1, . . . , n
are an orthonormal basis of HA and |α〉B , α = 1, . . . ,m are an orthonormal basis of
HB , then a density matrix for AB takes the general form

ρAB =
∑

i,i ′,α,α′
cii ′αα′ |i〉A ⊗ |α〉B A〈i ′| ⊗ B〈α′|. (3.18)

The reduced density matrix for measurements of system A only is obtained by setting
α = α′, replacing |α〉B B〈α| by its trace, which is 1, and summing:

ρA =
∑

i,i ′,α
ci,i ′,α,α|i〉A A〈i ′|. (3.19)

In other words, if we are going to measure system A only, we sum over all of the
unobserved states of system B. This is usually written as a partial trace:

ρA = TrHB ρAB, (3.20)

the idea being that one has “traced out”HB , leaving a density operator onHA. Likewise
(summing over i to eliminate HA)

ρB = TrHA ρAB . (3.21)

Before going on, perhaps I should give a simple example of a concrete situation in
which it is impractical to not use densitymatrices.Consider an isolated atom interacting
with passing photons.Aphotonmight be scattered, or absorbed and reemitted, ormight
pass by without interacting with the atom. Regardless, after a certain time, the atom is
again alone. After n photons have had the chance to interact with the atom, to give a
pure state description, we need a joint wavefunction for the atom and all the outgoing
photons. The mathematical machinery gets bigger and bigger, even though (assuming
we observe only the atom) the physical situation is not changing. By using a density
matrix, we get a mathematical framework for describing the state of the system that
does not change regardless of how many photons have interacted with the atom in the
past (and what else those photons might have interacted with). All we need is a density
matrix for the atom.
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3.2 Quantum entropy

The von Neumann entropy6 of a density matrix ρA is defined by a formula analogous
to the Shannon entropy of a probability distribution:

S(ρA) = −Tr ρA log ρA. (3.22)

As an immediate comment, we note that S(ρA) is manifestly invariant under a unitary
transformation

ρA → UρAU
−1. (3.23)

Quantum conditional and relative entropy, which will be introduced in Sect. 3.4, are
similarly invariant under a suitable class of unitaries.

By a unitary transformation, we can diagonalize ρA, putting it in the form

ρA =
∑

i

pi |ψ i
A〉〈ψ i

A|, (3.24)

with ψ i
A being orthonormal and pi > 0. Then in an obvious basis

ρA log ρA =

⎛

⎜
⎜
⎜
⎝

p1 log p1
p2 log p2

p3 log p3
. . .

⎞

⎟
⎟
⎟
⎠

(3.25)

and so

S(ρA) = −
∑

i

pi log pi , (3.26)

the same as the Shannon entropy of the probability distribution {pi }.
An immediate consequence is that, just as for the Shannon entropy,

S(ρA) ≥ 0, (3.27)

with equality only for a pure state (one of the p’s being 1 and the others 0). The formula
S(ρA) = −∑

i pi log pi also implies the same upper bound that we had classically
for a system with k states

S(ρA) ≤ log k, (3.28)

6 The von Neumann entropy is the most important quantum entropy, but generalizations such as the Rényi
entropies Sα(ρA) = 1

1−α
log Tr ρα

A can also be useful.
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with equality only if ρA is a multiple of the identity:

ρA = 1

k

⎛

⎜
⎜
⎜
⎝

1
1
1

. . .

⎞

⎟
⎟
⎟
⎠

. (3.29)

In this case, we say that A is in a maximally mixed state. In fact, the von Neumann
entropy has many properties analogous to the Shannon entropy, but the explanations
required are usually more subtle and there are key differences.

Here is a nice property of the von Neumann entropy that does not have a classical
analog. If a bipartite system AB is in a pure state

ψAB =
∑

i

√
piψ

i
A ⊗ ψ i

B ∈ HA ⊗ HB, (3.30)

then the density matrices of systems A and B are

ρA =
∑

i

pi |ψ i
A〉〈ψ i

A|, (3.31)

and likewise

ρB =
∑

i

pi |ψ i
B〉〈ψ i

B |. (3.32)

The same constants pi appear in each, so clearly

S(ρA) = S(ρB). (3.33)

Thus a system A and a purifying system B always have the same entropy. Note that
in this situation, since the combined system AB is in a pure state, its entropy SAB
vanishes.

3.3 Concavity

The von Neumann entropy—like its antecedents in classical thermodynamics and
statistical mechanics—has the important property of concavity. Suppose that ρ1 and
ρ2 are two density matrices, and set ρ(t) = tρ1 + (1 − t)ρ2, for 0 ≤ t ≤ 1. We will
write ρ̇(t), ρ̈(t) for dρ(t)/dt , d2ρ(t)/dt2. Then

d2

dt2
S(ρ(t)) ≤ 0. (3.34)
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To prove this, we first compute that7

d

dt
S(ρ(t)) = −Tr ρ̇ log ρ. (3.35)

Then as

log ρ =
∫ ∞

0
ds

(
1

s + 1
− 1

s + ρ(t)

)

(3.36)

and ρ̈ = 0, we have

d2

dt2
S(ρ(t)) = −

∫ ∞

0
dsTr ρ̇

1

s + ρ(t)
ρ̇

1

s + ρ(t)
. (3.37)

The integrand is positive, as it is Tr B2, where B is the self-adjoint operator (s +
ρ(t))−1/2ρ̇(t)(s + ρ(t))−1/2. So d2

dt2
S(ρ(t)) ≤ 0.

In other words, the function S(ρ(t)) is concave. Like any concave function, S(ρ(t))
has the property that the straight line connecting two points on its graph lies below
the graph. Explicitly, this gives

t S(ρ1) + (1 − t)S(ρ2) ≤ S(tρ1 + (1 − t)ρ2) = S(ρ(t)). (3.38)

More generally, let ρi , i = 1, . . . , n be density matrices and pi , i = 1, . . . , n non-
negative numbers with

∑
i pi = 1. Then by induction starting with (3.38), or because

this is a general property of concave functions, we have

∑

i

pi S(ρi ) ≤ S(ρ), ρ =
∑

i

piρi . (3.39)

This may be described by saying that entropy can only increase under mixing. The
nonnegative quantity that appears here is known as theHolevo information or Holevo
χ [7]:

χ = S(ρ) −
∑

i

pi S(ρi ). (3.40)

An interesting special case is the following. Let ρ be any density matrix on a Hilbert
spaceH. Pick a basis ofH, and let ρD be the diagonal density matrix obtained in that

7 For this, consider an arbitrary density matrix ρ and a first order perturbation ρ → ρ + δρ. After
diagonalizing ρ, one observes that to first order in δρ, the off-diagonal part of δρ does not contribute to the
trace in the definition of S(ρ+δρ). Therefore, S(ρ(t)) can be differentiated assuming that ρ and ρ̇ commute.
So it suffices to check (3.35) for a diagonal family of densitymatrices ρ(t) = diag(λ1(t), λ2(t), . . . , λn(t)),
with

∑
i λi (t) = 1. Another approach is to use (3.36) to substitute for log ρ(t) in the definition S(ρ(t)) =

−Tr ρ(t) log ρ(t). Differentiating with respect to t , observing that ρ(t) commutes with 1/(s + ρ(t)), and
then integrating over s, one arrives at (3.35). In either approach, one uses that Tr ρ̇ = 0 since Tr ρ(t) = 1.
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basis by dropping the off-diagonal matrix elements from ρ and keeping the diagonal
ones. Let ρ(t) = (1 − t)ρD + tρ. We see that

d

dt
S(ρ(t))

∣
∣
∣
∣
t=0

= 0, (3.41)

by virtue of (3.35), because ρ(0) and log ρ(0) are diagonal while the diagonal matrix
elements of dρ/dt vanish at t = 0. When we combine this with d2S(ρ(t))/dt2 ≤ 0,
we get S(ρ(1)) ≤ S(ρ(0)) or

S(ρD) ≥ S(ρ). (3.42)

Thus, dropping the off-diagonal part of a densitymatrix (in any basis) can only increase
the entropy. Equation (3.42) is a strict inequality unless ρ = ρD , because Eq. (3.37)

shows that d2

dt2
S(ρ(t))

∣
∣
∣
t=0

is strictly negative unless ρ = ρD .

An alternative proof of Eq. (3.42), again using the inequality (3.39), is as follows.
For an N state system, there are 2N matrices that are diagonalmatrices (in some chosen
basis) with diagonal matrix elements that are all ±1. Let Ui be any of these and set
ρi = UiρU

−1
i . Of course, ρi is also a density matrix, sinceUi is unitary. The average

of the ρi , over all 2N choices of Ui , is the diagonal density matrix ρD . So Eq. (3.39)
says that the average of S(ρi ) is less than or equal to S(ρD). But S(ρi ) is independent
of i and equal to S(ρ), since the von Neumann entropy is invariant under conjugation
by a unitary matrix such asUi . So in fact the average of the S(ρi ) is just S(ρ) and the
inequality (3.39) becomes S(ρ) ≤ S(ρD).

Somewhat similarly to what we have explained here, concavity of the function
f (q) = −q log q could have been used in the classical arguments in Sect. 2, though
we circumvented this by using Stirling’s formula instead.

3.4 Conditional and relative quantum entropy

It is now possible to formally imitate some of the other definitions that we made in
the classical case. For example, if AB is a bipartite system, we define what is called
quantum conditional entropy

S(A|B) = SAB − SB . (3.43)

This name is potentially misleading because there is not a good quantum notion of
conditional probabilities. Unlike the classical case, quantum conditional entropy is
not an entropy conditional on something. Nevertheless, in Sect. 4.1, we will discuss
at least one sense in which quantum conditional entropy behaves in a way analogous
to classical conditional entropy.

There is also a fundamental difference from the classical case: quantum mechani-
cally, S(A|B) can be negative. In fact, suppose that system AB is in an entangled pure
state. Then SAB = 0 but as system B is in a mixed state, SB > 0. So in this situation
S(A|B) < 0.

123



Amini-introduction to information theory 205

Another classical definition that is worth imitating is the mutual information. Given
a bipartite system AB with density matrix ρAB , the quantummutual information is
defined just as it is classically:

I (A; B) = SA − SAB + SB . (3.44)

Here, however, we are more fortunate, and the quantum mutual information is non-
negative:

I (A; B) ≥ 0. (3.45)

Moreover, I (A; B) = 0 if and only if the density matrix factorizes, in the sense that

ρAB = ρA ⊗ ρB . (3.46)

Positivity of mutual information is also called subadditivity of entropy. To begin with,
quantum mutual information is a formal definition and it is not obvious how it is
related to information that one can gain about system A by observing system B. We
will explore at least one aspect of this question in Sect. 4.3.

Before proving positivity of mutual information, I will explain an interesting
corollary. Although conditional entropy S(A|B) can be negative, the possibility of
“purifying” a density matrix gives a lower bound on S(A|B). Let C be such that ABC
is in a pure state. Remember that in general if XY is in a pure state then SX = SY . So
if ABC is in a pure state then SAB = SC and SB = SAC . Thus

SAB − SB = SC − SAC ≥ −SA, (3.47)

where the last step is positivity of mutual information. So

S(A|B) = SAB − SB ≥ −SA. (3.48)

Reversing the roles of A and B in the derivation, we get the Araki-Lieb inequality [8]

SAB ≥ |SA − SB |. (3.49)

It is saturated if SAB = 0, which implies SB = SA. What has just been explained is a
typical argument exploiting the existence of purifications.

Just as in the classical case, to understand positivity of the mutual information, it
helps to first define the quantum relative entropy [9]. Suppose that ρ and σ are two
density matrices on the same Hilbert spaceH. The relative entropy can be defined by
imitating the classical formula:

S(ρ||σ) = Trρ(log ρ − log σ). (3.50)

For now, this is just a formal definition, but we will learn in Sect. 4.2 that S(ρ||σ)

has the same interpretation quantum mechanically that it does classically: if one’s
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hypothesis is that a quantum system is described by a density matrix σ , and it is
actually described by a different density matrix ρ, then to learn that one is wrong, one
needs to observe N copies of the system where NS(ρ||σ) >> 1.

Just as classically, it turns out that S(ρ||σ) ≥ 0 for all density matrices ρ, σ , with
equality precisely if ρ = σ . To prove this, first diagonalize σ . In general ρ is not
diagonal in the same basis. Let ρD be the diagonal density matrix obtained from ρ

by dropping the off-diagonal matrix elements in the basis in which σ is diagonal, and
keeping the diagonal ones. Since Tr ρ log σ = Tr ρD log σ , it follows directly from
the definitions of von Neumann entropy and relative entropy that

S(ρ||σ) = S(ρD||σ) + S(ρD) − S(ρ). (3.51)

This actually exhibits S(ρ||σ) as the sum of two nonnegative terms. We showed in
Eq. (3.42) that S(ρD) − S(ρ) ≥ 0. As for S(ρD||σ), it is nonnegative, because if
σ = diag(q1, . . . , qn), ρD = diag(p1, . . . , pn), then

S(ρD||σ) =
∑

i

pi (log pi − log qi ), (3.52)

which can be interpreted as a classical relative entropy and so is nonnegative. To get
equality in these statements, we need σ = ρD and ρD = ρ, so S(ρ||σ) vanishes only
if ρ = σ .

Now we can use positivity of the relative entropy to prove that I (A; B) ≥ 0 for any
density matrix ρAB . Imitating the classical proof, we define

σAB = ρA ⊗ ρB, (3.53)

and we observe that

log σAB = log ρA ⊗ 1B + 1A ⊗ log ρB, (3.54)

so

S(ρAB ||σAB) = TrABρAB(log ρAB − log σAB)

= TrABρAB(log ρAB − log ρA ⊗ 1B − 1B ⊗ log ρB)

= SA + SB − SAB = I (A; B). (3.55)

So just as classically, positivity of the relative entropy implies positivity of the mutual
information (which is also called subadditivity of entropy).

The inequality (3.39) that expresses the concavity of the von Neumann entropy
can be viewed as a special case of the positivity of mutual information. Let B be a
quantum system with density matrices ρi

B and let C be an auxiliary system C with an
orthonormal basis |i〉C . Endow CB with the density matrix:

ρCB =
∑

i

pi |i〉C C 〈i | ⊗ ρi
B . (3.56)

123



Amini-introduction to information theory 207

The mutual information betweenC and B if the combined system is described by ρCB

is readily computed to be

I (C; B) = S(ρB) −
∑

i

pi S
(
ρi
B

)
, (3.57)

so positivity of mutual information gives our inequality.

3.5 Monotonicity of relative entropy

So relative entropy is positive, just as it is classically. Do we dare to hope that relative
entropy is also monotonic, as classically? Yes it is, as first proved by Lieb and Ruskai
[10], using a lemma of Lieb [11]. How to prove monotonicity of quantum relative
entropy will not be described here; this has been explored in a companion article [12],
Sects. 3 and 4.

Monotonicity of quantum relative entropy is something of a miracle, because, as
there is no such thing as a joint probability distribution for general quantum observ-
ables, the intuition behind the classical statement is not applicable in any obvious way.
Rather, strong subadditivity is ultimately used to prove that quantities such as quantum
conditional entropy and quantum relative entropy and quantum mutual information
do have properties somewhat similar to the classical case. We will explore some of
this in Sect. 4.

There are different statements of monotonicity of relative entropy, but a very basic
one (and actually the version proved in [10]) is monotonicity under partial trace. If
AB is a bipartite system with two density matrices ρAB and σAB , then we can take a
partial trace on B to get reduced density matrices on A:

ρA = TrBρAB, σA = TrBσAB . (3.58)

Monotonicity of relative entropy under partial trace is the statement that taking a partial
trace can only reduce the relative entropy:

S(ρAB ||σAB) ≥ S(ρA||σA). (3.59)

(This is also called the Data Processing Inequality.)
By imitatingwhat we said classically in Sect. 2, one can deduce strong subadditivity

of quantum entropy from monotonicity of relative entropy. We consider a tripartite
system ABC with density matrix ρABC . There are reduced density matrices such as
ρA = TrBCρABC , ρBC = TrAρABC , etc., and we define a second density matrix

σABC = ρA ⊗ ρBC . (3.60)

The reduced density matrices of ρABC and σABC , obtained by tracing out C , are

ρAB = TrCρABC , σAB = TrCσABC = ρA ⊗ ρB . (3.61)
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Monotonicity of relative entropy under partial trace says that

S(ρABC ||σABC ) ≥ S(ρAB ||σAB). (3.62)

But (as in our discussion of positivity of mutual information)

S(ρABC ||σABC ) = S(ρABC ||ρA ⊗ ρBC ) = I (A; BC) = SA + SBC − SABC
(3.63)

and similarly

S(ρAB ||σAB) = S(ρAB ||ρA ⊗ ρB) = I (A; B) = SA + SB − SAB . (3.64)

So Eq. (3.62) becomes monotonicity of mutual information

I (A; BC) ≥ I (A; B) (3.65)

or equivalently strong subadditivity [10]

SAB + SBC ≥ SB + SABC . (3.66)

All of these steps are the same as they were classically. Using purifications, one
can find various equivalent statements. If ABCD is in a pure state then SAB = SCD ,
SABC = SD so the inequality becomes

SCD + SBC ≥ SB + SD . (3.67)

So for instance S(C |D) = SCD − SD can be negative, or S(C |B) = SBC − SB can
be negative, but

S(C |D) + S(C |B) ≥ 0. (3.68)

(This is related to monogamy of entanglement: a given qubit in C can be entangled
with D, reducing SCD , or with B, reducing SBC , but not both.)

Classically, the intuition behind monotonicity of mutual information was explained
in Sect. 2; one learns at least as much about system A by observing B and C as one
could learn by observing B only. Quantum mechanically, it is just not clear a priori
that the formal definition I (A; B) = SA − SAB + SB will lead to something consistent
with that intuition. The rather subtle result of monotonicity of relative entropy [10]
shows that it does.

In general, strong subadditivity (or monotonicity of relative entropy) is the key to
many interesting statements in quantum information theory. Many of the most useful
statements that are not more elementary are deduced from strong subadditivity.
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3.6 Generalizedmeasurements

Once we start using density matrices, there are a few more tools we should add to our
toolkit. First let us discuss measurements. Textbooks begin with “projective measure-
ments,” which involve projection onto orthogonal subspaces of a Hilbert space H of
quantum states. We pick orthogonal hermitian projection operators πs , s = 1, . . . , k
obeying

∑

s

πs = 1, π2
s = πs, πsπs′ = 0, s �= s′. (3.69)

A measurement of a state ψ involving these projection operators has outcome s with
probability

ps = 〈ψ |πs |ψ〉. (3.70)

These satisfy
∑

s ps = 1 since
∑

s πs = 1. If instead of a pure state ψ the system is
described by a density matrix ρ, then the probability of outcome s is

ps = TrH πsρ. (3.71)

After the measurement is made, if outcome s has been found, the system can be
described by a new density matrix

ρs = 1

ps
πsρπs . (3.72)

But Alice can make a more general type of measurement using an auxiliary system
C (sometimes called an ancillary system) with Hilbert space C. We suppose that C is
k-dimensional with a basis of states |s〉, s = 1, . . . , k. Alice initializes C in the state
|1〉. Then she acts on the combined system C ⊗ H with a unitary transformation U ,
which she achieves by suitably adjusting a time-dependent Hamiltonian. She chooses
U so that for any ψ ∈ H

U (|1〉 ⊗ ψ) =
k∑

s=1

|s〉 ⊗ Esψ (3.73)

for some linear operators Es . (She does not care whatU does on other states.) Unitarity
of U implies that

k∑

s=1

E†
s Es = 1, (3.74)

but otherwise the Es are completely arbitrary.
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Then Alice makes a projective measurement of the system C ⊗ H, using the com-
muting projection operators

πs = |s〉〈s| ⊗ 1, (3.75)

which have all the appropriate properties. The probability of outcome s is

ps = |Es |ψ〉|2 = 〈ψ |E†
s Es |ψ〉. (3.76)

More generally, if the system H is described initially by a density matrix ρ, then the
probability of outcome s is

ps = Tr E†
s Esρ. (3.77)

The numbers ps are nonnegative because E†
s Es is nonnegative, and

∑
s ps = 1

because
∑

s E
†
s Es = 1. But the E†

s Es are not orthogonal projection operators; they are
just nonnegative hermitian operators that add to 1. What we have described is a more
general kind of quantum mechanical measurement of the original system. (In the jar-
gon, the positive operators E†

s Es whose sum is 1 comprise a “positive operator-valued
measure” or POVM.)

According to Eq. (3.72), after Alice’s measurement, if the outcome s has been
found, then the combined system C ⊗ H can be described by the density matrix
1
ps

|s〉〈s| ⊗ Es |ψ〉〈ψ |E†
s . Taking the trace over Alice’s system, the original system,

after the measurement, can then be described by the density matrix

1

ps
Es |ψ〉〈ψ |E†

s , (3.78)

or more generally by 1
ps
EsρE

†
s , if the original system was initially in a mixed state

with density matrix ρ. If after acting with U , Alice simply discards the subsystem C,
or if this subsystem is inaccessible and we have no information about it, then at that
point the original system can be described by the density matrix

∑

s

Es |ψ〉〈ψ |E†
s , (3.79)

or more generally by
∑

s EsρE
†
s .

One can slightly generalize this construction as follows.8 Suppose that the initial
system actually had for its Hilbert space a direct sum H ⊕ H′, but it is known that
the initial state of the system is valued inH, in other words the initial state ψ has the
form χ ⊕ 0 with χ ∈ H, and 0 the zero vector in H′. Then Alice couples H ⊕ H′
to her auxiliary system C , so she describes the combined system by a Hilbert space
C ⊗ (H ⊕ H′). Now she picks U so that it maps a vector |1〉 ⊗ (χ ⊕ 0) to

∑
s |s〉 ⊗

8 The following paragraph may be omitted on first reading. It is included to make possible a more general
statement in Sect. 3.7.

123



Amini-introduction to information theory 211

(0⊕ Esχ), where Es is a linear transformation Es : H → H′. (As before, Alice does
not care what U does on other vectors.) After applying U , Alice makes a projective
measurement using the same projection operators πs = |s〉〈s|⊗1 as before (of course,
1 is now the identity onH⊕H′). The linear transformations Es still obey Eq. (3.74),
the probability of outcome s is still given by Eq. (3.77), and the density matrix after a
measurement that gives outcome s is still given by Eq. (3.78).

3.7 Quantum channels

Now let us view this process from another point of view. How can a density matrix
evolve? The usual Hamiltonian evolution of a state ψ is ψ → Uψ for a unitary
operator U , and on the density matrix it corresponds to

ρ → UρU−1. (3.80)

Aswe remarked earlier (Eq. (3.23)), such unitary evolution preserves the vonNeumann
entropy of a density matrix, and similarly it preserves the relative entropy between
two density matrices.

But let us consider Alice again with her extended system C ⊗H. She initializes the
extended system with the density matrix

ρ̂ = |1〉〈1| ⊗ ρ (3.81)

where ρ is a density matrix on H. Then she applies the same unitary U as before,
mapping ρ̂ to

ρ̂′ = U ρ̂U−1 =
k∑

s,s′=1

|s〉〈s′| ⊗ EsρE
†
s′ . (3.82)

The induced density matrix on the original systemH is obtained by a partial trace and
is

ρ′ = TrC ρ̂′ =
k∑

s=1

EsρE
†
s . (3.83)

We have found a more general way that density matrices can evolve. The operation

ρ →
k∑

s=1

EsρE
†
s ,

∑

s

E†
s Es = 1 (3.84)

is called a “quantum channel,” and the Es are calledKraus operators. Unitary evolution
is the special case in which there is only one Kraus operator.
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The notion of a quantum channel is axiomatized in more complete treatments
than we will give here.9 The upshot of a general analysis is that the most general
physically sensible evolution of a density matrix takes the form (3.84), provided one
allows the generalization described at the end of Sect. 3.6 in which the Es are linear
transformations from one Hilbert space H to another Hilbert space H′.

Now let ρ and σ be two different density matrices on H. Let us ask what happens
to the relative entropy S(ρ||σ) when we apply a quantum channel, mapping ρ and σ

to

ρ′ =
∑

s

EsρE
†
s , σ ′ =

∑

s

Esσ E†
s . (3.85)

The first step of initialization, replacing ρ and σ by |1〉〈1| ⊗ ρ and |1〉〈1| ⊗ σ , does
not change anything. The second step, conjugating by a unitary matrix U , also does
not change anything since relative entropy is invariant under conjugation. Finally, the
last step was a partial trace, which can only reduce the quantum relative entropy. So
relative entropy can only go down under a quantum channel:

S(ρ||σ) ≥ S(ρ′||σ ′).

This is the most general statement of monotonicity of quantum relative entropy.
We conclude this section with some exercises to familiarize oneself with quantum

channels.
1. Let ψ be any pure state of a given system. Find Kraus operators of a quantum

channel that maps any density matrix ρ to |ψ〉〈ψ |. (One way to implement this is
to turn on a Hamiltonian for which ψ is the ground state, and wait until the system
relaxes to its ground state by releasing energy to the environment.)

2. Find Kraus operators of a quantum channel that maps any density matrix for a
given system (with finite-dimensional Hilbert space) to amaximallymixed one, amul-
tiple of the identity. (This can arise as the outcome of sufficiently random interaction
of the system with its environment.)

3. Do the same for a quantum channel that, in a given basis, maps any k × k
density matrix ρ = (ρi j ) to the corresponding diagonal density matrix ρD =
diag(ρ11, ρ22, . . . , ρkk). (An idealized description of a physical realization is as fol-
lows. A cavity is probed by atoms. Denote as |n〉 the state of the cavity when it contains
n photons. Suppose that n is unchanged when an atom passes through the cavity, but
the final state of the atom depends on n. The probability to find the cavity in state |n〉
is unchanged by the interaction with a passing atom, so in the basis {|n〉}, the diagonal
elements of the density matrix are unchanged. After many atoms have passed through
the cavity, an observation of the atoms would reveal with high confidence the number
of photons in the cavity. Therefore, tracing over the atomic states, the final density
matrix of the cavity is diagonal in the basis {|n〉}. Regardless of what state the cavity
begins in, it will end up with high probability in an eigenstate of the photon number
operator, though one cannot say what the eigenvalue will be.)

9 In the most general case, a quantum channel is a “completely positive trace-preserving” (CPTP) map
from density matrices on one Hilbert space H to density matrices on another Hilbert space H′.
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4. Show that the composition of two quantum channels is a quantum channel. If
the first channel has Kraus operators Es, s = 1, . . . , p, and the second has Kraus
operators E ′

t , t = 1, . . . , q, what are the Kraus operators of the composite channel?
5. This and the next exercise involve quantum channels that map one Hilbert space

to another. The goal is to show that natural operations that are well-motivated in other
ways can also be viewed as special cases of the evolution described in Eq. (3.84).
First, given a Hilbert space H, construct a rather trivial quantum channel that maps
density matrices onH to density matrices on a 1-dimensional Hilbert spaceH0. Note
that, since a density matrix is hermitian, positive-definite, and of trace 1, there is a
unique density matrix onH0, namely the unit density matrix 1. Thus, given a Hilbert
space H, find Kraus operators Es : H → H0 for a quantum channel that maps any
density matrix ρ onH to the density matrix 1 onH0. Once you have done this, show
that a partial trace is a quantum channel in the following sense. If AB is a bipartite
system with Hilbert space HA ⊗ HB , find Kraus operators Es : HA ⊗ HB → HA

that implement the partial trace ρAB → ρA = TrBρAB . In other words, find operators
Es : HA ⊗ HB → HA, satisfying

∑
s E

†
s Es = 1 and

∑
s EsρAB E

†
s = TrB ρAB , for

any ρAB .
6. Let A be a quantum systemwithHilbert spaceHA, and let B be a second quantum

systemwithHilbert spaceHB and some given densitymatrix ρB . FindKraus operators
Es : HA → HA⊗HB for a quantum channel that combines a quantum system Awith
some other system B by mapping any given density matrix ρA on A to the density
matrix ρA ⊗ ρB on AB. (You might want to consider first the trivial case that HA is
1-dimensional.) An example of this is what happens whenever a system A under study
is combined with some experimental apparatus B, which has been initialized in the
state ρB .

3.8 Thermodynamics and quantum channels

As an example of these considerations, let us suppose that σ is a thermal densitymatrix
at some temperature T = 1/β

σ = 1

Z
exp(−βH). (3.86)

So log σ = −βH − log Z and therefore the relative entropy between any density
matrix ρ and σ is

S(ρ||σ) = Tr ρ(log ρ − log σ) = −S(ρ) + Trρ(βH + log Z)

= β(E(ρ) − T S(ρ)) + log Z (3.87)

where the average energy computed in the density matrix ρ is

E(ρ) = Tr ρH . (3.88)
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We define the free energy

F(ρ) = E(ρ) − T S(ρ). (3.89)

The log Z term in Eq. (3.87) is independent of ρ and gives a constant that ensures that
S(σ ||σ) = 0. So

S(ρ||σ) = β(F(ρ) − F(σ )). (3.90)

Now consider any evolution of the system, that is any quantum channel, that pre-
serves thermal equilibrium at temperature β. Thus, this channel maps σ to itself, but
it maps ρ to a generally different density matrix ρ′. The relative entropy can only go
down under a quantum channel, so

S(ρ||σ) ≥ S(ρ′||σ), (3.91)

and therefore

F(ρ) ≥ F(ρ′). (3.92)

In other words, a quantum channel that preserves thermal equilibrium can only
reduce the free energy. This is an aspect of the second law of thermodynamics. If
you stir a system in a way that maps thermal equilibrium at temperature T to thermal
equilibrium at the same temperature, then it moves any densitymatrix closer to thermal
equilibrium at temperature T .

To specialize further, take the temperature T = ∞, β = 0. (This makes sense for
a system with a finite-dimensional Hilbert space.) The thermal density matrix σ is
then maximally mixed, a multiple of the identity. For T → ∞, F(ρ) ∼ −T S(ρ). So
in this case, reducing the free energy means increasing the entropy. Thus a quantum
channel that maps a maximally mixed density matrix to itself can only increase the
entropy. The condition that a channel maps a maximally mixed density matrix to itself
is

∑
s Es E

†
s = 1. (A channel satisfying this condition is called unital. By contrast, the

condition
∑

s E
†
s Es = 1 is satisfied by all quantum channels.)

An example of a quantum channel that maps a maximally mixed density matrix
to itself is the channel that maps any density matrix ρ to the corresponding diagonal
density matrix ρD (in some chosen basis). The fact that the entropy can only increase
under such a channel implies the inequality S(ρ) ≤ S(ρD) (Eq. (3.42)).

4 More on quantum information theory

From this point, one could pursue many different directions toward a deeper under-
standing of quantum information theory. This article will conclude with three topics
that the author found helpful in gaining insight about themeaning of formal definitions
such as quantum conditional entropy and quantum relative entropy. These concepts
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were defined by formally imitating the corresponding classical definitions, and it is
not really clear a priori what to expect of such formal definitions.

A secondary reason for the choice of topics is to help the reader appreciate the
importance of monotonicity of quantum relative entropy—and its close cousin, strong
subadditivity.At several points,wewill have to invokemonotonicity of relative entropy
to prove that quantities like quantummutual information and quantum relative entropy
that have been defined in a formalway do behave in a fashion suggested by their names.

The three topics that we will consider are quantum teleportation and conditional
entropy, relative entropy and quantum hypothesis testing, and the use of a quantum
state to encode classical information.

4.1 Quantum teleportation and conditional entropy

We start with quantum teleportation [13]. For a first example, imagine that Alice
has in her possession a qubit A0, a quantum system with a two-dimensional Hilbert
space. Alice would like to help Bob create in his lab a qubit in a state identical to
A0. However, it is too difficult to actually send a qubit; she can only communicate by
sending a classical message over the telephone. If Alice knows the state of her qubit,
there is no problem: she tells Bob the state of her qubit and he creates one like it in
his lab. If, however, Alice does not know the state of her qubit, she is out of luck. All
she can do is make a measurement, which will give some information about the prior
state of qubit A0. She can tell Bob what she learns, but the measurement will destroy
the remaining information about A0 and it will never be possible for Bob to recreate
A0.

Suppose, however, that Alice and Bob have previously shared a qubit pair A1 B1
(Alice has A1, Bob has B1) in a known entangled state, for example

�A1B1 = 1√
2

(|0 0〉 + |1 1〉)A1B1 . (4.1)

Maybe Alice created this pair in her lab and then Bob took B1 on the road with him,
leaving A1 in Alice’s lab. In this case, Alice can solve the problem. To do so she makes
a joint measurement of her system A0A1 in a basis that is chosen so that no matter
what the answer is, Alice learns nothing about the prior state of A0. In the process,
she also loses no information about A0, since she had none before. But as we will see,
after getting her measurement outcome, she can tell Bob what to do to recreate A0.

To see how this works, let us describe a specific measurement that Alice can make
on A0A1 that will shed no light on the state of A0. She can project A0A1 on the basis
of four states

1√
2
(|0 0〉 ± |1 1〉)A0A1 and

1√
2
(|0 1〉 ± |1 0〉)A0A1 . (4.2)
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To see the result of a measurement, suppose the unknown state of qubit A0 is α|0〉 +
β|1〉. So the initial state of A0A1B1 is

�A0A1B1 = 1√
2

(α|0 0 0〉 + α|0 1 1〉 + β|1 0 0〉 + β|1 1 1〉)A0A1B1 . (4.3)

Suppose that the outcome of Alice’s measurement is to learn that A0A1 is in the
state

1√
2
(|0 0〉 − |1 1〉)A0A1 . (4.4)

After the measurement, B1 will be in the state (α|0〉 − β|1〉)B1 . Knowing this, Alice
can tell Bob that he can recreate the initial state by acting on his qubit by

�B1 →
(
1 0
0 −1

)

�B1 (4.5)

in the basis |0〉, |1〉. The other cases are similar, as the reader can verify.
We will analyze a generalization, but first it is useful to formalize in a different way

the idea that Alice is trying to teleport an arbitrary unknown quantum state. For this,
we add another system R, to which Alice and Bob do not have access. We assume that
R is maximally entangled with A0 in a known state, say

�RA0 = 1√
2

(|0 0〉 + |1 1〉)RA0
. (4.6)

In this version of the problem, Alice’s goal is to manipulate her system A0A1 in some
way, and then tell Bob what to do to his system B = B1 so that in the end the system
RB1 will be in the same state

�RB1 = 1√
2

(|0 0〉 + |1 1〉)RB1 (4.7)

that RA0 was previously—with R never being touched. In this version of the problem,
the combined system RAB1 = RA0A1B1 starts in a pure state �RAB1 = �RA0 ⊗
�A1B1 . The solution of this version of the problem is the same as the other one: Alice
makes the same measurements and sends the same instructions as before.

We can understand better what is happening if we take a look at the conditional
entropy of the system AB = A0A1B1. Since A1B1 is in a pure state, it does not
contribute to SAB , so SAB = SA0 = 1 (A0 is maximally mixed, since it is maximally
entangled with R). Also SB = 1 since B = B1 is maximally entangled with A1.
Hence

S(A|B) = SAB − SB = 1 − 1 = 0. (4.8)

123



Amini-introduction to information theory 217

It turns out that this is the key to quantum teleportation: teleportation, in a suitably
generalized sense, is possible when and only when

S(A|B) ≤ 0. (4.9)

Let us explain first why this is a necessary condition. We start with an arbitrary
system RAB in a pure state �RAB ; Alice has access to A, Bob has access to B, and
neither one has access to R. For teleportation, Alice might measure her system A
using some rank 1 orthogonal projection operators πi . (If she makes a more general
measurement, for example using projection operators of higher rank, the system RB
does not end up in a known pure state and she will not be able to give appropriate
instructions to Bob.) No matter what answer she gets, after the measurement, system
A is in a pure state and therefore RB is also in a pure state χRB , generally entangled.
For teleportation, Alice has to choose the πi so that, no matter what outcome she
gets, the density matrix ρR of R is the same as before. If this is so, then after her
measurement, the state χRB of RB is a purification of the original ρR . Since she
knows her measurement outcome, Alice knows which entangled state is χRB and
can convey this information to Bob. Bob is then in possession of part B of a known
purification χRB of system R. He makes in his lab a copy A′ of Alice’s original
system A, initialized in a known pure state 
A′ , so now he has part A′B of a known
purification �̃RA′B = 
A′ ⊗ χRB of ρR . By a unitary transformation of system A′B,
which Bob can implement in his lab, �̃RA′B can be converted into any other pure state
of RA′B that purifies the same ρR . (This was explained following Eq. (3.13).) So Bob
can convert �̃RA′B to a copy of the original �RAB .

But do there exist projection operators of Alice’s system with the necessary prop-
erties? The initial state �ABR is pure so it has

SAB = SR . (4.10)

Bob’s density matrix at the beginning is

ρB = TrRA ρRAB (4.11)

where ρRAB is the initial pure state density matrix. By definition

SB = S(ρB). (4.12)

If Alice gets measurement outcome i , then Bob’s densitymatrix after themeasurement
is

ρi
B = 1

pi
TrRA πiρRAB . (4.13)

Note that

ρB =
∑

i

piρ
i
B, (4.14)
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since
∑

i πi = 1. After the measurement, since A is in a pure state, RB is also in a
pure state � i

RB , so S(ρi
B) = SR . But by hypothesis, the measurement did not change

ρR , so SR is unchanged and so equals the original SAB . Hence

S
(
ρi
B

)
= SAB . (4.15)

If all this is possible

SAB = S
(
ρi
B

)
=

∑

i

pi S
(
ρi
B

)
. (4.16)

The concavity inequality (3.39) or equivalently positivity of the Holevo information
(3.40) says that if ρB = ∑

i piρ
i
B then

S(ρB) ≥
∑

i

pi S
(
ρi
B

)
. (4.17)

So if teleportation can occur,

SAB =
∑

i

pi S
(
ρi
B

)
≤ S(ρB) = SB (4.18)

and hence S(A|B) = SAB − SB ≤ 0.
Actually, S(A|B) ≤ 0 is sufficient as well as necessary for teleportation, in the

following sense [14]. (In this generality, what we are calling teleportation is known as
state merging.) One has to consider the problem of teleporting not a single system but
N copies of the system for large N . (This is a common device in quantum information
theory. It is a rough analog of the fact that to get simple statements in the classical
case in Sect. 2, we had to consider a long message, obtained by sampling N times
from a probability distribution.) So one takes N copies of system RAB for large N ,
thus replacing RAB by R⊗N A⊗N B⊗N . This multiplies all the entropies by N , so
it preserves the condition S(A|B) ≤ 0. Now Alice tries to achieve teleportation by
making a complete projective measurement on her system A⊗N . It is very hard to
find an explicit set of projection operators πi with the right properties, but it turns
out, remarkably, that for large N , a random choice will work (in the sense that with a
probability approaching 1, the error in state merging is vanishing for N → ∞). This
statement actually has strong subadditivity as a corollary [14]. This approach to strong
subadditivity has been described in sections 10.8-9 of [4].

We actually can nowgive a good explanation of themeaning of quantumconditional
entropy S(A|B). Remember that classically S(A|B) measures how many additional
bits of information Alice has to send to Bob after he has already received B, so
that he will have full knowledge of A. We will find a quantum analog of this, but
now involving qubits rather than classical bits. Suppose that S(A|B) > 0 and Alice
nevertheless wants to share her state with Bob. Now we have to assume that Alice
is capable of quantum communication, that is of sending a quantum system to Bob
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while maintaining its quantum state, but that she wishes to minimize the amount of
quantum communication she will need. She first creates some maximally entangled
qubit pairs and sends half of each pair to Bob. Each time she sends Bob half of a pair,
SAB is unchanged but SB goes up by 1, so S(A|B) = SAB − SB goes down by 1. So
S(A|B), if positive, is the number of such qubits that Alice must send to Bob to make
S(A|B) nonpositive and so make teleportation or state merging possible without any
further quantum communication.

If S(A|B) is negative, teleportation or state merging is possible to begin with and
−S(A|B) is the number of maximally entangled qubit pairs that Alice and Bob can
be left with afterwards [14]. This may be seen as follows. Alice creates an auxiliary
system A′A′′, where A′ consists of n qubits that are completely entangled with another
set of n qubits that comprise system A′′. Alice considers the problem of teleporting to
Bob the combined system A = A′′A, while leaving A′ untouched. Since S(A|B) =
n + S(A|B), Alice observes that S(A|B) < 0 provided n < −S(A|B). Given this
inequality, Alice can teleport A = A′′A to Bob, keeping A′ in reserve. At the end of
this, Alice and Bob share nmaximally entangled qubit pairs, namely Alice’s system A′
and Bob’s copy of A′′. This description is a shorthand; it is implicit that at each stage,
we are free to replace the system under consideration by the tensor product of N copies
of itself, for some large N . As a result, integrality of n is not an important constraint.
A more precise statement of the conclusion is that for large N , after teleportation to
Bob of part A⊗N of a composite system A⊗N B⊗N , Alice and Bob can be left with up
to −NS(A|B) maximally entangled qubit pairs.

4.2 Quantum relative entropy and hypothesis testing

In a somewhat similar way, we can give a physical meaning to the relative entropy
S(ρ||σ) between two densitymatrices ρ, σ . Recall from Sect. 2.3 that classically, if we
believe a random variable is governed by a probability distribution Q but it is actually
governed by a probability distribution P , then after N trials the ability to disprove the
wrong hypothesis is controlled by

2−NS(P||Q). (4.19)

A similar statement holds quantum mechanically: if our initial hypothesis is that
a quantum system X has density matrix σ , and the actual answer is ρ, then after N
trials with an optimal measurement used to test the initial hypothesis, the confidence
that the initial hypothesis was wrong is controlled in the same sense by

2−NS(ρ||σ). (4.20)

Let us first see thatmonotonicity of relative entropy implies that one cannot do better
than that [15]. A measurement is a special case of a quantum channel, in the following
sense. To measure a system X , one lets it interact quantum mechanically with some
other system YC where Y is any quantum system andC is the measuring device. After
they interact, one looks at the measuring device and forgets the rest. Forgetting the
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rest is a partial trace that maps a density matrix βXYC to βC = TrXYβXYC . If C is
a good measuring device with n distinguishable quantum states, this means that in a
distinguished basis |α〉, α = 1, . . . , n, its density matrix βC will have a diagonal form

βC =
∑

α

bα|α〉〈α|. (4.21)

The “measurement” converts the original density matrix into the probability distribu-
tion {bα}.

So when we try to distinguish ρ from σ , we use a quantum channel plus partial
trace (or simply a quantum channel, since a partial trace can be viewed as a quantum
channel) that maps ρ and σ into density matrices for C

ρC =
∑

α

rα|α〉〈α| σC =
∑

α

sα|α〉〈α|, (4.22)

and thereby into classical probability distributions R = {rα} and S = {sα}. We can
learn that ρ and σ are different is by observing that R and S are different, a process
controlled by

2−NScl(R||S), (4.23)

where Scl(R||S) is the classical relative entropy between R and S.
This is the same as the relative entropy between ρC and σC :

S(ρC ||σC ) = Scl(R||S). (4.24)

And monotonicity of relative entropy gives

S(ρ||σ) ≥ S(ρC ||σC ). (4.25)

So if we follow this procedure, then S(ρ||σ) gives a bound on how well we can do:

2−NScl(R||S) ≥ 2−NS(ρ||σ). (4.26)

Actually, quantum mechanics allows us to do something more sophisticated than
making N repeated measurements of the system of interest. We could more generally
make a joint measurement on all N copies. Taking N copies replaces the Hilbert space
H of the systemunder studybyH⊗N , and replaces the densitymatricesσ andρ byσ⊗N

andρ⊗N . All entropies and relative entropies aremultiplied by N . A jointmeasurement
on N copies would convert a density matrix σ⊗N or ρ⊗N to a probability distribution
S[N ] or R[N ]. We will not learn much from a single joint measurement on N copies,
since it will just produce a random answer. But given NN ′ copies of the system, we
could repeat N ′ times a joint measurement of N copies. The ability to distinguish S[N ]
from R[N ] in N ′ tries is controlled for large N ′ by 2−N ′Scl(R[N ]||S[N ]). The monotonicity
of relative entropy gives 2−N ′Scl(R[N ]||S[N ]) ≥ 2−N ′S(ρ⊗N ||σ⊗N ) = 2−N̂ S(ρ||σ), where

123



Amini-introduction to information theory 221

N̂ = NN ′. So also with such a more general procedure, the ability to disprove in
N̂ trials an initial hypothesis σ for a system actually described by ρ is bounded by
2−N̂ S(ρ||σ).

In the limit of large N̂ , it is actually possible to saturate this bound, as follows
[16,17]. If ρ is diagonal in the same basis in which σ is diagonal, then by mak-
ing a measurement that involves projecting on 1-dimensional eigenspaces of σ , we
could convert the density matrices ρ, σ into classical probability distributions R, S
with S(ρ||σ) = Scl(R||S). The quantum problem would be equivalent to a classical
problem, even without taking many copies. As usual the subtlety comes because the
matrices are not simultaneously diagonal. By dropping from ρ the off-diagonal matrix
elements in some basis in which σ is diagonal, we can always construct a diagonal
density matrix ρD . Then a measurement projecting on 1-dimensional eigenspaces of
σ will give probability distributions R, S satisfying

S(ρD||σ) = Scl(R||S). (4.27)

This is not very useful, because it is hard to compare S(ρD||σ) to S(ρ||σ). That is
why it is necessary to consider a joint measurement on N copies, for large N , which
makes possible an easier alternative to comparing S(ρD||σ) to S(ρ||σ), as we will
see.

Let us recall the definition of relative entropy:

S
(
ρ⊗N ||σ⊗N

)
= Tr ρ⊗N log ρ⊗N − Tr ρ⊗N log σ⊗N . (4.28)

The second term Tr ρ⊗N log σ⊗N is unchanged if we replace ρ⊗N by its counterpart
(ρ⊗N )D that is diagonal in the same basis as σ⊗N . So

S
(
ρ⊗N ||σ⊗N

)
− S

((
ρ⊗N

)

D
||σ⊗N

)
= Trρ⊗N log ρ⊗N − Tr

(
ρ⊗N

)

D
log

(
ρ⊗N

)

D
.

(4.29)

Actually, there aremany bases inwhich σ⊗N is diagonal; it will be important to choose
the right one in defining (ρ⊗N )D . For large N , and with the right choice of basis, we
will be able to get a useful bound on the right hand side of Eq. (4.29).

Roughly speaking, there is simplification for large N because group theory can be
used to simultaneously putρ⊗N andσ⊗N in a block diagonal formwith relatively small
blocks. This will make possible the comparison we need. In more detail, the group SN
of permutations of N objects acts in an obvious way on H⊗N . It commutes with the
action on H⊗N of U (k), the group of unitary transformations of the k-dimensional
Hilbert space H. Schur-Weyl duality gives the decomposition of H⊗N in irreducible
representations of SN×U (k). EveryYoung diagramY with N boxes and atmost k rows
determines an irreducible representation λY of SN and an irreducible representation
μY of U (k). The decomposition of H⊗N in irreducibles of SN ×U (k) is

H⊗N = ⊕YλY ⊗ μY . (4.30)
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The λY of distinct Y are non-isomorphic, and the same is true of the μY . Let aY and
bY be, respectively, the dimension of λY and of μY . The maximum value of bY is
bounded10 by a power of N :

bmax ≤ (N + 1)k(k−1)/2. (4.31)

The important point will be that bmax grows only polynomially for N → ∞, not
exponentially. In contrast, the numbers aY can be exponentially large for large N .

Equation (4.30) gives a decomposition of H⊗N as the direct sum of subspaces of
dimension aY bY . Since ρ⊗N and σ⊗N commute with SN , they are block diagonal
with respect to this decomposition. But more specifically, the fact that ρ⊗N and σ⊗N

commute with SN means that each aY bY × aY bY block is just the direct sum of aY
identical blocks of size bY × bY . So ρ⊗N has a decomposition

ρ⊗N =

⎛

⎜
⎜
⎜
⎝

p1ρ1
p2ρ2

p3ρ3
. . .

⎞

⎟
⎟
⎟
⎠

(4.32)

in blocks of size bY ⊗ bY , with each such block occurring aY times, for all possible
Y . (The total number of blocks is

∑
Y aY .) The ρi are density matrices and the pi are

nonnegative numbers adding to 1. In the same basis, σ⊗N has just the same sort of
decomposition:

σ⊗N =

⎛

⎜
⎜
⎜
⎝

q1σ1
q2σ2

q3σ3
. . .

⎞

⎟
⎟
⎟
⎠

. (4.33)

We can furthermore make a unitary transformation in each block to diagonalize σ⊗N .
This will generically not diagonalize ρ⊗N . But because ρ⊗N is block diagonal with
relatively small blocks, its entropy can be usefully compared with that of the diagonal
densitymatrix (ρ⊗N )D that is obtained by setting to 0 the off-diagonalmatrix elements
of ρ⊗N in a basis inwhich σ⊗N is diagonal within each block and keeping the diagonal
ones:

10 See Eq. (6.16) of [17]. One approach to this upper bound is as follows. In general, the highest weight
of an irreducible representation of the group SU (k) is a linear combination of certain fundamental weights
with nonnegative integer coefficients ai , i = 1, . . . , k − 1. In the case of a representation associated to a
Young diagram with N boxes, the ai are bounded by N . The dimension of an irreducible representation
with highest weights (a1, a2, . . . , ak−1) is a polynomial in the ai of total degree k(k − 1)/2, so if all ai
are bounded by N , the dimension is bounded by a constant times Nk(k−1)/2. One way to prove that the
dimension is a polynomial in the ai of the stated degree is to use the Borel-Weil-Bott theorem. According to
this theorem, a representationwith highestweights (a1, a2, . . . , ak−1) can be realized as H

0(F, ⊗k−1
i=1L

ai
i ),

where F = SU (k)/U (1)k−1 is the flag manifold of the group SU (k) andLi → F are certain holomorphic
line bundles. Because F has complex dimension k(k − 1)/2, the Riemann-Roch theorem says that the
dimension of H0(F, ⊗k−1

i=1L
ai
i ) is a polynomial in the ai of that degree.
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(ρ⊗N )D =

⎛

⎜
⎜
⎜
⎝

p1ρ1,D
p2ρ2,D

p3ρ3,D
. . .

⎞

⎟
⎟
⎟
⎠

. (4.34)

One finds then

Trρ⊗N log ρ⊗N − Tr(ρ⊗N )D log
((

ρ⊗N
)

D

)
=

∑

i

pi (S(ρi D) − S(ρi )).

(4.35)

It is important that a potentially large term
∑

i pi log pi cancels out here. Any density
matrix on an n-dimensional space has an entropy S bounded by 0 ≤ S ≤ log n.
Because the sizes of the blocks are bounded above by bmax ∼ Nk(k−1)/2, and

∑
i pi =

1, the right hand side11 of Eq. (4.35) is bounded by log bmax ∼ 1
2k(k−1) log N , which

for large N is negligible compared to N .
Combining this with Eqs. (4.27) and (4.29), we see that for large N , a measure-

ment that projects onto 1-dimensional eigenspaces of σi within each block maps
the density matrices ρ⊗N and σ⊗N to classical probability distributions R[N ] and
S[N ] such that the quantum relative entropy S(ρ⊗N ||σ⊗N ) and the classical relative
entropy S(R[N ]||S[N ]) are asymptotically equal. To bemore precise, S(ρ⊗N ||σ⊗N ) =
NS(ρ||σ) is of order N for large N , and differs from S(R[N ]||S[N ]) by at most a con-
stant times log N . In other words

S(ρ||σ) = 1

N
S(ρ⊗N ||σ⊗N ) = 1

N
S

(
R[N ]||S[N ]) + O

(
log N

N

)

. (4.36)

Once we have identified a measurement that converts the quantum relative entropy
(for N copies of the original system) to a classical relative entropy, we take many
copies again and invoke the analysis of classical relative entropy in Sect. 2.3. In more
detail, consider a composite system consisting of N copies of the original system.
Suppose that we observe N ′ copies of this composite system (making NN ′ copies of
the original system), for very large N ′. On each copy of the composite system, we
make the above-described measurement. This means that we sample N ′ times from
the classical probability distribution S[N ] (if the original hypothesis σ was correct) or
R[N ] (if the original system was actually described by ρ). According to the classical
analysis in Sect. 2.3, the ability to distinguish between R[N ] and S[N ] in N ′ trials
is controlled by 2−N ′S(R[N ]||S[N ]). According to Eq. (4.36), this is asymptotically the
same as 2−N ′S(ρ⊗N ||σ⊗N ) = 2−NN ′S(ρ||σ). In short, we learn that after a suitable mea-
surement on N̂ = NN ′ copies of the original system, we can distinguish between the
hypotheses σ and ρ with a power

2−N̂ S(ρ||σ), (4.37)

11 The right hand side is actually positive because of the inequality (3.42).
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saturating the upper bound (4.26) (with the total number of trials now being N̂ rather
than N ). In the exponent, there are errors of order N ′ log N (from the logarithmic
correction in (4.36)) and N log N ′ (coming from the fact that the classical analysis
of Sect. 2.3, which for instance used only the leading term in Stirling’s formula, has
corrections of relative order 1

N ′ log N ′).
This confirms that quantum relative entropy has the same interpretation as classical

relative entropy: it controls the ability to show, by a measurement, that an initial
hypothesis is incorrect. A noteworthy fact [16] is that the measurement that must
be made on the composite system to accomplish this depends only on σ (the initial
hypothesis) and not on ρ (the unknown answer).

At the outset, we assumed monotonicity of relative entropy and deduced from it an
upper bound (4.20) on how well one can distinguish two density matrices in N trials.
Actually, now that we know that the upper bound is attainable, one can reverse the
argument and show that this upper bound implies monotonicity of relative entropy.
Suppose that AB is a bipartite system with density matrices ρAB , σAB that we want
to distinguish by a measurement. One thing that we can do is to forget system B and
just make measurements on A. The above argument shows that, after taking N copies,
the reduced density matrices ρA = TrB ρAB , σA = TrB σAB can be distinguished at
the rate 2−NS(ρA||σA). But since measurements of subsystem A are a special case of
measurements of AB, this implies that ρAB and σAB can be distinguished at the rate
2−NS(ρA||σA). If therefore we know the bound (4.20), which says that ρAB and σAB

cannot be distinguished at a faster rather than 2−NS(ρAB ||σAB ), then the monotonic-
ity inequality S(ρAB ||σAB) ≥ S(ρA||σA) follows. In [18], monotonicity of relative
entropy has been proved by giving an independent proof of the upper bound on how
well two density matrices can be distinguished.

4.3 Encoding classical information in a quantum state

Finally, we will address the following question: how many bits of information can
Alice send to Bob by sending him a quantum system X with a k-dimensional Hilbert
space H? (See [4], especially section 10.6, for more on this and related topics.)

One thing Alice can do is to send one of k orthogonal basis vectors in H. Bob can
find which one she sent by making a measurement. So in that way Alice can send log k
bits of information. We will see that in fact it is not possible to do better.

We suppose that Alice wants to encode a random variable that takes the values xi ,
i = 1, . . . , n with probability pi . When the value is xi , she writes down this fact in
her notebook C and creates a density matrix ρi

X on system X . If |i〉 is the state of
the notebook when Alice has written the value xi , then on the combined system CX ,
Alice has created the density matrix

ρCX =
∑

i

pi |i〉〈i | ⊗ ρi
X (4.38)

Then Alice sends the system X to Bob. Bob’s task is to somehow extract information
by making a measurement.
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Before worrying about what Bob can do, let us observe that the density matrix ρCX

of the systemCX is the one (Eq. (3.56)) that was used earlier in discussing the entropy
inequality for mixing. It is sometimes called a classical-quantum density matrix. The
reduced density matrix of X is ρX = TrC ρCX = ∑

i piρ
i
X . As before, the mutual

information between C and X is the Holevo information

I (C; X) = S(ρX ) −
∑

i

pi S(ρi
X ). (4.39)

Since S(ρi
X ) ≥ 0 and S(ρX ) ≤ log k, it follows that

I (C; X) ≤ log k. (4.40)

If we knew that quantum mutual information has a similar interpretation to classical
mutual information, we would stop here and say that since I (C; X) ≤ log k, at most
log k bits of information about the contents of Alice’s notebook have been encoded
in X . However, we aim to demonstrate that quantum mutual information behaves like
classical mutual information, at least in this respect, not to assume it. As we will
see, what we want is precisely what monotonicity of mutual information says, in the
present context.

What can Bob do on receiving system X? The best he can do is to combine it with
some other systemwhich may include a quantum system Y and a measuring apparatus
C ′. He acts on the combined system XYC ′ with some unitary transformation or more
general quantum channel and then reads C ′. The combined operation is a quantum
channel. As in our discussion of relative entropy, the outcome of the channel is a
density matrix of the form

ρC ′ =
r∑

α=1

qα|α〉〈α|, (4.41)

where |α〉 are distinguished states of C ′—the states that one reads in a classical sense.
The outcome of Bob’s measurement is a probability distribution {qα} for a random
variable whose values are labeled by α. What Bob learns about the contents of Alice’s
notebook is the classical mutual information between Alice’s probability distribution
{pi } and Bob’s probability distribution {qα}. Differently put, what Bob learns is the
mutual information I (C;C ′).

To analyze this, we note that before Bob does anything, I (C; X) is the same as
I (C; XYC ′) because YC ′ (Bob’s auxiliary quantum system Y and his measuring
apparatus C ′) is not coupled to CX . In more detail, the initial description of the com-
bined system CXYC ′ is by the tensor product of a density matrix ρCX for CX and a
density matrix ρYC ′ for YC ′. As one can deduce immediately from the definitions, the
mutual information between C and XYC ′ if the full system CXYC ′ is described by
ρCX ⊗ ρYC ′ is the same as the mutual information between C and X if the subsystem
CX is described by ρCX . Bob then acts on XYC ′ with a unitary transformation, or
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maybe a more general quantum channel, which can only reduce the mutual informa-
tion. Then he takes a partial trace over XY , which also can only reduce the mutual
information, since monotonicity of mutual information under partial trace tells us that

I (C; XYC ′) ≥ I (C;C ′). (4.42)

So

log k ≥ I (C; X) = I (C; XYC ′)before ≥ I (C; XYC ′)after ≥ I (C;C ′)after,
(4.43)

where “before” and “after” mean before and after Bob’s manipulations. More briefly,
any way that Bob processes the signal he receives can only reduce the mutual infor-
mation. Thus Alice cannot encode more than log k bits of classical information in an
k-dimensional quantum state, though it takes strong subadditivity (or its equivalents)
to prove this.

The problem that we have discussed also has a more symmetrical variant. In this
version, Alice and Bob share a bipartite state AB; Alice has access to A and Bob has
access to B. The system is initially described by a density matrix ρAB . Alice makes a
generalized measurement of A and Bobmakes a generalized measurement of B. What
is the maximum amount of information that Alice’s results may give her about Bob’s
measurements, and vice-versa? An upper bound is given by the mutual information
I (A; B) in the initial density matrix ρAB . Alice’s measurements amount to a quantum
channel mapping her system A to her measurement apparatusC ; Bob’s measurements
amount to a quantum channel mapping his system B to his measurement apparatusC ′.
The mutual information between their measurement outcomes is simply the mutual
information I (C;C ′) in the final state. Monotonicity of mutual information in any
quantum channel says that this can only be less than the initial I (A; B).

A more subtle issue is the extent to which these upper bounds can be saturated. For
an introduction to such questions see [4], section 10.6.
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