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Abstract
Despite the prevalence of undergraduate drop-in mathematics tutoring, little is 
known about the behaviors of this specific group of tutors. This study serves as a 
starting place for identifying their behaviors by addressing the research question: 
what observable behaviors do undergraduate drop-in mathematics tutors exhibit as 
they interact with students? We analyzed 31 transcripts of tutoring sessions us-
ing inductive coding, finding 83 observable behaviors. We discovered that tutors 
used behaviors aimed at engaging students, while primarily retaining control of the 
decision making and problem-solving process. Although tutors asked students to 
contribute to the mathematics, they often asked a less demanding question before 
the student had a chance to respond to the initial question. Our findings reveal the 
existence of opportunities for student learning in tutoring sessions as well as poten-
tial areas of growth for tutors. We present questions for future research that arose 
from analysis of the data and discuss how our results may be used in tutor training.

Keywords mathematics tutoring · undergraduate tutoring · peer tutoring · tutoring 
observations · academic assistance

Introduction

Academic support for undergraduate mathematics students in the form of tutoring is 
widely available in the U.S.A. (Bressoud et al., 2015). We define tutoring as a form 
of academic support outside of class, such as homework help and exam prepara-
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tion, provided by someone who is not the instructor (Mills et al., 2020). A common 
expectation from faculty is that students should spend more time doing homework 
and studying than they spend in class. Thus, out-of-class learning environments may 
be where students engage more with the course materials. It’s possible that some 
students spend more one-on-one time with tutors than with their instructors. There 
is potential for student learning in the tutoring environment because it offers a more 
individualized, immediate, and possibly interactive experience than students encoun-
ter in the classroom (Lepper & Woolverton, 2002).

Tutoring contexts in the U.S.A. vary widely. In drop-in tutoring, students go to a 
center to work on homework and study while tutors circulate to offer help to those 
who ask. In appointment tutoring, students schedule meetings with tutors that often 
last 30–60 min. Tutors may be peers with minimal training or professionals with 
years of classroom and tutoring experience. For a more detailed description of the 
common types of mathematics tutoring in the U.S.A, see Mills et al., (2020). In this 
paper, we will focus on behaviors of tutors who are undergraduate students, not 
instructors or other content experts, and not trained professional tutors. This choice 
was made because survey data suggests that the majority of universities in the U.S.A. 
offer mathematics tutoring by undergraduates. Johnson & Hansen (2015) found that 
89.5% of 115 universities surveyed offered tutoring by undergraduates, and Mills et 
al., (2020) found that 96% of the 75 universities surveyed offered tutoring by under-
graduates. While we note that some of these centers also offer support from gradu-
ate students and faculty members, we argue that the prevalence of undergraduate 
mathematics tutors warrants the study of their behaviors. We also note that although 
undergraduate peer tutors cannot be expected to enact the same practices as experi-
enced instructors, quantitative studies show that students’ use of undergraduate peer 
tutoring is correlated to improved student grades (Byerley et al., 2018; Rickard & 
Mills, 2018).

Prior research has examined tutoring interactions to identify certain tutor behav-
iors (e.g., Graesser & Person 1994; Graesser et al., 1997; Lepper & Woolverton 
2002; Schoenfeld et al., 1992). However, these models were created for appointment 
tutoring, often with K-12 students, and in a variety of content areas, and would not 
necessarily transfer to the drop-in mathematics tutoring context (Johns, 2019). For 
example, in contrast to appointment tutors, drop-in tutors have limited time per tutor-
ing interaction (Byerley et al., 2019, 2020). Moreover, these models were developed 
by studying tutors or teachers with extensive experience and a background in educa-
tion. In contrast, undergraduate drop-in tutors in this study work part time for 1–3 
years (Byerley et al., 2019, 2020). Thus, undergraduate drop-in tutors have fewer 
years to develop expertise and less time per tutoring interaction than many of the 
tutors in the models described in the literature. Because we are focusing on tutoring 
within the content area of mathematics, we also see a need to leverage mathematics 
education research to analyze mathematics tutoring.

The overarching goal of our research program is to document tutoring practices 
and identify ways to train tutors to enact more effective practices. When we first 
looked for tutors’ enactment of productive teaching behaviors such as decentering, 
which is when the teacher tries to understand a student’s thinking and take on their 
perspective (Ader & Carlson, 2021; Teuscher et al., 2016), and professional noticing 
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of mathematical thinking (Jacobs et al., 2010), we found some evidence that tutors 
engaged in these behaviors (Mills et al., 2019), but it was not the norm. However, we 
did see important differences among tutor behaviors (e.g., asking students no ques-
tions versus asking students to perform calculations). Based on this and our desire not 
to take a deficit perspective, we saw a need for characterizing the observable behav-
iors tutors do enact. Tutor training could then aim to move tutors towards increasing 
student engagement and understanding students’ mathematical thinking. This study 
serves as a first step to this end by identifying and characterizing observable behav-
iors of tutors.

We seek to answer the following research question: What observable behaviors do 
undergraduate drop-in mathematics tutors exhibit as they interact with students? We 
address this question by examining 31 tutor session transcripts from distinct tutors, 
collected during Fall 2018. We open coded each tutor talking turn to identify observ-
able behaviors (subsequently referred to as behaviors) and then grouped these behav-
iors into categories. In the results, we describe each category, including example 
behaviors. We then discuss what our results indicate about students’ opportunities for 
engagement with the mathematics.

Theoretical Framework

To categorize tutor behaviors, we drew on Bloom and colleagues’ (1956) taxo-
nomic key for learning objectives which was later expanded into a taxonomic matrix 
(Anderson et al., 2001). The taxonomic matrix, which we describe below, was devel-
oped from an assertion that “objectives indicate what we want students to learn” and 
“objectives are especially important in teaching because teaching is an intentional 
and reasoned act.” (Anderson et al., 2001, p.3). Similarly, tutoring is intentional in 
that tutors tutor for a purpose, generally to help students learn and/or help them solve 
problems. It is also a reasoned act in that what tutors do or communicate with a stu-
dent is deemed by the tutor to be worthwhile. We argue tutor behaviors likely reflect 
both how they help students learn and what they want the student to learn.

Anderson and colleagues’ (2001) taxonomic matrix for learning objectives is com-
prised of a knowledge dimension (Factual, Procedural, Conceptual, Metacognitive) 
and a cognitive process dimension (Remember, Apply, Understand, Analyze, Evalu-
ate, Create), forming a 24-cell matrix. The cognitive processes are arranged in order 
of those requiring the least amount of cognitive engagement to those requiring the 
most. A learning objective falls into one of those 24 cells, having both a knowledge 
type and cognitive process. For example, the learning objective “Recall the definition 
of limit” would have a Factual knowledge type and a cognitive process of Remember.

Building on Anderson and colleagues’ (2001) matrix and Tallman and Carlson’s 
(2016) work adapting the matrix to classify the cognitive demand of Calculus I exam 
questions, White and Mesa (2014) further adapted the matrix to code the cognitive 
orientation of homework, quiz, and exam tasks used in Calculus I courses (Fig. 1). 
White and Mesa (2014) used the term “cognitive orientation” in their work rather 
than “cognitive demand” because by examining tasks alone, they could not determine 
what students actually experienced, only the cognitive processes and knowledge 
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types students could potentially use. Similarly, we are coding the potential cognitive 
processes that students may use to respond to the tutor’s prompt.

White and Mesa (2014) created new codes within Anderson et al.’s (2001) matrix. 
In Fig. 1, Anderson et al.’s knowledge types are columns and the cognitive processes 
are rows. White and Mesa’s codes (in grey) span multiple knowledge types and/or 
cognitive processes and are specific to mathematics. Note, their data did not contain 
any codes within Metacognitive knowledge. To describe our theoretical framework 
in detail, we first describe Factual, Procedural, and Conceptual knowledge types, 
drawing primarily on White and Mesa’s (2014) framework. For Metacognitive 
knowledge, we draw on Anderson et al.’s description of Metacognitive knowledge 
as well as research in self-regulated learning (Pintrich, 2000) and problem-solving 
(Schoenfeld, 1985).

Factual, Procedural, and Conceptual Knowledge

Factual knowledge is defined as “the basic elements students must know to be 
acquainted with a discipline or solve problems in it” (Anderson et al., 2001, p.46). 
It consists of isolated pieces of information such as terminology or discrete facts. 
White and Mesa’s (2014) Remembering code (Fig. 1) is used for tasks that required 
Factual knowledge and the cognitive process of Remembering, recalling memorized 
information. For example, tutors may have students recall from memory the qua-
dratic formula.

Hiebert & Lefevre (1986) define procedural knowledge in mathematics as knowl-
edge of rules and algorithms with linear sequences of steps to be followed. This 
includes procedures for acting on objects that are symbols, such as how to manipulate 
symbols to solve an algebraic equation. Similarly, Rittle-Johnson & Alibali (1999) 
define procedural knowledge as “action sequences for solving problems” (p.175). 
This aligns with White and Mesa’s (2014) Recall and Apply Procedure code (Fig. 1) 
which utilizes Procedural knowledge and the cognitive processes of Remember and 
Apply. For example, factoring an expression requires remembering the procedure for 
factoring and then using it to factor the expression.

Conceptual knowledge is defined as “knowledge that is rich in relationships…a 
connected web of knowledge…by definition, it is part of a conceptual knowledge 
only if the holder recognizes its relationship to other pieces of information” (Hiebert 
& Lefevre, 1986, p. 3–4). Hebert and Lefevre argue that procedures can be linked 
with conceptual knowledge when learned with meaning, but when procedures are 
merely memorized, conceptual links are absent. When using procedures connected 
to conceptual knowledge, one can reason about what the symbols represent, and can 

Fig. 1 Cognitive orientation 
framework (White & Mesa, 
2014, p. 679) mapped onto the 
taxonomic matrix from Ander-
son et al., (2001)
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consider if the procedures make sense rather than just trying to manipulate symbols 
to follow a set of steps.

White and Mesa describe the distinguishing feature between Recall and Apply and 
Procedure and Recognize and Apply a Procedure (Fig. 1) as the potential [empha-
sis ours] that the task would “elicit students making connections and applying con-
ceptual understanding, while acknowledging that, depending on instruction and on 
student, the tasks also had the potential to be proceduralized and worked without con-
ceptual understanding or connections” (p.679). For example, consider a tutor asking 
a student to find the x-intercepts of a quadradic function. The student may have a pro-
cedure for finding x-intercepts memorized or they may recognize that they need to set 
the quadratic function equal to zero. There is the potential for the student to use the 
relationship between zeroes and x-intercepts to determine the necessary procedure. 
White and Mesa’s (2014) Understand code (Fig. 1) requires Conceptual knowledge 
and the cognitive processes of Understand. White and Mesa note that “in Understand 
tasks, information is extracted from a situation, as opposed to a Procedure, which is 
enacted” (p.680). For example, White and Mesa classify “asking students to extract 
features from graphs” (p.680) as Understand. White and Mesa include the processes 
of interpreting, exemplifying, classifying, summarizing, inferring, comparing, and 
explaining in this code. For example, tutors may ask a student to interpret an answer 
within the context of a word problem.

White and Mesa’s (2014) framework in Fig. 1 consists of five additional codes: 
Apply Understanding, Analyze, Evaluate, and Create. These codes did not appear in 
our data and in White and Mesa’s study, these codes combined appeared less than 
0.1% of the time.

Metacognitive Knowledge

Metacognitive knowledge is knowledge about cognition or one’s own thinking. To 
examine Metacognitive knowledge, we began with Anderson et al.’s (2001) three 
subtypes, Knowledge of Cognitive Tasks, Self-Knowledge, and Strategic Knowl-
edge. As an example of Knowledge of Cognitive Tasks, tutors may know the types 
of problems that might appear on a particular instructor’s exams. Self-knowledge is 
knowledge of one’s own broad strengths and weaknesses such as knowledge that one 
tends to make arithmetic mistakes.

We developed subcategories of Strategic Knowledge, drawing upon both self-reg-
ulated learning (Pintrich, 2000) and problem-solving (Schoenfeld, 1985) literature. 
We used both perspectives as tutors may have either a goal for the student to learn 
the mathematics and/or to solve a particular problem. Strategic Knowledge entails 
the strategies one uses during the learning process, such as goal-setting, monitor-
ing learning, and rehearsal learning techniques. We describe Strategic Knowledge 
as organized by Pintrich’s (2000) four cognitive self-regulation phases: Forethought 
and Planning, Monitoring, Control and Regulation, and Cognitive Reaction and 
Reflection. Within the context of problem-solving, Schoenfeld’s (1985) knowledge 
category of Control encompassed many of these same ideas, however Schoenfeld 
discussed heuristics, or general strategies for solving problems, separately. Given the 
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importance of heuristics in problem-solving, we also adopted Heuristics as a separate 
category.

Forethought and Planning includes explicit and intentional activation of prior 
knowledge, target goal setting, and activation of metacognitive knowledge (Pintrich, 
2000). For example, at the beginning of a session, a tutor may ask a student what they 
know about quadratic functions to activate prior knowledge. For Schoenfeld (1985), 
the planning phase of problem-solving involves orienting oneself to the problem 
statement, such as rephrasing the problem statement.

Monitoring entails being purposefully aware of one’s thinking to determine com-
prehension and progress toward the goal (Pintrich, 2000). For example, does the 
student understand the explanation the tutor has just provided? Monitoring in prob-
lems-solving involves reflection on whether the current solution path is productive or 
a step is correct (Schoenfeld, 1985).

Control and Regulation involves intentionally adapting and changing one’s cogni-
tion and is dependent on monitoring for any “discrepancy between goal and current 
progress” (Pintrich, 2000, p.460). In problem-solving this includes determining when 
to abandon, revise, or continue one’s path. For example, either a tutor or student 
could decide to abandon an integration technique that does not appear to be a pro-
ductive path. It is after deciding to take control and change one’s approach that one 
must adapt a new tactic or heuristic. Heuristics include many additional problem-
solving strategies which would be employed as an initial plan or used after engaging 
in monitoring and control to determine that a new plan is needed. Schoenfeld defines 
heuristics to be “strategies and techniques for making progress on unfamiliar or non-
standard problems” (Schoenfeld, 1985, p.15). Examples of heuristics include making 
a sub-goal, working a simpler problem, and using a contradiction or contrapositive 
(Schoenfeld, 1979). Tutors may help students break apart a difficult task by asking 
the student to solve a small piece of the problem that contributes to the whole.

Cognitive Reaction and Reflection contains two facets: cognitive judgements and 
attributions. Cognitive judgements are reflections about the cognitive process (fore-
thought, monitoring, and control) and whether the process led to meeting the target 
goal (Pintrich, 2000). This can include considering whether they sufficiently moni-
tored and controlled their process so as not to waste time. Cognitive attributions are 
the factors to which a student attributes their success or failure (Zimmerman, 1998) 
and may include attributing success or failure to strategies use or to being “smart” 
or “dumb” (Zimmerman, 1998; Schoenfeld, 1985) includes checking results and rea-
soning within reflection of problem-solving.

Summary

In categorizing tutor behaviors, we drew upon the underlying assumptions of both 
Anderson et al., (2001) and White and Mesa (2014); namely, we argue tutor behaviors 
are indicative of what tutors want students to learn and how tutors seek to help stu-
dents learn. To categorize tutor behaviors, we drew upon White and Mesa’s cognitive 
orientation framework for the knowledge types Factual, Procedural, and Conceptual. 
To categorize Metacognitive knowledge, we added to the Metacognitive knowledge 
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category discussed in Anderson et al., (2001) by leveraging the self-regulated learn-
ing (Pintrich, 2000) and problem-solving literature (Schoenfeld, 1985).

Literature Review

Research on the nature of tutoring has been conducted across a variety of tutoring 
environments with different characteristics such as tutor and tutee age, amount and 
type of tutor training and experience, duration of session, and curriculum or con-
tent. These studies have identified common tutor strategies and behaviors that are 
likely impacted by the differences mentioned above. Many of the studies of tutor 
behaviors were conducted to design intelligent tutoring systems that mimic human 
tutors, or to improve these programs (e.g., Chi et al., 2001; Fox, 1991; Lepper et al., 
1997; Lepper & Woolverton, 2002; McArthur et al., 1990; Merrill et al., 1992; Van-
Lehn et al., 2003). To this end, they often placed experienced teachers or professional 
tutors in tutoring environments to study their behaviors (Lepper & Woolverton, 2002; 
McArthur et al., 1990). Across these studies we did not see a consistent definition of 
“expert tutors,“ nor did we see direct links between these behaviors and student learn-
ing outcomes. Additionally, they recognized that “most tutors in school systems are 
peers of the students, slightly older students, paraprofessionals, or adult volunteers. 
Skilled tutors are the exception, not the rule” (Graesser et al., 1995, p. 496). Although 
these results can inform our understanding of desirable tutoring practices, they do not 
always translate directly to the undergraduate mathematics drop-in tutoring context. 
We are motivated to find the natural behaviors of tutors and learn how we can build 
upon their inclinations to support them in providing student-centered tutoring.

Student Engagement

Chi et al., (2001) hypothesized that tutoring is effective because students have more 
opportunities to be actively engaged and ask questions in a tutoring session than they 
do in the classroom, and this engagement on the part of the student is what contributes 
to their learning. Within the classroom context, research suggests that active learning 
increases performance, decreases failure rates, and decreases the achievement gap 
for marginalized students (Freeman et al., 2014; Theobald et al., 2020). Graesser 
& Person, (1994) found that students ask 240 times more questions in appointment 
tutoring settings than in classroom settings, thus giving students more opportunities 
to direct their own learning.

Variation exists both within and across studies in how much and in what ways 
tutors engage their students. Studying professional tutors, Cade et al., (2008) identi-
fied eight modes of tutoring, and the most common modes for their eight participants 
were lecture and scaffolding. Hume et al., (1996) describes tutors using a “directed 
line of reasoning” which is a carefully sequenced series of questions, often getting 
easier when students are not able to successfully answer the previous ones. Fox 
(1991) and Lepper and Wolverton (2002) found that tutors try first to ask questions 
or give hints and suggestions, but if students are not able to answer, they follow up 
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fairly quickly with support in the form of more detailed hints or questions or provid-
ing answers.

Many studies on tutoring in mathematics describe how tutors tend to prioritize 
solving a particular problem rather than increasing student learning or understand-
ing (Fox, 1991; Graesser et al., 1995; McArthur et al., 1990). Even when tutors in 
these studies sequence multiple problems for students, they do not often discuss the 
purpose of the problems, have students generalize from those problems, or explicitly 
make connections between problems and concepts. In addition, even experienced 
mathematics tutors often decompose a problem into a series of closed-ended ques-
tions, prompting only for key words or the execution of simple steps (McArthur et al., 
1990; Fox, 1991; Graesser et al., 1995). However, there is evidence that tutors can be 
trained to focus more on student understanding and to make connections between pro-
cedures and concepts (Bentz & Fuchs, 1996; Fuchs et al., 1997; Topping et al., 2003). 
Further, Lepper and colleagues (1997, 2002) found expert tutors often encouraged 
student articulation and reflection, including justifying their choices and explaining 
their reasoning. These tutors also asked students to make connections between the 
current problems and others they had seen or worked and to make generalizations.

Monitoring

Researchers have examined the ways in which tutors monitor and provide feed-
back in terms of student utterances and written work. Putnam (1987) expected to 
see tutors use what he termed a “diagnostic/remedial” approach to tutoring, where 
tutors attempt to learn about student thinking, identify misconceptions or gaps in 
knowledge and adjust their response appropriately to address what they’ve learned. 
However, he found tutors rarely attempted this diagnostic behavior, even in the face 
of repeated errors. This trend was confirmed by Graesser et al., (1995) and McArthur 
et al., (1990). Although Putnam’s subjects did not explore student misconceptions, 
they did respond to student errors in a variety of ways, including signaling an error 
directly or asking a question to signal an error, explaining a procedure or rule, making 
a comparison with another problem to highlight the error, and allowing student room 
to discover the error themselves.

Control and Heuristics

In addition to providing feedback, tutors are also commonly engaged in devising 
and selecting strategies for students to employ. McArthur et al., (1990) describe 
tutors breaking tasks into subgoals. Tutors then involve students in the computational 
aspects of problem-solving, but deciding what to try next appears to be the domain of 
the tutor. One common strategy employed is attending to salient information. Cade 
et al., (2008) found tutors often begin by drawing attention to what the problem asks 
for as well as given information. Similarly, Hume et al., (1996) explain that a com-
mon form of hinting for tutors is “point[ing] to,” meaning that the tutor directs the 
student’s attention to some feature of the problem or to a step in the solution thus far.

Other strategies identified include referencing a similar problem and identifying 
or setting goals. Referencing similar problems can be used for hinting, comparison, 
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or pointing out errors (McArthur et al., 1990; Hume et al., 1996), but the consistent 
feature is that the choice to make a comparison is almost always the choice of the 
tutor. Similarly, tutors are typically the ones to identify appropriate goals, or at least 
suggest identifying a goal (VanLehn et al., 2003; McArthur et al., 1990). The excep-
tion to this pattern appears with more expert tutors; Lepper and Wolverton (2002) 
describe the tutors in their study “comply[ing] with [student] requests” when possible 
and often giving students choices.

Comparison of Tutoring Environments

The distinction between expert and novice tutors is potentially significant, as are 
variables such as the power dynamic or familiarity between tutor and student, the 
amount of time spent in one session, and amount of tutor preparation for a session. 
Given the distinctions in drop-in tutoring, which is rarely discussed in the literature, 
one would expect drop-in tutors to exhibit different behaviors or a different frequency 
of similar behaviors. Moreover, much of the tutoring literature has not attended to the 
role of the content area (e.g., mathematics) on tutor behaviors, instead treating behav-
iors as if they apply regardless of content. We aim to fill these gaps in the literature 
by identifying tutor behaviors specifically within the context of undergraduate peer 
mathematics drop-in tutoring.

Methods

We seek to answer the following research question: What observable behaviors 
do undergraduate drop-in mathematics tutors enact as they interact with students? 
We address this question by examining 31 tutoring session transcripts from distinct 
tutors, collected during Fall 2018. We open coded each tutor talking turn to classify 
behaviors. We then organized these behaviors into categories, using existing litera-
ture to inform our organization. Finally, we calculated estimates of the occurrence 
of each code and category to gain insight into which behaviors and categories were 
most common.

Data Collection

Participants were undergraduate students employed as drop-in tutors at the math 
tutoring center at a large university in the midwestern region of the U.S.A. The math 
tutoring center was open for 64 h per week and offered free optional out-of-class 
support for students in mathematics courses from college algebra through differential 
equations. All of the tutors at this center were undergraduate peer tutors who were 
successful in their mathematics courses. Students would most often come into the 
center to work on their homework, and when they encountered difficulty, they called 
one of the tutors over to help. The tutors typically work with students in several 
different courses and thus it was not feasible to train them on every topic for every 
course. Thus, the tutors often help with problems they have never seen, though they 
can encounter the same problem multiple times while working with different stu-
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dents. In the Fall 2018 semester, the center had 30,776 visits and 6048 total tutor 
work hours, giving a rough average of 12 min of tutor work time per student visit.

The undergraduate tutors had zero to four semesters of tutoring experience and 
had six hours of training per semester, focusing on both mathematics content and 
tutor pedagogy. For example, at one biweekly staff meeting tutors worked together 
on a few problems from one of the courses they tutored, read a tutor transcript and 
discussed in groups what the tutor could have done differently, and learned about 
different questioning strategies. In the Fall 2018 semester, all 37 tutors employed 
at the tutoring center were required, as part of their training and as part of a larger 
study, to record a 5-7-minute-long tutoring session with a Livescribe pen, transcribe 
it, and write a reflection for further evaluation and discussion with their supervisor. 
The Livescribe pen simultaneously captured the audio and with written work. Tutors 
were asked to transcribe their session for several reasons: to shorten the amount of 
time between the session and the meeting with their supervisor, to facilitate deeper 
reflection on their practices, and so that they could include details that were not cap-
tured in the audio file. Some examples from our data of details that tutors included 
are: “student pointed to the partial derivative with respect to y” or “student finds the 
formula in their notes.” The tutors asked the students for verbal consent to record 
before proceeding, as approved by the researchers’ institutional review board. For the 
purposes of this paper, we define a session as an interaction with a single student. All 
37 tutors were invited and gave consent to participate in the study. However, some 
were missing parts of their data, thus only 31 tutors were included in the study. A few 
of the tutors recorded sessions that were longer than 5–7 min, and in these cases the 
researchers finished transcribing the remaining audio for analysis.

Analysis

Within each session, we analyzed tutor turns, that is, an utterance of a tutor book-
ended by the utterances of the student. As we analyzed the data from tutoring inter-
actions, we recognized that it was impossible to determine precisely what a tutor’s 
intentions were when they performed a certain move. Thus, in line with previous 
researchers (e.g., Ader & Carlson 2021), we focus our analysis on the observable 
behaviors of the tutors. We considered an observable behavior to be a tutor utterance 
that had the potential to impact the tutoring interaction. Within each tutor turn, it was 
possible to code multiple behaviors, because the turns could serve several simultane-
ous functions (Hume et al., 1996). For example, in the excerpt below, lines 7 and 8 
were a tutor turn and we coded the turn with the behaviors asked student to graph/
sketch something by hand, and gave next step.

7 Tutor: So, the first thing we should do is graph it. Could you try to graph the 
function for.

8 me on this paper so.
9 Student [student labels x -axis] that’s as far as I can go
In our analysis, we relied primarily on the written transcript. However, Livescribe 

files were referenced to fill in obvious omissions in the transcript, help to clarify a 
tutor behavior through attending to tone or length of pauses, and to view correspond-
ing written work.
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Our analysis began with coding each tutor turn to identify specific tutor behav-
iors. We did not begin with a list of existing behaviors. We developed the codes for 
tutor behaviors by attending to the apparent function of the tutor’s words in that turn 
in a way that may generalize to other turns and other tutors. At times this required 
referencing student dialogue since much of the tutor dialogue was prompted by or in 
response to student dialogue. When a tutor behavior encouraged a student action, we 
coded based on the potential cognitive processes needed for the student to respond to 
the tutor’s prompt, not the student response. For example, if a tutor asked the student 
to identify the next step in solving a problem, but the student instead asked the tutor 
a question and never identified the next step, we still coded asked student to give next 
step.

Each of the three authors independently coded one transcript at a time, building a 
list of behaviors as we went through the transcripts. We discussed and compared our 
behaviors after we individually coded each transcript, consistent with the constant 
comparative method (Glaser & Strauss, 1967). Previous behaviors were modified or 
new behaviors created when previous behaviors could not adequately or accurately 
describe the tutor’s behavior in that turn. Early in this process, we realized many 
behaviors either captured the tutor asking the student to do something or the tutor 
doing something and mirrored each other. For example, we created the similar codes 
asked student to give next step and gave next step. Although we did not seek to create 
mirroring behaviors, at times, when creating or modifying codes for tutor behaviors, 
we considered the mirror code to aid in refining our language. In addition, for these 
behaviors, were found ourselves influenced by White and Mesa’s (2014) categoriza-
tion of mathematics tasks in order to find the language to describe nuances in behav-
iors, such as distinguishing between tasks that required students to “recall and apply 
a procedure” versus “recognize and apply a procedure” (p.678–679). Our coding 
process produced 83 observable behaviors (presented in Appendix A).

We then used axial coding (Strauss & Corbin, 1990) to identify larger categories of 
behaviors (Table 1). Initially, we examined several possible existing frameworks for 
categorizing tutor or teaching behaviors (e.g., Lepper & Woolverton 2002; National 
Council of Teachers of Mathematics, 2014). Ultimately, for many of the behaviors, 
we determined the best fit was categorizing by Anderson and colleagues’ taxonomy 
matrix (2001), in particular relying primary on White & Mesa’s (2014) adaptation 
(Fig. 1). Each author independently sorted the behaviors based on their perceived 
intended cognitive orientation, setting aside behaviors not fitting into Factual, Pro-
cedural, or Conceptual knowledge. These remaining codes were then determined to 
align with the Metacognitive knowledge type from Anderson et al., (2001). For codes 
within Metacognitive knowledge, each author independently sorted the behaviors 
by the type of metacognitive knowledge or work being done. The researchers then 
discussed the categories to reach agreement. Since we were not categorizing tasks or 
objectives, but rather behaviors, and we were observing tutors rather than instructors, 
we did not use the frameworks in White and Mesa (2014) or Anderson et al., (2001) 
exclusively as an a priori codebook when creating categories, but we returned to the 
frameworks frequently to help us differentiate between and classify tutor behaviors. 
After organizing the behaviors into categories, we then tallied the total number of 
times each code was used within the corpus of tutoring sessions followed by total-
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ing the number of times each category was used. The purpose of producing these 
counts was to create a rough idea of which behaviors and categories were common 
(Table 2), not to produce detailed quantitative results.

Category Tutor 
Did… 
Behaviors

Asked 
Student… 
Behaviors

Total

Supplied Facts 77 49 126
Applied Procedure 156 134 290
Determined What to Do 195 54 249
Drew upon Understanding 187 137 324
Immediately Reduced Cogni-
tive Orientation

96 96

Total 711 374 1085

Table 2 Counts for behaviors 
within Factual, Procedural, 
Conceptual Knowledge cat-
egories broken down by the 
tutor doing something or the 
tutor asking the student to do 
something

 

Knowledge 
Type

Category Common Observable Tutor 
Behaviors

Factual, 
Procedural, 
Conceptual 
Knowledge

Supplied Facts Provided factual information 
such as definition or theorem
Asked student for factual 
information such as definition or 
theorem

Applied 
Procedure

Carried out next step/provided 
answer
Asked student to execute the 
steps of a procedure

Determined 
What-to-do

Gave next step
Asked student to give next step

Drew Upon 
Understanding

Explained how or why proce-
dure works
Asked student to identify/
recognize

Immediately Re-
duced Cognitive 
Orientation

Asked yes/no, either/or, multiple 
choice type question without 
asking for reasoning

Meta-
cognitive 
Knowledge

Planning Asked student what they’d 
already done/tried

Monitoring Provided confirmation of correct 
student response
Asked question to point out error

Control Elaborated on correct student 
answer

Heuristics Drew attention to information 
from the problem or previous 
step
Asked student to find specific 
information in textbook/notes

Contextual Provided knowledge of specific 
course/instructor

Table 1 Categories and com-
mon observable tutor behaviors
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Results

We first present categories requiring Factual, Procedural, or Conceptual knowledge 
and then discuss categories involving Metacognitive knowledge. We visually present 
our framework in Fig. 2. The figure shows the four knowledge types from Ander-
son et al., (2001) in the second row and in the leftmost column are the six cogni-
tive processes. The knowledge types Factual, Procedural, and Conceptual align with 
the cognitive processes and cognitive processes of Remember, Apply, Understand, 
Analyze, Evaluate, and Create of Anderson et al. In drawing primarily on White 
and Mesa’s (2014) matrix (Fig. 1), we considered their codes which were embedded 
within Anderson et al.’s. As we will describe in detail later, our codes Supplied Facts, 
Carried out Procedure, Determined What-to-do, and Drew upon Understanding, 
falling under Factual, Procedural, and Conceptual knowledge are similar to codes 
from White and Mesa. On the right side of the table, Metacognitive knowledge, from 
Anderson et al.’s framework, is pulled out of the table to show our categories’ align-
ment with Anderson et al.’s three types of metacognitive knowledge. Our additional 
layers of Stategic Metacognitive knowledge draw upon Schoenfeld’s (1979, 1985) 
problem-solving framework and Pintrich’s (2000) phases of self-regulated learning. 
Our framework (Fig. 2) can be viewed from the perspective of the “tutor does some-
thing” or the perspective of “tutor asks student to do something.” Throughout our 
results, we describe each category presented in Table 1 and provide examples of 

Fig. 2 Framework for categorization of tutor behaviors. (adapted from White & Mesa, 2014)
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behaviors, including excerpts from the transcripts to illustrate the category being 
described.

Factual, Procedural, and Conceptual Knowledge

Table 1 shows the 5 categories that fell under Factual, Procedural, and Conceptual 
knowledge. For most categories, behaviors either captured the tutor asking the stu-
dent to do something or the tutor doing something. Table 2 shows the counts of the 
behaviors for each category broken down by this distinction.

Supplied Facts

The key features of Supplied Facts are retrieval of information stored in long-term 
memory and knowing isolated pieces of information (Anderson et al., 2001). This is 
similar to White and Mesa’s (2014) Remembering. Supplying facts often meant pro-
viding a definition or theorem. For example, a tutor said, “So the amplitude is going 
to be the distance between the midline and the maximum or minimum point.” This is 
the definition of amplitude as memorized by the tutor and does not involve applica-
tion or interpretation. We also saw tutors either introducing or explaining mathemati-
cal conventions, like notation. Tutors also asked students to supply facts. In our data, 
this took the form of asking for a memorized definition or formula. For example, 
when a tutor said, “f (x) = ex…What’s its derivative?” we categorized this as Asked 
Student to Supply Facts because it is a derivative that students memorize.

Applied a Procedure

The category of Applied a Procedure was used when the tutor used or asked stu-
dents to use algorithms without explicit connections to concepts, with the goal of 
applying steps in a certain order to produce correct answers, similar to White and 
Mesa’s (2014) Recall and Apply a Procedure. Tutors often carried out next step/
provided answer, such as “now we can plug these into our formula. So, we know 
g (t + h) = 4 (t + h) + 5 and we know g (t)  and we’re subtracting off g (t)  and it’s 
4t + 5  and all over h .” In other cases, tutors asked students to complete procedural 
work. In fact, having students apply a procedure was one of the most common ways 
tutors engaged students. It was common for tutors to ask the student to execute the 
steps of a procedure, such as “what is the integral of 3x ?” In other cases, tutors 
explicitly asked students to perform a specific algebraic or arithmetic calculation or 
to produce a graph with a computational tool. We distinguish these behaviors from 
those following by their lack of requiring the student to make decisions or demon-
strate conceptual understanding.

Determined What-to-do

Behaviors classified as Determined What-to-do involved providing the next step in 
the problem-solving process or completing procedures that could not be memorized 
and required decisions along the way, similar to White and Mesa’s (2014) Recognize 
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and Apply a Procedure. However, our Determined What-to-do category emphasized 
the role of decision making and allows for a separation of the decision-making and 
enacting procedure behavior. We most commonly saw tutors giving the next step. 
For example, “we know this [pointing to g(t+h)−g(t)

h
] looks an awful lot like the slope 

y2 − y1. So now we just need to find g (t) . So, g (t)  is pretty simple because we’re 
plugging t  in for t , right?” Here the tutor gave the student the next step and also 
connected the procedure to the concept of slope. Tutors also asked students to Deter-
mine What-to-do on limited occasions. This could mean asking them to identify an 
appropriate procedure, give the next step, or provide an alternative method. One tutor 
asked, “what can I do with my derivative to find [the critical] points?” We classi-
fied this behavior as Determining-what-to-do because the student needed to connect 
the definition of critical points with the concept of derivative to determine the next 
step. However, in our data, we saw that tutors far more often Determined What-to-do 
instead of asking students to Determine What-to-do. We contrast this with the results 
from the previous categories. Tutors often engaged students in the problem-solving 
process, but were more likely to do this by asking students to recall information or 
execute procedures than by asking them to make decisions.

Drew upon Understanding

Our code of Understanding was similar to White and Mesa’s (2014) Understand-
ing code. Examples of Drew upon Understanding behaviors from our data included 
mathematized contextual information, supplied example, summarized/rephrased the 
problem statement, and moved between representations. The most common behavior 
categorized as Drew upon Understanding was explain how or why procedure works. 
For example, a tutor explained, “that’s the whole idea of completing the square. 
We’re turning this term here into something squared. So that’s the importance of why 
we had to take that negative one out, because if we were to leave the negative one in 
here, it would mess things up.”

When tutors asked students to Draw upon Understanding, they most commonly 
asked the student to identify/recognize. For example, a tutor asked a student to iden-
tify the function type of y = 2x+ 5, which required the student to extract information 
from the function to classify it. Other common behaviors in this category involved 
asking the student to extract information from a graph or to interpret mathematics in 
context. While the total amount of instances of tutors Drawing upon Understanding 
is comparable to the amount they prompt it from students, we note that the more 
frequent specific behaviors differ in an important way. Tutors were more likely to 
elaborate on responses and provide lengthy explanations, while students were being 
asked pointed questions that were likely to be evaluated by the tutor rather than used 
for probing student understanding.

Immediately Reduced Cognitive Orientation

The category Immediately Reduced Cognitive Orientation was applied to tutor turns 
in which the tutor made a move that lowered the cognitive engagement for the student 
before the student had an opportunity to respond to the initial prompt. The Immedi-
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ately Reduced Cognitive Orientation category contains behaviors which transformed 
questions into lower cognitive engagement questions or into questions which could 
be answered with little to no mathematical knowledge. For example,

Tutor: Not quite, so let’s just look at the denominator, in order to subtract five from 
1
t , how would we do that? We can’t just go ahead and subtract it. So, we would have 
to find a common [pause]

Student: Denominator.
Here the tutor initially asked how to perform the procedure but then changed it 

to a fill-in-the blank question. The student was required to answer only the name of 
the procedure. These behaviors were always double-coded with the behavior that 
addressed the cognitive orientation level of the original question. The most common 
behavior in this category was asked yes/no, either/or, multiple-chose type question 
without asking for reasoning. Asking a fill-in-the-blank question with no computation 
required was also common. In our data, these types of questions were always asked 
after a prompt with a higher level of cognitive orientation, without an opportunity for 
the student to respond to the initial question.

Metacognitive Knowledge

While categorizing codes, we drew on Anderson et al.’s (2001) framework for meta-
cognitive knowledge, which is related to self-regulated learning (Pintrich, 2000), as 
well as Schoenfeld’s (1985) metacognitive work in problem-solving. Most of the 
Metacognitive knowledge behaviors entail the tutor drawing on Strategic Knowledge 
to select and use strategies throughout tutoring sessions. However, at times, students 
were asked to carry out the metacognitive strategies which the tutor had selected. In 
addition, after monitoring and determining the direction of the solution path, some 
tutor control behaviors offered the student greater opportunities to be involved in 
the problem-solving decision making. Control differs from Determine What-to-do as 
Strategic Knowledge entails generic strategies used for problem-solving. Determin-
ing What-to-do can occur alongside the use of Strategic Knowledge, but is drawing 
on knowledge of specific mathematical content.

Planning

Planning behaviors were aimed at activating prior knowledge to bring relevant knowl-
edge to the forefront of thinking. We did not see these behaviors frequently in our 
data. Tutors in our study used these behaviors to determine what knowledge would 
be relevant when working with students. These behaviors also had the potential to 
help students learn the importance of activating prior knowledge. The most common 
behavior was asking the student what they’d already done or tried. For example, one 
tutor, looking at a student’s work, asked, “So what did you start with here?“ This type 
of question allowed tutors to familiarize themselves with the problem and to assess 
student progress and understanding. Another planning behavior we saw was asking 
the student what course they were in. This can be essential in drop-in tutoring since 
tutors are working with students from multiple courses and soon become aware that 
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problems from different courses may have similar surface features and contexts yet 
still involve very different underlying concepts.

Monitoring

Monitoring behaviors indicated the tutor was evaluating the student’s understanding 
and/or their problem-solving process, and often conveyed the correctness of student 
utterances. Many times, the tutors assessed students’ work or claims themselves. 
Providing confirmation of correct student responses was one of the most common 
tutoring behaviors we observed. In other cases, the tutor monitored correctness but 
prompted the student to self-correct. For example, in the following scenario, a tutor 
asked a non-rhetorical question to point out the student’s error. The student was tak-
ing the partial derivative with respect to y of ex2+y , and stated “we keep it the same up 
top…and then times y”. Rather than directly correcting the student, the tutor replied 
“well what’s the deriva… [sic] if I just had, if it was just ey , what’s the derivative 
of y?“ The tutor engaged in monitoring the student’s work, however the tutor asked 
the student a question to perturb their thinking, giving the student the opportunity to 
monitor their own thinking. More often, we saw tutors using check-in behaviors, such 
as asking “make sense?” or “okay?” While these questions did not require and often 
did not elicit any verbal response from the student, they did invite the student, albeit 
minimally, to participate in the monitoring process if they were so inclined.

Control

The category Control was used when the tutor decided to continue on the current 
learning/problem-solving path or course correct. Since the decision making involved 
in control behaviors first requires an assessment of current progress or understanding, 
control behaviors typically follow monitoring behaviors. Typically tutors engaged in 
Control when they addressed the correctness of student responses with more infor-
mation beyond right/wrong. A common behavior was directly explained how or why 
student answer was incorrect. For example, when factoring a trinomial, a student 
factored out an expression that was not in all three of the terms. The tutor responded, 
“I can’t pull out an x because it’s not in all three of my terms, right? I have three terms 
since they’re all separated by a negative or plus sign.” The tutor indicated the student 
was incorrect and then explained why, making a decision that the student should be 
given additional information to aid them in learning.

We did not see behaviors where tutors asked students to engage in control strat-
egies. However, some of their behaviors provided direction while still increasing 
student engagement. Within these behaviors, it was most common for tutors to ask 
a follow-up question to continue on student path or verbally prompt the student to 
continue on student’s path. When the tutor asked a follow-up question, it was often 
to ask the student to carry out the step the student had proposed. For example, when 
working on finding the partial derivative with respect to x of ex2+1  the student offered 
“For this one, I’m guessing just look at x as a constant. Right? Or take x and look at 
everything else as constant.” The tutor then offered confirmation and asked the stu-
dent to continue, “Exactly. So, what might we get in that case?” In another instance, a 
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prompt was more subtle, for example, a student stated, “Yeah. I don’t know. I thought 
maybe I could multiply both sides by 7y − 6 but then that wasn’t really helpful.” The 
tutor replied, “Okay. So then why don’t we still go ahead and try that.” In both cases 
the tutor monitored the solution path, made a decision to continue on that path, and 
then asked the student to provide the subsequent steps.

Heuristics

Schoenfeld (1985) defines heuristics as “general suggestions that help an individual 
to understand a problem better or to make progress toward its solution” (p.23). We 
categorized behaviors as Heuristics when they entailed using a general problem-
solving technique. For example, one tutor asked, “We have a function in terms of 
a, so what are we trying to solve for?” and we coded this as discuss goal or subgoal 
of task. Schoenfeld (1979) lists “try to establish a subgoal” as a heuristic along with 
“considering a problem with fewer variables” (p. 178). When tutors asked an easier 
question, they broke the question they had asked down further into a simpler ques-
tion. For example, a tutor was helping a student find the amplitude of a periodic 
function based on the graph. The tutor first asked “so if it starts at zero, then goes to 
the midline of seven, then doubles that then back to seven, then back to zero, and the 
amplitude is the distance between the midline and then lowest point, then?” When the 
student did not answer the original question, the tutor removed some of the difficulty 
from the question by asking “what’s the distance between zero and seven?” (Note 
that this differs from Immediately Reducing Cognitive Orientation because the tutor 
gave the student the opportunity to answer the original question.) Similarly, when the 
student was unsure of how to proceed with the problem, tutors would draw attention 
to information from the problem or previous step. For example, when working on the 
problem, 

∫∞
1

ln(x)
x

dx  the tutor commented, “so right off the bat I notice we have a one 
to infinity.” The tutor highlighted an aspect of the problem statement which narrowed 
the student’s attention to the limits of the integral, thereby drawing the student’s 
attention to the integral being improper. We did see one behavior, asked student to 
find specific information in textbook/notes, in which the tutor selected the heuristic 
but asked the student to carry it out.

Contextual Metacognition

The key feature of Contextual Metacognition was a reference to “how it’s done” or 
“what it’s like” in a specific course or with a specific instructor. An example of the 
behavior, provided knowledge of specific course/instructor is, “so then you get your 
e− 1 equals exy − x

y . And you could set that equal to zero, but I doubt that you have 
to. I bet your professor will take it like that.” Here the tutor gave the student informa-
tion about the norms for presenting an answer in a given course.
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Discussion and Implications

Summary of Findings

In this study we sought to answer the following question: What observable behaviors 
do undergraduate drop-in mathematics tutors exhibit as they interact with students? 
We discovered 83 behaviors that we grouped into categories we developed, utilizing 
the organization of the matrix from Anderson et al., (2001) and the Cognitive Orien-
tation Framework from White & Mesa (2014). To further analyze the Metacognitive 
behaviors that we found, we utilized Pintrich (2000) and Schoenfeld (1979, 1985). 
Four of our categories: Supplied Facts, Applied a Procedure, Determined What-to-
do, and Drew Upon Understanding, included behaviors both where the tutors did the 
mathematical work and others where the tutor was asking the student to do the work. 
One of the most common ways that tutors engaged students was by asking them to 
carry out procedures, such as calculations or applying memorized algorithms. How-
ever, deciding what to do was largely the role of the tutor. A common sequence in the 
problem-solving process involved the tutor identifying the next step and then asking 
the student to execute it. Also common were behaviors where tutors asked students to 
draw upon understanding, which often took the form of prompting students to identify 
or recognize, and subsequently tutors would evaluate students’ answers. Elaboration 
and explanations were primarily provided by the tutors. A fifth category, Immediately 
Reduced Cognitive Orientation, captured behaviors where tutors reworded a question 
or prompt without giving students a chance to respond, often leaving them with a yes 
or no or fill-in-the-blank question that could be answered with little or no mathemati-
cal knowledge.

We also identified behaviors that we grouped into five categories requiring Meta-
cognitive Knowledge. Tutors almost always used their own metacognitive knowl-
edge, as opposed to providing opportunities for students to use or develop theirs, 
though there were limited exceptions. Some behaviors classified as planning, for 
example, showed the tutors asking the student for specific prior knowledge that the 
tutor believed needed to be activated. The most common monitoring behaviors were 
check-in behaviors when the tutor asked “make sense?” or “okay?” Tutors also moni-
tored by evaluating students’ claims or work, and in some cases, tutors prompted stu-
dents to self-assess. Control behaviors often followed monitoring behaviors, where 
the tutor either maintained or changed the direction of the session. These included 
elaborating on student answers, prompting the student to continue on their path, and 
asking follow-up questions. Tutors also frequently recommended a general problem-
solving technique; these behaviors were classified as Heuristics. These behaviors, 
such as prompting discussion of the goal of a problem or drawing attention to a 
previous step, positioned tutors as the drivers of the session, but we did see tutors 
engage students through certain heuristic behaviors, such as asking an easier question 
or asking them to find information in their resources. Tutors sometimes displayed 
contextual metacognitive knowledge by sharing their experience of the expectations 
of a particular instructor or course.
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Contributions and Connections to Prior Work

This study identifies and classifies behaviors that are specific to undergraduate math-
ematics peer tutors in a drop-in tutoring environment, some which are similar to and 
others different from behaviors of tutors in prior research that studied different tutor-
ing environments. First, there are behaviors that are inherently necessary in the drop-
in context. For example, drop-in tutors often work with students in multiple courses 
and therefore have to ask questions that orient themselves to the specific course and 
the problems students bring. Second, we saw a particular group of behaviors that 
tutors used to immediately reduce the cognitive demand on students, without giving 
them an opportunity to respond to the first prompt or question; this often took the 
form of changing an open-ended question or prompt into a yes/no or multiple-choice 
question. Perhaps the tutors intentionally engaged in these behaviors because they 
believed it was what would help the student in the moment. Alternatively, they may 
have been constrained by time or concerned they would make the student uncomfort-
able if they waited for an answer to the initial question. We cannot say with certainty 
why this happened so often.

We also have evidence, such as tutors providing detailed explanations, that tutors 
are concerned not just that students get the correct answer or to learn how to execute a 
procedure correctly, but that they understand how that procedure works and why it is 
appropriate in a particular situation. Moreover, at times tutors provide opportunities 
for students to do this type of mathematical work themselves. We contrast this with 
prior studies that claim that tutors are focused on solving specific problems rather 
than making connections between problems and concepts (Fox, 1991; Graesser et 
al., 1995; McArthur et al., 1990). It is important to note that the tutors in this study 
have received training and we cannot make a claim at this point about how much that 
training has influenced this tendency.

Asking students to draw upon their understanding was one of the most common 
ways we saw tutors engage students. Previous research has argued that tutoring is 
effective because students have opportunities to be actively engaged (Chi et al., 2001; 
Graesser & Person, 1994; Lepper & Woolverton, 2002). Our results provide a lens 
through which we can examine whether the tutor or student is doing the mathemati-
cal work and what type of work is being done. While we found a higher number 
of instances of tutors doing the mathematical work, we still saw tutors frequently 
prompting students to engage in multiple ways (see Table 2). This does not mean 
students necessarily chose to engage, but the tutors were not predominantly choosing 
to lecture or solve problems for students without requesting any student input.

Tutor and student interactions exist within a context of a hierarchy; even in situ-
ations where tutors and students are peers, they both often perceive a power differ-
ential and an expectation that the tutor be the expert and the decision maker (Carino, 
2003). Consistent with prior research (Chi et al., 2001; Graesser & Person, 1994), 
we found undergraduate drop-in mathematics tutors were the driver of the session 
and asked the majority of the questions. The tutors often engaged students by ask-
ing them to execute specific procedures once they had made decisions about how to 
proceed with a problem, similar to McArthur et al., 1990. Tutors also tended to take 
on the regulatory processes within the learning and problem-solving activities. For 
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example, tutors often began the problem-solving process by rewording a problem 
statement for the student, a strategy consistent with findings by Cade et al., (2008). 
They also assumed most of the responsibility for evaluating student answers and 
work, which is consistent with prior results for novice tutors (Fox, 1991; Graesser et 
al.,1995; McArthur et al., 1990).

Implications

The behaviors identified in this study can help us design tutor training that moves 
tutors toward student centered learning. Our results reveal inclinations of tutors that 
we can build upon to better serve students in undergraduate mathematics drop-in 
tutoring and here we present suggestions for how to address existing behaviors in 
training. For example, we see a desire of tutors to deepen students’ understanding of 
mathematical concepts and make connections between those concepts and the pro-
cedures necessary for solving specific problems. These behaviors can be highlighted 
and encouraged by tutor training programs. We also recommend training tutors to 
convert some of their conceptually oriented explanations into opportunities for stu-
dents to explain their conceptual understanding.

Increasing student independence is one of several areas for potential growth and 
a focus for tutor training programs. One way to increase the activeness of students 
and encourage them to do more of the substantive mathematical work is by reducing 
cases of Immediately Reducing the Cognitive Orientation. This is an area that may 
be easily influenced through training. Tutors are already asking good questions; they 
simply need to allow students the opportunity to answer before immediately reword-
ing their questions.

One way to encourage the student to engage in self-regulatory skills is for the 
tutor to ask the student to rephrase or breakdown the problem statement to determine 
how to proceed. Alternatively, the tutor can explicitly state why and when they might 
choose a certain heuristic such as rewording the problem statement. With all meta-
cognitive and problem-solving strategies, tutors can be trained to explicitly model 
their own metacognitive processes or to ask students to select and carry out their 
own strategies. As with the other types of knowledge, a goal is to engage the student 
in the “when” and “why” to form deep understanding that could be applied to other 
problems and contexts.

The monitoring behaviors we discovered likely demonstrate a concern for student 
learning or a desire for confirmation that their explanations were helpful. We can 
build on tutor concern for student learning in training, encouraging tutors to ask ques-
tions requiring the student to reason about the tutor’s explanation, which would not 
only aid tutors in gauging the productiveness of their explanation, but could also help 
the student solidify their understandings by verbalizing them.

We see limited evidence of tutors asking students to monitor their own mathemati-
cal work (such as asking a question to point out error) but the specific behaviors we 
observed did not necessarily help students learn to monitor in absence of the tutor. 
Training tutors to ask a question back to the student in response to an incorrect or 
incomplete student response would allow students to develop self-assessment skills 
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they need to be successful in mathematics. At the same time, it would allow the tutor 
to get a clearer picture of what the student does and does not understand.

Limitations and Future Research

This study was completed at a single institution and the sessions were selected by 
the participants; therefore, our sample of tutoring sessions may not be representa-
tive of all undergraduate drop-in mathematics tutoring. In addition, tutors selected 
sessions that they were comfortable discussing with their supervisor and that were 
within a 5–7-minute length, so the sessions may not be representative of each tutor’s 
own tutoring. Tutor behaviors also may have been limited by the type of homework 
problems students brought to the tutor (see Appendix B), which were often exercises 
rather than true problems (Schoenfeld, 1985, 1992). The content of the exercises 
likely impacted the tutors’ questions as well as opportunities to explore possible solu-
tion paths. We also note that the tutors transcribed their own sessions, and their tran-
scriptions were used as data for this study.

Data collection using Livescribe pens likely impacted the interaction dynamic. 
Because tutors had to ask the student for consent before recording and may have 
stopped recording before they finished working with the student, certain affective 
behaviors such as initial greetings and session closures may have not been captured 
in our data. It is also possible that some tutors did more writing themselves because 
of this recording device. In addition, we chose to use a tutor turn as our unit of analy-
sis, without differentiating between short and long turns or the number of turns that 
it took to resolve a particular issue. Thus, some longer tutor turns contained multiple 
codes.

Previous work has noted the importance of considering three perspectives in tutor-
ing; tutor, student, interaction between the two (Chi et al., 2001). Our study classifies 
only the tutor’s behaviors. Future studies may compare how certain tutor behaviors 
impact student performance and how students respond to certain tutor behaviors. 
Future work can explore the response/follow-up pattern of tutors. Specifically, what 
do tutors do with unexpected student responses, and how persistent are they with 
their intended paths? Or one might study, for example, to what extent the tutors’ 
moves have the desired impact. We are also interested in to what degree tutors’ pat-
terns of behaviors are malleable and how these might best be influenced. We suspect 
that tutors progress through a learning trajectory, with some behaviors more innate 
than others. Experience and training may impact tutor behaviors, which indicates a 
need for more long-term studies, following tutors over multiple semesters. We specu-
late that as tutors are trained to use more student-centered approaches, we would see 
more behaviors such as Asked Student to Determine What-to-do or Asked Student to 
Draw Upon Understanding in their sessions.

We believe the categories themselves may have utility in training. For example, we 
envision a training exercise in which tutors could view their own and others’ record-
ings and comment on different behaviors and how they could adapt their behaviors 
towards student centered methods. This type of training for in-service teachers has 
been shown to promote noticing and self-reflection and result in change in teacher 
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behavior (van Es & Sherin 2002; 2008). The categories could also be used to track 
growth over time by coding a tutor’s transcripts at different periods in time.

Based on the results of this study, we suggest that tutor training emphasize the 
following: (1) Ask students to identify a solution path as well as the steps needed to 
carry out the problem. (2) Allow the student to answer higher order questions with-
out turning them into yes/no or multiple-choice type questions. (3) After providing 
explanation, ask the student a question which requires the student to reason about 
the explanation provided rather than asking “right?” (4) Explicitly model their own 
metacognitive processes and use questions to engage students in selecting and using 
metacognitive strategies. (5) When a student’s utterance is incomplete or incorrect, 
ask the student a question to help them make their own mathematical realizations. 
Making these adjustments to tutoring behaviors through training can increase stu-
dent’s opportunities to learn in tutoring sessions. Future research could develop train-
ing modules to address these issues and evaluate the impact of the training on tutor 
behaviors.
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