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Abstract
This work investigates how students interpret various eigenequations in different 
contexts for 2 × 2 matrices: Ax⃗ = 𝜆x⃗ in mathematics and either Ŝx�+⟩x =

�

2
�+⟩x or 

Ŝz�+⟩ =
�

2
�+⟩ in quantum mechanics. Data were collected from two sources in a senior-

level quantum mechanics course; one is video, transcript and written work of individ-
ual, semi-structured interviews; the second is written work from the same course three 
years later. We found two principal ways in which students reasoned about the equal 
sign within the mathematics eigenequation and at times within the quantum mechani-
cal eigenequations: with a functional interpretation and/or a relational interpretation. 
Second, we found three distinct ways in which students explained how they made sense 
of the physical meaning conveyed by the quantum mechanical eigenequations: via a 
measurement interpretation, potential measurement interpretation, or correspondence 
interpretation of the equation. Finally, we present two themes that emerged in the ways 
that students compared the different eigenequations: attention to form and attention to 
conceptual (in)compatibility. These findings are discussed in relation to relevant litera-
ture, and their instructional implications are also explored.

Keywords Eigentheory · Linear algebra · Quantum mechanics · Student reasoning

Introduction

Students encounter many of the same advanced mathematical concepts across 
undergraduate mathematics classes and physics classes. For instance, quantum 
mechanics is a core course for an undergraduate physics degree; within quantum 
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mechanics alone, students are expected to carry out computations and reason with 
linear algebra concepts such as matrix–vector operations, basis and change of basis, 
normalization, projection, inner products, and eigentheory. There is evidence that 
there may be a mismatch between how many of these mathematical concepts are 
emphasized and interpreted in math courses and in other disciplinary courses. For 
example, previous work in the context of definite integrals showed that certain con-
ceptualizations may not be productive in physics contexts (Jones, 2015) and that the 
interpretations typically taught in a calculus class are not those that are typically 
used in physics contexts (Pina & Loverude, 2020).

The experience of learning quantum mechanics may present some unique challenges 
(Emigh et al., 2015; Gire & Manogue, 2008, 2012; Hoehn & Finkelstein, 2018; Passante 
et al., 2020; Singh, 2008; Singh & Marshman, 2015). For instance, its abstract nature may 
add extra layers of complexity when trying to understand eigenequations in a quantum 
mechanics context. Furthermore, many quantum mechanics courses also introduce a new 
notation, known as Dirac or bra-ket notation. Students need to learn what the various sym-
bols represent, how to work with Dirac notation mathematically, and how to make sense of 
what it conveys physically. Research on student understanding of representations in quan-
tum mechanics includes comparing notations’ affordances and limitations more broadly 
(Gire & Price, 2015; Schermerhorn et al., 2019), students’ preferences and metarepresenta-
tional competence (Wawro et al., 2020), expert interpretations of Dirac expressions (Dreyfus  
et  al., 2017), and representations-focused instructional materials (Kohnle & Passante, 
2017). Related literature is discussed in more detail in the Literature Review section.

In this paper, we investigate how physics students make sense of eigenequations 
that they encounter in a mathematics course and in a quantum mechanics course. 
Building upon our prior work (Wawro et al., 2020), our research project investigates 
students’ meanings for eigentheory in quantum mechanics and how their language 
for eigentheory compares and contrasts across mathematics and quantum physics 
contexts. In particular, we present students’ interpretations of various eigenequa-
tions for 2 × 2 matrices: Ax⃗ = 𝜆x⃗ from mathematics and either Ŝx�+⟩x =

�

2
�+⟩x or 

Ŝz�+⟩ =
�

2
�+⟩ from quantum mechanics. We also highlight instances of synergistic 

and potentially incompatible interpretations, and we discuss ways in which those 
interpretations may be productive or unproductive in different contexts.

Background

In this section, we first summarize some foundations of quantum mechanical theory, 
focusing on the origins and role of eigentheory. We conclude with a comparison of 
quantum mechanical and mathematical interpretations of eigenequations.

Physics Background: Postulates and Spin‑1
2
 Systems

In many cases, classical phenomena can be predicted exactly due to their deter-
ministic nature. Quantum phenomena, however, are inherently probabilistic: 
only the probability of a specific outcome can be predicted. Quantum mechanical 
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phenomena were discovered empirically rather than theorized; the initial theoreti-
cal work was motivated by phenomenological results that challenged contemporary 
theories. Thus, in contrast to the empirical laws that underpin classical physics, the 
foundations of quantum mechanics are encapsulated in six postulates that relate the 
physical system to mathematical formalism. The postulates, developed to provide 
the necessary framing for the mathematization of experimental observations, are 
connected to physical states of a system, outcomes of measurements of those sys-
tems, and mathematical formalism used to represent and work with those entities. 
We summarize the four postulates most relevant to this paper.

The first postulate of quantum mechanics establishes that quantum mechani-
cal systems and all knowable information about them are represented mathemati-
cally by normalized state vectors, which are referred to as “kets” and symbolized as 
��⟩ . This notation to describe systems, known as Dirac notation or bra-ket notation 
(Dirac, 1939), was developed to bridge the matrix mechanics developed by Heisen-
berg and the wave mechanics developed by Schrödinger (Schrödinger, 1926), and 
is used in quantum mechanics for its generalizability between discrete and continu-
ous systems. Research has supported the notion that Dirac notation can productively 
support student reasoning about quantum mechanical systems (Gire & Price, 2015; 
Wawro et al., 2020).

Kets mathematically behave like vectors in a complex Hilbert space, with the 
condition of normalization. Any ket can be expressed as a linear combination 
(superposition) of basis kets for the Hilbert space. Normalization is a consequence 
of the probabilistic nature of quantum mechanics. For a general ket, the coefficient 
of each basis state is related (by complex square) to the probability of a measure-
ment outcome associated with that state. This is the essence of the fourth postulate. 
The sum of the individual probabilities, and thus the sum of the squares of indi-
vidual coefficients, has to be one.

The second postulate of quantum mechanics states that any physical observable, 
i.e., measurable quantity, can be represented by a Hermitian operator that acts on 
kets. Operators are typically labeled using the common variable for the relevant 
quantity with a “hat” over it; a general operator can be written as Â . The third pos-
tulate states that the only possible result of a measurement of an observable is one 
of the eigenvalues an of the corresponding operator Â ; thus, it is relevant that eigen-
values of Hermitian operators are necessarily real-valued. That eigenvalue is associ-
ated with an eigenket �an⟩ representing the state of the system corresponding to that 
particular measurement value.

The most common physical observables in a standard undergraduate quantum 
mechanics class are energy, position, momentum, and spin. The observable that is 
pertinent to this paper is that of spin. Spin is a measure of a particle’s “intrinsic 
angular momentum” and is related to the particle’s magnetic moment. Measure-
ments can be made of a spin component along a specified axis; that quantity is 
represented by an operator such as Ŝz (where the z indicates the component axis). 
The simplest spin system has two possible values, ±ℏ

2
 , for the Ŝz measurement; 
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these systems are known as spin-1
2
 systems and are often used to introduce quantum 

mechanical phenomena due to their mathematical simplicity. The measurements 
correspond to the states typically labeled �+⟩ and �−⟩ , respectively, which comprise 
a set of orthonormal basis vectors called the Sz basis. The analogous information 
can be determined for other component axes, such as x. In that instance, the possible 
results of the Ŝx measurement are also ±ℏ

2
 , which correspond to the set of orthonor-

mal basis vectors �±⟩x , called the Sx basis.
The introduction of eigentheory as a representation for quantum mechanical sys-

tems establishes explicitly that eigenvalues are the only possible outcomes of meas-
urements, and implicitly that there are eigenvectors corresponding to those eigen-
values. Both of these ideas are consistent with the third postulate, and together they 
form the basis of an expert interpretation of an eigenvalue equation in quantum 
mechanics: it is a statement about the possible results of measurement of an observ-
able and the relationships between those results and physical states. For example, 
the relationship of some of these objects and quantities in the spin-1

2
 context can be 

expressed symbolically as the eigenvalue equation Ŝx�+⟩x =
�

2
�+⟩x.

Interpretations of Eigenequations in Mathematics and Quantum Mechanics

Given the role of eigenequations in quantum mechanics, it makes sense to compare 
and contrast some possible interpretations of such equations by mathematicians and 
physicists. For a standard matrix eigenvalue equation, Ax⃗ = 𝜆x⃗ , a mathematician 
might give one of two common interpretations: 

 M1. There are some nonzero vectors x such that when A acts on x, the result is a 
scalar multiple (or stretch) of the vector x.

 M2. There are some nonzero vectors x such that the result of A times x is the same 
as the result of � times x.

Interpretation M1 can be particularly central in ℝ2 and ℝ3 , where graphical or embod-
ied interpretations of vectors being stretched can be useful. However, for rotation matri-
ces, which have no real-valued eigenvalues, the notion of “stretching" in M1 is less 
helpful, as there are no real-valued vectors that point in the same direction after being 
acted on by a rotation matrix. Thus, with complex-valued eigenvalues with non-zero 
imaginary components, the “scalar multiple" aspect of interpretation M1, or interpreta-
tion M2, may to be more useful. A set-theoretic interpretation, such as the collection of 
all x in ℝn that satisfy Ax⃗ = 𝜆x⃗ , allows for the zero vector and is consistent with reason-
ing about eigenspaces as subspaces of ℝn.

Now consider a spin-1
2
 eigenequation, Ŝx�+⟩x =

�

2
�+⟩x . A physicist might use one of 

two interpretations of this eigenequation: 

 P1. The Sx operator acting on the up-x eigenstate yields an eigenvalue of ℏ
2
.
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 P2. If you were to measure the x-component of the spin of an up-x state, you would 
get ℏ

2
 for that measurement.

Statement P1 identifies what each quantity in the equation - operator, eigenstate, and 
eigenvalue - represents. Statement P2 emphasizes the physical meaning of the empiri-
cal relationship between these three quantities and is more consistent with the third 
postulate. What is notable is that neither interpretation of the spin-1

2
 eigenequation is 

a “readout” of the equation; in particular, the eigenstate on the right-hand side is not 
explicitly mentioned in either interpretation. Furthermore, a geometric interpretation 
of the spin-1

2
 eigenequation could not convey the physical significance of this equation. 

First, the eigenstates must be normalized, so the idea of scaling or stretching an eigen-
vector by the eigenvalue, the M1 interpretation above, does not make sense. Second, 
the terms in the equation are tied to physical quantities, and the relationship between 
these quantities needs to be acknowledged.

Although terms in physics equations are generally tied to physical quantities, the ties 
manifest differently in quantum mechanical eigenequations than in most physics equa-
tions. Generally, physics equations provide symbolic representations of physical rela-
tionships between quantities (see Fig. 1). For example, Newton’s second law (Fig. 1a)  
relates the mass and acceleration of an object to the sum of all forces (the “net force”) 
acting on the object. The ideal gas law (Fig.  1b) relates the pressure, volume, tem-
perature, and number of gas particles via Boltzmann’s constant, kB . These equations 
are mathematical representations of physical operations, such as exerting force(s) on 
a system, measuring the acceleration of the system and determining the net force on 
that system, or determining the pressure of an ideal gas system if the other quantities 
are known. The allowable energies of a quantum mechanical harmonic oscillator - the 
eigenvalues of the total energy (Hamiltonian) operator - can be expressed in terms of 
the energy level index (n), the angular oscillation frequency of the system ( � ), and 
Planck’s constant divided by 2� ( ℏ ). The resulting equation (Fig. 1c) can be used to 
determine how one property of a system (here the energy eigenvalue) will change in 
response to a change in a different property (the angular frequency or the state index), 
effectively demonstrating covariation or multivariation between physical quantities 
(Carlson et al., 2002; Jones, 2022; Jones and Kuster, 2021). An interpretation of these 
equations typically consists of transliterating the symbols left-to-right into a sentence, 
effectively reversing the symbolization of the physical relationship established when 
mathematizing. A desired interpretation of a quantum mechanical eigenequation, how-
ever, is not a transliteration of the symbols, because it does not convey a direct mapping 
of the physical world. For example, statement P2 does not “read out” the vector on the 
right side of the equal sign.

Fig. 1  Canonical physics equations: a Newton’s second law, b the ideal gas law, and c the energy spec-
trum of a quantum harmonic oscillator
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These distinct interpretations between the mathematics and the physics for quan-
tum mechanical eigenequations are what motivated this study. In order to frame 
the study further, we discuss prior work on student understanding of linear alge-
bra focused on eigentheory, in the research on undergraduate mathematics education 
(RUME) and physics education research (PER) literatures, as well as some discus-
sions of the equal sign in both domains.

Literature Review

We first summarize pertinent findings related to student reasoning about matrix 
equations and eigentheory in mathematics and to student reasoning about eigen-
theory in physics contexts. As we carried out our analysis of how students made 
sense of the eigenequations in our data set, it became pertinent to build on literature 
related to the equal sign. Thus, we conclude this section with a review of relevant 
findings on student reasoning about the equal sign in mathematics and in physics.

Matrix Equations and Eigentheory in Linear Algebra

In linear algebra, any linear transformation T between vector spaces ℝn and ℝm can 
be represented by a matrix A defined by T(x) = Ax . Thus, one could interpret the 
matrix equation Ax⃗ = b⃗ as A transforming vectors x⃗ in ℝn and producing vectors b⃗ 
in ℝm . Larson and Zandieh (2013) call this a transformation interpretation of the 
matrix equation Ax⃗ = b⃗ . They state that in this interpretation, “the vector x⃗ is related 
to the vector b⃗ through a transformation via multiplication by the matrix A (an inter-
pretation related to developing an understanding of properties of linear transforma-
tions such as injectivity, surjectivity, and invertibility)” (p. 12). Larson and Zandieh 
offer two other interpretations of Ax⃗ = b⃗ : one in which b⃗ is a linear combination 
of the columns of A, and one in which x⃗ is the solution to the system of equations 
corresponding to Ax⃗ = b⃗ . Her and Loverude (2023) found that the transformation 
interpretation of matrix multiplication was the most consistent and stable interpre-
tation among a small sample of interviewed physics majors on a set of tasks, some 
of which were designed to elicit other interpretations (e.g., linear combination); 
they also found that students who had the most consistent use of the transforma-
tion interpretation were those that had completed two quantum mechanics courses. 
With respect to eigenequations, a specific type of matrix equation, we see interpre-
tation M1, “there are some nonzero vectors x such that when A acts on x, the result 
is a scalar multiple or a stretch of the vector x,” as a transformation interpretation 
of the eigenequation. In a different study focused on comparing how linear alge-
bra students reasoned about high school functions and about linear transformations, 
Zandieh et al. (2017) documented five clusters of metaphorical expressions that stu-
dents leveraged for function and/or transformation; the three most relevant to our 
work are input–output, in which x⃗ serves as the input vector and b⃗ as the output vec-
tor; morphing, in which x⃗ morphs into b⃗ ; and machine, in which A acts on x⃗ to pro-
duce b⃗ . Zandieh et al. found that a focus on properties (such as linear independence 
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of A’s column vectors implying the transformation is one-to-one) “appeared to 
impede students’ development of a unified concept image of function while an abil-
ity to draw on metaphors facilitated such development” (p. 12).

Research on students’ understanding of eigentheory has grown over the past dec-
ade, providing several insights into the complexity of the topic, students’ sophis-
ticated ways of reasoning, and pedagogical suggestions for supporting conceptual 
understanding (Bouhjar et  al., 2018; Karakok, 2019; Salgado & Trigueros, 2015; 
Wawro et al., 2019). For example, Thomas and Stewart (2011) noted students’ need 
to understand how both matrix multiplication and scalar multiplication on the two 
sides of the eigenequation Ax⃗ = 𝜆x⃗ yield the same result, a vector. They also advo-
cated for instructors to help their students develop a graphical conception of eigen-
vectors and eigenvalues, something they noted was weak in their study participants. 
Gol Tabaghi and Sinclair (2013) investigated students’ visual and kinesthetic under-
standing of eigenvector and eigenvalue. They found that working with an interac-
tive sketch promoted students’ flexibility between synthetic-geometric and analytic-
arithmetic modes of reasoning. Serbin et  al. (2020) investigated physics students’ 
reasoning about the characteristic equation (CE) for a 2 × 2 matrix A. They found 
that both conceptually and procedurally, most students’ knowledge of using the CE 
was deeper than their knowledge of deriving the CE. They also found that in deriv-
ing the CE, most students’ procedural knowledge was deeper than their conceptual 
knowledge, suggesting that students’ knowledge of principles underlying the rele-
vant procedures might need further development to help them better understand how 
the CE is derived conceptually. Although this is most likely valued in a mathemat-
ics course when students are first learning the material, it may be less relevant in a 
physics course where students are using the CE to solve specific applied problems.

Eigenvalues and eigenvectors can take on various meanings, such as principal 
moments of inertia along principal axes for a rotating solid body. Beltrán-Meneu 
et al. (2017) found that a teaching intervention about moments of inertia had a posi-
tive impact on students’ geometric understanding of eigenvalues and eigenvectors. 
There can also be various emphases related to eigenvalues and eigenvectors. For 
example, Caglayan (2015) found that interacting with a dynamic geometry software 
helped some students to reason about the existence of infinitely many eigenvectors 
for a given eigenvalue of a 2 × 2 matrix A; in particular, some students evidenced 
analytical-structural thinking (Sierpinska, 2000) through using the applet sliders to 
drag a vector u until it was collinear with the vector Au, noticing a family of solution 
vectors that have such a property. Wawro et  al. (2019) investigated linear algebra 
and quantum mechanics students’ understanding of linear combinations of eigenvec-
tors. They found that students reasoned algebraically, structurally, and geometrically 
to successfully reach conclusions, but that some did not seem to leverage that there 
are infinitely many eigenvectors for a given eigenvalue. The authors suggest helping 
mathematics students understand eigenvectors as an infinite set of vectors satisfying 
the eigenequation before focusing on finding eigenbases for finite-dimensional vec-
tor spaces. In quantum mechanics, however, due to normalization conditions, only 
one eigenvector of length one associated with every eigenvalue of an operator is con-
sidered, rather than infinitely many. Therefore, because focusing on one eigenvector 
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for a given eigenvalue is acceptable and common in quantum mechanics, physics 
students may not attend to infinitely many eigenvectors in their reasoning.

Although these interpretations of eigenvectors and eigenvalues are important for 
understanding eigentheory in general, in this paper we demonstrate how eigenequa-
tions in quantum mechanics require students to think about eigenvectors and eigen-
values in different ways than they have learned in the past, and how there are some 
unique challenges that arise with interpreting eigenequations in quantum mechanics.

Eigentheory in Physics

There are several physical systems for which linear algebra is the mathematical 
medium. Examples include finding moments of inertia for rotating rigid bodies and 
determining normal modes of oscillation of coupled systems, such as a double pen-
dulum or a system of multiple masses connected by springs (e.g., Taylor, 2005). In 
rigid body rotation, the rotational inertia is represented as a tensor and is diagonal-
ized to find the principal axes; the eigenvalues are the moments of inertia about each 
axis, known as the “principal moments.” For oscillating systems, the purpose of the 
eigenvalue equation is to solve for eigenvalues and eigenvectors, using the char-
acteristic equation, to characterize the system by its normal modes (eigenvectors) 
and resonant frequencies (eigenvalues). However, individual eigenequations are not 
written out and interpreted as in quantum mechanics. Typically, the eigenvalues are 
fed into the general solution form to describe the motion in terms of rotations about 
principal axes or sinusoidal oscillations of the normal modes.

When an eigenequation is presented in classical physics textbooks, the main interpre-
tation is geometric, with a transformation interpretation of the equation. For example:

“[Eigenvalue equations] always express the same idea, that some mathemati-
cal operation performed on a vector ( � in our case) produces a second vec-
tor ( I� here) that has the same direction as the first. A vector � that satisfies 
[ I� = �� ] is called an eigenvector and the corresponding number � , the cor-
responding eigenvalue.” (Taylor, 2005, p. 389)

In an intermediate-level mathematical methods for physics course, Her and Loverude 
(2020) investigated student performance on problems dealing with determining normal 
modes of oscillation of coupled systems. They found that students were fairly successful 
in technical operations of matrix mechanics, in particular working through the charac-
teristic equation and taking the determinant, but were less successful in mathematizing 
the scenario - finding the general structure of the matrix and the correct eigenequations 
- and in interpreting the solutions as the oscillation frequencies of the system.

A common text for a Mathematical Methods for Physics course (Boas, 2006) 
discusses eigentheory in the context of diagonalization of matrices for a coordinate 
transformation; the author uses an elastic membrane as a metaphor for the coordi-
nate system. In this metaphor, the eigenvectors have the property that “Along these 
[...] directions (and only these), the deformation of the elastic membrane was a pure 
stretch with no shear (rotation)” (p. 149). Much later in the text, eigenvalues are 
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discussed in the context of “separation constants” in partial differential equations, 
noting that:

“The resulting values of the separation constants are called eigenvalues and 
the solutions of the differential equation [...] corresponding to the eigenvalues 
are called eigenfunctions. [...] Having found the eigenfunctions, the next step 
is to expand the given function in terms of them. [...] the eigenfunctions are a 
set of basis functions for this expansion.” (Boas, 2006, p. 625)

Textbook emphasis on eigenequations as having centrality in physical interpretation 
is not as prevalent in classical contexts as in quantum mechanical contexts, perhaps 
because the classical systems are more tangible in their meaning.

In quantum mechanics in particular, eigenequations play a significant role. One 
common use of eigenequations is as reference for computation. For example, when 
determining an expectation value of a quantity (the predicted mean value of a set of 
measurements on an ensemble of identically prepared systems) for a given state, the 
state vector is typically expanded in the basis of the quantity’s associated operator,  
and each eigenstate is acted on by the operator, resulting in the corresponding eigen-
value “replacing” via algebraic substitution the operator in front of each eigenstate. 
If the state vector is an eigenstate of that operator, then the expectation value is the  
associated eigenvalue. For example, for a system prepared in the state �+⟩ , the expec-
tation value of Ŝz is ⟨Ŝz⟩ = ⟨+�Ŝz�+⟩ = ⟨+�

�

2
�+⟩ =

�

2
⟨+�+⟩ =

�

2
 . This calculation  

explicitly uses the eigenequation Ŝz�+⟩ =
�

2
�+⟩ to algebraically substitute ℏ

2
�+⟩ in for 

Ŝz�+⟩ . It also leverages the inner product ⟨+�+⟩ = 1 , because of the normality of �+⟩ , 
to determine the expectation value to be ℏ

2
 . This calculation is sensible physically 

because ℏ
2
 is the only possible result of a measurement of Sz for the �+⟩ state.

Another common use of eigenequations in quantum mechanics is as a concise 
representation of postulates that relate the physical system, measurable quantities, 
and possible measured values of those quantities (e.g., as explained in the Physics 
Background: Postulates and Spin-1

2
 Systems section  for spin-1

2
 systems). Physics  

education researchers have studied student understanding of the eigenequation, often 
focusing on the time-independent Schrödinger equation or the eigenequation for the 
Hamiltonian (total energy) operator, Ĥ�𝜑n⟩ = En�𝜑n⟩ . This is a major focus of quan-
tum mechanics courses because time evolution of a system is associated with the 
Hamiltonian operator. Singh (2008) reported several ideas students have about the 
Schrödinger equation, including that students have been found to incorrectly inter-
pret it as representing a measurement of energy. In a study focused on resources 
(Hammer, 2000) students use to understand quantum mechanical spin operators, 
Gire and Manogue (2008) identified the resource “quantum measurement as an 
agent,” coming from the idea that taking a measurement changes the system. The 
students in their study also articulated that operating on a vector generally trans-
forms the vector, which the researchers labeled “operating as agent.” The research-
ers argued that by accessing both of these resources in parallel, students arrive at the 
unproductive conclusion that an operator acting on a state vector represents a meas-
urement of the quantity represented by that operator. Gire and Manogue (2012) fol-
lowed this up, noting that navigating unfamiliar language in addition to eigentheory 
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may present additional challenges for students. One student in their study used the 
term “observable” when describing an eigenvalue. They also note that “It is com-
mon for textbooks to say that observables are represented by operators” (p. 4), ena-
bling further conflation between a measurable quantity and a measurement.

There is evidence that students overgeneralize eigenequations of physical observ-
ables to apply to any state (even for a state that is an explicit superposition of the 
eigenstates of the operator), perhaps connecting to the emphasis on the energy 
eigenvalue equation in instruction (Singh, 2008; Styer, 1996), the relationship of 
the Hamiltonian operator with time dependence, and/or the connection mentioned 
above between operators acting on a state and measurements of the state (Gire & 
Manogue, 2008; Singh, 2008).

Dreyfus et  al. (2017) engaged in a theory-building effort meant to use data to 
illustrate their conjectures and explored a method for analyzing student mathemati-
cal sensemaking in quantum mechanical problem solving. They proposed that a stu-
dent view of an eigenequation as “a transformation that reproduces the original,” 
consistent with a geometric interpretation, might support an appropriate interpreta-
tion of the energy eigenvalue equation. The authors argue that the transformation in 
a quantum mechanics context is less directly associated with physical meaning than 
are typical equations in physics.

Student Conceptions of the Equal Sign in Mathematics and Physics

Another relevant aspect of student interpretation of eigenequations relates to the 
equal sign. Generally, students’ conceptions of the equal sign in mathematics, ini-
tially studied among K-12 students, have been described as either operational or 
relational (e.g., Behr et  al.,  1980; Carpenter et  al.,  2003; Kieran,  1981; Knuth 
et al., 2005). An operational view of the equal sign is one in which a person inter-
prets the equal sign as a signal to “do something,” typically computation; for exam-
ple, performing operations on the left side produces the result on the right side. A 
relational view is typified by a person reasoning about the equal sign as representing 
a relationship of equivalence between the quantities or expressions on either side of 
the equals sign; for example, a person might compare the expressions on either side 
of the equal sign and confirm that they are indeed equivalent, i.e., that one side is 
“the same as” the other. In a study of undergraduate and graduate students, McNeil 
and Alibali (2005) found that student interpretations can be context dependent, but 
that with experience, the relational interpretation can supersede the operational one. 
Larson et al. (2009) asked linear algebra students, before instruction about eigenthe-

ory, to explain how they thought about A
[
x

y

]

= 2

[
x

y

]

 , where A is a 2 × 2 matrix. 

Some students concluded that because the two sides are the same, it must be that A 
somehow equals 2. The authors concluded these students leveraged a relational view 
of the equal sign because of their need for sameness on both sides of the equation. 
We note that although this student view has room for growth in linear algebra, it is 
understandable based on students’ prior experiences with equations in which all 
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entities are numbers. If, instead, a student understands that for Ax⃗ = 𝜆x⃗ in each side 
of the equation the final object is a vector (Thomas & Stewart, 2011) and relates 
those final objects as equivalent, we posit that would be demonstrating a rich rela-
tional view of the equal sign in that linear algebra context.

In the Matrix Equations and Eigentheory in Linear Algebra section, we summarized 
the transformational interpretation of the matrix equation Ax⃗ = b⃗ from Larson and 
Zandieh (2013), as well as three metaphors for function from Zandieh et  al. (2017): 
input–output, machine, and morphing. We note that all students in the 2017 study  
agreed that a linear transformation is a type of function, and almost all used one of 
these three metaphors for comparison between functions and linear transformations.  
In our analysis we leverage these prior works to create an additional category related 
to the equal sign: we classify students’ interpretations of the equal sign in eigenequa-
tions consistent with these specific metaphors within the transformational category of 
Zandieh et al. (2017) as a functional interpretation of the equal sign.

Interpretations of the equal sign in physics equations are less studied. Alaee 
et al. (2022) explored equations in multiple chapters of representative physics texts 
at introductory, intermediate, and advanced levels, classifying the role of the equal 
sign in each. They found five categories - definitional, causality, assignment, bal-
ancing, and calculate - and showed the relative prevalence of each category in the 
different texts. Upper-division texts on electricity and magnetism and quantum 
mechanics showed a far smaller proportion of assignment equal signs, a greater pro-
portion of definitional signs, and twice as many calculate signs. These differences 
are attributed to the increase in the number and complexity of derivations requiring 
more symbolic manipulations and quantities that are more carefully defined. The 
process of computing expectation values may reinforce an operational interpreta-
tion of the equal sign for quantum mechanical eigenequations, placing the equation  
in the Alaee et  al. (2022) calculate or definition category for students. This may 
negatively impact the development of a nonstandard conceptual interpretation of the 
eigenequations related to the third postulate, as discussed in the Physics Background:  
Postulates and Spin-1

2
 Systems section.

Methods

In this paper, we investigate how physics students make sense of eigenequations 
that they encounter in a mathematics course and in a quantum mechanics course. To 
do so, we analyze data that were collected from two sources. The first set consists 
of video, transcript, and written work from individual, semi-structured interviews 
(Bernard, 1988), drawn on a voluntary basis, with 9 students from a senior-level 
quantum mechanics course at a medium-sized public research university in the 
northeast US. The second data set, collected three years later, consists of written 
work from 10 students enrolled in the same quantum mechanics course. The course 
was taught by the same instructor both times, who was part of the research team for 
both data collections.

The interviews took place in week 8 of the semester, after the completion of a unit 
on spin-1

2
 systems with Dirac notation. All interview participants were recruited during 
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class, gave informed consent before being interviewed, and received compensation for 
their time and effort. For this paper, we focus on one particular interview question,  
which was used to investigate how students conceptualize and make sense of the 
eigenequations Ax⃗ = 𝜆x⃗ and Ŝx�+⟩x =

�

2
�+⟩x (see Fig. 2a). In Wawro et al. (2020), a 

subset of the author team used discourse analysis to characterize and examine the (in)
compatibility of the students’ interpretations of the two equations. That preliminary 
analysis highlighted an opportunity to support student understanding. The written ques-
tion used in the second data collection was developed to assess the instructional goals  
of the course. In order to probe student thinking on this topic more directly within the 
course itself, the question was used on a homework assignment to investigate how stu-
dents conceptualize and make sense of Ax⃗ = 𝜆x⃗ and Ŝz�+⟩ =

�

2
�+⟩ , which is the 

eigenequation for the “up” z component of spin rather than the “up” x component (see 
Fig. 2b). The Ŝx eigenequation was used for the interview data collection to align with a  
subsequent interview question (regarding a "spin flip" non-eigenequation, see Wawro 
et al., 2020). Noting that the potentially less familiar x basis did not seem problematic 
nor relevant to student reasoning about eigentheory in the interview data, the standard 
Ŝz eigenequation was used in the written assignment. Subscripts for the kets are not 
included in the Ŝz eigenequation as a matter of convention; physicists assume that when 
no basis is given, states are written in the z basis.

The written question explicitly stated that both equations were eigenvalue equations 
that could be thought of in similar and different ways, and it asked students to discuss 
the equations’ individual meanings as well as to compare them. It explicitly asked for 

Fig. 2  Questions asked in this study. a The interview question. b The written question
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similarities and differences between the two equations in order to elicit ideas that may 
have required prompting in the interviews. Student responses varied in amount of detail 
given: some students primarily addressed the first portion of the prompt asking them to 
interpret the two equations, and others primarily addressed the portion asking them to 
make comparisons.

Students’ interpretations of the equations in the two tasks were so similar that the 
authors analyzed them together for the purposes of this study. Students from interview 
data are pseudonymized with “C#”, and students from written task are pseudonymized 
with “S#”. Students were not asked for their pronouns, so we use the singular pronoun 
“they” for all participants.

In order to document students’ various interpretations of the two eigenequations, we 
coded the interview data for nuances in student imagery and meanings for the vari-
ous concepts that students brought to bear as they engaged with the question. We drew 
inferences from the language students used, which is type of discourse analysis (Gee, 
2014). We leveraged a modified grounded theory approach (Glaser & Strauss, 1967; 
Zimmerman et al., 2019) to construct analytic codes primarily from the data and also 
our knowledge of existing literature on student understanding of eigentheory in both the 
RUME and PER communities. For instance, the notion of an eigenvector being a vec-
tor that is stretched by its associated transformation is documented in the literature as a 
productive conceptualization (e.g., Sinclair & Gol Tabaghi, 2010), so we were primed 
by our prior knowledge to notice such meanings in the data. Modified grounded theory 
also leaves space for us as researchers to be open to discovering unanticipated ways that 
students made sense of the two eigenequations, as well as how they reconciled the two 
in comparison with each other.

A similar approach was taken with the written data, with the exception that its cod-
ing was informed by the interview data as well. Some ideas presented by students in the 
written data still stood out as unique from the codes established during interview analy-
sis. We used constant comparative methods to compare student ideas and determine if 
responses are indicative of the same knowledge (Strauss & Corbin, 1998). These ideas 
were added to the existing codes and, upon returning to the interview data, we found 
similar ideas to those presented in the written data and coded them accordingly. In this 
way the two data sets were found to be consistent with one another despite the differ-
ences between time of collection and different groups of individuals in the course.

Results

Students from both the interview and written data sets interacted with Ax⃗ = 𝜆x⃗ , 
which we refer to as Equation 1 (E1). Students from the interview data interacted 
with Ŝx�+⟩x =

�

2
�+⟩x , and students from the written data set interacted with 

Ŝz�+⟩ =
�

2
�+⟩ . We refer to both of these spin eigenequations as Equation 2 (E2).

In this section, we summarize our findings regarding students’ interpretations of 
E1 and E2. First, we found two main ways in which students explained E1: via a 
functional or a relational interpretation of the equal sign. We detail and exemplify 
both of these interpretations, as well as give instances of students leveraging both 
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interpretations. We then detail ways that the students’ language in explaining E2 was 
consistent with functional or relational interpretations of the equal sign. Second, we 
present results regarding three main ways that students explained how they made 
sense of the physical meaning conveyed by E2: as measurement, potential measure-
ment, or as correspondence. We acknowledge that our analysis is inferential and that 
alternative interpretations of student meanings may be plausible in some instances. 
Finally, we present two themes regarding student comparisons of E1 and E2: atten-
tion to form and attention to conceptual (in)compatibility.

Student Reasoning About Equation 1

As discussed in the Introduction, two common ways that members of a mathematics 
classroom might interpret the eigenequation Ax⃗ = 𝜆x⃗ are (1) there are some nonzero 
vectors x⃗ such that when A acts on x⃗ , the result is just a scalar multiple or a stretch of 
the vector x⃗ ; and (2) there are some nonzero vectors x⃗ such that the result of A act-
ing on x⃗ is the same as the result of � times x⃗ or � stretching x⃗ . These interpretations 
of the eigenequation are consistent with existing literature and what we found in the 
data. In particular, the first is consistent with a functional interpretation of the equal 
sign, and the second is consistent with a relational interpretation of the equals sign 
(e.g., Knuth et al., 2005).

Functional Interpretation of the Equal Sign in Equation 1

In the interview data with 9 students, we found five instances of students discussing 
Equation 1 in a way consistent with a functional interpretation of the equal sign. All 
but one of these instances occurred when students were asked to read Equation 1 out 
loud and explain how they thought about it. For example, C1 stated, “the solutions x 
to this, are the vectors such that when operated on by A, you get the same vector um, 
to within a scalar constant.” We code this utterance as a functional interpretation 
because of the conveyance of a vector being “operated on by A” and the result of 
that action being a scalar multiple of the same vector. A different student, C7, stated, 
“So I see that, as a matrix A operates on a vector x and it has a special property such 
that it’s just that vector again times a scalar.” In this example we also see evidence of 
the operation of A on the vector x⃗ producing a scalar multiple of the vector; C7’s use 
of the word “again” helps convey that the action of A on x⃗ produced the result of the 
scaled vector.

In the written data, 6 students presented views consistent with a functional inter-
pretation of the equal sign. Some of these responses were very explicit, e.g., S3: 
“ Ax⃗ = 𝜆x⃗ is more generally interpreted as a linear transformation A acting on a vec-
tor x⃗ , the end result of which is the vector x⃗ being scaled by a constant � ,” and S4: 
“Mathematically, the eigenvalue equation states that the transformation represented 
by the matrix A only scales the vectors in its eigenspaces (i.e., vectors that are eigen-
vectors).” In both examples, the scaling of the vector is being framed as the result 
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of the operator acting on the vector, consistent with the functional interpretation of 
the equal sign. Other students were more reminiscent of student C1 in the interview 
data, such as S7: “Given A is a matrix, lambda is the value that the matrix scales 
by... thus, when the eigenvector is operated on it is only scaled, never rotated.” In all 
of these cases, just as with the students in the interview data, the focus is on the sca-
lar multiplication being the result of the operation of the matrix on its eigenvector.

Relational Interpretation of the Equal Sign in Equation 1

The second common way that members of a mathematics classroom might interpret 
the eigenequation Ax⃗ = 𝜆x⃗ , (2) there are some nonzero vectors x⃗ such that the result 
of A acting on x⃗ is the same as the result of � times x⃗ or � stretching x⃗ , is consistent 
with existing K-16 lature on student understanding of the equal sign. In particular, in 
our data there is evidence of students interpreting Equation 1 in ways consistent with 
a relational interpretation of the equals sign (e.g., Knuth et al., 2005).

In the interview data, there are five instances of students discussing Equation 1 
in this way. All of these instances occurred as students were responding to the inter-
viewer’s prompt, “How do you think about what the equals sign means in that equa-
tion?” For example, C8 stated, “A acting on this vector is the exact same thing as 
this scalar quantity acting on the vector.” In C8’s response, they explain how the 
result of the action on one side of the equation (“A acting on this vector”) produces 
the same result as the action on the other side of the equation (“scalar acting on 
this vector”). Similarly, but with a bit more specificity about that result, C2 stated, 
“the two-by-one vector that is made by multiplying this matrix by this vector, um is 
the same as the two-by-one vector that is, um, this eigenvec-the same eigenvector 
[points to x⃗ on both sides], scaled by the eigenvalue [points to �].”

Simultaneous Views of Equation 1

One student, C6, explained the equation in ways consistent with both the functional 
interpretation (twice) and the relational interpretation (once). When asked to explain 
how they thought about the equation, C6 stated: “this looks like the uh, eigenvalue 
eigenvector equation...where you uh operate on vector x with A, and you get the 
same vector x times a scalar multiple,” which we coded as a functional interpreta-
tion. When responding to how they thought about the equals sign means, C6 stated:

Um, so they have to be describing the same, like they’re identical. So like, you 
do this [points to Ax⃗ on the left-hand side (LHS) of E1] to get that [points to 𝜆x⃗ 
on the right-hand side (RHS)] usually um, but like doing this [points to LHS] 
and doing this [points to RHS] same thing are-you’d get the same thing back as 
a scaled vector. [Int: Gotcha] But this one you’ve pulled the scale out [points to 
RHS]. And on this side it’s a matrix vector operation [points to LHS].

We coded C6’s statements of “you do this to get that” and associated gestures as a 
functional view. The rest of C6’s statement, paired with their gestures, is consistent 
with a relational view of the equal sign.
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Similar to C6 in the interview data, S17 presented both views of the eigenvalue 
equation in different portions of their response. They first wrote, “The basic equa-
tion Ax⃗ = 𝜆x⃗ can be thought of similarly, with 𝜆x⃗ representing the corresponding 
values for the operation Ax⃗ .” This correspondence view of the eigenvectors, eigen-
values, and operator seems consistent with the relational view of the equal sign. The 
student then wrote, “More commonly however, the eigenvalue equation is generally 
used to find the vectors x⃗ where, when A is applied, only change their magnitude by 
� ”, which is consistent with a functional view of the equation.

Student Reasoning About Equation 2

The physics eigenequation that students in our data set were asked to reason about 
was either Ŝx�+⟩x =

�

2
�+⟩x (the interview) or Ŝz�+⟩ =

�

2
�+⟩ (the written task). We 

first detail ways in which the students’ language in explaining Equation 2 was con-
sistent with the functional or relational interpretations of the equal sign. We then 
present results regarding students’ interpretations of the physical meaning conveyed 
by Equation  2. In particular, our analysis revealed three main interpretations of 
Equation  2: measurement, potential measurement, and correspondence. Although 
measurement is not a meaningful/valid interpretation of the equation, potential 
measurement and correspondence are both meaningful and connected. We make 
a distinction between the two ideas, potential measurement and correspondence, 
because students from both data sets presented ideas consistent with the third postu-
late, but some of those students placed an emphasis on the explicit potential meas-
urement portion of the postulate while others focused primarily on the implicit con-
nections between the terms established in the postulate.

Functional or Relational Interpretations of Equation 2

Some students in the interview data initially presented ideas consistent with either 
the functional or relational interpretations of the equal sign. Some examples come 
from C12, “I mean, this is the S x operator, and it’s operating on just one eigenvec-
tor. You’re getting the, like one eigenvalue times the eigenvector,” and C1, “Um, so, 
if you take a vector plus x [points to the �+⟩x on left], and operate it on, with some 
operator, S x [points to Ŝx ], then [pause] you, you will, you would get solutions that 
are the form [points to right side of equation] h bar over two times plus x.” In the 
written data, S3, S7, and S14 all presented ideas consistent with a functional inter-
pretation of E2 as well.

C5 provides an explanation of E2 consistent with the relational interpretation of 
the equal sign: “So, um, for the up x state [pointing to both plus-x kets], um, there 
is an eigenvalue [pointing to ℏ

2
 ] for h, er, the eigenvalue h bar over two results in the 

same thing [points to Ŝx ] as operating S x on the up x state [points to �+⟩x on left].” 
Student C2 gives another example of relational interpretations of the equal sign in 
E2 saying, “two-by-one vector scaled by the measured observable eigenvalue is the 
same as this [points to left side], or is the same vector that is made by multiplying 
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this, um, matrix by this eigenvalue, er eigenvector.” We point out that C2’s explana-
tion of E1 (see the Relational Interpretation of the Equal Sign in Equation 1 section) 
was also consistent with a relational interpretation of the equation.

From the written data, two students presented views consistent with the relational 
view of the equal sign. For example, S14 wrote, “We identify equation 2 as an eigen-
value equation because the matrix Ŝz yields the same result as the scalar ℏ

2
 . This is, 

more or less, how eigenvalue equations work.” Although S14 explicitly writes about 
Equation 2, they also generalize to all eigenvalue equations. Given that the prompt 
explicitly states that both are eigenvalue equations, it seems reasonable to assume 
S14’s view might also extend to E1, even though they only explicitly address E2.

Measurement Interpretation of Equation 2

In our data set, five of the nine students from the interview data and no students 
from the written data conveyed an understanding that is consistent with what we call 
a measurement interpretation of Equation 2. By a measurement interpretation of the 
eigenequation, we mean that a student seems to be making sense of the eigenequa-
tion by thinking that it is conveying that an operator acting on a state is the same as 
taking a physical measurement of the quantity that the operator represents. This is 
consistent with findings related to students activating both “quantum measurement 
as agent” and “operation as agent” as a reason they might think that operating repre-
sents measuring (Gire & Manogue, 2008). For example, after reading the equation, 
C8 volunteered,

I guess everything I have said earlier [for E1] would apply to this, however, I 
don’t really think of it in terms of that way when I see it in this notation [E2]. 
This makes me more think of taking a measurement.

When asked how they describe what is going on in E2 physically, C6 stated,

you’re measuring S x [...] not only are you mathematically operating, like it 
represents physically doing something to the system, which in this case is 
measuring the spin in the x direction. [...] you’re getting a measurement of h 
bar over two in the plus x direction.

The main reasoning leveraged by students in these responses seems to describe 
operation as measurement by thinking that the equation is a mathematical represen-
tation of a physical operation. Although this is not a desired interpretation, one can 
see why it seems sensible to a student; the terms “operator,” “operation,” and “act-
ing” may actually suggest measurement to these students.

Potential Measurement Interpretation of Equation 2

In our data set, two of the nine students from the interview data and three of the 
ten students from the written data conveyed an understanding that is consistent with 
what we call a potential measurement interpretation of Equation 2. By a “potential 
measurement” interpretation of the eigenequation, we mean that a student seems to 
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be making sense of the eigenequation by thinking that it is conveying information 
about what value would be measured if a measurement of that quantity (in this 
case, spin) were to occur. Statements coded in this category tended to use some 
sort of conditional language to indicate that the equation provided information 
about possible measurements, rather than it representing some actual action of 
measurement. We see the potential measurement interpretation to be consistent with 
the third postulate of quantum mechanics (see  the Physics Background: Postulates 
and Spin-1

2
 Systems section) but with an emphasis on the explicit potential 

measurement portion of the postulate.
For example, when asked to explain what E2 meant physically, student C7  

replied, “this is a representation that I think is meant to show what the measurement 
of this spin, of a spin-up-in-the-x particle would be,” later adding, “I know that this 
eigenvalue equation just tells you that if you take a particle that’s up x, the, you try 
to measure the observable... that’s the value you would get.” In both portions of C7’s 
response, they leverage conditional language to communicate that the eigenequation 
is indicating potential measurement values, if one were to measure the spin observa-
ble. In response to the written prompt (Fig. 1(b)), student S21 wrote, “ Ŝz�+⟩ =

�

2
�+⟩  

expresses that you will measure ℏ
2
 in the upward spin state. This will also be true 

when measuring �−⟩ state, you will receive a measurement of −ℏ

2
 .” We coded S21’s 

response as a potential measurement interpretation of the eigenequation because of  
the future tense; they do not indicate that the equation represents the action of meas-
uring, but rather that it provides information about measured values when the 
related measurements do occur. To the same written prompt, student S25’s response 
included: “in quantum eigenvalues represent one of the possible measurement 
results... quantum eqn represents the possible measured values of the Ŝz operator.” 
S25 used the word “possible” twice - once to indicate eigenvalues are possible meas-
ured values, and once to indicate that the (given) eigenequation conveys information 
about possible measurement results of the spin operator. Because of this, we coded 
S25 as demonstrating a potential measurement interpretation of E2.

Correspondence Interpretation of Equation 2

In our data set, three of the nine students from the interview data and two of the 
ten students from the written data conveyed an understanding that is consistent with 
what we call a correspondence interpretation of Equation 2. By a “correspondence 
interpretation" of the eigenequation, we mean that a student seems to be making 
sense of the eigenequation by thinking that it is conveying information about the 
relationship between eigenstates and eigenvalues. We see the correspondence 
interpretation to be consistent with the third postulate of quantum mechanics (see the 
Physics Background: Postulates and Spin-1

2
 Systems section) but with an emphasis 

on the implicit connections between the terms established in the postulate. This was 
first noted in the written data with S14’s response: “[E2] tells us that the spin in 
the z direction, Sz , of a spin up particle or beam, �+⟩ , has a value of ℏ

2
 .” They are 

not relating the equation to measurement but rather are providing an interpretation 
consistent with the idea that the eigenvalue equation conveys information about 
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the value of an observable for a given eigenstate. This prompted us to examine the 
interview data for similar interpretations.

While explaining the meaning of E2, C3 said, “I think of it as-if the particle is spin-
ning in the x, has spin in the x direction, it, that spin will have a value of h bar over two.” 
We coded C3’s statement as a correspondence interpretation because they are describing, 
without any reference to measurement, the physical information that the equation is com-
municating. When asked how they interpret the equation physically, C2 said, “this shows 
that the energy, or the, the measured um, value of, uh, the positive x spin is h bar over two, 
I suppose.” Although the student said “measured,” their response does not include discus-
sion of an operator, which would be indicative of measurement interpretation, nor the con-
ditional language indicative of potential measurement interpretation. Thus, C2’s response 
most closely aligns with correspondence, though it may have some overlap with potential 
measurement given that both interpretations are consistent with the third postulate.

Student Comparisons of Equations 1 and 2

All students noticed (in the interviews) or were told (in the written prompt) that both E1 
and E2 are eigenequations. Thus, in this section our analysis is focused on how students 
compared and contrasted the two equations. In our analysis two themes emerged in the 
ways that students compared Equations 1 and 2: attention to form and attention to con-
ceptual compatibility. Student work that paid attention to form manifested in two main 
ways: drawing parallels between individual terms in the two equations and/or between the 
two equations’ overall structure; and commenting on the literal symbols and notational 
systems used in the equations. The second theme, conceptual compatibility, focuses on 
aspects of student thinking in the data that highlight ways in which various interpretations 
make sense or are potentially not productive for either or both of the two eigenequations.

Attention to Form

In the written data, just over half of students (5/9) noted some sort of morphologi-
cal similarity between the two equations, where morphological means relating to 
the form or structure of things. For example, when comparing the two equations, 
S21 wrote, “ ⃗x and �+⟩ are both vector quantities. � and ℏ

2
 are both scalars,” making 

element-by-element comparisons of the two equations. S4 wrote, “both equations... 
contain a vector operated on by a quantity... that results in the vector being rescaled 
but preserving its initial direction,” commenting on the similar structure of the two 
equations holistically. We note S4’s statement is consistent with a functional inter-
pretation of the equal sign for both E1 and E2. These two students are representative 
of the group of students who noted morphological similarities between the two equa-
tions. Similarly, some students (5/9) in the interview data also made morphological 
comparisons between the two equations. For example, C3 stated, “The A [points to 
𝐴 in E1] matches the spin x [points to Sx in E2] and the lambda [points to � in E1] 
is h bar over two [points to ℏ

2
 in E2],” and C8 said, “Okay so, um, I can’t deny it, the 

parallel here. We have a matrix acting on a vector is equal to a scalar quantity times 
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the same vector,” when presented with E2. We note that C8’s statement about both 
E1 and E2 is consistent with a relational interpretation of the equal sign.

A few students (3/9) in the written data indicated that notation was a notable dif-
ference between the two equations. Students in the interview data did not make the 
same kinds of notational comparisons in response to these two equations. S14 wrote, 
“equation 1 uses vectors and matrices while equation 2 uses kets and can only be 
represented by matrices,” noting that the notations are different for the two equa-
tions and that due to the embedded meaning of E2 these are only representations. 
Unlike the interview prompt, the written assignment did not explicitly state what 
A is, but these students still interpreted A as being a matrix. In the same vein, S7 
focused on the implications of working with the two different notations writing, “ �+⟩ 
requires inner products, while x⃗ just require dot products.” We interpret this as com-
parison of working in Dirac notation and in matrix notation for real-valued vectors.

Attention to Conceptual Compatibility

The second theme from our analysis focuses on conceptual compatibility, that is, 
the ways that students made sense of the interpretation(s) of the two equations, 
and in cases where they were different, reconciled them. In their comparison of the 
two equations, some students remarked on a conceptual tension between the two 
equations; in other cases, we as researchers noticed a potential conceptual tension 
between the two equations in how the students described the equations’ meanings. 
For the student-noticed tension, we focus on student C1 as a vignette.

When asked how they think about what is going on physically in what is represented 
by Equation 2, student C1 began an explanation but paused and conveyed some uncer-
tainty with how to reconcile various conceptual interpretations that they were considering:
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Overall, C1 seems to be working to coordinate a conceptual interpretation of the 
various parts of the equation and the equation as a whole. Their initial explanation is 
consistent with a measurement interpretation of E2 ( ̂Sx “is representative of a measure-
ment” (line 1), “perform a measurement” (line 3), Ŝx�+⟩x “is a measurement of the 
state of some system” (lines 8-9)). We note that C1 seems to be referring to both the 
operator Ŝx and the operator times a ket Ŝx�+⟩x within their measurement interpreta-
tion. In the middle of this initial explanation, though, C1 expresses some hesitation 
(lines 4-5, 7), saying they were not sure what Ŝx�+⟩x would represent physically.

After reiterating their measurement interpretation of Ŝx�+⟩x (lines 8-9), C1 
articulates that the left-most ket �+⟩x indicates that the state is entirely in the “plus 
x component” (line 11). They then state that the same ket is an eigenvector of Ŝx 
(line 12), which they had previously said is a “state such that it’s not changed” 
(line 4). From this, C1 concludes that “this state is unchanged” (lines 12-13) and 
underlines ℏ

2
�+⟩x on the right side of E2. We note that C1 describes both the left 

ket �+⟩x and the right ket ℏ
2
�+⟩x as unchanged states. However, C1 immediately 

explains something conceptually incompatible in E2, namely that because ℏ
2
�+⟩x 

is not of magnitude 1 (“this isn’t normalized,” line 14), it cannot represent the 
state under consideration; this is consistent with the first postulate of quantum 
mechanics. Finally, C1 confirms that although they know what the individual 
pieces of the equation mean (lines 17-18), they are uncertain what ℏ

2
�+⟩x repre-

sents (line 17). They again state ℏ
2
 is an eigenvalue of Ŝx (line 18) and that it is a 

measurement value associated with Ŝx and �+⟩x (line 19-20). Their wording here, 
however, is now consistent with a potential measurement interpretation of E2 
(“this eigenvalue is the value that you would measure when you operate this in 
this state”). C1 revisits the right side of E2 and explains that interpreting ℏ

2
�+⟩x as 

�+⟩x being scaled by ℏ
2
 seems wrong because particles are in the �+⟩x state not in 

the ℏ
2
�+⟩x state (lines 22-23). It is unclear if C1 thought of “scale” as a geometric 

action (such as stretching a vector) or an algebraic action (multiplying a vector by 
a scalar). However, C1 explains the tension further by comparing it to how they 
would interpret E2 in a way compatible with ideas from a mathematics course. 
C1 begins by drawing axes in 2-space and a line through the origin:

In lines 24-30, C1 explains one last time the tension they experience between 
the mathematical and quantum mechanical interpretation of an eigenequation. 
Using a sketch, they give a functional interpretation of E2 (“if you start out some-
where on this line and you operate with this matrix, you end up somewhere still 
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on this line,” lines 25-26). This also leverages a geometric interpretation of scal-
ing (“still on this line but scaled by one of the eigenvalue scalars,” lines 26-27). 
C1 concludes by reiterating that this is confusing because physical states must 
be represented by normalized kets (lines 29-30). Overall, C1 invokes the require-
ment of a state vector to be normalized to reject the idea that operation with the 
matrix scales the eigenstate. C1 recognizes but did not reconcile the disconnect 
they felt between geometric and quantum mechanical interpretations of the quan-
tum mechanical eigenequation. We posit that this disconnect can be evidenced in 
C1 communicating both a measurement interpretation and a functional interpre-
tation of E2; we unpack the tension between possible interpretations of various 
eigenequations in the Discussion section.

Other students also presented differences in their interpretations of the two 
equations, but they did not necessarily mark them as a point of tension for them 
conceptually. For example, student C8 who was categorized as demonstrating 
a “possible measurement” interpretation of E2, made unprompted comparisons 
between the two equations when asked to interpret E2. When C8 read E1, they 
said, “A acting on this vector is the exact same thing as this scalar quantity [ � ] 
acting on the vector.” When subsequently asked for their physical interpretation 
for E2, C8 said, “I guess everything I have said earlier [for E1] would apply to 
this, however, I don’t really think of it in terms of that way when I see it in this 
notation [E2]. This makes me more think of taking a measurement.” C8 demon-
strated an explicit separation between interpreting eigenequations in a mathemati-
cal context and in a quantum mechanical context. C8 did not express any confu-
sion or concern about this distinction.

Although thematically similar, some comparisons made by students were 
broader, saying that E2 was a special or specific case of the more general E1. A few 
examples include: “[E1 is the] generalized mathematic [sic] approach to finding an 
eigenvalue,” (S22), “[E1] is slightly more generalizable and easier to understand” 
(S7), and “[E1] is more general” (S21). C12 indicated that this was something they 
thought about in their interview, stating: “Um, it’s just like this yeah, this could be 
more generalizable. Like we don’t know what eigenvector x is, and it could be both, 
I think, and we don’t know what eigenvalue that is. Whereas here [pointing to E2] 
it’s specified.”

Finally, other students presented parallel interpretations of the two equations. 
For example, S7 wrote, “Sz is an operator, �+⟩ is an eigenvector that only scales 
along its axis, & ℏ

2
 is the eigenvalue A scales �+⟩ by.” Similarly, S4 wrote “both 

equations... contain a vector operated on by a quantity... that results in the vector 
being rescaled but preserving its initial direction.” We interpret both S7 and S4 as 
communicating that the vector on the right side of the equation is being “rescaled” 
or is a scalar multiple of the vector in the left side of the equation, with none of 
the tension C1 described. As mentioned earlier, it is not necessarily conceptually 
productive to interpret E2 as scaling an eigenvector because quantum mechanical 
eigenvectors must be normalized, but S7 and S4 did not notice or draw attention to 
this incompatibility.
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Discussion

In this paper, we presented results regarding students’ interpretations of Ax⃗ = 𝜆x⃗ 
(E1) from mathematics and either Ŝx�+⟩x =

�

2
�+⟩x or Ŝz�+⟩ =

�

2
�+⟩ (E2) from quan-

tum mechanics. We found that students reasoned with E1 and at times with E2 via a 
functional interpretation and/or a relational interpretation of the equal sign. Second, 
we found that students made sense of E2 via a measurement, potential measurement, 
and/or correspondence interpretation of the equation. Finally, two themes emerged 
in how students compared E1 and E2: attention to form and attention to conceptual 
(in)compatibility.

We conclude with a discussion the various interpretations of the equations and 
the limitations of the study, and we end with implications for instruction.

Interpretations of the Equal Sign

We believe our introduction of functional interpretation of the equal sign to be a 
novel contribution for research. The existing operational and relational dichotomy 
of the equal sign (e.g., Knuth et al., 2005) was insufficient to capture student con-
ceptualizations of the eigenequations in our data; this is likely because the founda-
tional research on views of the equal sign originated in K-8 settings not focused on 
reasoning about functions. Thus, we drew inspiration from the notion of transforma-
tional interpretation of the matrix equation Ax⃗ = b⃗ from Larson and Zandieh (2013) 
to introduce the functional interpretation of the equal sign. This contributes to the 
literature by connecting meanings of the equal sign to meanings of specific types of 
equations. In this paper we leveraged this categorization for student reasoning about 
eigenequations in linear algebra and in quantum mechanics, but it could be applied 
to other equations and in other domains as well.

Quantum mechanical eigenequations are conceptually distinct from standard 
mathematical eigenequations. A functional or relational interpretation of the equal 
sign, in which the right side of the equation is read out as a scale or stretch (if in 
a graphical setting) of the vector on the left side, either by transformation or by 
comparison, is completely acceptable and encouraged for E1. Several students in each 
data set reasoned in one of these ways about E1. However, as noted in the Background 
section, these are not physically appropriate for E2: scaling an eigenstate of a quantum 
mechanical system does not make sense because the states must be normalized, 
according to the first postulate of quantum mechanics. The subtlety of this distinction 
is reflected in our results: some students (e.g., S4 and S7) did not demonstrate that 
they understood that it is unproductive and perhaps inappropriate to think of QM 
eigenvectors in terms of scaling, while C1 was able to articulate this inconsistency 
very well (e.g., lines 10-14 in the Attention to Conceptual Compatibility  section). 
Similarly, interpreting the action of the operator on the state vector as making a 
measurement of the associated physical quantity (spin) is not correct. However, 
this interpretation is understandable precisely because so many scientific equations, 
including some in quantum mechanics, are direct mappings of relationships in the 
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physical world, and are often functional and/or relational expressions as well. This is 
consistent with the discussion by Dreyfus et al. (2017) related to the indirectness of 
physical interpretation of the time-independent Schrödinger equation.

Interpretations of Quantum Mechanical Eigenequations

One physically meaningful interpretation of a quantum mechanical eigenequation is 
as a potential measurement, that is, to connect the eigenvalues to the possible out-
comes of hypothetical measurements of the quantity represented by the operator. 
This interpretation is more refined than a measurement interpretation, is often used 
by instructors, and is supported by the phrasing of Postulate 3 in the text: “The only 
possible result of a measurement of an observable is one of the eigenvalues an of 
the corresponding operator A” (Mclntyre, 2012, p. 35). The phrase here is “possible 
result of a measurement” rather than “result of a possible measurement,” but stu-
dents may not discern that distinction. Gire and Manogue (2012) stated the role of 
eigenvalue equations in quantum mechanics is “to determine the eigenvalues (pos-
sible values of measurements) and eigenstates (possible states after a measurement 
is made)” (p. 195). A concern with the measurement interpretation of an opera-
tor times a state is that when a linear combination of (non-degenerate) eigenstates 
- typically referred to in quantum mechanics as a superposition state - is operated 
on, the result is not an eigenvalue multiplied by the initial state. On the other hand, 
measuring an observable for a particle in that superposition state does yield a meas-
ured value of the observable that corresponds to a single eigenstate; the eigenstate 
describes the state of the system/particle after the measurement (often referred to 
as the “collapse” of the system into an eigenstate upon measurement). In our data, 
we only asked students about their interpretations of specific eigenequations (thus 
necessarily involving eigenstates), so we cannot gauge the generalizability of state-
ments consistent with a measurement interpretation to superposition states. How-
ever, Singh (2008) reported that students tend to overgeneralize the applicability of 
eigentheory in quantum mechanics to superposition states.

It is possible that the subtlety between “measurement” and “potential measure-
ment” may not be reflected in some student responses. Moreover, student reason-
ing that suggests a measurement interpretation may be a lower bound for the stu-
dent developing a potential measurement interpretation. Eigentheory in quantum 
mechanics is intrinsically linked to measurement, and students thinking an eigene-
quation as representative of an actual measurement rather than a potential measure-
ment may be a point from which instructors can build.

Limitations

Limitations in our study include the complexity of using linguistic cues to make 
inferences about student reasoning. For example, “would” is often used in English 
in a way not necessarily meant to convey conditionality (e.g., one might ask “how 
would you explain addition?” and expect an explanation of addition in response). 
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Thus, there is a danger that student explanations coded with the potential measure-
ment interpretation of E2 may not be relying on a conditional use of “would” as 
strongly as we as researchers thought they were. A second and related limitation 
is that the interviewer from the first data set did not always thoroughly prompt stu-
dents via follow-ups to explain their reasoning with respect to the physical meaning 
related to E2. A limitation of the second data set (written homework assignment) 
is that there was not a way to ask clarifying questions. Similarly, we did not have 
control over the environment the assignment was completed in or what resources 
the students may have accessed. Ways to improve the prompt could have been to ask 
students to list any resources accessed while completing the assignment and perhaps 
provide additional scaffolding questions to the task.

Implications for Instruction

The research we presented is beneficial for the improvement of undergraduate math-
ematics education, as well as physics education. Our results demonstrate students’ 
rich ways of interpreting eigenequations in both math and physics. The results also 
highlight that different interpretations may be more productive or nonproductive in 
various contextual settings.

We conclude with some suggested implications for teaching. Linear algebra 
instructors could expose students to a variety of interpretations of eigenvectors and 
eigenvalues. For instance, in ℝ2 and ℝ3 , leveraging the graphical interpretations of 
eigenvectors of a matrix or linear transformation as vectors that are stretched or 
shrunk by a real-valued eigenvalue is common, can be visualized through dynamic 
geometry software, and has been shown to help students develop conceptual 
understanding of eigentheory (e.g., Beltrán-Meneu et  al.,  2017; Gol Tabaghi & 
Sinclair, 2013; Plaxco et al., 2018). From other contexts, eigenvectors associated with 
eigenvalue 1 can help determine the eventual or steady state of phenomena modeled 
by stochastic processes, such as long-term population in a predator–prey system or 
stable distribution of cars in a rental company franchise (e.g., Larson, 2010), as well 
as in network analyses that sort information such as in the PageRank algorithm for 
webpages (Brin & Page, 1998). Both math and physics instructors could discuss 
with their students ways that some underlying interpretations may not be fruitful or 
appropriate in certain contexts. The aforementioned examples all use eigentheory 
differently than the spin eigenequations discussed in this paper. We suggest that 
physics instructors could help their students recognize and appreciate that there 
are idiosyncratic interpretations of eigenequations in quantum mechanics that prior 
relevant mathematics instruction does not address. In addition, physics instructors 
could support students in identifying the correspondence between physical quantities 
and mathematical entities in the various terms of quantum mechanical equations, 
which is a skill students can build (Karakok, 2019). We posit that understanding 
such disciplinary distinctions is a worthwhile and rewarding experience, not only for 
ourselves but also for our future students, that can help us in our collective endeavor 
to improve undergraduate mathematics and physics education.
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