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Abstract
In recent decades, there has been rapid development in digital technologies for auto-
mated assessment. Through enhanced possibilities in terms of algorithms, grading 
codes, adaptivity, and feedback, they are suitable for formative assessment. There is 
a need to develop computer-aided assessment (CAA) tasks that target higher-order 
mathematical skills to ensure a balanced assessment approach beyond basic proce-
dural skills. To address this issue, research suggests the approach of asking students to 
generate examples. This study focuses on an example-generation task on polynomial 
function understanding, proposed to 205 first-year engineering students in Sweden and 
111 first-year biotechnology students in Italy. Students were encouraged to collaborate 
in small groups, but individual elements within the tasks required each group member 
to provide individual answers. Students’ responses kept in the CAA system were qual-
itatively analyzed to understand the effectiveness of the task in extending the students’ 
example space in diverse educational contexts. The findings indicate a difference in 
students’ example spaces when performing the task between the two educational con-
texts. The results suggest key strengths and possible improvements to the task design.

Keywords Example-generation tasks · Computer-aided assessment · Example spaces

Introduction

The development of digital technologies for the automated assessment of students’ 
work has been rapid in recent decades. This type of technology, referred to as com-
puter-aided assessment (CAA) systems, is widespread today, particularly within 
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university mathematics education (Galluzzi et  al., 2021; Kinnear et  al., 2022). The 
enhanced possibilities offered by CAA systems in terms of algorithms, grading codes, 
adaptivity, and feedback make them particularly suitable for formative assessment 
(Barana et al., 2018, 2021). So far, CAA systems have mainly been used for assessing 
basic mathematical procedural skills. Researchers emphasize the importance of devel-
oping CAA tasks that address higher-order skills in mathematics to prevent assess-
ments from focusing solely on lower-order skills (e.g., Rønning, 2017).

To address this issue, researchers focusing on CAA suggest the pedagogical 
approach of asking students to generate examples that meet certain criteria (Kinnear 
et al., 2022; Yerushalmy et al., 2017). Inviting students to generate their own examples 
has been suggested as a way to foster their mathematical thinking (Bills et al., 2006; 
Watson & Mason, 2005). Since example-generation tasks can often be automatically 
corrected, they suit CAA systems well (Sangwin, 2003; Yerushalmy et al., 2017).

This paper reports on a follow-up study based on suggested revisions of a specific 
example-generation task on polynomial functions, as reported at the MEDA 3 Confer-
ence (Fahlgren & Brunström, 2022). In the present study, a revised version of the task 
has been trialed in two different educational contexts. The overarching aim of this paper 
is to provide new insights into example-generation tasks appropriate for CAA systems. 
This has been accomplished by analyzing the student responses to the revised task.

Before we formulate the research question, we introduce the literature framing 
the study, in particular CAA, the theory of example spaces, as well as teaching and 
learning polynomial functions.

Computer‑Aided Assessment

CAA systems have recently become increasingly popular in higher mathemat-
ics education. Several systems have been developed that can process open-ended 
questions that deal with mathematical objects, such as expressions, equations, sets, 
matrices, graphs, and establish their equivalence with the correct answer (Keijzer-de 
Ruijter & Draaijer, 2019; Sangwin, 2015; Yerushalmy et al., 2017).

By using CAA systems, innovative task designs can be developed. Through the 
mathematical engine, it is possible to create grading codes that check if the answer 
satisfies some constraints (Sangwin, 2003). Moreover, algorithms which randomize 
parts of the tasks can be created, so that all students have different versions of the 
same task (Rønning, 2017). Nicol and Milligan (2006) suggest that algorithmic 
questions can be used in group work to stimulate discussion: if each group member 
has different variants of the same task, they should not focus only on the comparison 
of results but also on discussing processes.

Sangwin et al. (2009) suggest using the computer capabilities of creating different 
representations of mathematical objects to provide implicit feedback instead of explicit 
solutions. For example, if the task asks students to write the expression of a function 
satisfying particular conditions, implicit feedback could consist of showing the graph 
of a correct function (Sangwin et al., 2009). Alternatively, it is possible to provide the 
graph of the students’ answer before grading it, either using the CAA system’s capa-
bilities to generate a preview (Barana et al., 2018) or encouraging students to use an 
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external system, such as a Dynamic Mathematics Software (DMS), to create the graph 
of the function, so that they can check if it satisfies the constraints (Sangwin et al., 
2009). This would also help develop self-assessment, since students have the chance to 
autonomously notice mistakes (Black & Wiliam, 2009).

The Theory of Example Spaces

Examples play a crucial role in the field of mathematics education (Bills et al., 2006). 
Watson and Mason (2005) propose example-generation tasks where students are 
encouraged to provide examples that meet certain criteria as an effective approach in 
the learning of mathematics. Since there are no general methods for solving these types 
of task, students have to be creative and develop solution strategies building on con-
ceptual understanding (Antonini, 2006). Watson and Mason (2005) use the notion of 
example spaces when referring to collections of examples that meet certain conditions. 
They distinguish between personal example spaces, conventional example spaces, 
and collective and situated example spaces. Personal example spaces reflect an indi-
vidual’s collection of available examples, whereas conventional example spaces per-
tain to examples that are generally comprehended by mathematicians and commonly 
presented in textbooks. A collective and situated example space is the example space 
provided by a group of students at a specific time (Watson & Mason, 2005).

Watson and Mason (2005) use the term ‘example’ in a broad way, including 
examples of concepts, strategies, principles, etc. According to them, students’ math-
ematical understanding is indicated by the richness of their example spaces. To char-
acterize the structure of example spaces, Watson and Mason (2005) introduce the 
terms dimensions of possible variation and associated ranges of permissible change. 
Dimensions of Possible Variation (DofPV) denote the attributes of an example that 
can be altered without compromising the determining characteristics. The associated 
Ranges of Permissible Change (RofPCh) refer to the extent to which these dimen-
sions can be modified while remaining a valid example (Watson & Mason, 2005). 
These notions arrive from the theory of variation, and specifically from the notion 
of dimensions of variation, by Marton and colleagues (e.g. Marton & Booth, 1997). 
They suggest that learning involves a process of discerning significant aspect of a 
learning object, and this process is facilitated by experiencing variation in these 
aspects (dimensions of variation). Watson and Mason (2005) expanded on this by 
introducing the concept of ‘dimensions of possible variation’, suggesting that indi-
viduals may recognize different aspects that can be varied.

To encourage students to extend their existing example spaces, Watson and Mason 
(2005) suggest various types of example-generation tasks. One of these consists of a 
sequence of prompts that progressively add more constraints. According to Watson 
and Mason (2005), the addition of constraints to the initial criteria one at a time often 
“… opens up new possibilities for the learners and promotes creativity” (p. 11). In 
case an additional constraint makes prototypical examples invalid, students need to 
be creative and explore innovative approaches to generate valid examples. The imple-
mentation of this type of task into a CAA system is particularly useful since it allows 
more than one, or even infinitely many correct solutions (Sangwin, 2003).
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In another type of example-generation task, students are invited to generate sev-
eral (different) examples that fulfill certain conditions. The literature emphasizes the 
significance of this approach to prompt students to extend their existing and acces-
sible example spaces (Goldenberg et al., 2008; Zaslavsky & Zodik, 2014). However, 
there is an identified risk that students tend to only provide prototypical examples 
(Yerushalmy et al., 2017). To increase the opportunities for students to generate exam-
ples that go beyond their initial thoughts, researchers recommend requesting examples 
that differ as much as possible (Watson & Mason, 2005; Zaslavsky & Zodik, 2014).

Understanding Polynomial Functions

Polynomial functions are usually introduced during secondary school as the first 
example of functions. Best and Bikner-Ahsbahs (2017) note that students’ under-
standing relies on algebra, but it also involves other different concepts, such as 
dependent and independent variables, covariation, and quantitative relationships. 
Students learn how to represent functions in different ways (with formulas, graphs, 
tables, and verbal descriptions), their different properties, and how to perform sev-
eral operations with them. Due to the different aspects that are involved, it is pos-
sible that students develop a fragmented understanding of polynomial functions 
(Best & Bikner-Ahsbahs, 2017). Bossé et al. (2014) and Adu-Gyamfi et al. (2017) 
focus on tasks based on polynomial functions and their graphical/algebraic repre-
sentations and investigate how students translate between mathematical represen-
tations, a practice that should be aligned with instructional guidance to help stu-
dents make connections. In this paper, two ideas to promote flexibility in working 
with polynomial functions, highlighted in the literature, are elaborated.

The first idea involves adopting a functional approach when working with algebra 
to link algebraic and analytic aspects of polynomials (Kieran, 2004; Yerushalmy, 
2000). The Factor theorem, as an application of the remainder theorem, is one of 
the main results in algebra that connects the algebraic aspects of polynomials with 
the analytic aspects of functions (Weiss, 2016). Movshovitz‐Hadar and Shmukler 
(1991) suggest a teaching method where polynomials of a degree greater than two 
are constructed and treated inductively as products of linear and quadratic functions 
vanishing in given points. The goal is to develop students’ intuition for polynomi-
als as a basis for further algebraic and analytical study of polynomials. Watson and 
Chick (2011) discuss didactical considerations regarding the qualities and usage of 
examples, emphasizing the importance of the nature of students’ engagement as well 
as the teacher’s intentions and actions. They explore a task based on polynomial 
functions that invites the learner to construct an example of a curve that fits cer-
tain constraints, and then asks about the function class(es) to which it belongs. The 
authors conjecture about the methods in which students solved the task, including 
the use of the Factor theorem and solving a system of linear equations to obtain the 
standard form of a cubic function. The latter can raise several types of difficulties 
like dealing with unknowns versus parameters (Watson & Chick, 2011). Bossé et al. 
(2014) disclose how students may prefer the standard form even when the factored 
form is easier to use, for example when having information about roots.
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The second idea involves studying the properties of functions through the 
transformations of elementary functions (Faulkenberry & Faulkenberry, 2010). 
These transformations include translations, scaling, and reflections. Günster and 
Weigand (2020) presented a task in which students were asked to describe the 
influence of a multiplicative parameter (vertical scaling) on linear functions, 
managing to realize the consequences on the x- and y-intercepts. Since they are 
the same for any function, this strategy can be used to fine-tune the expression 
of a function according to a given y-intercept. However, several studies point out 
general difficulties in recognizing the implications of functions’ transformations: 
Zazkis et  al. (2003) regarding horizontal translations, Lage and Gaisman (2006) 
detecting a lack of understanding transformations’ effects on functions, and Daher 
and Anabousi (2015) displaying recurrent errors. Transformations are powerful, but 
students may not be able to exploit their full potential.

Research Question

As mentioned before, the overarching aim of this paper is to provide new insights 
into example-generation tasks appropriate for CAA systems. This aim is fostered 
by analyzing students’ answers to an example-generation task (see Fig. 1). Since 
there are different ways to approach the task, leading to different answers, or dif-
ferent forms of the same answer, the analysis is run with the purpose of identify-
ing students’ example spaces. The analysis in two different educational contexts 
allows us to investigate similarities and differences in the collective and situated 
example spaces. Researchers suggest studies that cross national boundaries to 
provide a broader picture of the variation in students’ strategy usage (Jiang et al., 
2023). Thus, the research question that guides this study is:

How did the design of a specific example-generation task affect students’ 
example spaces in two different educational contexts?

In light of the findings, we will discuss possible re-design of the task as well as 
possible feedback to extend students’ example spaces.

Method

The Research Context

This study took place in autumn 2022 at two universities: one in Sweden and one 
in Italy. The Swedish context involved 205 first-year engineering students taking 
their first Calculus course. In Italy, 111 first-year biotechnology students taking the 
“Mathematics and Biostatistics” module were involved. The same computer-based 
activities were proposed in both contexts, consisting of task sequences focusing on 
function understanding. In both cases, the activities included collaborative small 
group tasks and tasks requiring an individual answer from each group member. 
While the activities were mandatory in Sweden, they were optional in Italy.
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The Swedish Context

In the Swedish school syllabi, mathematical content and different mathematical abilities 
are introduced separately. In the syllabus for upper-secondary school mathematics 
(age of students between16 and 19), five core content areas and six general abilities 
are described (Swedish National Agency for Education, n.d.). The courses for upper-
secondary school are organized into three tracks, one of which is compulsory for 
students entering the engineering programs at universities. The mathematical content 
relevant to this study is part of several mandatory courses in this track (Course 1c, 2c, 3c, 
and 4). Of interest for this paper, the teaching in these courses should cover the following 
core content (Swedish National Agency for Education, n.d.):

• Algebraic and graphic representations of functions (Course 1c)
• Quadratic functions and methods for solving quadratic equations (Course 2c)
• Properties of polynomial functions and methods for solving polynomial equa-

tions (Course 3c)
• Factorization of polynomials and using the Factor theorem to solve polynomial 

equations (Course 4)

The Calculus course curriculum at the university includes an introductory part on 
the fundamentals of functions, having the implicit goal of emphasizing the connections 
between algebraic, geometric, and analytic aspects. An important focus is on elementary 
functions and their properties, including topics such as the factorization of polynomial 
functions and the Factor theorem. The total examination gives 7.5 ECTS credits (6.5 
credits for the written exam and 1 credit for the mandatory computer-based assignment).

The Italian Context

Italian national guidelines (MIUR, 2010a, b, c) for learning mathematics in upper 
secondary school (from K9 to K13, age of students between 14 and 19) include 
basic algebra for all students in the first two years (K9-K10, when pupils are aged 
14–16). In terms of relevant knowledge for this work, Italian students cover:

• Algebraic and graphic representations of polynomial functions having degree 1 or 2
• Methods for solving linear and quadratic systems of equations and inequalities
• Polynomial factorization, by polynomial manipulation and by roots computation

Italian national guidelines, in line with international literature (Kieran, 2004; 
Yerushalmy, 2000), suggest the in depth study of linear and quadratic expressions 
as functions in the last three years of upper secondary school (from K11 to K13). In 
particular, for this paper, we are interested in:

• The concept of zero of a function
• Number of solutions of polynomial equations
• Analytical and graphical study of the main kinds of functions
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The semester-long Mathematics and Biostatistics module held at the Italian university 
is addressed to first-year students, and its total commitment is equivalent to 8 ECTS, 
subdivided between various branches of mathematics. Relative to Calculus, the topics 
covered range from univariate functions to differential equations, passing through uni-
variate and bivariate Calculus. Topics such as the factorization of polynomial functions 
and the Factor theorem are not explicitly covered during the module since they are con-
sidered as bases to be acquired from upper secondary school. In fact, an initial test to 
check if the students need to fulfil additional learning requirements is administered at the 
beginning of the degree program. However, during the module time is devoted to sketch-
ing elementary functions and their transformations, including vertical scaling.

The Task

This paper will explore a specific type of example-generation task adapted from 
Sangwin (2003), see Fig. 1. The task consists of a sequence of Prompts (a) to (e) 
that progressively add more constraints (i) to (iv). The numerical values of a and b 
in constraints (ii), (iii), and (iv) are randomized. In this way, group members receive 
different versions of the task. In Prompt (e), students are asked to provide two exam-
ples that fulfil all constraints except for the first one. The key idea addressed by the 
task is the Factor theorem. In addition, the intention is to draw students’ attention to 
the possibility of vertical scaling by adding a further constraint in terms of a given 
y-intercept, i.e., constraint (iv). Based on findings from a Swedish study (Fahlgren & 
Brunström, 2022), the task has been revised in two ways:

Below are some possible properties (i) – (iv) of a polynomial function p.

(i) p is a polynomial function of degree three, i.e. p(x) is a cubic function

(ii) p(a) = 0
(iii) p(b) = 0
(iv) p(0) = -2ab

Note: Group members may have obtained different numerical values.

_______________________________________________________________________________

(a) Give an example of a polynomial function p that satisfies (i).

(b) Give an example of a polynomial function p that satisfies (i) and (ii).

(c) Give an example of a polynomial function p that satisfies (i), (ii) and (iii).

(d) Give an example of a polynomial function p that satisfies all the properties (i) - (iv).

(e) Give examples of two different polynomial functions that satisfy (ii), (iii) and (iv) but not (i).

Fig. 1  An example-generation task adapted from Sangwin (2003)
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• In the previous version, constraint (iv) was p(0) = ab. Since several students 
responded with p(x) = (x + 1)(x − a)(x − b) to Prompt (c), they could use this 
response also to Prompt (d) without having to use vertical scaling. In the current 
version of the task, we tackle this by revising constraint (iv) into p(0) = −2ab.

• In the previous version, we only asked for one example in Prompt (e). Since most 
students provided the straightforward response, i.e., the second-degree polyno-
mial p(x) = (x − a)(x − b) , we decided to ask for two examples to extend stu-
dents’ example spaces.

In the Swedish version of the task, beside the details shown in Fig.  1, students 
were provided with an additional note encouraging them to consider the possibility of 
checking if their suggested responses really fulfill the specified conditions by using a 
DMS environment before submitting them as an answer to the task, as suggested by 
Sangwin et al. (2009). The Italian version of the task did not include this suggestion.

The task is anticipated by an Introducing Task (IT), where students were asked to 
determine a function formula for a given graph of a quadratic function by using the 
two zeros. The intention of the IT is to direct students’ attention to the Factor theo-
rem. They were also encouraged to explain the thinking behind their answer. In this 
task, students were encouraged to agree on a joint group answer.

Data Collection and Analysis

The primary data consists of student responses to the task in Fig.  1, collected 
through a CAA system, in this case, Möbius Assessment. This data only consists of 
students’ submitted answers, that is, without information about the thinking behind 
their answers. Therefore, we decided to include student responses to the IT in the 
data set. From this data, we can see if the students explicitly refer to the Factor theo-
rem in their explanation, and hence are familiar with this key idea.

In the previous study, student responses to the earlier version of the task in Fig. 1 
were analyzed (Fahlgren & Brunström, 2022). The data coding manual developed in that 
study was adapted to fit the current version of the task. Moreover, codes for the IT were 
developed. The algebraic expression of the function was categorized, i.e., standard form, 
factored form, or vertex form. Concerning their explanation, we indicated whether they 
referred to the Factor theorem, the equation system or something else.

The coding manual for the main task (Fig. 1) consisted of several codes for each 
prompt (see Table  1) guided by the key ideas addressed by the task. The coding 
manual was then trialled in both research groups, and any doubtful cases were sorted 
out. After some minor changes, the coding manual was established.

As an example, the codes used when coding student responses to Prompt (c) are 
introduced, with comments, in Table 2. Since the main key idea addressed by the 
task is the Factor theorem, it was important to indicate the distinction between fac-
tored form and standard form. In addition, to discern any general patterns concern-
ing the third factor, i.e., the factor (x − �) in p(x) = (x − a)(x − b)(x − �) , special 
cases were coded separately. To be able to code responses written in standard form, 
a computer algebra system was used to factorize the responses. Notably, in a few 
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cases we have coded an incorrect response with a code that corresponds to a correct 
answer. For instance, the response p(x) = x(x − a)(x + b) was coded with the first 
code in Table 2, as it was considered a typing error.

During the initial stage of data analysis process, each student’s response was 
coded, resulting in 20 codes per student. Multiple meetings were held to discuss 
and compare the usage of the coding manual. In the subsequent stage, parts of the 
data were cross-tabulated to discern patterns in the material. For example, students’ 
explanations in the IT were cross-tabulated with all prompts in the main task, except 
for Prompt (a). This was done to indicate if students responding in standard form, 
might have used the Factor theorem to construct their response.

Next, the initial codes were merged into categories to make the result more com-
prehensible. Besides the key ideas, the Factor theorem and vertical scaling, this 
merge was guided by the idea of using an equation system—a result of the find-
ings of the IT. For example, when introducing the result to Prompt (c), the response 
category p(x) = (x − a)(x − b)(x − �) also includes the special cases α = -1, 2, -2, a, 
and b (see Table 2). Finally, responses in the two contexts were compared to discern 
context-related similarities and differences.

Table 1  An overview of the 
number of codes for each 
prompt in the main task

Prompt (a) (b) (c) (d) (e)
No. of codes 5 21 16 21 34

Table 2  Codes for Prompt (c)

Codes Form Comments

p(x) = x(x − a)(x − b) Factored form One straight forward response, however impossible 
to scale vertically to respond to Prompt dStandard form

p(x) = (x + 1)(x − a)(x − b) Factored form One common response in the previous study
Standard form

p(x) = (x − 2)(x − a)(x − b) Factored form This response can also be used to Prompt d
Standard form

p(x) = (x + 2)(x − a)(x − b) Factored form One more response that might influence the 
response to Prompt dStandard form

p(x) = (x − a)2(x − b) or Factored form Using a given zero twice

p(x) = (x − a)(x − b)2 Standard form

p(x) = (x − a)(x − b)(x − �) Factored form Another value on α than above
Standard form

p(x) = k(x − a)(x − b)(x − �), k ≠ 1 Factored form
Standard form

p(x) = kx3 + cx2 + dx + e Standard form Other, not possible to use the codes above
Not degree 3
Other
No answer
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Results and Analysis

This section starts with a description of the results from the IT since student 
responses to this task could serve as an indicator of student strategies when solving 
the main task. Then, student responses to Prompts (b), (c), (d) and (e) are reported 
and analyzed one at a time. The section ends with an analysis based on the theory of 
example spaces.

The Introducing Task

Concerning the algebraic expression of the function, most of the students responded 
in standard form ( p(x) = −x2 + x + 6) , 63% of the Swedish students and 90% 
of the Italian students responded in this way. Among the Swedish students, 25% 
responded in factored form and 11% responded in vertex form. None of the Italian 
students responded in factored form while 10% responded in vertex form. Moreover, 
the findings indicate a remarkable difference between the Swedish and Italian 
students concerning the strategy referred to when explaining the thinking behind 
their answers. While 74% (152/205) of the Swedish students referred to the Factor 
theorem in their explanation, only one of the Italian students gave this explanation. 
Notably as many as 81% (105/130) of the Swedish students who answered in 
standard form referred to the Factor theorem in their explanation. This indicates that 
students who have responded in standard form to the prompts in the main task might 
have utilized the Factor theorem, and then extended the function expression from 
a factored form into a standard form. However, it is important to emphasize that 
students’ reasoning on the IT does not provide answers regarding how they reason 
on the main task; we can only speculate about possible solution strategies. Instead of 
referring to the Factor theorem, almost all Italian students (86%) explained that they 
have solved an equation system to find the function formula in the IT.

Prompt (b)

In Prompt (a) students were encouraged to give an example of a polynomial of 
degree three. In Prompt (b) one further constraint ( p(a) = 0 ) has been added. 
Table 3 provides an overview of the responses to Prompt (b). The responses have 
been analyzed in relation to the Factor theorem, i.e., the key idea addressed by the 
task. Moreover, in light of the findings from the IT, reflections on possible student 
strategies based on equation systems have been provided.

Concerning the Factor theorem, it is only those students who answered in a 
factored form that we can be sure used this strategy. In total 24% (50/205) of the 
Swedish students and 10% (11/111) of the Italian students responded in factored 
form. We can also conclude that those students who responded with p(x) = x3 − a3 , 
19% of the Swedish students and 33% of the Italian students, did not use the Factor 
theorem. The responses to the IT indicate that some Swedish students might have 
used the Factor theorem in the main task, even if they responded in standard form. 
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In total 56% (114/205) of the Swedish students gave a response in standard form. 
Among these students, 73% referred to the Factor theorem when explaining how 
they solved the IT. Hence, there is reason to believe that at least some of these 
students used the Factor theorem to find an example that fulfills Prompt (b). Since 
just one of the Italian students referred to the Factor theorem in the IT, it is not 
relevant to carry out this analysis for the Italian students.

Another way to approach this prompt would be to solve an equation system. 
However, in this case, only one condition ( p(a) = 0 ) needs to be fulfilled. There-
fore, students using equation systems could choose any value for three of the param-
eters k, c, d, and e in p(x) = kx3 + cx2 + dx + e and then solve an equation with one 
unknown. The most frequent response among the Italian students, p(x) = x3 − a3 , 
could be reached by choosing k = 1 and c = d = 0 and solving the equation. How-
ever, this response is also rather straightforward to find just by adding a constant 
term to p(x) = x3 so that p(a) = 0.

Prompt (c)

In Prompt (c), a second zero, p(b) = 0 , is added. Table 4 shows the responses to this 
prompt. As in Prompt (b), the analysis is based on the Factor theorem and equation 
systems.

In comparison to Prompt (b), there are more students who responded in factored 
form to Prompt (c). In total 32% (65/205) of the Swedish students and 14% (15/111) 
of the Italian students responded in factored form. The most frequent answer was 
p(x) = x3 − (a + b)x2 + abx , i.e., p(x) = x(x − a)(x − b) in standard form. This response 
was provided by 32% (65/205) of the Swedish students and 26% (29/111) of the Italian stu-
dents. Among the 65 Swedish students 75% referred to the Factor theorem in the IT when 
explaining how they found the function formula. This indicates that more than 32% of the 
Swedish students probably used the Factor theorem when responding to Prompt (c).

Since there are two conditions ( p(a) = 0 and p(b) = 0 ) in Prompt (c), stu-
dents using equation systems to find a response can choose any value for two 

Table 3  Overview of the 
responses to Prompt (b)

Prompt (b) Swedish 
students

Italian 
students

Responses Form Number Number

p(x) = x3 − a3 SF 38 19% 37 33%

p(x) = (x − a)3 FF 15 7% 11 10%

SF 2 1% 9 8%
p(x) = x2(x − a) FF 5 2% 0 0%

SF 20 10% 10 9%
Factored form (other) FF 30 15% 0 0%
Standard form (other) SF 92 45% 38 34%
Other 0 0% 1 1%
No answer 3 1% 5 5%
Total 205 100% 111 100%
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of the parameters k, c, d, and e in p(x) = kx3 + cx2 + dx + e . They can then 
solve an equation system with two unknowns and two equations. The response 
p(x) = x3 − (a + b)x2 + abx , that 26% of the Italian students gave, could be reached 
by choosing k = 1 ande = 0 , and then solving the equation system. If instead 
k = 1 and c = 0 or d = 0 the standard form response could always be factorized 
to p(x) = (x − a)(x − b)(x − �) , where the value of α depends on the values on a and 
b. Altogether 33% (37/111) of the Italian students gave this type of response.

Prompt (d)

By adding a further constraint in terms of a given y-intercept ( p(0) = −2ab ) the key 
idea of vertical scaling by multiplying with a constant factor is addressed by Prompt 
(d). Table 5 provides an overview of the responses to Prompt (d). Besides the Factor 
theorem and equation systems the key idea of vertical scaling guided the analysis of 
student responses to this prompt. Before analyzing the responses on Prompt (d), it is 
important for the analysis in relation to vertical scaling to highlight one more result 
from Prompt (c). In total 44% (91/205) of the Swedish students and 34% (38/111) of 
the Italian students responded p(x) = x(x − a)(x − b) in factored or standard form to 
Prompt (c). These students could not use vertical scaling of the response to Prompt 
(c) to answer Prompt (d).

In this prompt, only 46% of the Italian students responded with a correct answer. 
The high number of incorrect answers could be attributed to a misinterpretation of 
the task. Forty students answered with p(x) = x3 − 2ab , a polynomial satisfying the 
properties (i) and (iv), but generally not (ii) and (iii). This suggests a likely interpre-
tation of “(i) - (iv)” as “(i) and (iv)” rather than “from (i) to (iv)”. This is important 
to consider when analyzing this prompt.

Concerning the Factor theorem, 30% (61/205) of the Swedish students and 5% 
(6/111) of the Italian students responded in factored form. The most frequent response 
among the Swedish students is the standard form of p(x) = (x − 2)(x − a)(x − b) . 
As many as 40% (81/205) of the Swedish students gave this response. Among these 

Table 4  Overview of the 
responses to Prompt (c)

Prompt (c) Swedish 
students

Italian 
students

Responses Form Number Number

p(x) = x(x − a)(x − b) FF 26 13% 9 8%
SF 65 32% 29 26%

p(x) = (x − a)(x − b)(x − �) FF 39 19% 6 5%
SF 54 26% 37 33%

p(x) = kx3 + cx2 + dx + e SF 12 6% 18 16%
Other 1 0% 1 1%
No answer 8 4% 11 10%
Total 205 100% 111 100%
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students, 78% referred to the Factor theorem in the IT. Therefore, we find it likely that 
some of these students used the Factor theorem also in this prompt.

Since there are three conditions ( p(a) = 0, p(b) = 0 and p(0) = −2ab ) in Prompt 
(d), students who use equation systems could choose any value on one of the param-
eters k, c, and d in p(x) = kx3 + cx2 + dx − 2ab and then solve an equation system 
with two unknowns and two equations. A straightforward choice would be to let 
k = 1 which will result in the standard form of p(x) = (x − 2)(x − a)(x − b) . This 
response was provided by 18% (20/111) of the Italian students.

In relation to vertical scaling, the data can only indicate that some students might 
have used this strategy. We find it likely that those students who multiply their response 
to Prompt (c) with a constant factor to create their response to Prompt (d) used verti-
cal scaling. For example, if the response to Prompt (c) is p(x) = (x + 1)(x − a)(x − b) , 
the response to Prompt (d) will be p(x) = −2(x + 1)(x − a)(x − b) . However, this 
was only performed by 4% (9/205) of the Swedish students and 8% (9/111) of the Ital-
ian students. There were also responses, either in factored or standard form, to Prompt 
(d) that included a constant factor, but with a different third zero than in Prompt (c). As 
an example, one student who responded with p(x) = x(x − a)(x − b) to Prompt (c), 
responded with p(x) = −2(x + 1)(x − a)(x − b) to Prompt (d). If this student first tried 
p(x) = (x + 1)(x − a)(x − b) as an answer to Prompt (d), and then realized that this 
response must be multiplied by −2 , vertical scaling was used. In total, 12% (25/205) of the 
Swedish students and 18% (20/111) of the Italian students, might have used this strategy.

Notably, as many as 65% (133/205) of the Swedish students and 19% (21/111) of 
the Italian students responded with p(x) = (x − 2)(x − a)(x − b) in factored or stand-
ard form. For these students, there was no need for vertical scaling.

Prompt (e)

In Prompt (e), students are asked to provide two examples of polynomials that fulfill 
all constraints except being of degree three. Table  6 introduces the various types 
of responses provided by the students to Prompt (e), both their first and second 

Table 5  Overview of the 
responses to Prompt (d)

Prompt (c) Swedish 
students

Italian 
students

Responses Form Number Number

p(x) = (x − 2)(x − a)(x − b) FF 52 25% 1 1%
SF 81 40% 20 18%

p(x) = −(x + 2)(x − a)(x − b) FF 2 1% 0 0%
SF 6 3% 0 0%

p(x) = (2∕�)(x − a)(x − b)(x − �) FF 7 3% 5 5%
SF 27 13% 24 22%

Other 23 11% 50 45%
No answer 7 3% 11 10%
Total 205 100% 111 100%
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example. Besides analyzing the responses in relation to the Factor theorem, equation 
system, and vertical scaling, the degree of the polynomials is indicated.

Predominantly, students provided a correct second-degree polynomial as their 
first example, 55% (112/205) among the Swedish students and 68% (75/111) among 
the Italian students. As there is only one correct second-degree polynomial meeting 
the conditions, students who provided this polynomial as their first example needed 
to provide a polynomial of higher degree as their second example. On the other 
hand, students who provided a fourth-degree polynomial as their first example, as 
31% (64/205) of the Swedish students and 10% (11/111) of the Italian students did, 
had the possibility to either provide one more polynomial of the same degree or 
change the polynomial degree. The most frequent combination was providing one 
polynomial of degree 2 and one of degree 4, as 59% (121/205) of the Swedish 
students and 45% (50/111) of the Italian students did. Additionally, 12% (25/205) 
of the Swedish students and 3% (3/111) of the Italian students provided two 
polynomials of degree 4. Furthermore, 14% (29/205) of the Swedish students and 
3% (3/111) of the Italian students provided polynomials of degrees 4 and 5.

Concerning the Factor theorem, 36% (73/205) of the Swedish students and 12% 
(13/111) of the Italian students responded in a factored form in at least one of their 
two examples.

The most frequent response among the Italian students was the correct second-
degree polynomial in standard form, which 66% (73/111) of the students provided as 
their first or second example. This answer is straightforward to receive by solving an 
equation system.

In relation to vertical scaling, the data indicate that several students have used this 
strategy. In total, 62% (127/205) of the Swedish students and 73% (81/111) of the 
Italian students responded with p(x) = −2(x − a)(x − b) in factored or standard form 
as their first or second example. If these students first tried p(x) = (x − a)(x − b) , 
and then realized that this response had to be multiplied by -2, vertical scaling was 
used. In addition, some of the fourth-degree polynomial responses, either in fac-
tored or standard form, included a constant factor (see Table  6). Altogether, 66% 
(135/205) of the Swedish students and 77% (85/111) of the Italian students might 
have used vertical scaling in at least one of their examples.

Analysis Based on Example Spaces

The results reveal some context-related differences. One difference concerns the per-
centage of students responding in factored form. Although the key idea addressed 
by the task was the Factor theorem, the findings indicate that most of the Italian 
students seemed to have used equation systems to solve the task, i.e., without using 
the Factor theorem. We regard the strategy used to obtain the given zeros as one 
dimension of possible variation (DofPV). When analyzing the data, we focused on 
the Factor theorem and equation systems. However, the conventional example space 
allows for a greater range of permissible change (RofPCh), such as the use of Vieta’s 
formulas relating polynomial coefficients to sums and products of its roots.
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When comparing the number of students responding in factored form to the 
different prompts, we noted an increase from Prompt (b) to Prompt (c), from 24 
to 32% among the Swedish students and from 10 to 14% among the Italian stu-
dents. In addition, when responding to Prompt (e), 36% of the Swedish students 
responded in factored form. Hence, we assert that the addition of constraints led 
several students to extend their personal example space.

In Prompt (e), students were asked to provide two examples. The degree of the 
polynomials is one DofPV utilized by most of the students. If their first response was 
a second-degree polynomial, they needed to change the degree of the polynomial to 
provide their second example. If the degree of their first example is at least 4, they can 
also utilize this DofPV, even if it is not the only option. Notably, 10% (20/205) of the 
Swedish students responded with p(x) = (x − a)(x − b)(x − 2)(x + 1) in factored or 
standard form as their first example followed by p(x) = (x − a)(x − b)(x − 2)(x + 1)

2 
as their second example. Probably, these students realized that it is possible to vary 
the degree of the polynomial in an infinite number of ways by multiplying with the 
factor (x + 1)

n (where n is a positive integer), that is, that the associated RofPCh is 
unrestricted. Another student who realized that the RofPCh is unrestricted provided 
the response p(x) = (x − a)(x − b)(x1000 − 2) as one example, demonstrating a rich 
personal example space.

On the other hand, if students, when constructing the second example, choose 
to keep the degree of their first-example polynomial, they have to activate another 
DofPV. This can be done by changing at least one (polynomial) factor and, if neces-
sary, adjusting the constant term. As an example, one student provided the following 
responses: p(x) = −(x − a)(x − b)(x + 1)(x + 2) and p(x) = −2(x − a)(x − b)(x + 1)

2 . 

Table 6  Overview of the responses to Prompt (e)

Prompt(e) Swedish students Italian students

First exam-
ple

Second 
example

First exam-
ple

Second 
example

Responses Form Number Number Number Number

p(x) = −2(x − a)(x − b) FF 30 15% 2 1% 8 7% 0 0%
SF 82 40% 14 7% 67 60% 6 5%

Quadratic polynomials (other) SF 7 3% 3 1% 7 6% 7 6%
p(x) = (−2∕�β)(x − a)(x − b)(x − �)(x − β) FF 2 1% 17 8% 1 1% 7 6%

SF 7 3% 23 11% 2 2% 14 13%

p(x) = (−2∕γ)(x − a)(x − b)(�x2 + βx + γ) SF 1 0% 10 5% 0 0% 9 8%

Polynomials of degree 4 (other) FF 28 14% 28 14% 0 0% 2 2%
SF 26 13% 52 25% 8 7% 16 14%

Polynomials of degree 5 FF 1 0% 17 8% 0 0% 0 0%
SF 3 1% 12 6% 0 0% 1 1%

 Other 9 4% 14 7% 7 6% 28 25%
 No answer 9 4% 13 6% 11 10% 21 19%

Total 205 100% 205 100% 111 100% 111 100%
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In this case, the student changed one linear factor, and adjusted the constant term 
accordingly. Probably this student realized that this strategy, i.e., using vertical scal-
ing to adjust the y-intercept, could be generalized and that the associated RofPCh is 
unrestricted.

Considering that different strategies can be employed to obtain a certain y-inter-
cept in Prompt (d) and Prompt (e), we regard the strategy used as one DofPV. Even 
if we do not know the thinking behind different student responses, the responses 
indicate that a higher proportion of the Italian students than the Swedish ones used 
vertical scaling both in Prompt (d) and Prompt (e). Several Swedish students, instead 
seem to have included a linear factor to get the correct y-intercept in Prompt (d). 
When comparing the total number of students that seem to have used vertical scal-
ing, there is an increase from Prompt (d) to Prompt (e). Therefore, we assert that 
several students extended their personal example space by employing different strat-
egies, likely influenced by the fact that the only correct second-degree polynomial in 
Prompt (e) includes a constant factor.

Discussion

The analysis of the student responses provided an overview of the collective and sit-
uated example spaces in the two different countries. Since this is a follow-up study, 
we first discuss the findings concerning the suggested revisions of the task in the 
previous study (Fahlgren & Brunström, 2022). Then, we discuss the findings in rela-
tion to context-related differences.

The original task was revised in two ways: first, a constant factor was added to 
constraint (iv) to encourage students to use vertical scaling in Prompt (d). Second, 
instead of asking for one example in Prompt (e), students were asked to provide two 
examples to extend their example space. The added constant factor to constraint (iv) 
did not have the intended effect on student responses to Prompt (d). However, the 
percentage of students who might have used vertical scaling increased from Prompt 
(d) to Prompt (e) in both contexts. This is probably caused by the added constant 
factor to constraint (iv), and the fact that students who provide a second-degree poly-
nomial need to include the constant factor.

The second revision, asking for a second different example was effective in extend-
ing the students’ example space. Indeed, different kinds of polynomials were provided 
in both contexts. This especially resulted in degree 4 polynomials, which are the sim-
plest examples after degree 2 polynomials and can be constructed, like degree 3 poly-
nomials, by multiplying proper linear and quadratic polynomials (Movshovitz‐Hadar & 
Shmukler, 1991). The request for a different example could also be added to Prompt (d) 
to further stimulate students to use vertical scaling. This could be particularly useful for 
students choosing (x − 2) as their third factor since this will force them to change this 
factor (which in turn will make it more possible that they will use vertical scaling). It 
could also be useful to ask for a different example in Prompt (c), especially for the stu-
dents responding p(x) = x(x − a)(x − b) since they cannot scale the response given in 
Prompt (c) to answer Prompt (d). In line with previous research (Goldenberg & Mason, 
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2008; Zaslavsky & Zodik, 2014), we think that asking for more than one example is an 
effective design principle to foster higher-order thinking skills.

One finding in the previous study (Fahlgren & Brunström, 2022) is that the added 
zero in Prompt (c) resulted in an increase in students utilizing the Factor theorem. 
Also in this study, the percentage of students who probably used the Factor theorem 
increased from Prompt (b) to Prompt (c). In this way, the finding of the previous 
study in the Swedish context is confirmed; the finding is further validated through 
data from a different context.

The results highlight how the prompts allowed students to use different solving 
strategies to tackle the analyzed task. The most relevant strategies include the Factor 
theorem and equation systems. The choice of solving strategy could reflect students’ 
background; the teaching approach during the course might have influenced their 
answers. However, in both contexts, they are at the beginning of university with a 
background of 12 or 13 years in Mathematics. Therefore, it is likely that they chose 
strategies in line with the methods studied at school. In particular, Swedish students 
tended to use the Factor theorem, which is a more effective way to solve the task. 
This could reflect that the Factor theorem is explicitly mentioned in the syllabus 
for the last mandatory course in upper secondary school (Swedish National Agency 
for Education, n.d.) and in the syllabus for the university course in question. On 
the other hand, Italian students tended to solve an equation system to determine the 
coefficients of the polynomials. This method is less effective in terms of computa-
tions but is more general since it is applicable to different constraints and kinds of 
functions. The preference for this method could reflect the emphasis on theory and 
abstract algebra that secondary Italian school teachers often incorporate into their 
practices (Bolondi & Ferretti, 2021). Moreover, it might also reflect the discrepancy 
between two intertwined concepts: factorization of polynomials and zeros of func-
tions. Although the national guidelines suggest introducing algebra with a functional 
approach, this may not be a common practice, and zeros of functions are studied 
years later. Thus, students might face difficulties in making connections between 
algebraic, geometric, and analytic aspects, which are often treated as separate (Best 
& Bikner-Ahsbahs, 2017; Greer, 2008).

From the results related to the last two prompts, it emerges that Italian students 
seem more flexible in using vertical scaling than their Swedish peers. One possible 
explanation for this could be their engagement in various activities involving graphic 
transformations of elementary functions during the course, facilitated by a DMS envi-
ronment. This aligns with Günster and Weigand (2020), where the use of DMS, like 
GeoGebra or Maple, helped overcome difficulties in connecting graphical effects of 
transformations with modifications in the symbolic expression of the function. With-
out this assistance, many students tend to rely on memorized facts or proceed mechan-
ically, for instance, by constructing data tables, which is generally insufficient for 
properly handling function transformations (Lage & Gaisman, 2006). This suggests 
the usefulness of providing activities targeted at developing flexibility with symbolic 
and graphic representations of functions and understanding their transformations.

In both contexts, the majority of students—more so in Italy than in Sweden—tended 
to provide the answer in standard form. This result aligns with Bossé et al. (2014), indi-
cating that students comprehend polynomials better when written in standard form.
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We noticed that many Italian students misunderstood Prompt (d). Additionally, 
some did not adhere to the condition of providing a polynomial function in Prompt 
(e) and wrote different types of functions. Several explanations are possible for these 
results. For Prompt (d), one reason could be the unfamiliar notation using “(i)-(iv)” 
to represent “from (i) to (iv)”, leading to the misinterpretation “(i) and (iv)”. Regard-
ing Prompt (e), some Italian students may have mistakenly considered non-polynomial 
functions, such as the absolute value of a polynomial,as a polynomial function. For 
both prompts, they might have faced difficulties in interpreting the prompt or extend-
ing their example space and therefore choose the simplest solution even if it meant 
disregarding the requirements. Therefore, it is crucial to pay attention to the task for-
mulation and highlight the relevant information. In this case, the prompts will be refor-
mulated before the next implementation of the activities. Moreover, in similar cases, 
the use of interactive feedback (Barana et  al., 2021), adapted to students’ answers, 
would help them better understand the task and the underlying processes.

Conclusion

Through this study, we addressed the research question:

How did the design of a specific example-generation task affect students’ 
example spaces in two different educational contexts?

The differences between the two contexts (i.e., different cultures, difference in terms 
of obligation, the diverse degree courses) provided a relevant number of situations and 
a variety of students’ behaviors in solving the task, thereby enriching the analysis.

In the example-generation task, we combined the idea of progressively adding con-
straints to a sequence of prompts with the idea of requesting more than one exam-
ple (Prompt (e)). The findings indicate that this is a successful strategy for stimulat-
ing flexibility in the choice of solving strategy and, consequently, extending students’ 
example space. Additionally, we identified several instances where a request for more 
than one example might further extend students’ example space, also in other prompts.

When creating example-generation tasks aimed at addressing specific key ideas, 
it is essential to consider the level of targeting required. A more targeted task 
increases the likelihood of the key ideas being considered, but at the same time it 
restricts the DofPV, thereby reducing the possibilities of a rich example space. For 
instance, to encourage students to use the Factor theorem, we could have specified 
that the response should be provided in factored form. Another example is that we 
could have formulated Prompt (d) in a way that relates back to Prompt (c), thereby 
increasing the number of students using vertical scaling of their response to Prompt 
(c) to answer Prompt (d). However, in both these cases, the changes will reduce the 
DofPV. Accordingly, finding the right balance between a targeted task and a broad 
example space is crucial when constructing example-generation tasks. It is impor-
tant to consider the specific key ideas that need to be addressed while also allowing 
for a rich and varied example space.

One way to address this dilemma is, instead of restricting the task, to use adapted 
feedback.  One idea would be to incorporate interactive feedback (Barana et  al., 
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2021) to foster the use of different strategies in solving a task (Günster & Weigand, 
2020): the feedback could confirm the correctness of the answer and suggest provid-
ing one more example using a different method. For example, if a student provides 
a correct response in standard form (in the specific example-generation task), the 
feedback could confirm the correctness of the answer, provide the student with the 
factored form of his/her answer, and ask for one more example written in factored 
form. Another idea is to provide a preview of students’ answers in factored form 
before submitting it. This is implicit feedback (Sangwin et al., 2009), and it could 
help them self-assess their answer by checking if the zeros are correct. This might 
also help them make sense of the factored form as a final answer.

Moreover, it is possible to introduce immediate feedback at the end of each 
prompt, so that students can use the information provided by the feedback in the next 
steps. This feedback would stimulate deeper thinking in case of errors and change 
the reasoning to be applied in the following prompts. In case of errors, it is also 
possible to allow for more attempts and provide information about the correctness 
of one’s response at each prompt. This kind of feedback would also be effective in 
avoiding misunderstandings, as occurred among the Italian students in Prompt (d).

In the Swedish context, students were encouraged to use a DMS to check their 
responses before submitting them, as suggested by Sangwin et  al. (2009). The 
implicit feedback from the DMS provided opportunities for self-assessment. This 
is likely reflected in the fact that few Swedish students provided incorrect answers.

Even if we suggest several ways to improve the task, it has several key strengths that 
will be maintained in future replications of this study: asking for more different exam-
ples in a chain of prompts with additional constraints; utilizing the algorithmic capabili-
ties of the CAA system to provide each student with a different version of the same task, 
which can foster discussion about processes, not just results (Nicol & Milligan, 2006); 
and recommending the use of a DMS to check the answer before submitting it.

A limitation of the study is the lack of data revealing students’ thinking behind 
their answers.  In many cases, the solving strategy is inferred from the students’ 
answers, while we do not have a record of their thoughts and mental processes 
as they complete the activities. The research group plans to revise the task to fur-
ther promote flexibility in dealing with polynomial functions and to re-experiment 
with the task in the next academic year, incorporating self-reflection questions that 
inquire about the strategies used and collecting more data through video-recording.
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