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Abstract
Webriefly review themanifold incarnations and facets of the notion that gravity, in cer-
tain regards, can be re-conceived as the product of two gauge theories. We begin with
a short history of the relationship between gauge and gravity theories in the context of
“gravity = gauge× gauge”. This is followed by modern approaches to gauge/gravity
scattering amplitude relations, focussing on the Bern–Carrasco–Johansson colour-
kinematic duality and double-copy construction of gravitational amplitudes from
gauge amplitudes. This includes a partial characterisation of what gravity theories
admit a gauge theory squared origin. We then consider classical and off-shell perspec-
tives on “gravity = gauge × gauge”. First we review field theoretic approaches to
understanding the colour-kinematic duality and the double-copy prescription, includ-
ing kinematic algebras and colour-kinematic duality and double-copy manifesting
Lagrangians. We then consider classical double-copy-like methods for constructing
gravitational solutions from gauge theory solutions. To close, we consider a purely
field theoretic take on “gravity = gauge× gauge”. This framework centres on a con-
volutive product of gauge theories, at the level of spacetime fields themselves, that
yields gravitational theories.
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1 Introduction

The early part of the twentieth-century witnessed two revolutions that laid out the
foundations of physics today: quantum theory and Einstein’s general theory of rela-
tivity. While each pillar has been tremendously successful in its respective domain,
they seemingly stand apart from a number of perspectives. At the sharpest end of the
apparent contradictions, general relativity and quantum theory clash with seemingly
paradoxical consequences [1,2], leaving our account of Nature fragmented and incom-
plete. This is the problem of quantum gravity. While there are a number of promising
paths to quantum gravity, string/M-theory being the most relevant in the context of
this review, its ultimate resolution remains a challenge for twenty-first-century physics.
Even leaving thesemost dramatic schisms aside, general relativity and quantum theory
paint curiously distinct pictures of the known fundamental forces. The electroweak
and strong forces of the StandardModel of Particle Physics are described by quantised
Yang–Mills gauge theories that play out on a fixed spacetime stage. On the other hand,
gravity is most economically thought of as the curvature of spacetime itself, which is
elevated to a dynamical degree of freedom in its own right. Moreover, the gauge theo-
ries underpinning the StandardModel are renormalisable, whereas the straightforward
perturbative quantisation of general relativity, with or without matter, is plagued by
uncontrollable divergences [3–7].

From this point of view it would seem that gravity cuts a lonely figure. However,
the diffeomorphism invariance of general relativity makes it in a sense the “gauge
theory” par excellence. Thought of this way perhaps gravity and gauge theory are
not so distant after all. Indeed, the hope that gravity can be understood in terms of
gauge theory, or vice versa, has been a reoccurring theme in the annuls of theoretical
physics. It has taken numerous guises, many of which are inter-related. The earliest
example is provided by Kaluza–Klein theory [8–10]; general relativity in D = 5
spacetime dimensions compactified on a circle S1 includes in its massless spectrum
a Un(1) gauge field.1 Electromagnetism is seen to derive from pure geometry and
gravity. Turning this relation around, the first and perhaps most logically transparent
approach is to gauge the Lorentz, Poincaré or de Sitter symmetries [12–16]. Indeed,
general relativity in its first-order form, which given the need to conveniently couple to
fermions is not merely a cosmetic rewriting, has a manifest local Lorentz symmetry.

1 For a review of Kaluza–Klein theory see [11].
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The spin-connection wa
b is the corresponding gauge field and its field strength is

nothing but the Riemann tensor, Ra
b = dwa

b + wa
c ∧ wc

b. This would seem to
make the relationship to Yang–Mills theory manifest, but more care is needed. In fact,
the necessary extra ingredients make the differences between the Yang–Mills theory
of local Poincaré symmetry and general relativity quite clear. Gauging the Poincaré
group2 yields a covariant derivative D = d + A with connection

A = ea Pa + wa
bM

b
a (1)

where Pa and Mb
a are the translation and Lorentz generators, respectively, and we

have suggestively labelled the corresponding gauge fields by ea andwa
b. The Poincaré

algebra, [M, P] ∼ P, [M, M] ∼ M, [P, P] = 0, implies the field strength takes the
form

F = [D, D] = T a Pa + Ra
bM

b
a (2)

where
Ra

b = dwa
b + wa

c ∧ wc
b, T a = dea + wa

b ∧ eb. (3)

Hence, identifying ea and wa
b with the frame field and spin-connection, respectively,

T a and Ra
b correspond to the torsion and Riemann tensors. However, on the one

hand the Yang–Mills Lagrangian ∝ tr(F ∧ �F) obviously does not yield the Einstein
equation (and, besides, the Hodge dual requires a metric, somewhat undermining the
whole approach) and, on the other hand, the Einstein–Hilbert Lagrangian ∝ √−gR
is not gauged Poincaré invariant (and again requires a metric). Both deficiencies can
be rectified using the Plebanski Lagrangian ∝ ea ∧ eb ∧ Rcdεabcd , which is invariant
under local Poincaré transformations up to a term proportional to the torsion T a . So,
we have a local Poincaré invariant action that yields the Einstein equation if we impose
that the torsion vanishes, T a = 0. With this condition in place, we may identify the
local Pioncaré translation parameter εa(x) with a vector ξ , via εa = iξ ea , so that the
local Poincaré transformation of ea becomes a Lie derivative with respect to ξ together
with a shifted local Lorentz rotation,

δea = Dεa + αa
be

b = Lξ e
a − iξT

a + (
αa

b − iξw
a
b
)
eb −→

T a→0
Lξ e

a + αa
(ξ)be

b (4)

So far, so good. However, while the T a = 0 constraint is consistent with the equa-
tions of motion, one should still object that it is not itself gauged Poincaré invariant,
δT a |T a→0 =

(
Ra

bε
b + αa

bT b
) |T a→0 = Ra

bε
b. In this sense, general relativity is

strictly not given by gauging the Poincaré group. Nonetheless, the procedure of gaug-
ing spacetime symmetries and then identifying appropriate constraints is remarkably

2 To be absolutely clear, here we are considering the Yang–Mills theory of the Poincaré group in the strict
sense that it is treated as an internal symmetry, in direct analogy to, say, the SU(3) of the Standard Model.
By “gauged Poincaré” we really do mean a principal bundle P(M,G), forG the Poincaré group. Of course,
the actual role of the global Poincaré group in a relativistic quantum field theory onR1,d is as a spacetime
symmetry. We can also promote this spacetime Poincaré group to be local, as was done in [13]. In this case,
the local translations and rotations yield independent general coordinate and local Lorentz transformations.
Demanding invariance then leads one, almost inevitably, to general relativity (with matter induced torsion)
without invoking, a priori, any Riemannian geometry [13]. While certainly elegant, this seems to us to be
gilding the lily somewhat.
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effective and, for example, has been applied to construct Poincaré, anti-de Sitter and
conformal supergravity theories [15,17,18], a highly non-trivial task when tackled
conventionally. Moreover, the explicit imposition of constraints can be replaced by a
spontaneous symmetry breaking mechanism of a larger group [19]. Such successes
notwithstanding, a metric on an n-dimensional Riemannian manifold can be regarded
as a section of the associated frame bundle with fibres GL(n)/O(n), so is closer in
spirit to a gauged non-linear sigmamodel equippedwith a soldering form, rather than a
conventional Yang–Mills theory of the Poincaré group. This takes us rather beyond the
direct connection to Yang–Mills gauge theory and certainly the scope of this review.

However, this is not the only way one might think to relate gauge theory to gravity.
In particular, the holographic principle [20,21], realised concretely through the Anti-
de Sitter/Conformal Field Theory (AdS/CFT) correspondence [22–24], represents a
subtler and ultimately deeper gauge/gravity relation. In fact, the idea that the spin-two
graviton is a composite of two spin-one gauge bosons can be taken as the starting
point of a heuristic route to AdS/CFT, without appealing a priori to string theory3

[27,28]. Let us expand on this point of view briefly, as it is instructive and serves
to highlight the crucial differences between the AdS/CFT gauge/gravity duality and
“gravity = gauge × gauge”. It has been long-ago suggested, more than once, that
the spin-two graviton is not elementary, but rather a bound state appearing in some
renormalisable quantum field theory [29–32]. On the basis of representation theory
alone it is not unreasonable to suppose that a spin-2 graviton (coupled to a scalar)
might be composed as the symmetric tensor product of two spin-1 particles (or even
four spin-1/2 particles [29]). The problem with this idea is that the Weinberg–Witten
theorem [33] would seem to rule out massless composite particles of spin greater than
one in any quantum field theory, under the assumption that there exists a conserved
Lorentz covariant energy-momentum tensor. However, along with requiring a stress
tensor, there is another hidden assumption so seemingly innocuous that it almost
does not bear mentioning; the composite graviton lives in the same spacetime as its
elementary constituents. But this is precisely what the holographic principle violates:
a theory in (D + 1) spacetime dimensions is the “holographic image” of a theory in
D dimensions. The Weinberg–Witten theorem does not exclude the possibility that a
graviton propagating in a (D+1)-dimensional bulk spacetime is equivalently described
in terms of a gauge theory living on a D-dimensional boundary. Of course, things are
not quite so simple. First, in order to capture the physics of a local (D+1)-dimensional
theory the boundary theoryneeds an additional “dimension”—aparameterwith respect
to which the physical observables are local. This is provided by the energy scale μ;
the couplings are governed by the renormalisation group flow equations, which are
local functions of μ. Second, this scale should be macroscopic. Coupled with the
expectation that the boundary theory should be highly quantum, since a perturbative
gauge theory does not look like classical gravity, this suggests that the boundary
theory is strongly-coupled over a large range of energies. For infinite bulk radial
dimension the boundary theory should therefore be conformal. Supersymmetry can
be employed to retain control in the strongly-coupled regime, in which case the gauge

3 Although one is inevitably led back to string theory [25], as with hindsight might have been anticipated
from ‘t Hooft’s work on the planar limit of Yang–Mills theory [26].
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theory is superconformal. Finally, to account for the extra classical functional degrees
of freedom enjoyed by fields propagating in D + 1 dimensions with respect to those
in D dimensions, a large gauge group limit is invoked. For example, the equivalence
of Yang–Mills theory, with SU(N ) colour group and gauge coupling g, with classical
gravity is valid for N � λ � 1, where we have introduced the ‘t Hooft coupling
λ = g2N . The best understood case, which is by now extremely well-tested, has
type IIB string theory on an asymptotically AdS5 × S5 bulk spacetime, with the
maximally supersymmetric D = 4 Yang–Mills theory on the AdS5 boundary. It is
widely believed to be a complete duality, also holding for finite N and λ, although
this is much harder to test. Regardless, even in its most conservative form, N →
∞, the AdS/CFT correspondence provides a remarkable gauge/gravity relation, with
profound implications and myriad applications.

In the present contribution, our concern is a third (at least naively) independent rela-
tionship between gauge theory and gravity: the “gravity = gauge×gauge” paradigm.
While it also takes as its starting point the idea that spin-2 can be built from spin-
1, it is quite different from a number of perspectives. First, it is rather generic, not
requiring anything like large N , strong/weak-coupling-duality, supersymmetry or the
holographic principle. It does however require other hidden properties, which are
shared by a very broad class of gauge theories. We shall come to those momentarily.
On the other hand, it is rather more limited in the sense that it is not a complete duality,
but rather a growing set of compelling relations. To be more precise, we simply do not
yet know just how general or deep it is. In this review, we shall describe the various
and connected perspectives on “gravity = gauge × gauge” and explore just how far
it can be taken. Let us state at the outset that we do not have a definitive answer - the
jury is still out. However, the proliferation of surprising, illuminating and powerful
insights uncovered thus far compels further serious consideration, its rather radical
nature notwithstanding.

The heuristic picture to have in mind is that one can regard the product of two gauge
potentials as a gravitational theory as described by the suggestive, but for the moment
purely illustrative, equation:

“Aμ ⊗ Ãν = gμν ⊕ Bμν ⊕ ϕ”. (5)

Here, Aμ and Ãν are the gauge potentials of two distinct Yang–Mills theories, which
we will refer to as the left (no tilde) and right (tilde) theories, or factors, respectively.
They can have arbitrary and independent non-Abelian gauge groups G and G̃. Their
“product” yields a metric, gμν , an Abelian 2-form gauge potential Bμν and a scalar
field ϕ. This equation has meaning if we interpret it as the tensor product of the
corresponding spacetime little group representations, but going beyond this requires a
rather more subtle approach. Indeed, there are a number of good reasons, Weinberg–
Witten aside, to suspect it cannot be well-defined. For one the right hand side should be
covariant with respect to general coordinate transformations whereas the left hand side
transforms locally under two arbitrary finite-dimensional Lie groups. Nonetheless, the
idea represented by (5) has proven itself incredibly powerful, particularly in the context
of scattering amplitudes, motivating a reappraisal of these apparent obstructions.
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Given the lessons of Weinberg–Witten (forbidding composite particles) and
AdS/CFT (relying on a holographic dimension), how could such a proposal work? The
first substantial clues came, just as in the case of AdS/CFT, from string theory in the
guise of the Kawai–Lewellen–Tye (KLT) relations [34], which connect the tree-level
scattering amplitudes of closed strings to sums of products of open string amplitudes.
While highly non-trivial, the intuition underpinning these relations is quite clear.4

First, the spectra of closed strings is given by the tensor product of those correspond-
ing to left and right moving open strings. Since the low energy effective field theory
limits of closed and open superstrings are given by supergravity and super Yang–Mills
theory, respectively, graviton states arise as the tensor product of the gluon states.

For instance, the massless sector of type I superstrings in D = 10 is given by super
Yang–Mills theory [36] with gluons and gluini, that is adjoint-valued Majorana–Weyl
(MV) spinors, in the 8v and 8s , respectively, of the (double cover of) the spacetime
little group Spin(8). The product of type I superstrings with opposing chiralities yields
type IIA superstrings, with massless spectrum,

⊗ 8v 8c
8v 35

graviton
+ 28

KR 2-form
+ 1

dilaton
56s

gravitino
+ 8s

MW spinor

8s 56c
gravitino

+ 8c
MW spinor

56v
RR 3-form

+ 8v
RR 1-form

(6)

In particular, we see that the on-shell gluon⊗ gluon sector5 yields an on-shell graviton
35, the on-shell Kalb–Ramond (KR) 2-form 28, and the dilaton 1, just as anticipated by
the heuristic formula (5). Of course, this is just a special case of V⊗V ∼= Sym2(V )0⊕
∧2(V )⊕R, whereV ∼= RD−2 is the vector representation of SO(D−2) andSym2(V )0
denotes the trace free symmetric product. This is the universal sector of the product
all conventional (super) Yang–Mills theories for any dimension D and any number of
allowed supersymmetries N. It is therefore useful to give it a name. It is sometimes
referred to as “N = 0 supergravity’ and we shall adopt this convention. In addition
to the universal bosonic sector, we have the fermions from the gluon ⊗ gluino +
gluino ⊗ gluon sector consisting of two gravitini, 56s and 56c, and two MV spinors,
8c and 8s . The appearance of two gravitini with opposing chiralities implies that there
are N = 2 = 1 + 1 local supersymmetries corresponding to type IIA supergravity.
This reveals our second universal property apparent just at the level of representation
theory; the global left and right supersymmetries sum in the product to give local
supersymmetries.6 Finally, in the gluino ⊗ gluino sector we find the R-R 1-form 8v

4 An excellent account can be found in §7 of the classic reference [35].
5 In the stringy nomenclature we have the NS–NS (8v × 8v), NS-R (8v × 8c), R–NS (8s × 8v), and R–R
(8s × 8c) sectors, where NS and R refer to Nevau–Schwarz and Ramond.
6 On the one hand, this is exactly what one would expect from our stringy intuition based on world-sheet
supersymmetry, which is treated democratically in both the open string factors and their closed string
product. It is, however, a little counter-intuitive from the spacetime “gravity = gauge×gauge” perspective,
where we take internal tensor products of spacetime little group representations, but external tensor products
of the supersymmetry transformations, despite the fact that they anti-commute to give translations. It all
works out, as we shall see.
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and 3-form 56v Abelian gauge fields. This is just the Clifford expansion of the spinor
tensor products.

The matching of closed string spectra with the products of open string spectra
is, of course, just the minimal requirement for anything like the KLT relations to
work, but also allows for (or, rather, follows from) the construction of closed string
vertex operators in terms of those left and right moving open strings, Vclosed(2p, τ ) ∼∫
dσVopen(p, τ − σ)Ṽopen(p, τ + σ), where (τ, σ ) are the world-sheet coordinates.

This, in turn, implies that the tree-level n-closed-string amplitudes are given by sums
of products,

An
closed ∼

∑

σ,σ ′
eiθ(σ,σ ′)An

open(σ )Ãn
open(σ

′) (7)

where An
open and Ãn

open are left and right moving open string amplitudes, σ, σ ′ are
noncyclic permutations of the external lines and the θ are model independent phases
determined entirely by σ, σ ′ [34]. For example, focussing on the bosonic string con-
sider the very simplest case of the three-graviton vertex,

A3
closed ∼ κε

μα
1 ε

νβ
2 ε

ργ
3 A3

open μνρ Ã
3
open αβγ . (8)

Here, κ is the closed string coupling constant, εμα
i are the transverse-traceless graviton

polarisation tensors and the open string three-gluon vertex is given by

A3
open ∼ gεμ

1 εν
2ε

ρ
3 A

3
open μνρ, (9)

where g is the open string coupling constant and ε
μ
1 are the transverse gluon polarisa-

tion tensors. Note, at zeroth-order in the inverse string tension, α′, A3
open is precisely

the three-gluon vertex of pure Yang–Mills theory, but also has an order α′ contribution
corresponding to an F3 term. Consequently, A3

closed has both order α′ and α′2 contri-
butions following from four- and six-derivative terms of the form R2 and R3. However,
in the infinite string tension limit, α′ → 0, we recover a precise relationship between
the three-point vertices of perturbative N = 0 supergravity (which can be restricted
to Einstein–Hilbert gravity by choosing the gluon polarisations appropriately, since it
is tree-level) and Yang–Mills theory. At four-point with external tachyons we obtain a
relationship [34] between the famous closed string Virasoro–Shapiro [37,38] and open
string Veneziano [39] amplitudes, which initiated the string theory programme itself.
The four-point KLT relations hold for all external states and, again, reduce to four-
point Einstein–Hilbert gravity and Yang–Mills relations in the α′ → 0 limit. More
generally, (7) for α′ → 0 gives a precise set of relations between graviton amplitudes
as sums of products of gluon amplitudes for any number of points [34].

The KLT relations and their field theory descendants are by construction tree-level.
Nonetheless, the “closed = open × open” string theoretic approach was successfully
applied to one-loop four-graviton amplitudes [40], suggesting that it may be pos-
sible to go beyond the semi-classical regime. At this stage it should be noted that
direct contact with the standard Lagrangian approach has been lost. Instead, the key
idea is to use unitarity methods [41–47] to build from the tree-level KLT relations
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104 L. Borsten

loop amplitudes without passing through the usual Feynman prescription at all. This
facilitated, for example, the calculation of the two-loop four-points amplitudes in
D = 4,N = 8 supergravity from those of N = 4 super Yang–Mills theory [48]. The
idea that unitarity can be used to glue trees into loops forms a part of what might be
described as the “on-shell paradigm”. Starting with Lagrangian field theory we learnt
how to perturbatively compute amplitudes to arbitrary precision. While conceptually
straightforward, the factorial growth in complexity with loop order quickly renders
the traditional Feynman diagram approach impractical. The search for computational
efficiency precipitated a renaissance in amplitude techniques, focusing on physical,
gauge invariant objects. Over time various amplitude structures (recursion relations,
generalised unitarity cuts, Grassmannians, scattering equations, positively…) were
uncovered, eventually allowing the Lagrangian ladder to be kicked away altogether.
As well as being computationally powerful, this programme offers new perspectives
on quantum field theory itself. For a review of many of these developments see [49].

Importantly, this new found freedom led to the discovery of new features of ampli-
tudes, not visible from the original Lagrangian perspective. A remarkable example
of one such hidden structure, that lies at the heart of “gravity = gauge × gauge”, is
the Bern–Carrasco–Johansson colour-kinematic (BCJ) duality, which relates the kine-
matic dependence of an amplitude to its colour data [50,51]. One can write any gluon
amplitude entirely in terms of trivalent graphs (which are not Feynman diagrams) by
“blowing” up the four-point contact terms. Having done so, the BCJ duality conjec-
ture is that there exists a rewriting of the amplitude such that: (i) for any triple of
graphs, i, j, k with colour factors ci , c j , ck , built entirely from the gauge group struc-
ture constants, obeying a Jacobi identity ci+c j+ck = 0, the corresponding kinematic
factors, ni , n j , nk , which are built from the momenta and polarisation tensors, also
obey the same Jacobi-type identity ni + n j + nk = 0; (ii) for any diagram, i , such
that ci → −ci under the interchange of two legs then ni → −ni . A reorganisation
admitting this surprising relationship between colour and kinematic data exists for all
n-point tree-level amplitudes, as has been demonstrated from a number of perspec-
tives [52–55]. Although there is as yet no proof that the colour-kinematic duality will
hold to all loops, there are many highly non-trivial examples providing supportive evi-
dence [56–63]. While it is clear that the colour factors should obey Jacobi identities
(by definition), it is not at all obvious that the kinematic factors should play by the
same rules! It is certainly not apparent form the Yang–Mills Lagrangian. Moreover,
they have further implications for amplitude architecture. For example, an immedi-
ate consequence of tree-level BCJ duality is the existence of BCJ relations amongst
colour-ordered partial amplitudes, reducing the number of independent n-point partial
amplitudes down to (n − 3)! [50].

More remarkable still is the BCJ double-copy prescription [51,64]. Consider two
n-point L-loop Yang–Mills amplitudes, both written in trivalent form with respective
colour and kinematic factors (ci , ni ) and (ci , ñi ), at least one of which has been
successfully cast in a BCJ duality respecting form, say (ci , ni ). We can construct a
corresponding gravitational theory amplitude by simply replacing each colour factor
in (ci , ñi ) with the corresponding kinematic factor of (ci , ni ): (ci , ñi )→ (ni , ñi ). We
have removed all reference to the gauge group and “doubled” the kinematic terms.
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For two pure Yang–Mills theories7 this double-copy procedure generates all possible
amplitudes ofN = 0 supergravity, giving precisemeaning to the heuristic equation (5),
at least at the semi-classical level. However, the two amplitudes need not belong to the
same theory. For example, we could take the (ci , ni ) from maximally supersymmetric
N = 4 Yang–Mills amplitudes and the (c̃i , ñi ) from pure Yang–Mills theory. This
yields the amplitudes of pure N = 4 supergravity [65]. Alternatively, if both factors
are N = 4 Yang–Mills theory we generate the maximally supersymmetric N = 8
supergravity [51], which can be thought of as the dimensional reduction on a 6-torus
of the “type II= type I× type I” relation described in (6). By varying the left and right
factors over all BCJ duality compatible gauge theories we generate all BCJ double-
copy constructible gravitational theories. Of course, this is easier said than done, but
there is nonetheless a rapidly multiplying zoology BCJ double-copy constructible
gravity theories [51,56,64,66–89]. We shall come to describe this forest of theories
once we have covered the necessary ground work.

The double-copy picture is not only conceptually compelling but also computa-
tionally powerful, bringing previously intractable calculations with in reach. This
has pushed forward dramatically our understanding of divergences in perturbative
quantum gravity [56,57,60,67,90–95], revealing a number of unexpected features and
calling into question previously accepted arguments regarding finiteness. A remark-
able example is given by the four-point graviton amplitude in N = 8 supergravity,
which was shown to be finite to four loops in [56], contradicting some early expecta-
tions [96,97]. It has since been shown that the four-loop cancellation can be accounted
for by supersymmetry and E7(7) U-duality [98–102]. The consensus, however, is that
at seven loops anywould-be cancellations cannot be “consequences of supersymmetry
in any conventional sense” [98]. Unfortunately, seven loops in N = 8 supergravity
remains beyond reach (for now), but by decreasing the amount of supersymmetry the
same arguments apply at lower loop order. For example, the four-point amplitude of
D = 4,N = 5 supergravity has been shown to be finite to four loops, contrary to
all expectations based on standard symmetry arguments [57]. There are “enhanced
cancellations” [57], in the sense that they cannot be explained by any standard sym-
metry argument8, at work and the conclusion that N = 8 supergravity will diverge at
seven loops is thrown into doubt. More recently, in a computational tour de force the
N = 8 four-point five-loop amplitude was completed using generalised BCJ duality
and the double-copy ofN = 4 Yang–Mills theory [95,104]. It was found to be finite in
agreement with the expectation that N = 8 should diverge at seven loops. Its degree
of finiteness was inline with standard symmetry arguments; there were no enhanced
cancellations that might lead one to speculate that seven loops will be finite contrary
to conventional expectations. However, this conclusion was reached in D = 24/5
where the five-loop amplitude first diverges and there is a ∂8R4 counter-term. Since
we do not fully understand the nature or origin of the enhanced cancellations it could
still be that they kick in at seven loops in the relevant of D = 4. Similarly, the fact
that N = 5 supergravity is rendered finite at four loops by enhanced cancellations

7 With possibly distinct gauge groups. The construction did not rely on any particular properties of, or
relations amongst, the gauge groups.
8 See [103] for possible explanations at three loops that nonetheless fail at four loops.
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can be interpreted in a number of ways. On the one hand, it makes it clear that stan-
dard symmetry arguments are insufficient to predict when a supergravity theory will
diverge, opening a small window of opportunity for perturbative finiteness. On the
other hand, although not a logical impossibility no amplitude practitioners (as far as
we are aware) expect N = 5 supergravity to be perturbatively finite so: (i) the N = 5
enhanced cancellations witnessed at four loops are anticipated to fail eventually and
even if N = 8 supergravity (where there is active debate regarding finiteness, see for
example [98,105–108]) is magically finite at seven loops, it is not guaranteed that the
cancellations will persist at higher loops; (ii) the observation of enhanced cancella-
tions in N < 8 supergravity theories implies that N = 8 is not actually special in
this regard. Does this undermine its privileged position as a candidate finite theory;
if theories that are not expected to be finite can have enhanced cancellations, then
why should we think that their existence might suggest finiteness of other theories?
Of course, without a complete understanding of the amplitudes, including hidden fea-
tures such as the enhanced cancellations, these are all just speculations and we will
not know the answer at any particular order until we do the calculation.

Whatever the case, however, there is something deeper at work we have yet to fully
comprehend; the questions regarding finiteness and the “gravity = gauge × gauge”
paradigm more generally, remain very much open. In particular:

1. Why does the correspondence work? Can we prove the BCJ colour-kinematic
conjecture? Is there some underlying geometric or world-sheet origin?

2. How deep is the correspondence? Is “gravity = gauge×gauge” strictly a property
of amplitudes or can it be generalised to other/all aspects of gauge and gravity
theories? What are the implications for quantum gravity?

3. How general is the correspondence? When does a gauge theory respect BCJ dual-
ity? What classes of gravitational theories admit a gauge theory squared origin;
are the factorisable theories special in some regard?

1.1 Outline

In the remainder of this reviewwe shall begin bydescribingBCJduality and the double-
copy construction in some detail before giving an (inevitably incomplete) overview of
the rapidly evolving work tackling these questions and their various related puzzles. In
Sect. 2we consider “gravity = gauge×gauge” in the context of scattering amplitudes,
where it takes itsmost concrete and developed form. In particular, we shall use this sec-
tion to introduce some notation and the basic background concepts, before introducing
BCJ duality and the double-copy construction in some detail. This will address to some
degree question (3) above regarding what theories admit a “gravity = gauge×gauge”
origin. We shall also review the status of the implications for perturbative quantum
gravity.

Finally in Sect. 3, we take a step back from amplitudes and discuss various “off-
shell” approaches to understanding BCJ duality and “gravity = gauge × gauge”,
addressing aspects of (1), (2) and (3). The first example is a Lagrangian approach
to making BCJ duality manifest introduced in the original work on the double-copy
[51,64]. One can also consider the double copy of classical gauge solutions [109–
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135]. We will then review a field theoretic formulation of “gravity = gauge× gauge”
independent, but consistent with, the BCJ double-copy [81,85,115,116,119,136–142].

A comment on the scope of this review.Given the length constraints of LaRivistawe
have not been able to be pedagogical nor close to comprehensive. Regarding the latter,
we can only apologise for any omissions and would welcome suggestions for future
additions. Regarding the former, while it has not been possible to be pedagogical,
we have endeavoured to be reasonably self-contained and elementary on the essential
introductory matter so the non-expert will have some chance to understand the core
basics, opening the door as itwere.Otherwise, further readingwill no doubt be required
and we have tried to provide sufficient references throughout.

Before proceeding any further let us first mention other reviews that cover the var-
ious subthemes treated here in more detail. First, for a pedagogical introduction to
BCJ duality and the double-copy one could not do better than [143,144]. The latter
is also the superlative reference for BCJ duality, the double-copy and their applica-
tions more generally. For students starting out in this subject, or those coming from
outside the amplitudes community, [44,49,145–148] provide excellent introductions,
the latter two with one eye on BCJ duality the double-copy from the outset. For a
broader, rather inspirational, early account of “gravity = gauge × gauge” and its
potential implications for perturbative quantum gravity see [149]. For an eminently
approachable review of twistors, setting the scene for their applications to amplitudes,
see [150]. For an excellent account of their applications to perturbative quantum field
theory and the relationship between gauge and gravity amplitudes see [151].

2 Scattering amplitudes

The slogan “gravity = gauge× gauge” takes its most concrete and complete form in
the setting of scattering amplitudes and so this is where we shall begin our journey.
In the context of modern particle physics tested at accelerators, such as the Large
Hadron Collider, scattering amplitudes constitute the most basic gauge theory observ-
ables. Through their relation to cross-sections for scattering processes, they encode
the probabilities that a set of colliding particles will interact to produce some other
set of particles, thus providing direct contact between theory and experiment. Belying
their conceptual simplicity, they are replete with subtle hidden structures and continue
to reveal remarkable surprises to this day, with profound consequences, not only for
computational techniques, but also quantum field theory itself.

One such surprise is the idea that gauge theory amplitudes can be used as the
building blocks for gravity theory amplitudes. This approach can be traced back to
the KLT relations of string theory. The modern, further reaching, incarnation takes the
form of the BCJ double-copy construction, which will be our principal preoccupation
here. The double-copy in-turn relies upon BCJ colour-kinematic duality, which is thus
our first concern.
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2.1 Bern–Carrasco–Johansson colour-kinematic duality

The cornerstone of the double-copy realisation of graviton scattering amplitudes
in terms of gluon scattering amplitudes is the Bern–Carrasco–Johansson colour-
kinematic duality [50]. Everyone knows that the colour factors dressing gluonic
Feynman diagrams obey certain relations, such as the Jacobi identity. The colour
factors derive from the Lie group characterising the gauge theory so it is in their very
nature to do so. However, BCJ duality implies that there exists a rewriting of the
amplitude such that whenever a set of diagrams satisfies a Jacobi identity amongst
their colour factors, the corresponding kinematic numerators obey precisely the same
identity. Kinematic numerators satisfying these identities are referred to BCJ numer-
ators. It is not at all obvious that this should be true; it certainly is not manifest in the
conventional Yang–Mills Lagrangian.

Let us now describe in detail the BCJ duality conjecture for pure Yang–Mills the-
ory. We shall add supersymmetry, matter couplings and more exotic structures in the
subsequent sections. For now, we take this opportunity to give a lightning review of
Yang–Mills theory, setting some notation, and introducing the basic ideas that will
carry us through the remaining material.

2.1.1 Yang–Mills theory and gluon scattering amplitudes

We begin by reviewing pure Yang–Mills gauge theories, which are specified by a
choice of compact Lie group G and a principal G-bundle P(M,G), defined over
a base manifold M corresponding, in this context, to a fixed spacetime background.
Given an open subsetU ofM with local sectionσ , the localYang–Mills gauge potential
A ∈ �1(U )⊗ g, where g is the Lie algebra of G, is given by A = σ ∗ω, where ω is a
connection on P(M,G). The associated Yang–Mills field strength given by

F = d A + A ∧ A (10)

then corresponds to a local form of the curvature of the connection. For an open
covering {Ui } of M with local sections σi , the gauge potentials on non-trivial overlaps
Ui ∩Uj �= ∅ satisfy the compatibly relations,

A j = t−1i j Ai ti j + t−1i j dti j , (11)

where ti j : Ui ∩ Uj → G are the transition functions of P(M,G). This implies the
compatibility relation for the associated field strengths

Fj = t−1i j Fi ti j . (12)

For two local sections on a chart U related by σ ′(p) = σ(p)g(p) for all p ∈ U ,
where g : U → G, the corresponding gauge potentials are related by the gauge
transformations

A′ = g−1Ag + g−1dg, (13)

123



Gravity as the square of gauge theory: a review 109

which imply
F ′ = g−1Fg. (14)

For gauge transformations connected to the identity there is a θ : U → g such that
g = exp[θ ] and

δA = dθ + [A, θ ] ≡ DAθ, δF = [F, θ ] (15)

to first order in θ , where we define the commutator9 of g-valued forms by [x, y] =
x ∧ y − (−1)pq y ∧ x , for x ∈ �p(U )⊗ g and y ∈ �q(U )⊗ g.

Here we have introduced the local covariant derivative DA : �p(U ) ⊗ g →
�p+1(U ) ⊗ g for local connection A (we will henceforth omit the subscript on DA

indicating the choice of connection),

Dx := dx + [A, x]. (16)

The field strength obeys the local Bianchi identity,

DF = d(d A + A ∧ A)+ A ∧ d A − d A ∧ A = 0. (17)

It is often useful to introduce a basis {Ta}dim g
a=1 for g in some representation ρ,

especially when considering the colour structure of scattering amplitudes. Then

A = gAa
μdx

μ ⊗ Ta, F = 1

2
gFa

μνdx
μ ∧ dxν ⊗ Ta (18)

where g is the Yang–Mills coupling and

Fa
μν = ∂μA

a
ν − ∂ν A

a
μ + g f abc A

b
μA

c
ν (19)

and f abc are the structure constants of g, [Ta, Tb] = fabcTc, which are totally antisym-
metric fabc = f[abc] (adjoint indices are raised/lowered via minus the Cartan-Killing
form, so may be taken as δab in an appropriate basis) and satisfy the Jacobi identity

3 f[abe fc]ed = fab
e fce

d + fca
e fbe

d + fbc
e fae

d = 0. (20)

In components the gauge transformations (15) are given by

δAa
μ = ∂μθa + g f abc A

b
μθc, δFa

μν = g f abcF
b
μνθ

c. (21)

where θ = gθaTa . With the goal of developing gluonic scattering amplitude relations
in mind, for the remainder of this section we shall restrict M to be D = (1 + d)

dimensional Minkowski spacetime so that the bundle is trivial. We may leave for now
G to be an arbitrary compact Lie group, since the adjoint representation is always
real, but the typical example to have in mind is SU(N ). When we consider matter
couplings we will have to be more careful about the properties of G, taking into

9 This is onlyunambiguous formatrixLie algebras, but the general case is givenby theobvious interpretation
for an arbitrary Lie bracket [ , ] : g× g→ g.
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account the specific reality properties of the other representations required. With these
comments in mind, we can now turn to the perturbative quantum Yang–Mills theory
valid in the high energy regime.

The quantum theory is most transparently formulated through an action principle.
The classical Yang–Mills action functional is given by

SYM = 1

2g2

∫

M
tr F ∧ �F = −1

4

∫

M
dDxFa

μνF
aμν (22)

where tr denotes an appropriately normalised G-invariant and negative-definite
quadratic form on g. It is by construction invariant under the gauge transforma-
tions (15). Consequently, there is a large gauge redundancy, which must be treated
carefully using, for example, the Faddeev–Popov proceedure [152]. Although well-
trodden territory, we will briefly review the approach of Becchi–Rouet–Stora–Tyutin
(BRST) quantisation [153,154], as certain ingredients will be explicitly needed
later in the perhaps less familiar context of a classical field-theoretic realisation of
“gravity = gauge× gauge”. There are several good reviews, for example [155–157],
of the BRST formalism and the more general Batalin-Vilkovisky (BV) [158–163]
approach, as needed for open symmetry algebras encountered, for example, in super-
gravity. We will in fact need the full machinery of the BV formalism later, but refer
the reader to [157] for the required background material.

Following the Faddeev–Popov prescription, using theNakanishi–LautrupLagrange
multiplier b : M → g we can lift to the action the generalised gauge-fixing delta
δ(G[A] − w), with a width ξ Gaussian weighting by w : M → g. The Faddeev–
Popov determinant is also lifted to the action by the inclusion of the anti-commuting
ghost and antighost fields c, c̄ : �0(M) → g. This results in the total Yang–Mills
BRST action

SYMBRST = SYM + Sgf + Sgh (23)

where

Sgf = − 1

g2

∫

M
tr b

(
1

2
ξb + G[A]

)
(24)

follows from the gauge-fixing terms and

Sgh = − 1

g2

∫

M
d4x tr

(
c̄
∫

M
d4y δG(x)

δAμ(y) D
μc(y)

)
, (25)

follows from the Faddeev–Popov determinant. Although we have explicitly broken
the gauge symmetry by the addition of (24), the total Yang–Mills BRST action (23) is
annihilated under the global BRST transformations, in which the ghost field replaces
the local gauge parameter θ :

QA := Dc, (26a)

Qc := − 1
2 {c, c}, (26b)

Qc̄ := b, (26c)

Qb := 0, (26d)
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where Q, c, c̄, b have ghost numbers gh(Q) = 1, gh(c) = 1, gh(c̄) = −1, gh(b) = 0
and

Q(ab) = (Qa)b + (−1)ε(a)a(Qb) (27)

where ε( f ) ∈ {0, 1} is the Grassmann grade of f .
In this case the BRST charge is nilpotent, Q2 = 0, without imposing any further

conditions on the fields, which follows from the off-shell closure of the classical gauge
transformations. It is the Noether charge associated to the continuous global symmetry
with anti-commuting parameter ε, given by δε = εQ. Using these transformations we
can rewrite Sgf + Sgh in terms of a Q-exact term

∫
�Q�gf , where the ghost-fixing

fermion�gf is given by−tr c̄( 12ξb+G[A]). Functions on this enlarged space of fields,
(A, c, c̄, b), together with the homological vector field, Q, form a chain complex and
its cohomology characterises the set of possible physical observables. The expectation
values of physical observables are independent of the choice of gauge-fixing, which
is made manifest by the freedom to add Q-exact terms that modify the gauge-fixing
and ghost terms, but leave the physical sector invariant.

Making a choice for G[A] and eliminating the auxiliary field b, we can then follow
the usual perturbative approach to quantising (23), safe in the knowledge that the gauge
redundancy has been appropriately accounted for, to arrive at the familiar Feynman
diagrams for pureYang–Mills theory, as described in the standard quantumfield theory
textbooks.10 Since the colour structure of these diagrams will lie at the heart of our
discussion, let us be completely explicit nonetheless.

Consider the linear covariant gauge fixing condition G[A] = divA. After eliminat-
ing the Nakanishi-Lautrup field b through its algebraic equation of motion we are left
with,

SYMBRST =
1

2g2

∫

M
tr

(
F ∧ �F − 1

ξ
�(d†A)2 + 2dc̄ ∧ �Dc

)
, (28)

which has no gauge symmetry left but is invariant under the BRST transformations
(26), butwith Qc̄ := − 1

ξ
d†A, which follows from the equation ofmotionb = − 1

ξ
d†A.

The Feynman diagrams then follow immediately from the standard canonical
approach. The pure gluon diagrams in Feynman gauge (ξ = 1) are as follows:

μ, aν, b = − iημνδab

p2 (29a)

10 An introduction particularly well-suited to the modern treatment of amplitudes is [164]. Coupled with
[49] this will bring a graduate student up to speed for most purposes here.
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p3

p2

p1

ρ, cν, b

μ, a

= gfabc [pμ
23η

νρ + pν
31η

ρμ + pρ
12η

μν ]

(29b)

μ, a

ν, b

σ, d

ρ, c

=

−ig2
[
fabxfx

cdημνρσ

+fadxfx
bcημσνρ

+ facxfx
dbημρνσ

]

(29c)

where pi j = pi − p j and ημνρσ = ημρηνσ − ημσ ηνρ . The ghost diagrams are given
by,

a b =
iδab

p2 (30a)

p

c

b

μ, a = −gfabcpμ

(30b)

With the gluon Feynman diagrams at our disposal we can now turn to scat-
tering amplitudes in pure Yang–Mills gauge theory. Consider a collection of ni
non-interacting and well-separated gluons in-coming from past infinity in the initial
separable state

|in〉 = |p1, ε1〉 ⊗ |p2, ε2〉 · · · ⊗ |pni , εni 〉 ≡ |p1, ε1; p2, ε2; . . . pni , εni 〉, (31)
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where pi , εi are the on-mass-shell momentum and polarisation (we are suppressing
here the colour data) of the i th gluon, respectively. The amplitude for these in-coming
particles to scatter into someout-going collectionofn f non-interacting,well-separated
particles at future infinity, t →∞, |out〉 = |pni+1, εni+1; . . . pni+n f , εni+n f 〉, is given
by the S-matrix element, Ani→n f = 〈out|S|in〉.

The Lehman–Symanzik–Zimmermann reduction formula re-expresses the scatter-
ing amplitude Ani→n f in terms of the Green function of ni + n f local fields dressed
by polarisation tensors and reciprocal renormalised two-point Green functions, which
precisely cancel the external propagators. Splitting the S-matrix into its trivial and
interacting pieces S = 1+ iT , the non-trivial amplitude is then given by the sum of
all amputated and connected graphs using the Feynman diagrams in (29) contracted
with the external legs, given in (32), with on-shell momenta {pi }ni+n f

i=1 and polarisa-

tions {εi }ni+n f
i=1 (suppressing the helicity index εi = εsi , s = ±),

pi

i, a = εμ∗
i (p)δab, ε∗

i · pi = 0, p2 = 0,

(32a)

pi

i, a = εμ
i (p)δ

ab, εi · pi = 0, p2 = 0,

(32b)

where the μ, b indices are contracted with the colour and momentum indices of the
associated leg of the internal diagram (represented here by the blob).

2.1.2 The colour-kinematic duality

Here we introduce the BCJ colour-kinematic duality for gluons. Let us first state the
claim, so that we know where we are heading, before carefully unpacking the various
ingredients.

First, recall an n-point L-loop gluon amplitude An,L
YM may always be written as

An,L
YM = i L gn−2+2L

∑

i

∫ L∏

l=1

dD pl
(2π)DSi

ci ni
di

, (33)

where the sum is over all n-point L-loop graphs, labelled i , with only trivalent vertices
(these are not Feynman diagrams). The colour numerator or factor ci associated to
graph i is composed of gauge group structure constants and can be read off directly
from the graph. The kinematic numerator or factor ni associated to graph i is a poly-
nomial of Lorentz-invariant contractions of polarisation vectors and momenta. The
denominators di are composed of the propagators given by products of the momentum
squared of each internal line of graph i . Here, Si ∈ N accounts for any over-counting
due to the graph symmetries. At tree-level, L = 0, this simplifies to
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An,0
YM = gn−2

(2n−5)!!∑

i=1

ci ni
di

, (34)

since there are (2n − 5)!! trivalent tree diagrams at n-points.11

Having reorganised the amplitudes into a sum over purely trivalent graphs we can
state the BCJ duality conjecture:

BCJ colour-kinematic duality conjecture: there exists a choice of kinematic
numerators of the trivalent diagrams entering the amplitude An,L

YM such that:

1. Whenever a triple of trivalent diagrams (i, j, k) has colour factors obeying
the Jacobi identity

ci + c j + ck = 0

then the corresponding kinematic factors obey precisely the same identity

ni + n j + nk = 0.

2. If any individual diagram has ci → −ci under the interchange of two legs
then ni →−ni at the same time.

Having presented the conjecture, let us now expand on the various components,
starting with (33). Since [−,−] : g ⊗ g → g, the possibility of relating colour to
kinematics relies on writing the amplitude in terms of trivalent diagrams only. This
is possible because the four-point contact terms (29c) can always be ‘blown-up’ and
absorbed into three-point diagrams. Consider the simplest example of the four-point,
tree-level amplitude,

A4,0
YM =

2, b

1, a 4, d

3, c

+

4, d1, a

2, b 3, c

+

1, a

2, b 3, c

4, d

+

1, a

2, b

4, d

3, c

.

(35)

11 Proceed by induction: clearly true for n = 3. At n-points each graph has 2n − 3 edges to which one
can add an edge to give 2n − 3 new (n + 1)-point graphs. Hence, assuming there are (2m − 5)!! graphs at
n-points, there are (2n − 3)(2n − 5)!! = (2(n + 1)− 5)!! graphs at (n + 1)-points.
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We shall leave the helicities unspecified as the argument should not depend on any par-
ticular configuration and simply denote the kinematic numerators12 by n = n(pi , εi )
as in (33). Explicitly, with all momenta outgoing p1 + p2 + p3 + p4 = 0,

s

2, b

1, a 4, d

3, c

= −ig2
fabxfx

cdns

s
= −ig2

csns

s

(36a)

t

4, d1, a

2, b 3, c

= −ig2
faxdfx

bcnt

t
= −ig2

ctnt

t

(36b)

u

1, a

2, b 3, c

4, d

= −ig2
faxcfx

dbnu

u
= −ig2

cunu

u

(36c)

1, a

2, b

4, d

3, c

=

−ig2
[
fabxfx

cdn(4)
s

+fadxfx
bcn(4)

t

+ facxfx
dbn(4)

u

]

(36d)

where we have used the Mandelstam variables s = (p1 + p2)2, t = (p1 + p4)2, u =
(p1 + p3)2 in the trivalent s-, t- and u-channel diagrams, respectively. We have sug-
gestively labelled the kinematic factors appearing in the four-point contact term by

12 As an example, for the s-channel we have

ns = 4
(
ε1 · p2ε2λ − ε2 · p1ε1λ + 1

2 ε1 · ε2 p12λ
)(

ε3 · p4ελ
4 − ε4 · p3ελ

1 + 1
2 ε3 · ε4 pλ

34
)
.

Of course, fixing the helicities and making some sensible choices for the polarisations, this can be signifi-
cantly simplified.
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n(4)
s , n(4)

t , n(4)
u , where explicitly

n(4)
s = 2ε1 · ε[3ε4] · ε2,

n(4)
t = 2ε1 · ε[2ε3] · ε4,

n(4)
u = 2ε1 · ε[4ε2] · ε3. (37)

Writing the colour factors corresponding to each trivalent diagram as

cs = f abx fx
cd , ct = f axd fx

bc, cu = f axc fx
db, (38)

the four-point contact term becomes

− ig2
(
csn

(4)
s − ctn

(4)
t − cun

(4)
u

)
= −ig2

(
cssn

(4)
s

s
− ct tn

(4)
t

t
− cuun

(4)
u

u

)

(39)

where we have trivially inserted the corresponding propagators. This makes it imme-
diately clear that the three terms can be absorbed into the s-, t- and u-channels
respectively, shifting their kinematic factors,

ns → n′s = ns + sn(4)
s , nt → n′t = nt − tn(4)

t , nu → n′u = nu − un(4)
u . (40)

so that the amplitude is a sum over the three trivalent diagrams,

A4,0
YM = −ig2YM

(
csn′s
s
+ ctn′t

t
+ cun′u

u

)
. (41)

This argument trivially goes through for any set of four arbitrarily complex diagrams
that differ only by a set of four-point subdiagrams embedded in a common subsector
as depicted here,

+ +

+

(42)
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where the dotted lines connect each subdiagram to otherwise identical total diagrams.
Hence, wherever we see a four-point contact term we can absorb it into the three
corresponding diagrams with the trivalent s-, t- and u-channels in its place.

We have rather laboured this essentially trivial observation, that the three sets of
structure constants appearing in the four-point contact term are the same as those in
the three four-point trivalent diagrams, because it brings into focus the first ingredi-
ents of the BCJ duality. From the outset, it was clear that the kinematic numerators
entering the Feynman diagram decomposition of the amplitude are not unique since
the polarisations are only defined up to shifts, ε(p)→ ε(p)+α p, which change each
kinematic factor (but of course leave the amplitude itself invariant). This is no surprise,
since each individual digram is not gauge invariant. However, the preceding discus-
sion makes a second, less trivial, ambiguity in the kinematic numerators apparent, the
generalised gauge transformations introduced [50]. The nomenclature derives from
the observation that while they may look and feel like gauge transformations, there
need not be any gauge transformation that actually realises a given generalised gauge
transformation. To describe the generalised gauge transformations, let us return to our
four-point example. Note that the three colour factors cs, ct , cu of (36) are precisely
the combinations of structure constants appearing in the Jacobi identity (20),

cs − ct − cu = 3 f xa[b fx cd] = 0. (43)

Hence, under a shift of the kinematic numerators by an arbitrary function α,

ns �→ ns − sα, nt �→ nt + tα, nu �→ nu + uα, (44)

the amplitude (41) is left invariant,

A4,0
YM �→ −ig2

(
cs(ns − sα)

s
+ ct (nt + tα)

t
+ cu(nu + uα)

u

)
= A4,0

YM, (45)

since (−cs+ct +cu)α = 0 by the Jacobi identity. Again, it is clear that this invariance
generalises to any triple of trivalent diagrams (i, j, k) that only differ in a common four-
point subsector with colour factor satisfying a Jacobi identity of the form ci+c j+ck =
0, where the generalised gauge transformation acting on the corresponding kinematic
numerators is given by,

ni �→ ni + siα, n j �→ n j + s jα, n � → nk + skα (46)

and si , s j , sk are the three (and only three) distinct propagators as illustrated here,

si

+ sj +
sk
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Let us summarise. Every gluon scattering amplitude can be written in terms of purely
trivalent graphs. The kinematic numerators associated to these graphs are not unique.
In particular, for any triple of such diagrams with colour factors obeying a Jacobi
identity, the amplitude is invariant under the generalised gauge transformations acting
on the corresponding kinematic numerators. The BCJ colour-kinematic conjecture
states that there is a writing of the kinematic numerators, exploiting their ambiguity,
such that (i) whenever the colour factors of a triple of graphs obey a Jacobi identity
then so do the corresponding kinematic numerators and, (ii) if interchanging two legs
of diagram i implies ci �→ −ci , then we also have ni �→ −ni .13 Before discussing
the conjecture further let us take a look at some simple examples to get a feel for it.

We start with a triviality, the three-point amplitude (allowing complex momenta),
which consists of a single diagram,

3, c2, b

1, a

= gfabc [ε1 · p23ε2 · ε3 + ε2 · p31ε3 · ε1 + ε3 · p12ε1 · ε2] = gcn.

(47)
Under interchange of any two edges c = f abc �→ −c since f abc is totally antisym-
metric. Since pi j = −p ji , we see that the same is true for n, as claimed.

The next example, tree-level four points, is already less immediately obvious,
although it has been known to satisfy BCJ duality for some time now (before the
notion of BCJ duality had been articulated) [165,166]. From (36), (37) and (40) the
kinematic numerators with momenta out-going in the trivalent form are given by

ns = 4
(
ε1 · p2ε2 − ε2 · p1ε1 + 1

2ε1 · ε2 p12
) · (12→ 34

)+ 2sε1 · ε[3ε4] · ε2
nt = 4

(
ε4 · p1ε1 − ε1 · p4ε4 + 1

2ε4 · ε1 p41
) · (41→ 23

)+ 2tε4 · ε[2ε3] · ε1
nu = 4

(
ε4 · p2ε2 − ε4 · p4ε4 + 1

2ε4 · ε2 p42
) · (42→ 31

)+ 2uε4 · ε[3ε1] · ε2 (48)

Recall, the perhaps unfamiliar final terms come from absorbing the four-point contact
term, hence the appearance of the propagators s, t, u. The claim is that since cs − ct −
cu = 0, see (43), by BCJ duality (without any further intervention in this case) we
also have

ns − nt − nu = 0 (49)

on-shell (
∑4

i=1 pi = 0, p2i = 0, εi · pi = 0). Using

p12 · p34 = u − t,

p41 · p23 = u − s,

p42 · p31 = s − t, (50)

13 Note, the Kleiss–Kuijf relations [17,18] hold if the colour-ordered partial amplitudes are written as a
sum of numerators satisfying this condition.
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we see that the three unfamiliar terms, deriving from the four-point contact term,
cancel identically against the terms ε1 · ε2ε1 · ε2 p12 · p34, ε4 · ε1ε2 · ε3 p41 · p23 and
ε4 · ε2ε3 · ε1 p42 · p31. To handle the remaining 24 terms we can first make a judicious
choice for the polarisation reference vectors, q1 = q2 = q3 = p4 and q4 = p2, so that

εi · p4 = 0, ε4 · p2 = 0. (51)

There are also various vanishing products amongst the polarisation tensors, for exam-
ple ε±i · ε±j = 0,∀i, j = 1, 2, 3, but we shall not need these as the BCJ duality holds
for all helicity configurations. By inspection we see that for this choice nu = 0 and
we are left with

ns − nt = 4
[
ε4 · p3

(
ε2 · p1ε1 · ε3 − ε1 · p2ε2 · ε3 − 1

2ε1 · ε2ε3 · p12
)

+ 1
2ε3 · ε4(ε1 · p2ε2 · p3 − ε2 · p1ε1 · p3)

]

− 4
[
ε4 · p1

(
ε2 · p3ε3 · ε1 − ε3 · p2ε2 · ε1 − 1

2ε3 · ε2ε1 · p32
)

+ 1
2ε1 · ε4(ε3 · p2ε2 · p1 − ε2 · p3ε3 · p1)

]
(52)

It is straightforward to show that this combination vanishes due to the special four-
point kinematics (with our choice of polarisation reference vectors, but of course
there is no loss of generality). First, note that ε2 · p1ε1 · p3 = ε1 · p2ε2 · p3 since
ε1 · p3 = ε1 · (p3+ p1) = −ε1 · (p2+ p4) = −ε1 · p2 and ε2 · p1 = ε2 · (p1+ p2) =
−ε2 · (p3 + p4) = −ε2 · p3. Consequently, ε1 · p2ε2 · p3 − ε2 · p1ε1 · p3 = 0 and
similarly ε3 · p2ε2 · p1 − ε2 · p3ε3 · p1 = ε4 · p3ε2 · p1 − ε4 · p1ε2 · p3 = 0, leaving

ns − nt = 4
[
ε2 · ε1(ε4 · p1ε3 · p2 − 1

2ε4 · p3ε3 · p12)
+ ε2 · ε3(ε1 · p2ε4 · p3 − 1

2ε4 · p1ε1 · p32)
]

= 0 (53)

where we have reorganised the remaining terms to make the final cancellations clear.
Using ε4 · p3 = ε4 · (p3+ p4) = −ε4 · (p1+ p2) = −ε4 · p1, we have ε4 · p1ε3 · p2−
1
2ε4 · p3ε3 · p12 = 1

2ε4 · p1ε3 · (p1 + p2) = − 1
2ε4 · p1ε3 · (p3 + p4) = 0 and similar

ε1 · p2ε4 · p3 − 1
2ε4 · p1ε1 · p32 = 0. While this four-point example can be accounted

for by the special kinematics associated to four-points, it makes the principle clear.
Five-points, considered the original BCJ duality work [50], provides the first truly

non-trivial check. It also makes the general principles entering the duality clear, so let
us reexamine it here, following closely [50], but of course with the benefit of hindsight.
At five points there are 15 trivalent diagram contributing to the amplitude

A5,0
YM =

15∑

i=1

ni ci
di

(54)
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Any triple of diagrams with a common pair of joined external legs gives us a colour
Jacobi identity, for example

a2

a1

a3

a5

a4 a2

a1

a5

a4

a3 a2

a1

a4

a3

a5

(55)
which corresponds to the identity

f a1a2 x
(
f xa3y fy

a4a5 + f xa5y fy
a3a4 + f xa4y fy

a5a3
) = 0, (56)

but of course not all are independent.
Generally, at n-points each colour factor is an order n − 2 polynomial in the struc-

ture constants f abc. There are (2n − 5)!! trivalent diagrams, each of which has n − 3
internal lines. Each internal line, regarded arbitrarily as say the s-channel, can con-
tribute to one, and only one, colour Jacobi identity with two other diagrams containing
the corresponding t- and u-channels. The total number of independent colour Jacobi
relations is given by

∑�(n−2)/2�
k=1 Cn−2

2k C2k
k (n − 2)!/22k . This agrees with the number

of independent partial colour-ordered amplitudes. For an n-point tree-level amplitude,
the Kleiss–Kuijf relations [167,168] imply that there are at most (n− 2)! independent
basis partial amplitudes.14 Using the multi-peripheral colour decomposition of [168]
we learn that the number of independent (under the Jacobi identities) colour factors is
given by the number of independent (under the Kleiss–Kuijf relations) partial ampli-
tudes, that is (n − 2)!. Hence, at five points we must have 15 − 6 = 9 independent
Jacobi identities, as claimed.

A set of nine independent Jacobi relations at five points, according to the labelling
given in [50], can be chosen as

c7 = c6 − c1 c8 = c2 − c1 c9 = c3 − c2;
c10 = c4 − c3 c11 = c5 − c4 c12 = c5 − c6;
c13 = c10 − c7 c14 = c11 − c8 c15 = c12 − c9.

(57)

If BCJ duality is valid there should exist a writing of the amplitude such that the nine
kinematic identities

n7 = n6 − n1 n8 = n2 − n1 n9 = n3 − n2;
n10 = n4 − n3 n11 = n5 − n4 n12 = n5 − n6;
n13 = n10 − n7 n14 = n11 − n8 n15 = n12 − n9.

(58)

hold. For any one of the kinematic relations given in (58) it is straightforward to check
that it may be satisfied using a slight generalisation of the arguments used in basic

14 We shall see momentarily that BCJ duality implies that this (n−2)!-dimensional basis is over complete,
but let us not put the cart before the horse.
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four-point example. The challenge is to realise all the relations consistently at once.
One route is to first establish some consequences of BCJ duality if it were to hold.
Assuming BCJ duality at five points, it was shown in [50] that there must exist a new
set relations amongst the 6 = (5−2)! partial amplitudes. These were the first example
of theBCJ relations [50], of which the fundamental relations take a particularly simple
form,

n−1∑

i=2
p1 ·

⎛

⎝
i∑

j=2
p j

⎞

⎠ An[2, . . . , i, 1, i + 1, . . . , n] = 0. (59)

These relations were established up to eight points explicitly in [50] and conjectured to
hold generally on the basis of further significant evidence at higher points. Returning
to the 5-point example specifically, and pretending that we do not yet know of the BCJ
relations, assuming BCJ duality we can take six numerators {ni }6i=1 as independent,
the remaining n j /∈ {ni }6i=1 being generated by (58). Using the fact that each partial
amplitude depends on only five colour-ordered diagrams, we can define, using the
kinematic Jacobi relations (58), two of the six ni , let us say n5, n6, in terms of only two
partial amplitudes and the remaining four ni , i = 1, 2, 3, 4. For any of the other four
independent partial amplitudes, by (58) we can replace any dependence on the n j not
belonging to our choice of independent {ni }6i=1 and then further remove any occurrence
of n5, n6 by their definition in terms of our two special partial amplitudes and the
remaining ni , i = 1, 2, 3, 4. Then something unexpected happens - all dependence on
{ni }4i=1 drops out due to only the kinematic relations amongst the propagators! All six
partial amplitudes are simple functions of our two selected partial amplitudes and the
propagators alone. These identities generate the KLT and BCJ relations at five points
[50].

Now, given the BCJ relations it is possible to explicitly construct a representation
of the total amplitude such that BCJ duality holds [52,53]. That this representation
yields the correct amplitude is checked via the KLT relations. The loop of reasoning
is then cut by demonstrating independently that the BCJ relations do in fact hold.
This was done at any number of points in [169,170] by considering the α′ → 0 limit
of string theory monodromy relations. They may also be deduced from pure spinor
cohomology [171]. There are a number of powerful stringy perspectives on the BCJ
relations, see for example [172–175]. A purely field theoretic derivation was given
in [176] using only Britto-Cachazo-Feng-Witten (BCFW) recursion [177]. They have
also been established [178] in N = 4 super Yang–Mills, which contains the pure
Yang–Mills case, using the connected formalism of Roiban, Spradlin, Volovich and
Witten.

Let us unpack further what we have seen, following closely [179] and the very
clear account given in [143]. Consider the n-point tree amplitude written as a sum
over (2m − 5)!! trivalent graphs. Thinking of the (2m − 5)!! colour ci and kinematic
factors ni as vectors, c,n, we can trivially rewrite the amplitude as

An,0
YM = ct · D · n (60)
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where [D]i j = δi j/d j . Of course, only (n− 2)! ci are independent and we can choose
(n − 2)! master colour factors and put them into a (n − 2)!-vector cm. The rest are
generated by the Jacobi identities

c = J · cm (61)

where J is a (2n−5)!!× (n−2)!matrix encoding these relations. For example, at four
points, in the conventions of (36), we can choose ct , cu as our master colour factors
and then

J =
⎛

⎝
1 1
1 0
0 1

⎞

⎠ . (62)

At five points, for the choice of ctm = (c1, . . . , c6), in the conventions of (57) we have

J =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 0 1
−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 1 −1
−1 0 −1 1 0 1
−1 1 0 −1 1 0
0 −1 1 0 1 −1

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

. (63)

Of course, the choice of cm is not unique. In this language, BCJ duality amounts to
the existence of a rewriting of the amplitude such that

n = J · nm. (64)

But we also have the (n − 2)! independent (under Kleiss–Kuijf relations, but prior
to applying the BCJ relations) partial amplitudes A, which in this language may be
written

A = P · n = PJ · nm. (65)

whereP is an (n−2)!×(2n−5)!!matrixwith elements determined by the permutations
defining each partial in A relative to the colour order of the graphs. So the question
of identifying a BCJ duality respecting set of numerators reduces to the invertibility
of PJ. But wait, what if PJ is singular? Well that is the point, the BCJ relations imply
that only (n−3)! of the partial amplitudes are independent and PJ is singular. But, we
can solve for (n − 3)! elements of nm in terms of (n − 3)! partial amplitudes and the
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remaining (n− 2)! − (n− 3)! = (n− 3)!(n− 3) elements of nm. More generally, any
matrix M, with linear system y = M · x, admits a generalised inverse M̃ satisfying
MM̃M = M, which implies y = MM̃ · y. The generalised inverse is not unique,
however, so the solution for nm given by nm = P̃J ·A is not unique.15 On substituting
this solution back into (65), the dependence of the remaining (n − 3)!(n − 3) partial
amplitudes on nm must drop out and we are left with the BCJ relations only; the
(n − 3)!(n − 3) leftover kinematic numerators are entirely unconstrained and may be
set to zero at the expense of rendering the surviving kinematic numerators non-local
as the propagators corresponding to the vanishing numerators have been shuffled into
them.

Our discussion so far has been restricted to tree-level, but to take “gravity = gauge×
gauge” beyond KLT we need to go to loops. The statement of the duality is not
affected, up to some minor subtleties that we shall comment on momentarily. For
example, consider the simplest example at one loop

a

b

c

d

da

b c

a

b

c

d

(66)

which yields the colour Jacobi identity

f a xa′ f
xb

b′(c
a′b′cd
s − ca

′b′cd
t − ca

′b′cd
s ) = 0, (67)

where cs, ct , cu are just the four-point tree colour factors given in (43). Under BCJ
duality, we should then have

ns − nt − nu = 0, (68)

but where the kinematic factors are functions of the loop momentum n = n(�).
The kinematic Jacobi-type identities are functional identities. The four-point one-loop
example corresponding to (66) inN = 4 Yang–Mills theory is especially simple, due
to the particularly simple structure of one-loop amplitudes [36,180]. See for example
[49,144]. For pure Yang–Mills at one and two loops see [181]. For detailed examples
at three loops see for example [51,182]. These simple cases make it clear that BCJ can
work at loop level. However, the proof of BCJ duality at tree-level given in [52,53]
relied on the KLT relations and therefore does not extend to loop level. At the time of
writing there is no proof that BCJ duality will hold to all loops, despite an impressive
number of highly non-trivial concrete examples [51,57–63,65,67,82,90–93,181,183–
185].

15 One could demand that it is aMoore–Penrose pseudo-inverse, which always exists and is unique, picking
out one particular solution.
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Understanding BCJ duality to all orders is no doubt a central problem, particularly
in the context of applications to scattering amplitudes in gravity, the subject of the
next section. We shall explore some of the possible routes to BCJ duality later, but let
us now summarise some key properties and generalisations of BCJ duality.

2.1.3 BCJ duality: universal properties and generalisations

We have so far only discussed BCJ duality for pure Yang–Mills theory. We did not
mention spacetime dimension, so the first obvious generalisation toYang–Mills theory
in arbitrary dimensions is already implicitly contained in our previous discussion. Of
course, there are many other possible generalisations that are desirable for a better
understanding the principles as well as for applications. For example, to test the UV
properties ofN = 8 supergravity, addressing question (2), we would like to be able to
putN = 4 Yang–Mills amplitudes into BCJ duality respecting form. More generally,
we would like to know what kind of gravity theories can be generated by the BCJ
double-copy, addressing question (3), which requires knowing what kind of gauge
theories admit a BCJ dual representation. Here we give a lightning tour of the key
properties and generalisations:

• Supersymmetry: Supersymmetry and BCJ duality are curiously compatible [144].
On the one hand, it is not hard to convince oneself that if BCJ duality holds for
pure Yang–Mills, then it will hold for any pure super Yang–Mills multiplet simply
through the supersymmetry transformations. Conversely, BCJ duality for Yang–
Mills coupled to adjoint fermions implies supersymmetry [73,186]. If we add a
singleminimally coupled adjoint-valued (minimal) fermion,Lfermion ∼ λ̄ /Dλ, then
BCJ duality requires [73] that for a four-point interaction with only fermions on
the external legs we have the following identity,

ū[1γμv2ū3]γ μv4 = 0 (69)

which in turn implies the Fierz identity required for supersymmetry. If BCJ duality
is to hold, then supersymmetry follows. Once we have introduced the double-copy
we will see that it had to be this way [73].
As is well-known in the context of supersymmetry, this identity only holds in
D = 3, 4, 6, 10, so N = 1 Yang–Mills theories only exist in these dimensions
[35,36]. Similarly, BCJ duality with a single adjoint fermion only holds in these
dimensions. However, BCJ duality survives toroidal dimensional reduction and
consistent truncations, so that colour-kinematic duality in D = 10,N = 1 implies
BCJ duality for all pure super Yang–Mills theories in D ≤ 10.
The restriction ofN = 1 Yang–Mills theories to D = 3, 4, 6, 10 can be related to
the existence of the four normed division algebras A = R,C,H,O and the fact
that they are alternative algebras [187–190]. This is reflected by the Lie algebra
relation,

so(1, 1+ dimA) ∼= sl(2,A) (70)

connecting spacetime and algebra symmetries [191–193]. These structures are
in turn related to the notion of triality [194,195] and the triality algebras [196].
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Remarkably (or inevitably, depending on your tastes), these structures feed directly
into supergravity theories through “gravity = gauge×gauge”with some surprising
results [136,138–140,190,197], as we shall describe in section 3.2.2.
• Bi-adjoint scalars: The addition of adjoint-valued fermions implied supersym-
metry, which typically introduces adjoint-valued scalars, unless it is minimal. In
this case, BCJ duality for amplitudes involving scalars is again taken care of by
supersymmetry. But can we include adjoint-valued scalars without fermions or
supersymmetry? Well, it depends on the couplings. If the scalar field is minimally
coupled to the gauge field and has a quartic potential with the Yang–Mills coupling
g, Lφ4 ∼ −g2tr([φ, φ][φ, φ]), then certainly, since it is merely the dimensional
reduction on S1 of pure Yang–Mills theory in D + 1. What about a cubic scalar
potential with its own coupling constant? The answer is yes, but with the caveat
that φ must then carry the adjoint representation of a second global symmetry
group [75]. A gauge invariant cubic term for a set of scalar adjoint scalars φã ,
where ã is for now an arbitrary global index, may be written,

Lφ3 = 1

3!λ f̃ãb̃c̃tr([φã, φb̃]φc̃) = 1

3!λ f̃ãb̃c̃ fabcφ
aã, φbb̃φcc̃. (71)

Here, aside necessarily being totally antisymmetric, f̃ãb̃c̃ is an unconstrained con-
stant tensor. However, for four external scalars at tree-level this term, essentially
by construction, contributes to the s-, t- and u-channel kinematic factors one piece
of a would-be Jacobi identity each

ns = λ2 f̃ ãb̃x̃ f̃ x̃
c̃d̃ + · · · , nt = λ2 f̃ ã x̃ d̃ f̃ x̃

b̃c̃ + · · · , cu = λ2 f̃ ã x̃̃c f̃ x̃
d̃ b̃ + · · · .

(72)
Since these are the unique O(λ2) contributions, the kinematic Jacobi relation
ns = nt + nu (the four-point colour Jacobi relation is clearly unaffected, the
only difference being that it is the scalar four-point contact term that must the
absorbed into the trivalent s, t, u diagrams) requires

f̃ ã[b̃x̃ f̃ x̃ c̃d̃] = 0. (73)

Our a priori unconstrained tensor f̃ãb̃c̃ obeys the Jacobi identity and φaã is a
G × G̃ bi-adjoint field. For the moment G̃ is just some flavour group, but our
suggestive notation is not a coincidence, aswe shall see in section 2.2.2. This seems
like a rather esoteric addition to the set of fundamental BCJ duality respecting
ingredients, especially given that cubic potentials are unbounded from below, but
it turns out that bi-adjoint scalar fields are important to the relationship between
gauge and gravity amplitudes, as first identified in [198]. They are by now a
ubiquitous element of “gravity = gauge× gauge”, as evidenced by [75,76,81,86,
109,110,112,113,136,137,179,199–205], and so deserve some special comment.
• Matter couplings: We have thus far only considered fields carrying the adjoint
representation of the gauge group. What about other representations? Generically,
matter fields carrying g-representations, ρ, ρ′ such that Adg ∈ ρ⊗ ρ′, can couple
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to the gauge field through the structure constants in the appropriate representation
[T a]i j , where down/up indices belong to theρ andρ′ representations, respectively.
Of course, the properties of the fields involved (commuting vs. Grassmann, space-
time representations etc) will place restrictions on the allowed ρ, ρ′. For quarks,
this is the familiar case of [T a]i j̄ ≡ [T a]i j , where i and ı̄ are fundamental and
anti-fundamental representations of SU(3), respectively. So far, so ordinary. But
what happens to BCJ duality? In particular, the T ’s do not satisfy Jacobi relations.
Rather, they satisfy commutation relations

[T a]i j [T b] j k − [T b]i j [T a] j k = f abd [T d ]i k . (74)

Of course, letting [ f a]bc = f abc the Jacobi identities are just the commutation
relations in the adjoint representation,

[ f a]cd [ f b]de − [ f b]cd [ f a]de = f abd [ f d ]ce, (75)

which immediately suggests the appropriate generalisation of BCJ duality to non-
adjoint matter [74]: BCJ duality for matter fields is mediated by the commutation
relations. For any triple of diagrams involving matter fields with colour factors
satisfying a commutation relation, the correspondingkinematic factorsmust satisfy
the same relations. This has been applied to quantum chromodynamics [206] and
has applications to blackholes physics through thedouble-copy [130].Note, quarks
(or other matter fields) do not imply supersymmetry, unlike adjoint fermions.
Again, in the context of the double-copy this is perfectly natural aswe shall come to
discuss. Note that for particular choices of gauge group and matter representations
there may be additional colour identities, beyond the basic commutation relations,
specific to these choices [74]. However, as emphasised in [74], these need not be
imposed; what is essential to BCJ duality are generic identities that do not hinge
on any special properties of the representations or gauge groups used.
• Symmetry breaking: We previously mentioned consistent truncations of pure super
Yang–Mills theories as a method for producing BCJ duality respecting theo-
ries with less supersymmetry. This is the simplest example of a broader class
of symmetry breaking principles that preserve BCJ duality at tree-level. These
are particularly useful in the construction of large classes of supergravity theories
using the double-copy [73,75,76,86,87,87,88,207]. We shall discuss some of these
in subsequent sections.
One can both spontaneously and explicitly break symmetries while preserving the
BCJ relations [76]. Consider a subgroup H ⊂ G corresponding to the positive
eigenspace subspace of a Cartan involution θ : g→ g. The adjoint representation
decomposes as AdG = AdH ⊕ ρH , where ρH is a (not necessarily irreducible)
representation of H . Under this subalgebra any adjoint-valued multiplet ϕAdG will
decompose accordingly,

ϕAdG → ϕAdH ⊕ ϕρH , (76)

where ϕAdH and ϕρH belong to the positive and negative eigenspaces of θ , respec-
tively. If ϕAdG transforms under some further global symmetry group G, which
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may include R-symmetry, we may also decompose to a subgroup H ⊂ G. Com-
bining both the explicit gauge and global group breakings, we can effect various
truncations and introduce matter representations in manner that automatically pre-
serves BCJ duality at tree-level. Particularly useful examples are given by field
theory orbifolds [73]. Take a some order-k element τ = ρG(σ ) ⊗ AdG(g), and
project the fields ϕ onto the τ -invariant subsector. The perhaps simplest example
is given by τ := (−1)F · θ , where F is the fermion number operator. In this case,
for adjoint-valued bosons b and fermions f , the τ -invariant subsector is given by
bAdH , fρH .

Hence, we generate matter representations fρH starting from purely adjoint fields
in such a way that BCJ duality is inherited. This clearly generalises to super-
multiplets. For example, following the same procedure we can project an adjoint
D = 4,N = 4 supervector multiplet onto an adjoint D = 4,N = 2 supervector
multiplet plus a fundamantal D = 4,N = 2 hyper multiplet.
• Other algebraic structures: The presentation thus far would understandably leave
onewith the impression that trivalent diagrams are essential. However, this is really
an artefact of the fact that Lie algebras have rank-3 structure constants. It is the alge-
braic structure of the gauge symmetry that dictates the nature of the duality. Given
a generalised gauge theory with something other than a Lie algebra underpinning
its colour structure, the BCJ duality will reflect its fundamental identities, which
need not be the Jacobi relation. Although this principle is reasonable, working
examples are rare. An important case is given in [71], whereN = 16 supergravity
[208,209] was derived from the double-copy of the D = 3,N = 8 Bagger–
Lambert–Gustavsson theory [210–212] through a colour-kinematic duality based
on the fundamental Lie three algebra identity. Since N = 16 supergravity is the
unique maximally supersymmetric theory in D = 3, this construction must be
equivalent to that of the standard BCJ double-copy of D = 3,N = 8 Yang–Mills
and indeed it is [70]. Further related examples were explored in [213], includ-
ing the Aharony–Bergman–Jafferis–Maldacena theory [214] although the BCJ
relations are absent beyond six points in that case. Where could one search for
generalised gauge theories admitting a novel colour-kinematic duality structure?
Since the Bagger–Lambert–Gustavsson theory is also a higher gauge theory [215]
this could be one broad avenue to explore.
• There are various geometric or world-sheet perspectives on BCJ duality and
“gravity = gauge × gauge”. For example, the BCJ relations and duality can be
cast in string theoretic terms [53,169,170,174,216–218]. There are also “world-
sheet theories for field theory”, in particular the scattering equation formalism
[199,201,219,220] and the ambi-twistor string approach [221–225], which pro-
vides a route to a better all-loop understanding through a “nodal” world-sheet
genus expansion.

2.2 The Bern–Carrasco–Johansson double-copy construction

The notion of BCJ duality is an intriguing property of gauge theories in its own
right, with non-trivial and otherwise hidden implications, such as the reduction of the
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number of independent partial amplitudes down to (n − 3)!. It is not yet clear why it
should hold and there are many open questions left to explore, in particular whether
or not it can be made manifest and, relatedly, if it holds to all loops. However, the
(remarkably sheltered!) reader might be forgiven for asking what this all has to do
with “gravity = gauge×gauge”. Here is the answer: given BCJ duality holds for pure
Yang–Mills then every N = 0 supergravity amplitude follows directly from gluon
amplitudes through the BCJ double-copy [51,64]. Note, this statement only depends
on the validity of the BCJ colour-kinematic conjecture, otherwise it is completely
generic; it applies to all non-Abelian gauge groups in all spacetime dimensions. In
this section we shall describe this construction. We begin with a review of perturbative
N = 0 supergravity, before exploring its double-copy construction. Finally, we shall
layout the growing zoology of double-copy constructible theories and discuss their
implications for perturbative quantum gravity.

2.2.1 N = 0 supergravity

The common, or NS-NS, sector of the α′ → 0 limit of closed string theories is given
by N = 0 supergravity,

SN=0 = 1

2κ2

∫
�R − 1

(D − 2)
dϕ ∧ �dϕ − 1

2
e−

4
D−2ϕH ∧ �H , (77)

where 2κ2 = 16πG(D)
N . Aside from the metric g we have the dilaton ϕ and the KR 2-

form H = dB. The solutions of the associated equations of motions give backgrounds
(with vanishing cosmological constant) around which strings can be quantised to
lowest order in α′ and string coupling. They also ensure conformal invariance of the
string is non-anomalous in critical dimensions. From the relationship between the
double-copy and the KLT relations, we should not be surprised by the appearance of
this action in “gravity = gauge× gauge”.

In D = 4, for topologically trivial manifolds, we can dualise the B into a pseudo-
scalar, the axion χ . To do so, forget B and consider H as the field with respect to
which we vary. Of course, H is closed and so we must add a Lagrange multiplier χ

to enforce this condition

L = �R − 1

2
dϕ ∧ �dϕ − 1

2
e−2ϕH ∧ �H − dχ ∧ H . (78)

Varying with respect to χ we find dH = 0 as required. Now, varying with respect to
H we find

H = −1

2
e2ϕ�dχ. (79)

Since this is algebraic we substitute back into L to obtain

Ldual = �R − 1

2
dϕ ∧ �dϕ − 1

2
e2ϕdχ ∧ �dχ, (80)
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which is often referred to as axion–dilaton gravity. This is equivalent (semi-classically,
at least [226]) to D = 4,N = 0 supergravity. We emphasise the dual axion–dilaton
picture as it highlights a rather general feature of simple double-copy constructible
theories. To describe this we need one further step. Consider the sl(2,R) generators

E− =
(
0 0
1 0

)
, H =

(
1 0
0 −1

)
, E+ =

(
0 1
0 0

)
(81)

[H , E±] = ±2E±, [E+, E−] = H . (82)

Then V = e
1
2ϕeE+χ is an SL(2,R)/SO(2) coset representative in the “positive root

gauge” and

1

4
tr

(
dM−1 ∧ �dM

)
= −1

2
dϕ ∧ �dϕ − 1

2
e2ϕdχ ∧ �dχ, (83)

where M = VTV. This makes the invariance of Ldual under global SL(2,R) trans-
formations V �→ VM , det(M) = 1, and local (in the sense that they are functions of
ϕ, χ ) SO(2) transformations, V �→ M(ϕ, χ)V, M(ϕ, χ)T M(ϕ, χ) = 1, manifest. A
symmetric homogeneous space G/H satisfies

[p, p] ⊂ h, (84)

where g = h+ p. From the commutation relations (82) we note that SL(2,R)/SO(2)
is symmetric. For a complete characterisation of symmetric space see, for example,
[227,228].

The fact that the scalars parametrise a symmetric space is an almost generic property
of double-copy constructible gravity theories. We say “almost generic”, as there are
numerous exceptions [77,85,229], but it is true for all the basic examples, of which
there are many. As we shall describe, it is possible to understand when such scalar
manifolds appear from “gravity = gauge×gauge” and why they should be consistent
with the double-copy construction [72,85,138]. Despite this, there is no complete proof
that the double-copy yields a symmetric spaces when it should, although the statement
has passed all tests at the level of symmetries and amplitudes to date.

Let us now turn to scattering amplitudes. Ignoring ϕ, B for now, we can expand
the Einstein–Hilbert action perturbatively around a Minkowski background gμν =
ημν + κhμν

SEH ∼
∫

dDx
∑

n=0
κnhn+1�h (85)

and construct amplitudes as pioneered by Bryce DeWitt [230–232]. The Feynman
diagrams for gravitons include n-point vertices for all n. However, just as for the four-
point vertex in Yang–Mills, these can all be absorbed into the kinematic numerators of
the purely trivalent diagrams. For example, consider as in [143] a pure cubic diagram
i , contributing Ni/di , where Ni is the kinematic factor (no colour factors here as
we are dealing with gravitons), to the amplitude integrand, and another diagram i(4),
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contributing Ni(4)/di(4) , which is identical except that one cubic four-point sub-diagram
with propagator s has been contracted to a four-point vertex. Then di(4) = di/s and so

Ni

di
+ Ni(4)

di(4)
= Ni + sNi(4)

di
= N ′i

di
. (86)

Having written the graviton amplitude in terms of pure cubic diagrams, it takes a form
resembling closely the gluon amplitude (33),

An,L
g,B,ϕ = i L

(κ

2

)n−2+2L ∑

i

∫ L∏

l=1

dD pl
(2π)DSi

Ni

di
. (87)

2.2.2 The double-copy

Although not obvious, for factorisable external states, which form a basis, the grav-
itational kinematic numerators can always be written as a product Ni = ni ñi . This
brings us to the statement of the BCJ double-copy prescription for pure Yang–Mills
[51,64]:

BCJ double-copy prescription:Given any two pure Yang–Mills n-point L-loop
amplitudes

An,L
YM = i L gn−2+2L

∑

i

∫ L∏

l=1

dD pl
(2π)DSi

ci ni
di

,

Ãn,L
YM = i L gn−2+2L

∑

i

∫ L∏

l=1

dD pl
(2π)DSi

ci ñi
di

, (88)

at least one of which respects BCJ colour-kinematic duality16, let us assume it is
An,L

YM, we may “double-copy” by replacing the colour factors by BCJ respecting
kinematic factors while sending g→ κ/2, to generate a new amplitude,

An,L
g,B,ϕ = i L

(κ

2

)n−2+2L ∑

i

∫ L∏

l=1

dD pl
(2π)DSi

ni ñi
di

, (89)

which is guaranteed to be a bona-fide amplitude of N = 0 supergravity.

Some immediate comments are in order:

1. The external states of An,L
g,B,ϕ are determined by the tensor product of the external

states of An,L
YM and Ãn,L

YM, which need not be the same. The external states are

16 The ci should not be explicitly evaluated under the integral in case they accidentally vanish before being
replaced by the loop-momenta dependent kinematic factors.
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labelled by their on-shell spacetime little group representations SO(D − 2) and,
more generally, any other global representation they carry. For example, in D = 4
Yang–Mills we have the various possible products of gluons with ±1 helicity
states:

⊗ +1 −1
+1 +2, graviton 0, τ

+1 0, τ̄ −2, graviton
(88)

where τ = ϕ+ eiχ . Of course we get the 2× 2 = 4 degrees of freedom ofN = 0
supergravity on a Minkowski background.

2. The amplitudes An,L
YM and Ãn,L

YM need not derive from the same theory, as long as
both theories admit a BCJ duality respecting form. This allows one to construct
the product of different theories. The spectrum of states of the gravity theory is
given by tensor product of the left and right gauge theory factors. For example, if
one factor isN = 4 Yang–Mills and the other is pureN = 2 Yang–Mills then the
double-copy is N = 6 supergravity.
Varying over all BCJ compatible factors we generate a panoply of double-copy
constructible gravity theories. Clearly, if one wishes to restrict to a single graviton,
then each factormust have atmost onemassless adjoint gauge field. Note, however,
the left and right factor need not have any gauge fields at all. For example, the
amplitudes ofN = 2 hypermultiplet amplitudes generate those ofN = 4Maxwell
theory: “gauge = matter × matter”. However, for the hyper multiplets to have a
local symmetry they must come coupled to anN = 2 Yang–Mills multiplet, which
will generate the N = 4 gravitational sector when included in the double-copy.
So theN = 4 Maxwell amplitudes generated by the hypers must be regarded as a
subsector of a double-copy theory including the gravitational degrees of freedom.

3. Invariance of the gauge theory amplitudes under the linearised gauge transfor-
mations together with BCJ duality implies the invariance of the double-copy
amplitudes under linearised diffeomorphisms and hence that they belong to some
gravitational theory [86]. The emergence of linearised diffeomorphism can also
be seen directly at the level of field theory [137], as we shall discuss in Sect. 3. The
same field theoretic mechanism generates a linearised local supersymmetry for
every adjoint fermion belonging to the factors [137] and so their product should
be locally supersymmetric, i.e. a (possibly generalised) supergravity theory, where
the gravitini follow from the product of the adjoint gluons and fermions. But if
the product is locally supersymmetric the factors must be globally supersymmet-
ric, which is precisely consistent with the observation that BCJ duality and adjoint
fermions together implies supersymmetry. Conversely, if one or both of the factors
have global supersymmetry, then the corresponding invariance of the gauge ampli-
tudes, together with BCJ duality, implies that the amplitudes of the double-copy
theory are invariant under linearised local supersymmetry transformations [144].

4. Of course, we can always go back to one of the gauge amplitudes by turning
kinematics back into colour. We can proceed further and replace the remaining
kinematics by a second copy of the colour, leaving us with an amplitude of the
bi-adjoint φ3 theory introduced in Sect. 2.1.3. This reflects the idea expressed in
[198] that the relationship between gauge theory and gravity is heuristically of the
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form “φ3 × gravity = gauge × gauge”. For tree-level Yang–Mills at four points,
imposing BCJ duality, this is quite literally the case,

A4,0
ϕ3 A4,0

g,B,ϕ = Ã4,0
YM Ã4,0

YM. (89)

It is also manifest at the level of integrands in the scattering equation formalism for
any number of points [199]. There is another interpretation of the form “gravity=
gauge×φ̃3× gauge”, where φ̃ is in some sense the inverse of φ [109,136,137,199].
At tree-level this canbemade concrete usingdouble-partialYang–Mills amplitudes

An,0
g,B,ϕ = An,0

YM
t · SKLT · An,0

YM. (90)

Here, An,0
YM is a specific choice of (n − 3)! independent partial amplitudes and

SKLT is the corresponding momentum kernel [233], which in this case is exactly
the inverse of thematrix of scalar propagators, that is the double-partial amplitudes
of the φ3 theory [199].

This picture allows one to construct a vast array of gravitational theories in the
sense that every double-copy of a pair a gauge theory amplitudes gives a gravitational
amplitude of some theory and that every amplitude of that theory can be written as a
double-copy.

2.2.3 A growing zoology

The basic principle is that if one can cast two gauge theories intoBCJ duality respecting
form, then their amplitudes yield a double-copy theory with spectra given by the
tensor product of the spectra of the two gauge theories: double-copy states = left
gauge states ⊗ right gauge states. There is a growing list of BCJ compatible gauge
theories and, thus, double-copy constructible theories. Gauge invariance in the left
and right factors implies linearised diffeomorphisms in the double-copy theory, so it
will (typically) be a theory of gravity. Here we summarise the known double-copy
constructible theories together with their gauge factors and the key ideas facilitating
the implementation of BCJ duality and identifying the double-copy theory. Rather
than follow the chronology, we will start with the simplest examples and work up in
complexity.17 We are not consistent in our labelling of the classes of double-copies as it
is easiest to characterise them in terms of the factors in some cases and the double-copy
theory in others. In all cases we are strictly referring only to the tree-level theories,
although in many examples they have passed numerous loop-level tests.

1. φ3 theory: The very simplest thing one can do is to replace not the colour factors,
but the kinematic factors of pure Yang–Mills theory:

ni ci
di
→ c̃i ci

di
. (91)

17 We are measuring complexity in terms of how simple it is to fully characterise the space of theories
of interest: N = 8 supergravity is unique and determined by supersymmetry alone, as simple as can be,
whereas the space of non-supersymmetric theories containing Einstein–Hilbert gravity is wild, even with
reasonable consistency conditions imposed.
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It is not hard to convince oneself that this yields the amplitudes of the bi-adjoint
φ3 theory, with interaction (71), as identified in [199].

2. Pure N-extended Yang–Mills × pure Ñ-extended Yang–Mills: As we have
mentioned adjoint fermions and BCJ duality implies supersymmetry. Conversely,
given BCJ duality for gluons, supersymmetry extends it to any pure super Yang–
Mills multiplet. Consequently, the double-copy of super Yang–Mills theories
follows directly. Of course, the left and right vectors A, Ã alone yield N = 0
supergravity, but the vectors with theN, Ñ left/right adjoint fermions yieldsN+Ñ
gravitini. Hence, the double-copy must be a supergravity theory. For N + Ñ
half-maximal or greater, there is unique candidate supergravity theory so the iden-
tification of the double-copy theory is trivial; it is just read-off from the tensor
product of the left/right gauge theories states given in Table 2. For less supersym-
metry, the couplings are not uniquely determined by the spectra so there is a priori
some ambiguity. This can be resolved by examining the symmetries alone. This
was done in [138,140] for all pure super Yang–Mills theories in D = 3, . . . 10,
as reviewed in Sect. 3.2.2. The key observation is that the scalar manifolds of the
resulting supergravity theories are symmetric homogeneous spaces G/H, as can
be deduced by consistently truncating the maximally supersymmetric examples.
This in turn implies that theLagrangian is uniquely determined by the non-compact
global symmetry group G. The BCJ double-copy has been explicitly established
and tested at the loop level for many of the cases [56,57,91,95,104,183,184]. An
important approach to the double-copy construction of such theories (and others
beside) is through orbifoldings ofN = 8 supergravity that factorise into orbifolds
of the left and rightN = 4Yang–Mills theories [68,73].We summarise results in
Table 2. For our conventions and details of the various supermultiplets see Table 1.
For the remaining discussion we will mostly focus on D = 4 and simply comment
on other dimensions.

3. N = 4 and N = 3 supergravity coupled to vector multiplets: Restricting to
D = 4 the next simplest class of double-copy constructible supergravity theories is
N = 4 supergravity coupled to an arbitrary number of vectormultiplets [68,72,73].
From the above list we see thatN = 2×Ñ = 2 yieldsV2⊗Ṽ2 = G4⊕2V4 so that
we have at least two vector multiplets. If one restricts to adjoint-valued multiplets
then this is the only consistentN = 2× Ñ = 2 case; adding extra vector or hyper
multiplets into the factors would generate additional graviton and/or gravitini mul-
tiplets. Of course, there is the other possibility of N = 4 × Ñ = 0. This yields
pureN = 0 supergravity [183]. However, one can couple n adjoint-valued scalars
to the right factors (with couplings determined from the dimensional reduction of
pure Yang–Mills in D = 5) to give N = 4 supergravity coupled to n vector mul-
tiplets, V4 ⊗ [ Ã⊕ nφ] = G4 ⊕ nV4, with global symmetry SL(2,R)× SO(6, n)

[67,68,72,90–92,138,183]. This can be trivially extended to half-maximal super-
gravities in D = 3, 5, 6, 7, 8, 9, 10. This exhausts all half-maximal or greater
supergravity theories: the double-copy spans all such theories.
The story for N = 3 is slightly different. There is no perturbative N = 3 super
Yang–Mills theory, since N = 3 supersymmetry implies N = 4 for Yang–
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Table 1 On-shell helicity states of all D = 4 supermultiplets

Q R MultipletN f Un(1)st × R representations

32 SU(8) G8 256 1−4 + 8−3 + 28−2 + 56−1 + 700 + 561 + 282 + 83 + 14

28 Un(7) G7 256 10−4 + 71−3 + 1−7−3 + 212−2 + 7−6−2 + 353−1 + 21−5−1 + 35
4
0 + c.c.

24 Un(6) G6 128 10−4 + 61−3 + 152−2 + 1−6−2 + 203−1 + 6−5−1 + 15
4
0 + c.c.

20 Un(5) G5 64 10−4 + 51−3 + 102−2 + 10
3
−1 + 1−5−1 + 5

4
0 + c.c.

16 Un(4) G4 32 10−4 + 41−3 + 62−2 + 4
3
−1 + 140 + c.c.

16 SU(4) V4 16 1−2 + 4−1 + 60 + 41 + 12

12 Un(3) G3 16 10−4 + 31−3 + 3
2
−2 + 13−1 + c.c.

12 Un(3) V3 16 10−2 + 31−1 + 1−3−1 + 3
2
0 + c.c.

8 Un(2) G2 8 10−4 + 21−3 + 12−2 + c.c.

8 Un(2) V2 8 10−2 + 21−1 + 120 + c.c.

8 Un(2) H2 8 1r−1 + 2r+10 + 1r+21 + c.c.

8 Un(2) 1
2H2 4 1−1−1 + 200 + 111

4 Un(1) G1 4 (−4, 0)+ (−3, 1)+ c.c.

4 Un(1) V1 4 (−2, 0)+ (−1, 1)+ c.c.

4 Un(1) C1 4 (−1, r)+ (0, r + 1)+ c.c.

0 -//- A 2 (−2)+ c.c.

0 -//- λ 2 (−1)+ c.c.

0 -//- φ 2 (0)

Here Q counts the number of supercharges, R denotes the global R-symmetry group,MultipletN the type
of N-extended supermultiplet and f is number of degrees of freedom. The N-extended gravity, vector,
hyper and chiral multiplets are denoted byGN,VN,HN andCN, respectively. Note, 12H2 is used to denote
a half-hyper multiplet. Although V3 and V4 are identical as isolated gauge multiplets, when coupled to
supergravity they must be distinguished. Similarly, G7 and G8 have identical content and as interacting
theories are identical despite having a priori distinct symmetries. Finally, we use A, λ and φ to denote
the smallest N = 0 vector, spinor and scalar multiplets, respectively. Sub/superscripts in the final column
refer to the Un(1) charges carried by the representations. The subscripts refer to the spacetime little group
Un(1)st helicities, which we uniformly multiply by a factor of two to make the notation more compact.
The superscripts refer to the internal Un(1) charges. When the symmetry has no semi-simple part we use
tuplets (a, b, c, . . .) to label the Un(1) charges, with the first slot reserved for Un(1)st

Mills.18 Hence, there is only one way to obtain N = 3 through the double-copy,
V2 ⊗ Ṽ1 = G3 ⊕ V3. The double-copy necessarily comes coupled to at least
one vector multiplet. Adding adjoint-valued multiplets (vector, hyper or chiral) to
either factor would result in extra graviton or gravitini multiplets so is forbidden
(without increasing the degree of supersymmetry) (Table 2). However, we are able
to include hyper and chiral multiplets in non-adjoint representations, using the
matter (by which we mean any fields not valued in the adjoint) colour-kinematic
duality of [74,206]. Let us include a single half-hyper multiplet in the left N = 2
factor in a pseudo-real representation ρ (required for half-hypers), which is com-

18 But not supergravity, the analog in this case is N = 7 supersymmetry implies N = 8.
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Table 2 Summary of supergravity theories obtained from the double-copy of two pure super Yang–Mills
theories

D N⊗ Ñ Double-copy G Comments

3 V8 ⊗ Ṽ8 G16 E8(8) BLG double-copy [70]

V8 ⊗ Ṽ4 G12 E7(−5)
V8 ⊗ Ṽ2 G10 E6(−14)
V8 ⊗ Ṽ1 G9 F4(−20)
V4 ⊗ Ṽ4 G8 ⊕ 4V8 SO(8, 4)

V4 ⊗ Ṽ2 G6 ⊕ 2V6 SU(4, 2)

V4 ⊗ Ṽ1 G5 ⊕ 2V5 USp(4, 2)

V2 ⊗ Ṽ2 G4 ⊕ 2V4 SU(2, 1)× SU(2, 1)

V2 ⊗ Ṽ1 G3 ⊕ 1V3 SU(2, 1)

V1 ⊗ Ṽ1 G2 ⊕ 1V2 SL(2,R)

4 V4 ⊗ Ṽ4 G8 E7(7) 4-point 5-loop finite [95]

V4 ⊗ Ṽ2 G6 SO�(12) 4-point 2-loop amplitudes [184]

V4 ⊗ Ṽ1 G5 SU(5, 1) Enhanced cancellations [57]

V2 ⊗ Ṽ2 G4 ⊕ 2V4 SL(2,R)× SO(6, 2)

V2 ⊗ Ṽ1 G3 ⊕ 1V3 Un(3, 1)

V1 ⊗ Ṽ1 G2 ⊕ 1H2 Un(2, 1)

5 V4 ⊗ Ṽ4 G8 E6(6)

V4 ⊗ Ṽ2 G6 SU�(6)

V2 ⊗ Ṽ2 G2 O(5, 1)O(1, 1)

6 V(1,1) ⊗ Ṽ(1,1) G2,2 SO(5, 5)

V(1,1) ⊗ Ṽ(0,1) G2,1 SU�(4)× USp(2)

V(1,0) ⊗ Ṽ(0,1) G1,1 O(4)× O(1, 1)

7 V1 ⊗ Ṽ1 G2 SL(5,R)

8 V1 ⊗ Ṽ1 G2 SL(2,R)× SL(3,R)

9 V1 ⊗ Ṽ1 G2 SL(2,R)× O(1, 1)

10 V(1,0) ⊗ Ṽ(0,1) G(1,1) O(1, 1) Type IIA

V(1,0) ⊗ Ṽ(1,0) G(2,0) SL(2,R) Type IIB

patible with BCJ duality [77], and n chiral multiplets on the Ñ = 1 right theory,
also in a pseudo-real representation ρ̃:

[V2 ⊕ 1
2H

ρ
2 ] ⊗ [V1 ⊕ Cρ̃

2 ] = G3 ⊕ (n + 1)V3. (92)

For convenience the tensor product of the on-shell matter multiplet are given
in Table 3. Note, the “matter” representations ρ, ρ̃ do not double-copy with the
adjoint-valued fields since the amplitudes necessarily have distinct colour struc-
tures and the Jacobi identities are replaced with commutation relations [74]. As in
the case of N = 4 supergravity the vector multiplet coupling is unique [234] and
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Table 3 The content D = 4
resulting from the product of the
on-shell helicity states of left
and right matter multiplets, as
summarised in Table 1

N ⊗ Ñ Result

H2 ⊗ H̃2 4V4

H2 ⊗ C̃1 2V3

H2 ⊗ λ̃ 2V2
1
2H2 ⊗ H̃2 V4
1
2H3 ⊗ C̃1 V3
1
2H2 ⊗ λ̃ V2

C1 ⊗ C̃1 V2 ⊕H2

C1 ⊗ λ̃ V1 ⊕ C1

the scalars belong to the symmetric spaces

SU(3, 1+ n)

SU(3)× Un(1+ n)
. (93)

Through dimensional reduction/oxidation this exhausts the analysis for all
Poincaré supergravity theories with more than eight supercharges (N > 2 in
D = 4). Every such theory is double-copy constructible with the single exception
of pure D = 4,N = 3 supergravity and its dimensional reductions/oxidations.

4. N = 2 supergravity with homogeneous scalar manifolds: The complete classi-
fication formore than eight supercharges relied on the fact that the scalarmanifolds
of supergravity are, in this case, necessarily symmetric homogenous spaces. For
eight (or fewer) supercharges, there is far more freedom. The scalar manifolds are
required to be special geometries [235,236], which includes real, Kähler and quar-
ternionicmanifolds [237–239], but homogeneity is not essential. Consequently the
space of theories is far richer in this case.
Focussing on D = 4, the scalars belonging to vector multiplets must parametrise
a projective special Kähler manifold [235,238,240], while those belong to hyper
multiplets parametrise a quarternionic-Kählermanifold [241–243].Amanageable,
in the sense that there is an explicit and complete characterisation, subclass of
N = 2 supergravity theories is given by those with homogenous scalar manifolds.
A unified double-copy construction of almost all N = 2 supergravity theories
coupled to vector multiplets with homogenous scalar manifolds was given in [77]
through a left N = 2 Yang–Mills theory coupled to a single half-hyper multiplet
in a pseudo-real representation and right Ñ = 0 Yang–Mills theory coupled to
adjoint scalars and pseudo-real fermions. If non-symmetric the scalar manifolds
are indexed by three integers (q, P, Ṗ),

SO(1, 1)× SO(q + 2, 2)

SO(q + 2)× Un(1)
× Sq(P, Ṗ)

Sq(P, Ṗ)
�

[
(spin,def, 1)1 � (1, 1, 1)2

]
,

(94)
where spin indicates the spinor representation of SO(q+2, 2) anddef the defining
representation of Sq(P, Ṗ). Here, (q, P, Ṗ) are integers, which fix the number of
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vector multiplets, the factor Sq(P, Ṗ) and representations carried by the fields.
See, for example, [85] for full details.
If the scalar manifold is symmetric there are three classes: (i) the generic Jordan
sequence [244] indexed by a single integer, (q, P, Ṗ) = (q, 0, 0), (i i) the four
magic supergravities [237,244,245] for which (q, P, Ṗ) = (n, 1, 0), where n =
dimA = 1, 2, 4, 8, and (i i i) the minimally coupled sequence [246] indexed by a
single integer, (q, P, Ṗ) = (−2, P, 0). The scalar manifolds are respectively

SU(1, 1)

Un(1)g
× SO(q + 2, 2)

SO(q + 2)×U (1)
; Conf(JA3 )

[Str0(JAC

3 )]c
; SU(1, P + 1)

Un(1)× SU(P + 1)
, (95)

where AC
∼= C ⊗ A, JA3 is the cubic Jordan algebra of 3 × 3 Hermitian matri-

ces over A = R,C,H,O and J
AC

3
∼= C ⊗ JA3 its complexification, Conf(J) is

the conformal group of the cubic Jordan algebra J, Str0(J) is the reduced struc-
ture group and [G]c denotes the compact real form of the complexified group G.
The minimally coupled sequence was given as a truncation of the generic Jordan
sequence, but can also be constructed directly [85]. This list includes almost all
N = 2 supergravity theories coupled to vector multiplet with scalars parametris-
ing a homogenous manifold. The only exceptions are pure N = 2 supergravity
and the T 3 model,19 which cannot be double-copy constructed [85].20 For recent
work on the double-copy construction of this class of theories at one-loop see
[229]. One can in principle include an arbitrary number of hype rmultiplets with
homogenous scalars manifolds [85], completing the classification of this subclass
of double-copy constructible theories, although in the non-symmetric case it is not
clear how it is to be realised. All cases may be summarised by

G2 ⊕ (1+ q + 2+ r)V2 ⊕ (q ′ + 4+ t/2)H2

=
[
V2 ⊕Hρ

2

]
⊗

[
Ṽ ⊕ (q + 2)φ̃ ⊕ (r)λ̃ρ̃ ⊕ 2(q ′ + 4)�ρ̃ ⊕ (t)ϕρ̃

]
, (96)

where the specific supergravity theory obtained is detemined by the various param-
eters and choices of couplings and symmetries of the right gauge theory, as
described in detail in [77,85].

5. Einstein–Maxwell–Yang–Mills supergravity: Thus far all vector multiplets
appearing in the double-copy theory have been Abelian. It possible to also intro-
duce Yang–Mills multiplets through a simple mechanism [75]. The left theory is
take to be a pure super Yang–Mills theory, while the right theory is given by pure
Yang–Mills coupled to a G̃×G ′ bi-adjoint scalar φaa′ , where G̃ is the gauge group

19 N = 2 supergravity coupled to a single vector multiplet with non-compact global symmetry group
SL(2,R), under which the two Maxwell field strengths and their duals transform as the 4 [246,247]. Can
be regarded as the “symmetrisation” of the STU model [248], where the there complex scalars S, T ,U are
identified.
20 But see final point of this list.
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as usual, but G ′ is a global symmetry,

L̃YM+φ3 = tr

(
1

2
F ∧ �F + 1

2
Dφa′ ∧ �Dφa′ − g2

4
�[φa′, φb′ ][φa′, φb′ ]

−gλ

3! � fa′b′c′φ
a′ [φb′, φc′ ]

)
. (97)

The key observation is that the global symmetry G ′ of the right theory is pro-
moted to a gauge symmetry of the corresponding vector multiplets, VN ⊗ φa′ ,
of the double-copy theory with coupling determined by the cubic scalar term
of (97), g′ ∼ κλ [75]. Combined with the previous techniques this allows for
the double-copy construction of a variety of N ≤ 4 Einstein–Maxwell–Yang–
Mills supergravity theories [75]. There have been several subsequent tree-level
[86,249–251], one-loop [252,253] and all-loop for a single external graviton [86]
developments of Einstein–Maxwell–Yang–Mills amplitudes. Finally, the double-
copy Einstein–Maxwell–Yang–Mills supergravity theories can be Higgsed by
taking the left factor on the Coulomb branch and introducing matching masses
for the scalars on the right through an explicit symmetry breaking [76].

6. Gauged Poincaré supergravity: Gauged supergravity theories with Minkowski
background can also be constructed [87]. Here a subgroup of the R-symmetry of
the corresponding ungauged supergravity is gauged, leading to massive gravitini.
The left theory is a Higgsed Yang–Mills theory coupled to a set of scalars, which
introduces the required massive bosons. The right theory super Yang–Mills theory
is also Higgsed and has explicitly broken (through orbifolding) supersymmetry,
which introduces the required has massive fermions to generate massive gravitini.
Starting with an N = 2 super Yang–Mills theory, the simplest examples generate
Un(1)gaugings of the generic Jordan supergavities discussed above [87].However,
it is possible to extended to more supersymmetry and non-Abelian gaugings [87,
88].

7. N ≤ 1 (super)gravity: For theories with less supersymmetry it is much harder to
make general statements. Of course, there is the central example ofN = 0 super-
gravity, but beyond it is difficult to characterise what classes of gravity theories
may be double-copy constructed. This is principally due to the lack of symme-
try, which makes it more difficult to identify what theory is generated by the
double-copy. Nonetheless, there are numerous examples. This includes orbifold-
ings of “parent” double-copy supergravity theories that preserve BCJ duality, but
break all, or almost all, the supersymmetries [73]. Control over the resulting theo-
ries follows from the control over the parent theory and the relevant orbifold. This
technique has, for example, been used to construct all “twin” supergravity theories
in [81].21 This procedure generates new theories from old such as, for example,
the N = 1 twins in D = 4. Again, control over the nature of these theories is
inherited from their parents. There are various examples, both at tree-level and for
loops [73,81,86], but a coherent picture remains to be developed. A particularly

21 Twin supergravities are pairs of supergravity theories with identical bosonic sectors but distinct super-
symmetric completions [81,245,254–258].
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important example is the double-copy of Yang–Mills coupled to quarks [74,206].
As well as being of interest in its own right, the techniques developed in this con-
text have opened the door to a vastly expanded array of doubly-copy theories, as
the preceding discussion of examples that make use of non-adjoint representations
makes clear.

8. Conformal (super)gravity: In cases previously considered here, the graviton
sector has been Einstein–Hilbert. Remarkably, however, this is not necessary. A
counter example is given by conformal (super)gravity [83,259]. The key idea is to
use in one of the gauge theory factors a higher derivative (DF)2 theory. In con-
junction with various deformations one can then double-copy construct a number
of conformal (super)gravity theories, including the Berkovits-Witten theory [260]
and (mass-deformed) minimal conformal supergravity. See [261] for a review of
conformal supergravity.

9. Exceptions to the exceptions: We should be clear about our definition of a
“double-copy constructible” theory. The double-copy theory is definedby the total-
ity generated by the two gauge theory factors: a particular theory is double-copy
constructible if (1) all its amplitudes can be generated by the double-copy of the
amplitudes twoBCJ duality22 respecting theories and conversely (2) all amplitudes
of the two theories generate an amplitude belonging to the corresponding gravita-
tional theory.23 For example, a conspicuous absentee is good old Einstein–Hilbert
gravity; it is not double-copy constructible in the above sense, as it always comes
with the axion–dilaton sector. Similarly, the T 3 model is not double-copy con-
structible [85], which rather stands out as the only case of an N ≥ 2 supergravity
theory with a (non-trivial) symmetric scalar manifold not admitting a double-copy
construction.
However, as always there are exceptions to the exceptions. All amplitudes of pure
Einstein–Hilbert gravity can be systematically double-copy constructed by con-
sistently restricting the external states to the graviton sector, while cancelling the
would-be axion–dilaton sector appearing in loops with the product of “ghost”
chiral fermion amplitudes [74]. The restriction on the external states violates our
strong definition, but all amplitudes of Einstein–Hilbert gravity may nonetheless
be double-copy constructed using these “ghost” cancellations. With this under-
standing of “double-copy constructible” it may be possible to fill in all the gaps,
as well providing alternative constructions of double-copy theories. For example,
pure N = 4 supergravity may also be constructed through pure N = 2 Yang–
Mills ×Ñ = 2 Yang–Mills using ghost cancellations to remove the unwanted
vector multiplet [82].

The above list is by no means exhaustive, although it clearly demonstrates the
long-arm of the double-copy construction. In particular, we have not discussed
the double-copy construction of: open and closed string amplitudes using Z-theory
[79,80,89,262,263]; Born-Dirac-Infield theories, including couplings to super Yang–

22 This may be trivially true, for example a cubic theory of scalars transforming in the adjoint of a global
symmetry.
23 As it stands this can of course only be established in general at tree-level, with supporting evidence from
case-by-case examples of loop-level amplitudes. Our present analysis is explicitly tree-level only.
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Mills theories and non-linear sigma models [86,201,264]; the special-Galileon theory
[204]; and double-copy correlator relations [265–267]. It is also possible to apply the
“gravity = gauge × gauge” perspective to construct, discover, or deduce properties
of, theories for which there is no, and perhaps can be no, Lagrangian description in
the conventional sense [66,138,142,258,268,269]. For example, previously unknown
D = 4,N = 2 superconformal S-fold theories of the type introduced in [270–273],
which being intrinsically non-perturbative are not amenable to the double-copy proper,
where discovered using this approach in [258]. Finally, an alternative and elegant real-
isation, at tree-level, of many of these “gravity = gauge × gauge” examples, and
the relations between, them is given by the Cachazo-He-Yuan scattering equation
formalism [199,201,219]. The amplitudes in this framework can be regarded as a
world-sheet integrals, but localised on the solutions of the scattering equations. They
sit in-between a string and particle picture. This formalism may also be derived from
ambi-twistor string theory [221,274], which then opens a route to loops [223,224,275]
and curved backgrounds [225]. It has also been employed to construct candidate tree-
level amplitudes for the D = 6,N = (4, 0) theory, conjectured to arise in M-theory
[276], through the double-copy of (2, 0) theory amplitudes [269]. This is all the more
remarkable in light of the fact that we, at present, have no other insight regarding the
interacting (4, 0) theory.

3 Field theory relations

These developments raise the question: to what extent, or in what sense, can one
regard gravity as the square of Yang–Mills. Is there a deeper connection underlying
the amplitude relations. Having exposed the hidden dualities of amplitudes through
an intrinsically on-shell window, is it possible to now step back and understand their
origins from a geometric or off-shell point of view. This is not only a conceptual ques-
tion; having an off-shell understanding may shine light on the outstanding amplitude
questions, such as BCJ duality beyond tree-level. There are a number of approaches
one might take: can BCJ duality be manifested at the level of the Lagrangian or field
equations [200,204,277–282]; can we rewrite the gravity in a form that, in some sense,
factorises [64,204,281,283–285]; is there a field theory “product” of gauge theories
[81,85,115,116,119,136–142]. We can also turn this on-shell versus off-shell ques-
tion around: can the BCJ double-copy paradigm be repurposed to efficiently construct
solutions in theories of gravity from gauge amplitudes and/or solutions [109–135]. In
a sense this runs contrary to the “on-shell paradigm” that took us here. Going back
off-shell may nonetheless be instructive.

3.1 Manifesting BCJ duality and the double-copy off-shell

3.1.1 BCJ Lagrangians and kinematic algebras

The remarkable relationship between colour and kinematics hidden in the amplitudes
suggests that there is some underlying kinematic algebra mirroring the properties
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of conventional Lie algebras [200,277,278,280,282]. In general, the nature of this
conjectured hidden algebra is not known, however for the self-dual sector it can be
identified precisely as an area-preserving diffeomorphism Lie algebra in a particular
two-dimensional subspace [277]. To see this, recall the self-duality constraint, Fμν =
i
2εμνρσ Fρσ , reduces the equations of motion in light-cone gauge Au = 0 to

�ϕ + ig[∂wϕ, ∂uϕ] = 0, (98)

where u = t − z, v = t − z, w = x + iy and Aw = 0, Av = − 1
4∂wϕ, Aw = − 1

4∂uϕ.

For suitable boundary conditions (98) can be solved perturbatively inmomentum space
ϕa(p) =∑

n ϕa
n (p). Schematically, we have

ϕa
n (p) = 1

2
gn

∑

i

∫ n+1∏

l=1

dpl
(2π)4

(
ni (F)p p1 p2...pn+1ci ( f )

a
a1a2...an+1

p2di

)

× ϕ
a1
0 (p1)ϕ

a2
0 (p2) · · ·ϕan+1

0 (pn+1). (99)

Each order n correction can be represented in terms of (n + 1)-point trivalent tree
diagrams, labelled here by i , with n sources of momenta pl and one external field
ϕa
n (p). The di term appearing denominator is the product of the momenta squared

of the internal lines. The important components from our perspective are the kine-
matic and colour numerators ni (F) and ci ( f ). As usual ci ( f ) is a polynomial in
the gauge group structure constants f abc generated by attaching one to each ver-
tex. Remarkably, ni (F) is constructed in precisely the same way with f abc replaced
by a kinematic “structure constant” F pa pb pc such that ci ↔ ni under f ↔ F .
Specifically, Fp1 p2

q = (2π)4δ4(p1 + p2)(p1w p2u − p1u p2w), where indices are
raised/lowered by δ pq = δpq = (2π)4δ4(p + q) with contractions given by inte-
gration X p···Y p··· := ∫ dp

(2π)4
X(p, · · · )Y (p, · · · ). Using these conventions F pa pb pc

is totally anti-symmetric and obeys the Jacobi identity [277], which combined with
ci ↔ ni under f ↔ F makes the BCJ colour-kinematic duality manifest at the level
of perturbative classical solutions in the self-dual sector. The kinematic structure con-
stants F are those of the algebra of infinitesimal area-preserving diffeomorphisms.
Moreover, this algebra has been shown to determine the kinematic numerators of
tree-level maximally helicity violating amplitudes in the complete Yang–Mills theory
including the anti-self-dual sector [277]. Understanding these structures beyond the
self-dual sector remains an important open question.

Another approach is tomodify the Yang–Mills action so that it manifests the duality
between colour and kinematics directly in its Feynman diagrams [64]. One can in
principle constructively determine the BCJ duality respecting Lagrangian order-by-
order [279],

LBCJ = LYM + L(5) + L(6) + · · · . (100)

Of course, L(n) are constrained to leave the amplitudes invariant, but nevertheless
rearrange the kinematic numerators. This was done explicitly in [64] to six points. For
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example, choosing Feynman gauge one possibility at five points is given by

L(5) ∝ f[a1a2b fa3]bc fca4a5∂[μA
a1
ν] A

a2
ρ Aa3μ 1

� (Aa4ν Aa5ρ). (101)

This is identically zero sincewehave the Jacobi identity sitting up front f[a1a2b fa3]bc =
0, hence the amplitudes are trivially left invariant by the addition of L(5). However,
separating the three terms, trivially inserting �/� for each term, and redistributing
them, as we would in the amplitude, shifts the numerators of the five-point diagrams
such that they are in BCJ dual form [64]. Let us assume we had found BCJ numerators
starting from the original Lagrangian. Adding L(5) would preserve the duality by con-
struction; that we can add identically zero terms to the Lagrangian while maintaining
BCJ duality is another way to see that the BCJ numerators are non-unique. Note, BCJ
duality can bemade completely manifest at the level of the Lagrangian for a non-linear
sigma model [204]. The BCJ double-copy of the non-linear sigma model yields the
special Galileon and “squaring” the non-linear sigma model action gives a novel form
of Galileon action [204].

This brings us to the idea that the N = 0 supergravity Lagrangian can be “fac-
torised”.What does one mean by this? In the context of string the left and right movers
heuristically give rise to the spacetime indices on hμν, Bμν, ϕ. Thus, the left/right
indices of Zμν ∼ hμν + Bμν ∼ Aμ Ãν have their origin in the left/right open strings
corresponding to the left/right gauge theories. Given that each gauge theory is indepen-
dent, one might therefore anticipate a formulation of N = 0 supergravity that makes
this manifest in that the left and right indices only “talk” amogst themselves. It is in
this sense that we mean the action factorises. This idea was sometime ago proposed
by Siegel, who demonstrated that there does indeed exist such a formalism, at least
for specific gauge choices [286,287]. Later Grant and Bern developed a perturbative
Lagrangian that manifests the left/right split order-by-order [283]. To give a simple
illustration of the idea Bern and Grant imposed de Donder gauge and made a field
redefinition for the metric perturbation gμν = ημν + κhμν and the dilaton ϕ

hμν → hμν + ημν

√
2

D − 2
ϕ, ϕ→ 1

2h +
√

D − 2

2
ϕ, (102)

which yields at zeroth order

LEH = − 1
2h

μ
ν�hμ

ν + ϕ�ϕ. (103)

The terms contracting amongst the “left” and ”right” indices (an ambiguous notion
since hμν is symmetric) have been removed. Of course, this condition has to be main-
tained to all orders. The field redefinition realising this goal, even before making any
gauge choice, is remarkably simple,

gμν = e

√
2

D−2 κϕ
eκhμν , ϕ→

√
2

D − 2

(
ϕ + 1

2
h

)
, (104)
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and was checked explicitly through order six in κ , allowing the KLT relations to be
derived directly from the action itself up to five points [283].

Here the dilaton was introduced as an auxiliary device to aid the factorisation of the
Einstein–Hilbert Lagrangian, but given the nature of the double-copy one should only
expect the full factorisation to work forN = 0 supergravity, where the dilaton and KR
2-form are genuine components of the full theory.24 Indeed, one could take the view
that the non-symmetric Zμν is required to make sense of the notion of having left and
right indices at all. Thiswas taken seriously in [284],where a left/right factorised action
was constructed using the double-field theory formalism [288–290], which enlarges
the set of spacetime coordinates to accommodate a (symmetric) generalised metric to
render the dualities of string theory manifest. The generalised metric was introduced
in the context of string and membrane dualities in earlier related work [286,287,291–
294]. As particularly relevant to “gravity = gauge×gauge”, the generalised metric of
[291] was obtained in [286] using left and right vierbeins, making the left/right sectors
apparent with a manifest GL(D,R)×GL(D,R) symmetry. More recent approaches
to this question [281,285] have also made a twofold Lorentz symmetry (rather than
GL(D,R), since only the metric was considered) manifest to all orders [281]. This
formulation also has the potentially appealing feature, from theBCJ double-copy point
of view, that the left/right factorised Lagrangian of [285] has only cubic interactions
with the aid of only a single auxiliary field aρ

μν ,

LEH ∼ aρ
μν∂ρg

μν −
(
aρ

σμa
σ

ρν − 1

D − 1
aρ

ρμa
σ

σν

)
gμν (105)

where gμν is the usual tensor density
√−ggμν .

3.1.2 Double-copy solutions

One can apply the BCJ double-copy paradigm to the construction of classical solutions
in theories of gravity, such as black holes, from gauge theory. This may take the
guise of applying a classical double-copy-like map to classical gauge theory solutions
or extracting perturbative classical solutions from the double-copy of gauge theory
amplitudes [109–135].

Let us consider the former case. In its simplest incarnation, introduced in [109],
there is double-copy-like map of gauge theory solutions that yields non-perturbative
solutions in Einstein–Hilbert gravity under the assumption that the spacetime metric
is of Kerr–Schild type,

gμν(x) = ημν + φ(x)kμkν, (106)

where φ(x) is, morally speaking, related to the by-now familiar bi-adjoint scalar,
although it carries no indices here. The covector field kμ is null with respect to both
g and η. The Minkowski background can be generalised to an arbitrary background,
in which case kμ is null and geodesic with respect to the background metric. The
Kerr–Schild form of the metric effectively linearises the Ricci tensor.

24 Of course, for tree-level amplitudes they may be consistently truncated to leave only the graviton scat-
tering amplitudes of Einstein–Hilbert gravity.
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To give a feeling for the classical double-copy let us turn to the simplest example:

Schwarschild black hole = (static colour charge)2. (107)

More specifically, the solution to the sourced Yang–Mills equation D�F = j , where
jμa = −gcaδ(x)(1, 0, 0, 0) is a static point-like colour charge located at the origin
with constant ca , is taken to be

Aa
μ = φcakμ, kμ = (1, x̂), φ = 1

4πr
(108)

which obviously linearises the Yang–Mills equation. Now, in precise analogy to the
BCJ double-copy we send the gauge coupling g to the gravitational coupling κ/2 and
the colour factor ca to a second copy of the kinematics ca �→ Mkν , where M is a
mass-dimension-one constant. The scalar φ goes along for the ride, just as for the
propagators in the BCJ double-copy . It is in this sense that it is related to φ3-theory.
Hence

Aa
μ = φcakμ �→ κ

2

M

4πr
kμkν (109)

which we recognise as nothing but the Schwarschild solution in Kerr–Schild coordi-
nates

gSchwar.μν (x) = ημν + κ

2

M

4πr
kμkν = ημν + 2GM

r
kμkν (110)

with static point-like mass located at the origin Tμν = Mvμvνδ(x), where vμ =
(1, 0, 0, 0), which is the obvious “double-copy” of jμ. The solution (108) is perhaps
a little unfamiliar, but is related by a gauge transformation to the standard Coulomb
solution Aa

μ = gca

4πr (1, 0, 0, 0). This serves to highlight the subtle role played by gauge
and coordinate choices in the context of solutions, as opposed to amplitudes [117,119,
132]. Indeed, making another gauge choice for the point charge solution it is possible
instead to obtain a gravity solution including a dilatonic contribution [114,117]; it
would seem the that the Kerr–Schild classical double-copy is not unique [117]. In
fact, the most general Kerr–Schild classical double-copy of the Coulomb solution has
been argued perturbatively [117] to be the two-parameter Janis–Newman–Winicour
solution [295], which can be tuned to turn off the dilaton, leaving the Schwarschild
solution. The exact Kerr–Schild double-copy realisation of this space of solutions was
given in [296], which, interestingly, used the T-duality generalised metric [297] and
double field theory formalism [288], generalising the class of solutions considered in
the Kerr–Schild double-field theory double-copy of [298].

This basic example has since been extended to a number of (generalised)
Kerr–Schild spacetimes [109–116,118–125,296,298]. It is also possible to construct
spacetimes perturbatively using a direct classical analog of the BCJ duality and the
double-copy [117].
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3.2 Field theoretic “gravity = gauge× gauge”

Another approach to addressing such questions is to build a dictionary at the level of
fields, as opposed to on-shell states or amplitudes, expressing the covariant fields of
(super)gravity in terms of the product of (super) Yang–Mills fields. That is, can we
interpret

Aμ(x)“⊗ ” Ãν(x). (111)

directly in the context of field theory, without appealing to on-shell conditions? Invok-
ing the known properties of open and closed strings we can deduce a consistent
indentification of the product of gauge potentials or vector supermultiplets [299,300].
But is there an independent definition of “⊗” at the level of field theory which is valid
whether or not there is an underlying string interpretation to guide our identifications?
This raises two immediate sub-questions: (i) gravity has no colour, so where do the
left and right gauge groups go? (ii) amplitudes are multiplicative in momentum space;
is this reflected in the product? Said another way, does the product violate the Leibnitz
rule?

From theWeinberg–Witten theorem the product cannot be a straightforward tensor
product of any kind.Moreover, the lessons of the double-copy strongly suggest a subtle
relationship with the φ3-theory. It should at least be compatible with the intricacies
of BCJ duality and the double-copy in cases where the product field theory agrees
with that generated by the double-copy of the corresponding amplitudes of the factor
theories.

Guided by the structure of the amplitude relations and requirements of symmetry
a covariant product rule was introduced in [137]. It is independent of the amplitude
relations, but, in all cases where we have been able to test it, it is compatible in the
sense that product field theory agrees with the amplitude product. It is defined as:

f ◦ f̃ := 〈〈 f ·� · f̃ 〉〉. (112)

Here, f , f̃ are arbitrary spacetime fields valued in g and g̃, respectively. The “specta-
tor” field � = �aãTa ⊗ T̃ã is a G × G̃ bi-adjoint valued scalar. The · product denotes
an associative convolutive inner tensor product with respect to the Poincaré group

[ f · g](x) =
∫

dD y f (y)⊗ g(x − y) (113)

and 〈〈 , , 〉〉 : g × (g ⊗ g̃) × g̃ → R is a trilinear trace form constructed from the
negative-definite trace forms of g, g̃, which in the standard basis is simply,

〈〈X ,Y , Z〉〉 = XaY
aã Zã . (114)

The convolution reflects the fact that the amplitude relations are multiplicative in
momentum space. For sufficiently well-behaved functions the convolution obeys,

∂μ[ f · g](x) = [∂μ f · g](x) = [ f · ∂μg](x). (115)
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This turns out to be essential for reproducing the local symmetries of (super)gravity
from those of the two (super) Yang–Mills factors. The double trace form accounts for
the gauge groups, while the spectator field allows for arbitrary and independent G
and G̃. Of course, it is closely related to the bi-adjoint scalar of the BCJ zeroth-copy.
Heuristically, it can be considered as its convolutive pseudo-inverse � ∼ φ−1.

3.2.1 Local symmetries

Having introduced the covariant product, let us consider the case of two pure Yang–
Mills theories. The field-theoretic product of two gauge potentials, Aμ and Ãν , is given
by

[Aμ ◦ Ãν](x) = g2[Aa
μ ·�aã · Ãã

ν ](x). (116)

In addition to the gauge potential, one must also include the accompanying BRST
ghost fields [137,141,142]. This reflects the fact that we must include the gauge trans-
formations while the product is defined on fields. Thus it is natural to include the
BRST ghosts into the “gravity = gauge× gauge” construction. Indeed, the inclusion
of BRST ghosts in the context of Yang–Mills squared or “open × open” strings was
advocated sometime ago by Siegel [299,300]. With the ghosts incorporated, the total
product of left and right pure Yang–Mills theories is given schematically by

◦ Ãν c̃β

Aμ gμν
graviton

+ Bμν
KR 2-form

+ ημνϕ
dilaton

C̃β
μ

right diffeo. + KR ghosts

cα Cα
ν

left diffeo. + KR ghosts
λ(αβ)

KR ghost-for-ghosts
+ (g + ϕ)εαβ

det g + dilaton

(117)

Here we have introduced the SL(2,R)-doublets of left/right ghosts and anti-ghosts,
cα = (c, c̄), following [301]. This dictionary is heuristic, we give the precise relation-
ship below at the linear level, but lays out the basic structure. First, it splits into four
sectors:

(i) A × Ã = physical+ auxiliary
(ii) A × c̃ = right ghosts
(iii) c × Ã = left ghosts
(iv) c × c̃ = ghosts-for-ghosts+ physical/auxiliary

This is quite intuitive, except perhaps for the mixing of physical and auxiliary degrees
of freedom in the A× Ã and c× c̃ sectors. This mixing is a consequence of choosing
Einstein frame, as opposed to string frame. We will make this precise momentarily.
Second, the ghost numbers and mass dimensions of the N = 0 supergravity follow
consistently from the product. First, ghost numbers gh( f ) andGrassmann grades ε( f )
are additive under the product

gh( f ◦ g) = gh( f )+ gh(g);
ε( f ◦ g) = ε( f )+ ε(g) mod 2; (118)
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Similarly, since the mass dimension of the spectator25 is (3D + 2)/2 we have

[ f ◦ g] = [ f ] + [g] − D − 2

2
(119)

which as we shall see is precisely as required. The ghost number, grade and mass
dimension, (gh( f ), ε( f ), [ f ]), of the product are summarised here:

◦ Ãã
ν(

0, 0, D−2
2

) c̃ã(
1, 1, D−2

2

)
˜̄cã(−1, 1, D−2

2

)

Aa
ν(

0, 0, D−2
2

)
(
0, 0, D−2

2

) (
1, 1, D−2

2

) (−1, 1, D−2
2

)

ca(
1, 1, D−2

2

)
(
1, 1, D−2

2

) (
2, 0, D−2

2

) (
0, 0, D−2

2

)

˜̄cã(−1, 1, D−2
2

)
(−1, 1, D−2

2

) (
0, 0, D−2

2

) (−2, 0, D−2
2

)

(120)

As first noted in Refs. [299,300], we see from the above that the degrees of freedom,
ghost number and parity inherited by the products are very suggestive that squaring two
BRST-covariant Yang–Mills theories results in the states, physical as well as first- and
second-level ghosts, of a graviton, two-form and dilaton. Let us nowmake this precise
at the linear level using the convolutive product [137,141]. For simplicity we adopt
Feynman-‘t Hooft gauge for both Yang–Mills factors and eliminate the Nakanishi-
Lautrup fields, b, b̃, through their equations of motion. This is not required; arbitrary
and independent gauge choices can be made [302]. The simplest26 ansatz for the
“gravity = gauge× gauge” dictionary is given by:

1. The graviton
hμν = A(μ ◦ Ãν) − aημν(A

ρ ◦ Ãρ − cα ◦ c̃α). (121)

2. The KR two-form
Bμν = A[μ ◦ Ãν]. (122)

3. The dilaton
ϕ = Aρ ◦ Ãρ − cα ◦ c̃α. (123)

Note, here we have rescaled by Aμ, cα (and similar on the right) by g−1 to ensure that
the mass dimensions are consistent, that is hμν = Aa

(μ ·�aã · Ãã
ν) + · · · and similar

for the remaining fields. Note, a is left as a free parameter for now and the SL(2,R)

ghost-antighost singlet cα ◦ c̃α = cα ◦ c̃βεαβ provides the trace of the graviton, but
also contributes to the dilaton in Einstein frame.

Similarly, we have the ghost and ghost-for-ghost dictionaries:

25 This follows from the requirement that the spectator is the convolutive pseudo-inverse of the φ3 field:
φ ·� · φ = φ implies [�] = (3D + 2)/2.
26 Through the equations of motion this implies a mildly non-local relationship between the gauge and
gravity sources [302]. Turning this around, imposing a simple gauge/gravity source dictionary, the equations
of motion force non-local terms into the field dictionary [141].
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1. Diffeomorphism (anti)ghost

cα
μ =

1

2

(
Cα

μ + C̃α
μ

)
= 1

2

(
cα ◦ Ãμ + Aμ ◦ c̃α

)
(124)

2. Two-form gauge (anti)ghost

λα
μ =

1

2

(
Cα

μ − C̃α
μ

)
= 1

2

(
cα ◦ Ãμ − Aμ ◦ c̃α

)
. (125)

3. Two-form gauge (anti)ghost-for-(anti)ghost

λαβ = c(α ◦ c̃β) =
(

λ η

η λ̄

)
(126)

Having proposed a dictionary between the N = 0 supergravity and pure Yang–
Mills fields, the first consistency check is the BRST transformations. Said another
way, the local gauge symmetries of the Yang–Mills factors must consistently generate
the local diffeomorphism and 2-form gauge symmetries of h, B. Since we are working
at linear level the non-Abelian Yang–Mills gauge groupG breaks to dim g local Un(1)
gauge symmetries and a global group, Gglobal ∼= G,

δε,X A = εdc + [A, X ], (127)

where ε, ε(ε) = 1, gh(ε) = −1 is a constant parameter, δε = εQ and X ∈ gglobal.
Similarly, on the right factor G̃ → Un(1)dim g̃ × G̃global.

First, the gravity fields must be invariant under Gglobal × G̃global. This is trivially
ensured by the spectator field, which transforms as

δX ,X̃� = [�, X ] + [�, X̃ ] (128)

so that for any f , g̃ such that δX f = [ f , X ] and δX̃ g̃ = [g̃, X̃ ],

δX ,X̃ f ◦ g̃ = 0, (129)

which follows from the Killing form property 〈X , [Y , Z ]〉 = 〈[X ,Y ], Z〉.
Let us now turn to the BRST transformations: the linearised diffeomorphisms and

the Abelian 2-form gauge transformations of N = 0 supergravity. For convenience
we recall here the linear BRST transformations in this gauge choice

QA = dc, Qc = 0, Qc̄ = −∂A (130)

and similar for the right factor. Then

Qϕ = QAρ ◦ Ãρ − Qcα ◦ c̃α + Aρ ◦ Q̃ Ãρ + cα ◦ Q̃c̃α

= ∂ρ(c ◦ Ãρ)− ∂ρ(Aρ ◦ c̃)+ ∂ρ(Aρ ◦ c̃)− ∂ρ(c ◦ Ãρ) = 0 (131)
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and

Q(Aμ ◦ Ãν) = QAμ ◦ Ãν + Aμ ◦ Q̃ Ãν

= ∂μ(c ◦ Ãν)+ ∂ν(Aμ ◦ c̃)
= ∂μCν + ∂νC̃μ. (132)

Hence, from (125) we recover the linearised diffeomorphisms and 2-form gauge trans-
formations:

Qhμν = ∂μcν + ∂νcμ, (133a)

QBμν = ∂μλν − ∂νλμ, (133b)

Qϕ = 0. (133c)

We see that the linearised general coordinate transformations of h, ϕ and the 2-form
gauge symmetry of B are precisely recovered. Varying the ghost fields we obtain
Qcμ = 0 for the diffeomorphism ghost, as expected, and

Qλμ = ∂μλ, (134a)

Qλ = 0, (134b)

Qη = ∂μλμ. (134c)

These are precisely the gauge-for-gauge transformations of an Abelian 2-form [141,
303].27 Note, this result relies on the Grassmann grading, strongly suggesting that
the inclusion of ghosts is a necessary ingrediant. We are only left with the antighost
transformations. These play the crucial role of mapping the gauging fixing choice
of the Yang–Mills factors into the gravity theory. Recall, Qc̄ = b and the equation
of motion of b is determined by the gauge-fixing term. Similarly, focussing on the
graviton, Qc̄μ = bμ, where bμ is the 1-form Lagrange multiplier of the gauge-fixing
action for the linearised Einstein–Hilbert action. The variation Qc̄μ is determined by
the antighost dictionary, (125), so that for our left/right Yang–Mills gauge choices
with a = 1/(D − 2) we have,

Qc̄μ = 1

2

(
QAμ ◦ ¯̃c + Aμ ◦ Q̃ ¯̃c + Qc̄ ◦ Ãμ − c̄ ◦ Q̃ Ãμ

)

= 1

2

(
∂μ(cα ◦ c̃α)+ ∂ρ(Aμ ◦ Ãρ + Aρ ◦ Ãμ)

)

= −∂ρhρμ + 1

2
∂μh, (135)

which corresponds to the de Donder linear diffeomorphism gauge-fixing function,

b(h)
μ = −∂ρhρμ + 1

2
∂μh. (136)

27 The quantisation of the KB 2-form requires the full machinery of the BV formalism. See [156,157,303]
for detailed accounts, the latter in the context of “gravity = gauge× gauge”.
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The requirement that b(h)
μ is expressible in terms of gravity fields implies the deDonder

term. The choice of a = 1/(D − 2) in (121) is fixed by the requirement that the
diffeomorphism gauge-fixing is independent of the dilaton, reflecting our choice of
Einstein frame. For arbitrary a there is a ∂μϕ contribution to (136), while the deDonder
term is left invariant. This is clearly a consequence of our choice of Yang–Mills gauge-
fixing functions and the restriction to a local field dictionary. The point is that whatever
choices we make for the left/right Yang–Mills theories they consistently map into the
gravity theory; the gauge-fixing function of the gravity theory is determined by those
of the Yang–Mills factors [302,304]. Similarly, the 2-form gauge-fixing term is given
by

b(B)
μ = ∂μη − ∂ρBμρ, (137)

which is precisely the canonical gauge-fixing term of the Abelian 2-form [156,157,
303]. Equipped with the gauge-fixing terms we can then impose the equations of
motion (including the gauge fixing) to uniquely determine the relationship between
the Yang–Mills and N = 0 supergravity sources, completing the linear dictionary
[302,304].

Let us now work through the simplest example exhibiting all the local symmetries
of interest, including supersymmetry. We consider the product of a left D = 4,N = 1
super Yang–Mills multiplet and D = 4 Yang–Mills on the right. In this case we have
the luxury of a full off-shell vector superfield for the left N = 1 super Yang–Mills,

V (x, θ, θ̄ ) =M + iθχ − i θ̄ χ̄ + iθ2F − i θ̄2 F̄ − θσμθ̄ Aμ

+ iθ2θ̄

(
ψ̄ + i

2
σ̄ ρ∂ρχ

)
− i θ̄2θ

(
ψ + i

2
σρ∂ρχ̄

)

+ 1

2
θ̄2θ2

(
D + 1

2
�M

)
(138)

transforming under local supergauge, non-Abelian global G and global super-
Poincaré:

δV = C + C̄︸ ︷︷ ︸
local Abelian supergauge

+
global non-Abelian G

︷ ︸︸ ︷
[V , X ] + δεV︸︷︷︸

global supersymmetry

(139)

where C(x, θ, θ̄ ) is a chiral superfield of ghosts

C(x, θ, θ̄ ) = B +√2θζ + θ2K + iθσρθ̄∂ρc + i√
2
θ2θ̄ σ̄ ρ∂ρζ + 1

4
θ2θ̄2�B

(140)

The product ofN = 1 withN = 0 Yang–Mills generatesN = 1 supergravity coupled
to a single chiral multiplet, as can be seen directly from the product of helicity states,

(+1,+ 1
2 ,− 1

2 ,−1
)⊗ (+1,−1) = (+2,+ 3

2 ,− 3
2 ,−2

)

︸ ︷︷ ︸
N=1 supergravity

⊕ (+ 1
2 , 0, 0,− 1

2

)

︸ ︷︷ ︸
N=1 supergravity

. (141)
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The field and ghost dictionary is directly analogous:

Hν = V ◦ Ãν real supergravity superfield

S = V ◦ c̃ real ghost superfield

Sν = C ◦ Ãν chiral ghost superfield (142)

Varying the gravitational superfield via the dictionary

δHν = Sν + S̄ν + ∂νS + δεHν . (143)

This is the complete set of transformation rules for the new-minimal superfield at lin-
earised approximation [305,306]. Hence, the local gravitational symmetries of general
covariance, 2-form gauge invariance, local supersymmetry and local chiral symme-
try follow from those of Yang–Mills at linear level. In particular, the product of the
left fermion χ with the right ghost c̃ gives a local supergauge transformation of the
gravitino. Schematically,

ψν = ψ ◦ Ãν, η = ψ ◦ c̃ ⇒ Qψν = ∂μη, (144)

so that the presence of adjoint fermions induces local supersymmetries, in agreement
with the BCJ double-copy. Including N and Ñ adjoint fermions in the left and right
factors, we obtain N+ Ñ gravitini and local supergauge transformations and, hence,
an (N+ Ñ )-extended supergravity theory.

The 12+ 12 new minimal multiplet splits with respect to superconformal transfor-
mations into an 8+ 8 conformal supergravity multiplet plus a 4+ 4 conformal tensor
multiplet, (

5+ 3+ 1+ 3
4+ 2+ 4+ 2

)

︸ ︷︷ ︸
new-minimal

→
(
5+ 3
4+ 4

)

︸ ︷︷ ︸
conformal

+
(
3+ 1
2+ 2

)

︸ ︷︷ ︸
tensor

(145)

in terms of Spin(3) representations. Since the left (anti)ghost is a chiral superfield the
ghost-antighost sector gives a compensating 4+4 chiral (dilaton) multiplet [299,300],
yielding old-minimal 12 + 12 supergravity [307,308] coupled to a tensor multiplet,
which, with the conventional 2-derivative Lagrangian, correctly corresponds to the
on-shell content obtained by tensoring left/right helicity states.

This linearmapping can be used to construct a higher-order perturbative relationship
using a BCJ-type formalism [302], building on that of [117]. Even in the absence of
a full perturbative framework, the dictionary can be used to construct, for example,
supersymmetric (single and multi-centre) black hole solutions inN = 2 supergravity
[115,116], in the weak-field limit. Finally, it can be applied to curved back-grounds,
at least where the convolution can be made tractable [304].

3.2.2 Global symmetries

When coupled to other fields the Yang–Mills factors may have further global symme-
tries. In particular, in addition to global supersymmetry, pureN-extended Yang–Mills
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Table 4 U-dualities (global symmetries) of M-theory (D = 11,N = 1 supergravity) compactified on an
n-torus

n-torus U-duality G H

1 SO(1, 1,Z) SO(1, 1,R) –

2 SL(2,Z)× SO(1, 1,Z) SL(2,R)× SO(1, 1,R) SO(2,R)

3 SL(2,Z)× SL(3,Z) SL(2,R)× SL(3,R) SO(2,R)× SO(3,R)

4 SL(5,Z) SL(5,R) SO(5,R)

5 SO(5, 5,Z) SO(5, 5,R) SO(5,R)× SO(5,R)

6 E6(6)(Z) E6(6)(R) USp(8)

7 E7(7)(Z) E7(7)(R) SU(8)

8 E8(8)(Z) E8(8)(R) SO(16,R)

theories always possess global R-symmetries. The global of the factors generate global
symmetries in the product. In the context of supergravity, these typically take the form
of non-compact global symmetries, G, acting non-linearly on the scalar fields, the
preeminent example being D = 4,N = 8 supergravity, which has global symmetry
E7(7), the maximally split non-compact real form of the second largest exceptional Lie
group [309]. From the “open× open = closed” string point of view, when it applies
in the sense that the supergravity theory is the low energy effective field theory limit,
these global symmetries can be understood as the continuous limit of the U-duality
groups ofM-theory [310]. This is indeed the case for all supergravity theories obtained
from pure “NYang–Mills×ÑYang–Mills” in any dimension, since the factors are all
(possibly consistent truncations of) open string theories. In these examples, the scalar
fields of the corresponding supergravity theory always parametrise a symmetric space
G/H, whereH is themaximal compact subgroup of the non-compact global symmetry
group G [140]. This reflects and generalises our earlier observation that in D = 4 the
axion–dilaton of N = 0 supergravity belongs to SL(2,R)/SO(2). An obvious ques-
tion at this point is the Yang–Mills origin of such symmetries. In the followingwe shall
describe this situation, revealing some unexpected surprises along the way, as well as
some general principles both in the supersymmetric and non-supersymmetric cases.
The question of global symmetries from squaring Yang–Mills has been addressed in,
for example, [66,68,69,72,75,77,81,85,136,138–140,144,311,312], both in the context
of scattering amplitudes and field theory.

As an example, in Table 4we give theU-dualities of D = 11M-theory compactified
on an n-torus (equivalently D = 10 type IIA tring theory on an (n − 1)-torus), and
the G,H of the corresponding supergravity low energy effective field theory limits.
These are the square of the maximally supersymmetric Yang–Mills thoeries in D =
10− (n + 1). As one observes, the global symmetries become increasingly manifest
as one descends in dimension.28 Thus, to fully expose the structure of the global
symmetries with respect to squaring we should consider the product of super Yang–

28 We stop at D = 3, which has E8(8) U-duality, the largest finite dimensional exceptional Lie algebra. One
can continue to D = 2, 1, 0, invoking the infinite dimensional extended algebras E9(9), E10(10), E11(11)
[313–316]. Although we will not discuss theses cases here, it would be interesting to investigate if they can
be understood from the perspective of Yang–Mills squared.
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Mills theories in D = 3. This was done in [136]. The result reveals a rather intriguing
mathematical structure. The symmetry algebras obtained make up the Freudenthal–
Rosenfeld–Tits magic square [317–319] as given in Table 6. As we shall explain this
surprise has an elegant explanation, but first let us briefly return to the familiar case
of D = 4 to make some generic observations.

Global symmetries: a first look To discuss global symmetries we can put aside the
gauge/BRST transformations and focus on the asymptotic states of the on-shell spec-
trum. For the left/right Yang–Mills factors, these are labelled by their representations
under the common spacetime little group Spin(D−2) and any internal global symme-
tries they may carry, which may include both R-symmetries R, R̃ and flavour groups
F, F̃ . We shall work at the infitesimal level, denoting the spacetime and internal Lie
algebras by so(D − 2) and int, ˜int. Suppressing the momentum label the states are
denoted:

left states |ρso(D−2); ρint〉ρgL , right states |ρso(D−2); ρ ˜int〉
ρg̃
L . (146)

We have supressed the momentum and colour labels. However, it is sometimes impor-
tant to recall the gauge group representation carried by the states, as indicated by the
superscript. When all states are in the adjoint we will leave this implicit. Since the
left/right spacetimes are identified, but the internal symmetries are not, the product
states are (so(D − 2) ⊕ int ⊕ ˜int)-modules.29 Since, at tree-level all amplitudes of
the left/right factors are invariant under int and ˜int, respectively, the global internal
symmetry of the gravity theory is at least int⊕ ˜int. In the absence of anomalies this
persists to all orders in perturbation theory. But this need not be all symmetries of the
gravitational theory. As we have argued, and will make explicit in the following, the
global supersymmetries of the left (N-extended) and right (Ñ-extended) factors sum
to give local supersymmetries, so that the product theory has (N+ Ñ)-extended local
supersymmetry. Such theories have, at least, a linearly global symmetry isomorphic to
the (N+Ñ)-extended R-symmetry group, which includes as a subgroup the product of
the left and right R-symmetry groups. The product theory can and will (typically) have
more symmetry than is present in its factors. From the perspective of the double-copy
this is quite remarkable. The gravity amplitudes are built from the numerators of the
factor only, which individually manifest only their own global symmetries, yet they
conspire to yield the larger symmetry of the gravity theory.

Given enough symmetry in the factors, the symmetries of the product theory can be
deduced unambiguously form the field theory product. First one must determine the
linearised local symmetry as described in the previous section. Given this structure,
one can then focuss on global symmetries in terms of either the fields or, more simply,
the asymptotic states. Let us work through the paradigmatic example of “N = 4Yang–
Mills ×Ñ = 4” Yang–Mills in D = 4. The N = 4 Yang–Mills multiplet includes a
gluon, four gluini and six scalars. The only allowed internal symmetry is the su(4)

29 It might be elucidating to not identify the spacetime symmetries. For example, one can reformulate the
N = 0 supergravity action so as to have manifest left and right Lorentz symmetries [281,284]. Nonetheless,
from the point of view of spectrum matching and global symmetries we should identify the spacetime little
groups.
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R-symmetry. The states are given by,

∧0Q|1; 1〉 = |1; 1〉
∧1Q|1; 1〉 = | 12 ; 4〉
∧2Q|1; 1〉 = |0; 6〉
∧3Q|1; 1〉 = |− 1

2 ; 4̄〉
∧4Q|1; 1〉 = |−1; 1〉 (147)

where |h;n〉 denotes a helicity h state carrying su(4) representation n. We have also
indicated the action of the supersymmetry charge Q ∼ |− 1

2 ; 4〉. The product yields

|1; 1〉 | 12 ; 4〉 |0; 6〉 |− 1
2 ; 4̄〉 |−1; 1〉

|1; 1〉 |2; 1, 1〉 | 32 ; 1, 4〉 |1; 1, 6〉 | 12 ; 1, 4̄〉 |0; 1, 1〉| 12 ; 4〉 | 32 ; 4, 1〉 |1; 4, 4〉 | 12 ; 4, 6〉 |0; 4, 4̄〉 |− 1
2 ; 4, 1〉|0; 6〉 |1; 6, 1〉 | 12 ; 6, 4〉 |0; 6, 6〉 |− 1

2 ; 6, 4̄〉 |−1; 6, 1〉|− 1
2 ; 4̄〉 | 12 ; 4̄, 1〉 |0; 4̄, 4〉 |− 1

2 ; 4̄, 6〉 |−1; 4̄, 4̄〉 |− 1
2 ; 4̄, 1〉|−1; 1〉 |0; 1, 1〉 |− 1

2 ; 1, 4〉 |−1; 1, 6〉 |− 3
2 ; 1, 4̄〉 |−2; 1, 1〉

(148)

Gathering the positive helicity states we find they carry the int⊕ ˜int ∼= su(4)⊕ su(4)
representations given by

2 Graviton: (1, 1)0 ← 1 (149)
3
2 Gravitini: (4, 1) 1

2
+ (1, 4)− 1

2
← 8 (150)

1 Vectors: (6, 1)1 + (1, 6)−1 + (4, 4)0 ← 28 (151)
1
2 Spinors: (4̄, 1) 3

2
+ (1, 4̄)− 3

2
+ (6, 4) 1

2
+ (4, 6)− 1

2
← 56 (152)

0 Scalars: (1, 1)2 + (1, 1)−2 + (4̄, 4)1 + (4, 4̄)−1 + (6, 6)0 ← 70 (153)

while the negative helicity states carry their complex conjugates. We have indicated in
the subscripts an additional u(1) charge q corresponding to the difference, rather than
sum, of the left and right helicities, q = h̃ − h, so that so(2)⊕ s̃o(2) ∼= so(2)⊕ u(1),
introduced in [72].We have also indicated the branching under su(8) ⊃ u(1)⊕su(4)⊕
su(4) of the positive helicity N = 8 supergravity states carrying the corresponding
representations under its linearly realised global symmetry H ∼= SU(8) (we have
weighted the u(1) by a factor of 2 relative to the standard conventions). As observed
in [72], with the u(1) charges included, the spectrum of “N = 4 Yang–Mills×Ñ = 4”
is precisely that of N = 8 supergravity under su(8) ⊃ u(1)⊕ su(4)⊕ su(4):

∧0Q|2; 1〉 = |1; 1〉
∧1Q|2; 1〉 = | 32 ; 8〉
∧2Q|2; 1〉 = |1; 28〉
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∧3Q|2; 1〉 = | 12 ; 56〉
∧4Q|2; 1〉 = |0; 70〉
∧6Q|2; 1〉 = |− 1

2 ; 56〉
∧7Q|2; 1〉 = |−1; 28〉
∧8Q|2; 1〉 = |−2; 1〉. (154)

This also makes it clear that the left and right supercharges generate the N = 8
supercharges Q = Q ⊕ Q̃; under the product the supersymmetries sum N × Ñ →
N+ Ñ.

Note, unlike su(4) ⊕ su(4), the additional u(1) was not a priori required to be
a symmetry of the product theory. Nonetheless, its presence for the product of pure
(super) Yang–Mills theories may be anticipated from various points of view. This
analysis can be repeated for any product of pure super Yang–Mills theories, including
N = 0, in D = 4 [138,140]. In these cases, the additional u(1) is always required at
the level of symmetries. In particular, it ensures that the scalar manifold is symmetric
[85], just as in the case of axion–dilaton gravity (dualisedN = 0 supergravity) derived
from the square of pure Yang–Mills. All such theories may be consistently truncated
to N = 0 supergravity, so from this point of view it is reasonable, although not
unquestionable, to expect the presence of the u(1) symmetry. It is in this sense that
the product of Yang–Mills theories generically yields symmetric scalar manifolds.
Moreover, it is crucially present in all the double-copy constructed amplitudes in all
cases that have been tested, although there is no formal proof that it holds to all points.
For N + Ñ > 4 this had to be the case as the supergravity theories are unique and
have this symmetry. For N+ Ñ ≤ 4 it is also present at tree-level, but is anomalous.
Rather satisfyingly, these anomalies can be traced back to the factors through the
double-copy [72,82]. As we shall review, it can also be understood from the division
algebraic perspective on spacetime and supersymmetry.

We have thus far left the generators of su(8) not contained in u(1)⊕ su(4)⊕ su(4)
unaccounted for. Although these cannot be generated by left or right transformations
alone, they may be deduced from their product. Since we are seeking bosonic sym-
metries we can consider the “product” of the left and right supercharges, Q ⊗ Q̃ to
give us a map ofN = 8 states that preserves helicity [140]. Let us denote the formally
modified (by, roughly speaking, �−130) supersymmetry charges introduced in [140],
by Qa−, Q+a , where the± charge raises/lowers the helicity by±1/2 and the superscript
(subscript) a is in the 4 (4) of su(4). The helicity preserving operators Qa− ⊗ Q̃+a and
Q+a ⊗ Q̃a− operators sit in the (4, 4̄)1+(4̄, 4)−1 of u(1)⊕su(4)⊕su(4), whichmatches
the decomposition under su(8) ⊃ u(1)⊕ su(4)⊕ su(4),

63 = (15, 1)0 ⊕ (1, 15)0 ⊕ (1, 1)0 + (4, 4̄)1 + (4̄, 4)−1. (155)

The action of the helicity preserving operators Q ⊗ Q̃ on theN = 8 states gives pre-
cisely the required transformations as described in [140]. Computing the commutators

30 It is tempting to spectulate that this modification is related to the spectator scalar of the field product.
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through this action, the full Lie algrebra of su(8) is recovered. This generalises to all
dimensions and degrees of supersymmetry [140].

But this is not the end of the story. As emphasised, the equations of motion of
N = 8 supergravity have a non-linear realised non-compact global symmetry, E7(7).
If we make the assumption that the supergravity scalars parametrise a Riemannian
symmetric homogenous space G/H, then Tp(G/H) ∼= p, where g = h+ p for g, h the
Lie algebras of G,H respectively. Then the previously derived h representation carried
by the scalars is enough to fix G. In the present example we have 133 = 63+ 70 under
su(8) ⊂ e7(7). Since the scalars are indeed in the 70 of su(8), we infer the E7(7) and
then can check the consistency of the representations carried by the vectors. Justifying
the assumption that the scalars will parametrise a symmetric space by considering
all N = 0 truncations, this provides a relatively systematic approach to fixing the
global symmetries. In fact, it has a very natural algebraic/geometric underpinning
as we shall describe in the following section. Of course, one could argue that given
the uniqueness of N > 4 supergravity, we knew the answer all along, however this
is against the spirit of “gravity = gauge × gauge”. Besides, it can be generalised
to N ≤ 4 supergravity theories, with a very large class of matter couplings, where
we lose uniqueness and can drop the symmetric31 scalar manifold assumption [85].
Nonetheless, one would like to see the generators in p ⊂ g arise directly in terms
of products of operators belonging to the left and right factors. Let us reconsider the
tensor product of the (modified) supersymmetry charges introduced above. The ±1
helicity states transform irreducibly in the 56 of e7(7), which decomposes into the
28+ 28 under su(8). The 70 ∈ e7(7) # su(8) exchanges the helicity states so we
require operators in the

70 = (1, 1)2 + (1, 1)−2 + (4̄, 4)1 + (4, 4̄)−1 + (6, 6)0 (156)

of u(1)⊕ su(4)⊕ su(4) ⊂ su(8) carrying helicity charge ±2 related by conjugation
and self-duality:

Q+a Q+b ⊗ Q̃+ã Q̃
+
b̃

(6, 6)20
Q+a Q+b Q+c ⊗ Q̃+ã (4, 4)2−1

Q+a ⊗ Q̃+ã Q̃
+
b̃
Q̃+c̃ (4, 4)21

Q+a Q+b Q+c Q
+
d ⊗ 1 (1, 1)−2−2
1 ⊗ Q̃+ã Q̃

+
b̃
Q̃+c̃ Q̃

+
d̃

(1, 1)22

(157)

which gives the correct commutation relations acting on the vector states. This is just
suggestive and the full picture is yet to be made clear at the level of field theory.

Returning to amplitudes and the BCJ double-copy we can be much more concrete,
since they intrinsically carry non-linearities. Generically, the presence of a non-linear
symmetry of the scalar Lagrangian, we have inmind hereG/H sigmamodel, manifests
itself through low-energy theorems regarding soft limits of the scalar amplitudes [311,
312,320]. If the space of scalars is a homogenous manifold, they are the Goldstone

31 We must retain the homogenous assumption. In fact, as far as we are aware there are as yet no examples
of double-copy constructible supergravity theories without homogenous scalar manifolds, despite there
ubiquity for N ≤ 2.
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bosons of H ⊂ G and so are derivatively coupled. Consequently, on sending the
momentum of any external scalar in any amplitude to zero the amplitude itself will
vanish. This, in contrast, is not the case for the Yang–Mills factors. In the present
case, the SU(4) symmetry of N = 4 Yang–Mills is linearly realised on the scalars
and single-soft-scalar limits do not vanish, but rather give the small-mass limit of
Coulomb branch amplitudes [321]. Building amplitudes involving scalar through the
double-copy of N = 4 and then testing the vanishing of single-soft-scalar limits
establishes that the scalars of the double-copy theory belong to a homogeneous space,
despite the fact that scalars of the factors do not. One can go further by carefully
considering taking double-soft limits in different orders to extract the commutation
relations of the coset manifold and in this way piece together the full non-global
symmetry of the double-copy theory, as has been done in some detail the E7(7) of
N = 8 supergravity [312]. The same principles can be applied to any case where the
scalars belong to a homogenous manifold, a particularly elegant example constructed
through the double-copy in [77] is given by the magic N = 2 supergravity theories
[237,244,245], which have exceptional non-compact global symmetries belonging to
(a particular non-compact real form of) the Freudenthal–Rosenfeld–Tits magic square
[317–319,322,323]. In fact, (a different non-compact real form of) the magic square
arises naturally from “gravity = gauge × gauge” in a completely different context.
This forms the next part of the story of the global symmetries.

3.2.3 Magic pyramids of symmetries

Recall, the U-duality symmetries grow as we descend in spacetime dimension. See
Table 4. Let us therefore consider the global symmetries of the product of all pure
N = 1, 2, 4, 8 Yang–Mills theories in D = 3. Applying the principles of the pre-
ceding sections a remarkable result follows. It was shown in [136] that the resulting
(N+ Ñ)-extended supergravity theories have global symmetries given precisely by (a
particular non-compact real form of) the Freudenthal–Rosenfeld–Tits magic square,
as summarised in Table 5.

The Freudenthal–Rosenfeld–Tits magic square [317–319,322,323] is a 4× 4 array
m(A, Ã) of semi-simple Lie algebras given by pairs of composition algebrasA, Ã =
R,C,H,O, as given in Table 6. The original magic square was for compact real
forms, but there are various modifications that allow for a variety of real forms. The
complete set of possibilities are given in [324]. The magic square given in Table 6 can
be concisely summarised by the magic square formula [136],

ms(ANL ,ANR ) := tri(ANL )⊕ tri(ANR )+ 3(ANL ⊗ANR ), (158)

which adapts the compact version given in [196]. The triality algebra of A, denoted
tri(A), is related to the total on-shell global symmetries of the associated super Yang–
Mills theory [190]. This rather surprising connection, relating the magic square of
Lie algebras to the square of super Yang–Mills, can be attributed to the existence of
a unified AN = R,C,H,O description of D = 3, N = 1, 2, 4, 8 super Yang–Mills
theories.
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Table 5 (N + Ñ )-extended D = 3 supergravities obtained by the product of left/right super Yang–Mills
multiplets with N, Ñ = 1, 2, 4, 8

N\Ñ 1 2 4 8

1 G = SL(2,R) SU(2, 1) USp(4, 2) F4(−20)
H = SO(2) SO(3)× SO(2) SO(5)× SO(3) SO(9)

2 SU(2, 1) SU(2, 1)2 SU(4, 2) E6(−14)
SO(3)× SO(2) SO(3)2 × SO(2)2 SO(6)× SO(3)× SO(2) SO(10)× SO(2)

4 USp(4, 2) SU(4, 2) SO(8, 4) E7(−5)
SO(5)× SO(3) SO(6)× SO(3)× SO(2) SO(8)× SO(3)× SO(3) SO(12)× SO(3)

8 F4(−20) E6(−14) E7(−5) E8(8)
SO(9) SO(10)× SO(2) SO(12)× SO(3) SO(16)

The algebras of the corresponding U-duality groups G and their maximal compact subgroups H are given
by the magic square of Freudenthal–Rosenfeld–Tits [317–319,322,323]

Table 6 The magic square with
real form corresponding to the
product of pure super
Yang–Mills theories in D = 3
spacetime dimensions

A\Ã R C H O

R sl(2,R) su(2, 1) sp(4, 2) f4(−20)
C su(2, 1) su(2, 1)× su(2, 1) su(4, 2) e6(−14)
H sp(4, 2) su(4, 2) so(8, 4) e7(−5)
O f4(−20) e6(−14) e7(−5) e8(8)

This observation was subsequently generalised to D = 3, 4, 6 and 10 dimensions
[138,190] by incorporating the well-known relationship between the existence of min-
imal super Yang–Mills theories in D = 3, 4, 6, 10 and the existence of the four
division algebras R,C,H,O [187,189,191,195]. From this perspective the D = 3
magic square forms the base of a “magic pyramid” of supergravities, given in Fig. 1.
The Lie algebras are given by the magic pyramid formula:

mp(An,AnN,AnÑ) :=
{
u ∈ ms(AnN,AnÑ)# so(An)ST

∣∣
∣[u, so(An)ST ] = 0

}
.

(159)
These constructions build on a long line of work relating division algebras and

magic squares to spacetime and supersymmetry. See [35,187–189,191,195,237,244,
245,313,324–358] for a glimpse of the relevant literature. An early example32 in the
context of group disintegrations in supergravity appears in [313]. Before developing
these ideas we should take a breif detour through division algebras and the magic
square.

Division algebras and the magic square In this section we follow closely [195,196];
we refer the reader to these works for more detailed explanations and proofs. An
algebra A defined over R with identity element e0, is said to be composition if it has

32 As far as we are aware the first instance in this context.
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Fig. 1 Amagic pyramid of supergravities. The vertical axis labels the spacetime division algebraAn , while
the horizontal axes label the algebras associated with the number of supersymmetries AnN andAnÑ

a non-degenerate quadratic form33 n : A→ R such that,

n(ab) = n(a)n(b), ∀ a, b ∈ A, (160)

where we denote the multiplicative product of the algebra by juxtaposition. Regarding
R ⊂ A as the scalar multiples of the identityRe0 we may decomposeA into its “real”
and “imaginary” partsA = R⊕ ImA, where ImA ⊂ A is the subspace orthogonal to
R. An arbitrary element a ∈ Amay bewritten a = Re(a)+Im(a). Here Re(a) ∈ Re0,
Im(a) ∈ ImA. Defining conjugation using the bilinear form,

τ(a) ≡ a := 〈a, e0〉e0 − a, 〈a, b〉 := n(a + b)− n(a)− n(b). (161)

we as usual write

Re(a) = 1

2
(a + a), Im(a) = 1

2
(a − a). (162)

A composition algebra A is said to be division if it contains no zero divisors,

ab = 0 ⇒ a = 0 or b = 0,

in which case n is positive semi-definite andA is referred to as a normed division alge-
bra. Hurwitz’s celebrated theorem states that there are exactly four normed division

33 A quadratic norm on a vector space V over a field R is a map n : V → R such that: (1) n(λa) =
λ2n(a), λ ∈ R, a ∈ V and (2) 〈a, b〉 := n(a + b)− n(a)− n(b) is bilinear.
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Fig. 2 The Fano plane. The
structure constants are
determined by the Fano plane,
Ci jk = 1 if i jk lies on a line and
is ordered according as its
orientation. Each oriented line
follows the rules of quaternionic
multiplication. For example,
e2e3 = e5 and cyclic
permutations; odd permutations
go against the direction of the
arrows on the Fano plane and we
pick up a minus sign, e.g.
e3e2 = −e5

algebras [359]: the reals, complexes, quaternions and octonions, denoted respectively
byR,C,H andO. They may be constructed via the Cayley-Dickson doubling proce-
dure, A′ = A⊕A with multiplication inA′ defined by

(a, b)(c, d) = (ac − db̄, ād + cb). (163)

With each doubling a property is lost as summarised here:

dim Division Associative Commutative Ordered
R = R 1 yes yes yes yes
C ∼= R⊕R 2 yes yes yes no
H ∼= C⊕ C 4 yes yes no no
O ∼= H⊕H 8 yes no no no

Note that, while the octonions are not associative they are alternative:

[a, b, c] := (ab)c − a(bc) (164)

is an alternating function under the interchange of its arguments. This property is
crucial for supersymmetry.

An element a ∈ O may be written a = aaea , where a = 0, . . . , 7, aa ∈ R and
{ea} is a basis with one real e0 and seven ei , i = 1, . . . , 7, imaginary elements. The
octonionic multiplication rule is,

eaeb = (δa0δbc + δ0bδac − δabδ0c + Cabc) ec, (165)

where Cabc is totally antisymmetric and C0bc = 0. The non-zero Ci jk are given by
the Fano plane. See Fig. 2.

There are three symmetry algebras on A that we will make use of here. The norm
preserving algebra is defined as,

so(A) := {A ∈ HomR(A)|〈Aa, b〉 + 〈a, Ab〉 = 0, ∀a, b ∈ A}, (166)
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yielding,

so(R) ∼= ∅,
so(C) ∼= so(2),

so(H) ∼= so(3)⊕ so(3),

so(O) ∼= so(8). (167)

The triality algebra of A is defined as triples (A, B,C) ∈ so(A) ⊕ so(A) ⊕ so(A)

that act as generalise derivations,

tri(A) := {(A, B,C)|A(ab) = B(a)b + aC(b), ∀a, b ∈ A}, (168)

yielding,

tri(R) ∼= ∅,
tri(C) ∼= so(2)⊕ so(2),

tri(H) ∼= so(3)⊕ so(3)⊕ so(3),

tri(O) ∼= so(8). (169)

Note, the octonionic triality algebra reduces to a single copy of so(8). This is the
statement of infinitesimal triality: for all A ∈ so(8) there exist unique B,C such that

A(ab) = B(a)b + aC(b), ∀a, b ∈ O. (170)

One can regard the triality algebra as a generalised form of the derivation algebra,

der(A) = {A ∈ HomR(A)|A(ab) = A(a)b + aA(b)}, (171)

which for A = O gives the smallest exceptional Lie algebra,

der(R) ∼= ∅,
der(C) ∼= ∅,
der(H) ∼= so(3),

der(O) ∼= g2(−14). (172)

This provides the first example of a division algebraic description of an exceptional
Lie algebra. In fact, the entire magic square can be realised in terms of the division
algebras. The magic square was the result of an effort to give a unified and geometri-
cally motivated description of Lie algebras, including the remaining exceptional cases
of f4, e6, e7, e8. The classical Lie algebras so(n), su(n), sp(n) are very naturally cap-
tured by R,C,H geometrical structures, respectively. There are a number of ways
of articulating this idea, but perhaps the most concise is in terms of the isometries of

123



162 L. Borsten

projective geometries. In particular, the isometry Lie algebras are:

Isom(RPn) ∼= so(n + 1), Isom(CPn) ∼= su(n + 1), Isom(HPn) ∼= sp(n + 1).
(173)

This sequence is rather suggestive; can we continue it to include Isom(OPn)? Despite
non-associativity it was shown by Moufang [360] that one can consistently construct
the octonionic projective line and plane, OP1 and OP2. The latter is often referred
to as the Cayley plane. However, we cannot go beyond n = 2 for the octonions,34

which in this context reflects the fact that there is indeed just a finite set of excep-
tional Lie algebras not belonging to any countably infinite family. The OP1 example
is constructed in direct analogy with the real, complex and quaternionic cases.35 It has
Isom(OP1) ∼= so(8), so does not give us anything new. The octonionic plane has a
more intricate structure. An element (a, b, c) ∈ O3 with n(a)+ n(a)+ n(c) = 1 and
(ab)c = a(bc) gives a point in OP2, the line through the origin containing (a, b, c)
in O3. It is not difficult to show the space of such elements is a 16-dimensional real
manifold embedded inO3 through eight real constraints: n(a)+n(a)+n(c) = 1 and
(ab)c = a(bc). The lines inOP2 are copies ofOP1 and there is a duality relation send-
ing lines/points into points/lines preserving the incidence structure. Borel showed that
F4(−52) is the isometry group of a 16-dimensional projective plane, which is none other
thanOP2. One can show that the points and lines inOP2 are in one-to-one incidence
preserving correspondence with trace 1 and 2 projectors in the Jordan algebra of 3×3
octonionicHermitianmatricesJ3(O) (treating projectors as propositions the incidence
relation inJO3 is givenby implication) [361].Then F4(−52) = Isom(OP2) follows auto-
matically from the result of Chevalley and Schafer that F4(−52) = Aut(J3(O)), the
group preserving the Jordan product with Lie algebra der(J3(O)) [362]. In summary,
the sequence in (173) is continued to include,

Isom(OP2) ∼= der(J3(O)) ∼= f4(−52). (174)

Since F4(−52) acts transitively on the space of trace 1 projectors and the stabiliser of
a given trace 1 projector is isomorphic to Spin(9) we have,

OP2 ∼= F4(−52)/Spin(9). (175)

The Cayley plane is a homogenous symmetric space with Tp(OP2) ∼= O2, which
carries the spinor representation of Spin(9); under F4(−52) ⊃ Spin(9) we have

f4(−52) ∼= so(R⊕O)+O2

∼= so(O)+O+O+O. (176)

34 One way to understand this is in terms of Jordan algebras. Points inOP2 are bijectively identified with
trace 1 projectors in JO3 , the Jordan algebra of 3× 3 octonionic Hermitian matrices. However, for m > 3,
m × m octonionic Hermitian matrices do not form a Jordan algebra.
35 Non-associativity, however, implies that the line through the origin containing the point (a, b) is not
given by {(αa, αb)|α ∈ O}, unless x = 1 or y = 1. This obstacle is easily avoided as all non-zero octonions
have an inverse; (a, b) is equivalent to (b−1a, 1) or (1, a−1b) for b �= 0 or a �= 0, giving two charts with
a smooth transition function on their overlap. See [195].
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The threeO terms in the final line transform in the three triality related 8-dimensional
representations of so(8), the vector, spinor and conjugate spinor. It is this triality
relation which implies that tri(O) ∼= so(O).

Seemingly inspired by the trivial identity O ∼= R ⊗ O Boris Rosenfeld [319]
proposed a natural extension of this construction,

Isom((C⊗O)P2) ∼= e6(−78),
Isom((H⊗O)P2) ∼= e7(−133),
Isom((O⊗O)P2) ∼= e8(−248), (177)

thus giving a uniformgeometric description for all Lie algebras. Thewould-be tangents
spaces (A ⊗ O)2 have the correct dimensions. However, it is not actually possible
to construct projective spaces over H ⊗ O and O ⊗ O using the logic applied to
OP2, essentially because they do not yield Jordan algebras. They nonetheless can
be identified with Riemannian geometries with isometries E7(−133) and E8(−248),
respectively. Indeed, the Lie algebra decompositions,36

f4(−52) ∼= so(R⊕O)+ (R⊗O)2

e6(−78) ∼= so(C⊕O)⊕ u(1)+ (C⊗O)2

e7(−133) ∼= so(H⊕O)⊕ sp(1)+ (H⊗O)2

e8(−248) ∼= so(O⊕O)+ (O⊗O)2 (178)

naturally suggest the identifications

Isom((R⊗O)P2) = F4(−52)/Spin(9)
Isom((C⊗O)P2) = E6(−78)/[(Spin(10)× Un(1))/Z4]
Isom((H⊗O)P2) = E7(−133)/[(Spin(10)× Sp(1))/Z2]
Isom((O⊗O)P2) = E8(−248)/[Spin(16)/Z2] (179)

with tangent spaces (R⊗O)2, (C⊗O)2, (H⊗O)2, (O⊗O)2 carrying the appropriate
spinor representations. Using the Tits’ construction [318] the isometry algebras are
given by the natural generalisation of (174),

f4(−52) ∼= der(R)⊕ der(J3(O))+ ImR⊗ J′3(O)

e6(−78) ∼= der(C)⊕ der(J3(O))+ ImC⊗ J′3(O)

e7(−133) ∼= der(H)⊕ der(J3(O))+ ImH⊗ J′3(O)

e8(−248) ∼= der(O)⊕ der(J3(O))+ ImO⊗ J′3(O), (180)

36 Note, the additional factors are given by intermediate algebras: tri(A)# int(A) = ∅, u(1), sp(1), ∅ for
A = R,C,H,O [196].
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Table 7 The magic square given
by the Tits’ construction

⊗ R C H O

R su(2) su(3) sp(6) f4(−52)
C su(3) su(3)× su(3) su(6) e6(−78)
H sp(6) su(6) so(12) e7(−133)
O f4(−52) e6(−78) e7(−133) e8(−248)

where J′ denotes the subset of traceless elements in J. Generalising further, the Tits’
construction defines a Lie algebra,

ms(A, Ã)compact := der(A)⊕ der(J3(Ã))+ ImA⊗ J′3(Ã), (181)

which yields the compact magic square given in Table 7. The “magic” is that Table 7
symmetric about the diagonal despite the apparent asymmetry of (181). To obtain a
magic square with the non-compact real forms that follow from squaring Yang–Mills,
as given in Table 6, one can use a Lorentzian Jordan algebra [324],

ms(A, Ã) := der(A)⊕ der(J1,2(Ã))+ ImA⊗ J′1,2(Ã). (182)

The commutation relations are omitted here, as later we shall see that Yang–Mills
squared gives an alternative form of (182), based on the Barton-Sudbery triality con-
struction [196], that is manifestly symmetric in A, Ã [136,138], for which we will
present the details in full. This symmetric form reflects the fact that the squaring
procedure is itself symmetric on interchanging the left and right theories.

Division algebras and Yang–Mills theories: In the two previous sections we saw
that the “square” of D = 3 super Yang–Mills theories and the “square” of division
algebras both led to the magic square of Freudenthal. Surely this is no coincidence.
Indeed, there is a long history of work connecting supersymmetry, spacetime and the
division algebras [35,187–189,191,195,237,244,245,324–339,341–343,346,348,352,
353,356–358], which, as we shall review, underlies this magical meeting.

Perhaps the most direct link from division algebras to spacetime symmetries comes
via the Lie algebra isomorphism of Sudbery [191],

sl(2,A) ∼= so(1, 1+ dimA), (183)

which identifies D = 3, 4, 6, 10 as algebraically special. This is itself tied to the earlier
observation of Kugo and Townsend [187] that the existence of minimal super Yang–
Mills multiplets in only D = 3, 4, 6, 10 is related to the uniqueness of R,C,H,O.
This was followed-up by a number of authors [192,193,363–365], sharpening the
correspondence between supersymmetry and division algebras. The final case of
D = 10,A = O was developed most carefully in [189], where the link between
supersymmetry and the alternativity of O was emphasised.

Pulling together these ideas, it was shown in [190] that N-extended super Yang–
Mills theories in D = n + 2 dimensions are completely specified (the field content,
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Table 8 A table of algebras: sym(An ,AnN)

An\AnN O H C R

O so(8)ST
H so(4)ST ⊕ sp(1)⊕ sp(1) so(4)ST ⊕ sp(1)

C so(2)ST ⊕ su(4) so(2)ST ⊕ sp(1)⊕ so(2) so(2)ST ⊕ so(2)

R so(8) so(4)⊕ sp(1) so(2)⊕ so(2) ∅
This lets us read off the spacetime and internal symmetries in each Yang–Mills theory. For example, one
can see the familiar R-symmetries in D = 4: U(1), U(2) and SU(4) forN = 1, 2, 4, respectively. Note that
the symmetries in D = 3 are entirely internal and that they include the R-symmetry as a subgroup (these
are actually the symmetries of the theories after dualising the vector to a scalar)

Lagrangian and transformation rules) by selecting an ordered pair of division algebras:
An for the spacetime dimension andAnN for the degree of supersymmetry, where the
subscripts denote the dimension of the algebras. Consequently, the dual appearances
of the magic square in D = 3, or equivalently for An = R, can be explained by
the observation that D = 3,N = 1, 2, 4, 8 Yang–Mills theories can be formulated
with a single Lagrangian and a single set of transformation rules, using fields valued
in R,C,H and O, respectively [136]. Tensoring an A-valued D = 3 super Yang–
Mills multiplet with an Ã-valued D = 3 super Yang–Mills multiplet yields a D = 3
supergravity multiplet with fields valued in A ⊗ Ã, making a magic square of U-
dualities appear rather natural.

As noted in [190], the overall (spacetime little group plus internal) symmetry of
the N = 1 theory in D = n + 2 dimensions is given by the triality algebra, tri(An).
If we dimensionally reduce these theories we obtain super Yang–Mills withN super-
symmetries whose overall symmetries are given by,

sym(An,AnN) := {
(A, B,C) ∈ tri(AnN)|[A, so(An)ST ] = 0, ∀A /∈ so(An)ST

}
,

(184)
where so(An)ST is the subalgbra of so(AnN) that acts as orthogonal transformations
on An ⊆ AnN. The division algebras used in each dimension and the corresponding
sym algebras are summarised in Table 8.

Let us take D = 3 as a concrete example. The N = 8 Lagrangian is given by

L = tr
( 1
2 F ∧ �F − 1

2Dϕi ∧ �Dϕi + i λ̄a /Dλa

− 1
4g

2[ϕi , ϕ j ][ϕi , ϕ j ] − gλ̄a�i
ab[ϕi , λb]

)
, (185)

where �i
ab, i = 1, . . . , 7, a, b = 0, . . . , 7, belongs to the SO(7) Clifford algebra.

The key observation is that this gamma matrix can be represented by the A structure
constants Cabc,

�i
ab = i(δbiδa0 − δb0δai + Ciab), (186)
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Table 9 Magic square of maximal compact subalgebras

AL\AR R C H O

R so(2) so(3)× so(2) so(5)× so(3) so(9)

C so(3)× so(2) [so(3)× so(2)]2 so(6)× so(3)× so(2) so(10)× so(2)

H so(5)× so(3) so(6)× so(3)× so(2) so(8)× so(4) so(12)× so(3)

O so(9) so(10)× so(2) so(12)× so(3) so(16)

which allows us to rewrite the N = 1, 2, 4, 8 action in terms of a single expression
defined over R,C,H,O:

L = tr
(
1
2 F ∧ �F − 1

2Dϕ ∧ �Dϕ + i λ̄ /Dλ− 1
4g

2〈[ϕ, ϕ]|[ϕ, ϕ]〉 − g[λ̄, ϕ, λ]
)

,

(187)
where ϕ = ϕi ei is an ImA-valued scalar field, λ = λaea is an A-valued two-
component spinor and λ̄ = λ̄ae∗a .

Now consider the product of two division algebraic multiplets, whereN = dimA,
Aμ ∈ ReA, ϕ ∈ ImA, λ ∈ A and similar for the right theory. We obtain the field
content of an (N+ Ñ)-extended supergravity theory valued in both Ã and Ã:

gμν ∈ R, �μ ∈
(
A

Ã

)
, ϕ, χ ∈

(
A⊗ Ã

A⊗ Ã

)
. (188)

TheR-valued graviton andA⊕ Ã-valued gravitino carry no degrees of freedom. The
(A ⊗ Ã)2-valued scalar and Majorana spinor each have 2(dimA × dim Ã) degrees
of freedom.

The H algebra then follows immediately in this division algebraic language. The
left and right factors each comewith a commuting copy of the triality algebra, tri(A)⊕
tri(Ã). However, theA⊗ Ã doublets in (188) form irreducible representations of R-
symmetry. The corresponding generators must themselves transform under tri(A)⊕
tri(Ã) consistently, implying they are elements of A ⊗ Ã. This follows, formally,
from the left/right supersymmetries Q ⊗ Q̃

h(A, Ã) := tri(A)︸ ︷︷ ︸
Left global symmetries

⊕ tri(Ã)︸ ︷︷ ︸
Right global symmetries

+A⊗ Ã︸ ︷︷ ︸
Q⊗Q̃

. (189)

This follows from the observation that Q ⊗ Q̃ ∈ A⊗ Ã. Recall, these are “pseudo-
supersymmetry” transformations since they do not change the mass dimension of
the component fields. This Lie algebra yields the maximal compact subalgebras of
the corresponding non-compact global symmetries of the magic square, as given in
Table 9.

The U-dualities G are realised non-linearly on the scalars, which parametrise the
symmetric spaces G/H. This can be understood using the identity relating (A⊗ Ã)2
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to G/H,
(A⊗ Ã)P2 ∼= G/H. (190)

The scalar fieldsmay be regarded as points in division-algebraic projective planes. The
tangent space Tp(G/H) ∼= p = g # h implies the scalars carry the p-representation
of H. The tangent space at any point of (A ⊗ Ã)P2 is just (A ⊗ Ã)2, the required
representation space ofH. Since G/H is a symmetric space, the U-duality Lie algebra
is given by adjoining the scalar representation space (A⊗ Ã)2 to (189),

ms(A, Ã) := tri(A)⊕ tri(Ã)+ (A⊗ Ã)︸ ︷︷ ︸
h(A,Ã)

+ (A⊗ Ã)2︸ ︷︷ ︸
“scalars”

. (191)

This has aZ2×Z2 graded Lie algebra structure uniquely determined by the left/right
super Yang–Mills factors and yields precisely the magic square [138].

Let us describe how this formula works. For an element A ∈ so(A) define σ A ≡
τ Aτ−1 ∈ so(A). Then

θ : tri(A)→ tri(A) : (A, B,C) �→ (σ B,C, σ A), (192)

is an order three Lie algebra automorphism, which forA = O interchanges the three
inequivalent 8-dimensional representations of so(O).

Given two normed division algebras A and Ã we can define on

ms(A, Ã) = [tri(A)⊕ tri(Ã)]00 + (A⊗ Ã)01 + (A⊗ Ã)10 + (A⊗ Ã)11 (193)

aZ2×Z2 gradedLie algebra structure. First, tri(A) and tri(Ã) areLie subalgebras. For
elements T = (A, σ B, σC) in tri(A) and (a⊗b, 0, 0), (0, a⊗b, 0), and (0, 0, a⊗b)
in 3(A⊗ Ã), the commutators are given by the natural action of tri(A),

[T , (a ⊗ b, 0, 0)] = (A(a)⊗ b, 0, 0),

[T , (0, a ⊗ b, 0)] = (0, B(a)⊗ b, 0),

[T , (0, 0, a ⊗ b)] = (0, 0,C(a)⊗ b). (194)

Similarly for T̃ = ( Ã, σ B̃, σ C̃) in tri(Ã),

[T̃ , (a ⊗ b, 0, 0)] = (a ⊗ Ã(b), 0, 0),

[T̃ , (0, a ⊗ b, 0)] = (0, a ⊗ B̃(b), 0),

[T̃ , (0, 0, a ⊗ b)] = (0, 0, a ⊗ C̃(b)). (195)

For two elements belonging to the same summand (A⊗Ã)i j in (193) the commutators
are given by

[(a ⊗ b, 0, 0), (a′ ⊗ b′, 0, 0)] = 〈a, a′〉 T̃b,b′ + 〈b, b′〉Ta,a′,

[(0, a ⊗ b, 0), (0, a′ ⊗ b′, 0)] = −〈a, a′〉 θ T̃b,b′ − 〈b, b′〉θTa,a′ ,
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[(0, 0, a ⊗ b), (0, 0, a′ ⊗ b′)] = −〈a, a′〉θ2T̃b,b′ − 〈b, b′〉θ2Ta,a′, (196)

where
Ta,a′ := (Sa,a′ , Ra′Ra − Ra Ra′ , La′La − LaLa′), (197)

and
Sa,a′(b) = 〈a, b〉a′ − 〈a′, b〉a, La(b) = ab, Ra(b) = ba. (198)

Finally, we have

[(a ⊗ b, 0, 0), (0, a′ ⊗ b′, 0)] = (0, 0, aa′ ⊗ bb′),
[(0, 0, a ⊗ b), (a′ ⊗ b′, 0, 0)] = (0, aa′ ⊗ bb′, 0),
[(0, a ⊗ b, 0), (0, 0, a′ ⊗ b′)] = −(aa′ ⊗ bb′, 0, 0). (199)

With these commutators the magic square formula (193) describes the Lie algebras
of Table 6. The formula (191) is based on the triality construction described in [196].
Although isomorphic as vector spaces, they have different Lie algebra structures, as
reflected in the distinct real forms appearing in each case. We see that we truncate to
the maximal compact subalgebra (189) by discarding any two of the three summands
(A⊗ Ã)i j .

For D = n + 2, we begin with a pair of Yang–Mills theories with N and Ñ
supersymmetries written over the division algebras AnN and AnÑ, respectively, as
described in [190]. In terms of spacetime little group representations we may then
write all the bosons of the left (right) theory as a single element b ∈ AnN (b̃ ∈ AnÑ),
and similarly for the fermions f ∈ AnN ( f̃ ∈ AnÑ). After tensoring we arrange the
resulting supergravity fields into a bosonic doublet and a fermionic doublet,

B =
(
b ⊗ b̃
f ⊗ f̃

)
, F =

(
b ⊗ f̃
f ⊗ b̃

)
, (200)

just as we did in D = 3. The algebra (189) acts naturally on these doublets. However,
a diagonal so(An)ST subalgebra of this corresponds to spacetime transformations,
so we must restrict h(AnN,AnÑ) to the subalgebra that commutes with so(An)ST .
Heuristically, we identify a diagonal spacetime subalgebra An in AnN ⊗ AnÑ and
require that it is preserved by the global isometries, which picks out a subset in
Isom((AnN ⊗ AnÑ)P2). Imposing this condition selects the U-duality algebra of

the D = n+2, (N+ Ñ)-extended supergravity theory obtained by tensoringN and Ñ
super Yang–Mills theories. The Lie algebras are given by themagic pyramid formula:

mp(An,AnN,AnÑ) :=
{
u ∈ m(AnN,AnÑ)# so(An)ST

∣∣∣[u, so(An)ST ] = 0
}

.

(201)
The terminology is made clear by the pyramid of corresponding U-dualities groups
presented in Fig. 1. The base of the pyramid in D = 3 is the 4× 4 Freudenthal magic
square, while the higher levels are comprised of a 3 × 3 square in D = 4, a 2 × 2
square in D = 6 and Type II supergravity at the apex in D = 10. Note, in [313]
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the oxidation of N-extended D = 3 dimensional supergravity theories was shown to
generate a partially symmetric “trapezoid” of non-compact global symmetries for D =
3, 4, . . . 11 and0, 20, 21, . . . 27 supercharges.A subset of algebras in the trapezoidwith
D = 3, 4, 5 and 25, 26, 27 supercharges matches the D = 3, 4, 5 and A = C,H,O

exterior wall of the pyramid of Fig. 1.
To illustrate the principles of themagic pyramid let us consider the simplest example

in D = 4, the product of twoN = 1 Yang–Mills multiplets (Aμ, λ), which must yield
N = 2 supergravity coupled to one hypermultiplet. This follows from state counting
and supersymmetry alone, but the actual coupling is not fixed. By determining the
symmetry this ambiguity is resolved (assuming, as before, a homogenous scalar man-
ifold). The left/right Yang–Mills on-shell multiplets are represented by the complex
numbers (helicity states):

A, λ ∈ C, Ã, λ̃ ∈ C̃. (202)

Collecting the bosonic/fermionic states, the product gives us the (C ⊗ C)2 valued
objects:

B =
(
A ⊗ Ã
λ⊗ λ̃

)
and F =

(
A ⊗ λ̃

λ⊗ Ã

)
. (203)

Let us consider the D = 3 maximal compact algebra

h(C, C̃) := tri(C)⊕ tri(C̃)+ C⊗ C̃, (204)

in this representation. To describe the generators acting on (C⊗ C)2 it is convenient
to define the quantities

1± := 1

2
(1⊗ 1∓ i ⊗ i), i± := 1

2
(i ⊗ 1± 1⊗ i), (205)

which form two orthogonal copies37 of C:

12± = 1±, 1±i± = i±, , i2± = −1± 1±1∓ = 0, 1±i∓ = 0, i±i∓ = 0 (206)

A basis for tri(C) ∼= so(2)⊕ so(2) is given by the C⊗ C̃-valued 2× 2 matrices

i+1, i+σ 1, (207)

while those of tri(C̃) are given by i−1, i−σ 1. The generators of the C⊗ C̃ term are
similarly given by

1+ε, i+σ 3, 1−ε, i−σ 3. (208)

It is straightforwd to verify that these matrices generate su(2)×su(2)×u(1)×u(1) ∼=
so(4)× so(2)× so(2), as stated in the compact sub-magic square in Table 9.

37 The objects 1± act as projection operators dividingC⊗C into two 2-dimensional subspaces, on which
i± act as complex structures, so that C⊗C ∼= C⊕C.
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Thus far this is just the D = 3 analysis. But recall, in D = 4 a diagonal C ∈
C ⊗ C̃ is identified with spacetime. The left Yang–Mills multiplets transform under
its spacetime little algebra u(1) acting on C as

δθ A = iθ A, δθλ = 1

2
iθλ, (209)

(together with the complex conjugates) and similar for the right multiplet, with ũ(1)
acting on C̃ with parameter θ̃ . Focussing on the fermion doublet and identifying the
left/right spacetimes, θ = θ̃ , we find

δθ F = θ

(
3

2
i+1+ 1

2
i−σ 3

)
F . (210)

Let us unravel what is happening here. Focusing on the fermions we see that the
positive helicity spin- 32 and spin- 12 states belong to i+ and i− sectors, just as one
would anticipate. This is only consistent because C ⊗ C is not a division algebra; it
contains zero divisors and we have i+i− = 0. Their role of the failure of the division
property here is to ensure that each component in the multiplet transforms with the
correct helicity and only the correct helicity. Having identified the spacetime little
group generator, the remaining internal symmetries are determined. All the matrices
commute with i+1, but i−σ 1 and 1−ε do not commute with i−σ 3, so we are forced
to discard these generators, leaving the subalgebra

u(1)⊕ u(1)⊕ su(2). (211)

This is the maximal compact subalgebra of the corresponding D = 4,N = 2 (or
C,C,C) entry in the pyramid, as given in Table 9. Acting on the gravitino with these
generators we find it transforms as a doublet but, again because of the i+ annihilating
i−, the spin- 12 fields are singlets, as required in the supergravity theory. The Yang–
Mills R-symmetries have been absorbed into the U-duality group. A similar analysis
for the bosonic fields in the theory shows that we do indeed obtain a graviton, a vector
and two scalars, which transform as a singlet, a singlet and doublet under the su(2),
as required.

Applying the same prinicples to the non-compact global symmetries we arrive at
the complete pyramid given in Fig. 1. Let us just illustrate the point by returning to
our discussion of N = 8 supergravity in D = 4, which we expect to yield E7(7). Just
as for the case treated above we need to identify the C ⊂ O ⊗ Õ corresponding to
the D = 4 spacetime algebra. To do so we start from the D = 3 (O,O) entry of the
magic square and decompose with respect to left/right Yang–Mills symmetries:

e8(8) ⊃ so(8)⊕ so(8) ⊃ su(4)⊕ u(1)⊕ su(4)⊕ u(1)

248→ [
(15,1)00 + (1,1)00 + (1,15)00 + (1,1)00
+ (6,1)20 + (1,6)02 + (1,6)0−2 + (6,1)−20
+ (4,4)11 + (4, 4)1−1 + (4, 4)−11 + (4, 4)−1−1

]
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+ [
(4, 4)11 + (4, 4)1−1 + (4, 4)−11 + (4,4)−1−1

+ (1,1)22 + (1,1)2−2 + (1,1)−22 + (1,1)−2−2
+ (1,6)20 + (6,1)02 + (6,1)0−2 + (1,6)−20 + (6,6)00

]
, (212)

where we have separated the compact (tri(O) ⊕ tri(O) + O ⊗ Õ) and non-compact
(O⊗Õ+O⊗Õ ) generators with the square parentheses. To distinguish the spacetime
little group u(1)st from the internal u(1) we must take the sum and difference of the
u(1)⊕ u(1) charges giving,

e8(8) ⊃ so(8)⊕ so(8) ⊃ u(1)st ⊕ su(4)⊕ su(4)⊕ u(1)

248→ [
(15,1)00 + (1,1)00 + (1,15)00 + (1,1)00
+ (6,1)22 + (1,6)2−2 + (1,6)−22 + (6,1)−2−2
+ (4,4)20 + (4, 4)02 + (4, 4)0−2 + (4, 4)−20

]

× [+ (4, 4)20 + (4, 4)02 + (4, 4)0−2 + (4,4)−20
+ (1,1)40 + (1,1)04 + (1,1)0−4 + (1,1)−40
+ (1,6)22 + (6,1)2−2 + (6,1)−22 + (1,6)−2−2 + (6,6)00

]
, (213)

where the first charge corresponds to u(1)st. The D = 4 global symmetry generators
are those left once we have discarded all generators carrying a non-trivial u(1)st charge
(as well as the u(1)st itself, of course), which yields

133→ [
(1,1)0 + (15,1)0 + (1,15)0 + (4, 4)2 + (4, 4)−2

]

+ [
(4, 4)−2 + (4, 4)2 + (1,1)4 + (1,1)−4 + (6,6)0

]
. (214)

We recognise this as precisely the decomposition of e7(7) under e7(7) ⊃ su(8) ⊃
su(4)⊕ su(4)⊕ u(1): where the compact pieces, contained in the first bracket, form
the maximal compact subalgebra su(8),

SU(8) ⊃ SU(4)× SU(4)× Un(1)

63→ (1,1)0 + (15,1)0 + (1,15)0 + (4, 4)2 + (4, 4)−2. (215)

To extract the field content we simply decompose the 128 (B) and 128′ (F) of so(16)
with respect to u(1)st ⊕ su(8),

128→ 12 + 1−2 + 281 + 28−1 + 700

128′ → 83 + 8−3 + 561 + 56−1, (216)

which yields the helicity states and global representations of the expected N = 8
supermultiplet.

Let us conclude with some comments on the product of theories other than super
Yang–Mills. Particularly interesting examples are provided by the superconformal
multiplets in D = 3, 4, 6. In a manner directly analogous to the magic pyramid
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the tensor product of left and right superconformal theories yields the “conformal
pyramid”, described in [138]. It has the remarkable property that its faces are also
given by the Freudenthal magic square. In particular, ascending up the maximal spine
one encounters the famous exceptional sequence E8(8), E7(7), E6(6), but where E6(6)
belongs to the D = 6, (4, 0) theory proposed by Hull as the superconformal limit of
M-theory compactified on a 6-torus [276,366,367]. This pattern suggests the existence
of some highly exotic D = 10 theory with F4(4) U-duality group. The existence of
such a theory would be more than a little surprising and there is a (slightly) more
conventional interpretation of the conformal pyramid, including its F4(4) tip, but for
theories in D = 3, 4, 5, 6, as described [138].

The product of conformal theories in the context of amplitudes has been considered
previously in, for example, [66,70,71,368,369]. In particular, the maximally super-
symmetric D = 3,N = 8 Bagger-Lambert-Gustavsson (BLG) Chern-Simons-matter
theory [210–212] has been shown to enjoy a colour-kinematic duality reflecting its
three-algebra structure [71]. The “square” of BLG amplitudes yields those ofN = 16
supergravity. SinceN = 16 supergravity is the unique theory with 32 supercharges in
three dimensions it is also the “square” of the N = 8 Yang–Mills theory. The square
of the amplitudes in both cases agree, despite their distinct structures [70].

In D = 6 one might expect relations between the “square” of theN = (2, 0) tensor
multiplet and the N = (4, 0) theory proposed by Hull [276,366,367], as put forward
in [66]. Of course, amplitudes are generically not well-defined in these cases, but one
can make some precise statements in terms of the tree-level S-matrix in particular
regimes, as discussed in [368,369]. For example, in the absence of additional degrees
of freedom all three-point tree-level amplitudes of the (2, 0) tensor multiplet vanish
[368]. The D = 5,N = 4 super Yang–Mills theory squares to give the amplitudes
of D = 5,N = 8 supergravity. However, being non-renormalisable it ought to be
regarded as a superconformal D = 6,N = (2, 0) theory compactified on a circle of
radius R = g2YM/4π2. At linearised level Hull’s (4, 0) theory follows from the square
the (2, 0) theory [142] and gives N = 8, D = 5 supergravity when compactified
on a circle [366]. In fact, it would seem that one can go beyond the free theory and
construct candidate tree-level amplitudes of the (4, 0) theory from the double-copy
of the tree-level amplitudes of the (2, 0) theory using D = 6 spinor-helicities and a
polarised version of the Cachazo-He-Yuan scattering equation formalism [269]. They
necessarily start at four-points, since the three-point (2, 0) amplitudes are trivial. Of
course, the (4, 0) amplitudes need to be tested before one can claim they correspond to
Hull’s conjecture. For instance, their double-soft scalar limits should reveal the E6(6)
symmetry. They do already pass the first test; on dimensional reduction on a circle
they yield the amplitudes of D = 5,N = 8 supergravity. From this perspective the
(2, 0)× (2, 0) = (4, 0) identity constitutes an, as yet ill-defined, M-theory up-lift of
the maximally supersymmetric D = 5 squaring relation.

4 Closing remarks

We started our journey by posing a number of questions regarding the nature of the
“gravity = gauge × gauge” paradigm. In particular, we asked: (1) Why does the
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correspondence work? (2) Is it strictly a property of amplitudes or can it be generalised
to other/all aspects of gauge and gravity theories? (3) What classes of gravitational
theories admit a gauge theory squared origin?

In the course of the subsequent discussion we have witnessed remarkable progress
on all fronts. Our understanding of BCJ duality and the double-copy has developed
dramatically and along with it our handle on the divergences of perturbative quantum
gravity. The programmehas clearly shown itself to be an effective point of viewbeyond
amplitudes from a number of perspectives, from novel approaches to the construction
of solutions to the identification of new gauge and gravity theories. It has also become
increasingly clear that the BCJ double-copy, and “gravity = gauge × gauge” more
generally, can be applied to a vast and diverse set of theories, that continues to grow.

Yet, we have no complete answers and the central questions remain: Does BCJ
duality hold to all orders, at least for some theories?What are the ultimate implications
for quantum gravity? Is there a geometrical or world-sheet underpinning? Can we
characterise all theories admitting a gauge squared origin? Is it a/the right way to
think of gravity?
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