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Abstract
Reasoning with mathematics plays an important role in university students’ learning 
throughout their courses in the scientific disciplines, such as physics. In addition to 
understanding mathematical concepts and procedures, physics students often must 
mathematize physical constructs in terms of their associated mathematical structures 
and interpret mathematical entities in terms of the physical context. In this study, we 
investigate physics students’ reasoning about mathematics in relation to physics con-
tent addressed in two quantum mechanics problems. Through qualitative analysis of 
interview data from twelve students, results show that 1) students use intricate, nonu-
niform problem-solving methods with reasoning that moves fluidly between structural 
(mathematizing and interpreting) and technical (conceptual and procedural) skills in 
quick succession, and 2) student reasoning about orthonormal bases, change of basis, 
inner products, and probability informed their flexibility in choosing problem-solving 
approaches. We illustrate the results with examples of student reasoning and discuss 
the inextricability of mathematics and physics in students’ reasoning.

Keywords Linear algebra · Quantum mechanics · Student reasoning · Flexibility · 
Problem-solving

Mathematics and physics have an interconnected, reflexive relationship. Physical 
problems motivated the origins of several mathematics concepts, and the mathema-
tization of physical phenomena often enables the development of physical theory 
(e.g., Dirac, 1947). According to Uhden et  al. (2012), “the role of mathematics 
in physics has multiple aspects: it serves as a tool (pragmatic perspective), it acts 
as a language (communicative function) and it provides a way of logical deduc-
tive reasoning (structural function)” (p. 486). Mathematics is not only a tool for 
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computational manipulations; Mathematics is also commonly connected to phys-
ics content and can be used to reason about physics concepts and structure physi-
cal thought. For instance, differential equations are central to myriad key ideas in 
physics, such as harmonic oscillation, projectile motion, Newton’s Law of Cool-
ing, and the Schrödinger Equation. In multivariate calculus, students learn gradient, 
divergence, and curl, which are central to electromagnetism. In linear algebra, the 
notions of change of basis, orthonormality, and inner products are crucial in con-
ceptualizing and computing the probability that a measurement of a particle’s spin 
angular momentum would yield a particular value (in particular, an eigenvalue of 
a relevant operator). Physics students have to make connections between concepts, 
notation systems, and procedures they have learned in both mathematics and physics 
courses, and these sometimes vary between the two disciplinary cultures. Due to the 
interconnected nature of mathematics and physics, it is essential for undergraduate 
students to learn how to reason with mathematics as they address physical problems.

In this paper, we examine the complexity of undergraduate physics students’ math-
ematical reasoning used as they solve two probability problems in the context of quan-
tum mechanics. We address the following research question: How do undergraduate 
physics students reason with mathematical concepts and procedures as they solve 
quantum mechanics problems? In particular, our research goal was to investigate the 
linear algebra reasoning students leveraged in their solutions and explanations regard-
ing the quantum mechanics problems shown in Fig.  1. Our results demonstrate the 
intricacy of students’ problem-solving methods and exhibit how students draw on their 
understanding of concepts from both mathematics and physics to inform their flexibil-
ity in choosing an appropriate problem-solving approach. This paper offers insights into 
how students reason about mathematics content in ways that are interconnected with 
and inseparable from physics content. Readers who teach undergraduate mathematics 
courses in which physics majors (or other STEM-discipline students) are enrolled will 
benefit from this paper by learning more about how the mathematics commonly taught 
in a linear algebra course is leveraged in other STEM disciplines.

Brief Physics Background

To assist the reader in following the students’ work on the problems in Fig. 1, we 
provide a brief summary of relevant content.1 Quantum mechanical systems can be 
assigned to a Hilbert space, every possible state of the physical system is associated 

Fig. 1  The quantum mechanics problems addressed in this study

1 The summary draws from McIntyre et al. (2012), Shankar (2012), and Wawro et al. (2020).
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with a vector in the Hilbert space, and every possible observable is associated with 
a Hermitian operator. For example, spin is a measure of a particle’s intrinsic angu-
lar momentum, which is related to the particle’s magnetic moment. This observable 
is represented mathematically by an operator such as Ŝz (where the z indicates the 
particle’s axis of rotation; the analogous information can be determined for other 
axes of rotation, such as y). In a spin-½ system, there are only two possible results 
for the Sz measurement: ±ℏ

2
 , and these are the (necessarily real) eigenvalues of the 

Hermitian operator Ŝz . After the measurement the system will be found in the cor-
responding eigenstate.

Using the notation system introduced by Dirac (1939), a state vector is denoted 
as a ket ��⟩ . The eigenstates corresponding to the possible measurements of an 
observable create an orthonormal basis for the associated Hilbert space. For exam-
ple, the eigenstates for the spin-½ operator Ŝz can be expressed as �+⟩ and �−⟩ , and 
they correspond to the measurements ℏ

2
 and −ℏ

2
 , respectively. Any quantum state 

��⟩ in this system can be expressed as a linear combination of �+⟩ and �−⟩ , namely: 
��⟩ = a�+⟩ + b�−⟩ for scalars a, b ∈ ℂ . The complex conjugate transpose of a ket 
��⟩ is called a bra and is symbolized as ⟨�� = a∗⟨+� + b∗⟨−� . The probabilistic 
interpretation of the principle of superposition in quantum mechanics means that 
��⟩ will sometimes have attributes that resemble those of �+⟩ and sometimes those of 
�−⟩ . More precisely, if the particle is in a state ��⟩ , the measurement of its spin along 
the z-axis will yield one of the eigenvalues ℏ

2
 and −ℏ

2
 with probability proportional to 

the modulus squared of the projection of ��⟩ along either the eigenvector �+⟩ or �−⟩ , 
respectively. The state of the system will change from ��⟩ to �+⟩ or �−⟩ as a result of 
the measurement.

Problem A (see Fig. 1) asks for the probability of obtaining ℏ
2
 or −ℏ

2
 in a measure-

ment of observable Sz on a system in state ��⟩. The solution is calculated by 
P± = �⟨±��⟩�2 , where ⟨±��⟩ is an inner product between one of the z-basis kets and 
psi. The solution for problem B (see Fig. 1) is calculated by P± = �y⟨±��⟩ �2 , where 
y⟨±��⟩ is an inner product between one of the y-basis kets and psi. To complete 
problem B, a change of basis is involved because the given state ��⟩ is written in 
terms of the z-basis, but the prompt asks for the probability that the spin component 
is up or down along the y-axis. The two main approaches are to either change ��⟩ to 
be written in terms of the y-basis (denoted �±⟩y ) and calculate P±,y = �y ⟨±��⟩y

���
2

 , or 
change the y-basis vectors to be written in terms of the z-basis and calculate 

P±,y =
����
(

1√
2
⟨+� ∓ i√

2
⟨−�)��⟩

����

2

 . In either approach, one would need to utilize the 

equations �±⟩y =
1√
2
 �+⟩± i√

2
 �−⟩.

Literature Review

Several mathematical concepts are involved in the problems shown in Fig.  1, 
including probability, inner products, basis, and change of basis. Some studies 
have investigated student understanding of probability in quantum mechanics con-
texts (e.g., Close et al., 2013; Passante et al., 2018). Wan et al. (2019) investigated 
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student understanding of inner products in relation to quantum probabilities. They 
asserted that students need a functional understanding of inner products and quan-
tum states in order to understand how to determine quantum probabilities. Serbin 
et al. (2021) analyzed quantum mechanics students’ and instructors’ discourse in 
the context of solving probability problems by identifying aspects of their cultur-
ally shared social language (Gee, 2005) particular to basis and change of basis. 
They found that students’ and instructors’ discourse about change of basis referred 
to either changing the form of a vector, writing a vector in another form, changing 
a vector into another vector, or switching bases. They conjectured that these varied 
forms of discourse could be indicative of different ways of reasoning about change 
of basis within the quantum mechanics context. Schermerhorn et al. (2019) inves-
tigated physics students’ reasoning about basis and change of basis in the con-
text of calculating expectation value problems. They claimed that several students 
“did not attend to the basis representation of vectors or matrices when carrying out 
matrix multiplication” (p. 020,144–17). They found that a challenge for most stu-
dents was choosing an appropriate basis in which to express the matrices and vec-
tors involved in the calculation. The ubiquitous use of basis and change of basis in 
solving quantum mechanics problems warrants research about how students reason 
about these central concepts from linear algebra.

There is a growing body of literature related to student understanding of basis 
(e.g., Bagley & Rabin, 2016). Focusing on students’ productive ways of intuitively 
reasoning about basis, Adiredja and Zandieh (2017) and Zandieh et al. (2019) con-
ducted interviews to investigate students’ conceptual metaphors for basis. Students 
described real-life examples of basis, including contexts such as recipes, fashion 
outfit choices, marching band, and religious teachings. In the students’ explana-
tions of how the real-life examples related to basis, they described bases as mini-
mal, maximal, representative, essential, different, and non-redundant. Zandieh et al. 
(2019) found students used real-life examples to illustrate the roles of a basis as 
generating, structuring, and traveling, and the characteristics different and essential. 
Stewart and Thomas (2010) found that when students in their study reasoned about 
basis, they mainly focused on symbolic matrix manipulations such as row-reduction 
but often did not seem to understand how the matrix-based calculations were related 
to finding a basis for a vector space. In addition, the students often did not connect 
span and linear independence with basis as they created concept maps, nor did they 
attend to embodied conceptualizations of basis. Schlarmann (2013) found that two 
students focused on linear independence as they determined a basis for a particular 
subspace of ℝn and on span as they verified their set actually formed a basis. We 
found few studies that focused on student understanding of change of basis. One 
exception is Hillel (2000), who posited challenges students may face with the alge-
braic notion of change of basis; Hillel stated that students who conceptualize a vec-
tor as a string of numbers may not understand how two strings of numbers (i.e., the 
same vector in two different bases) can be equivalent. These researchers focused on 
student understanding of linear algebra concepts within undergraduate mathemat-
ics, but there is additional complexity associated with students’ use of this math-
ematical understanding in physics contexts.
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At a larger grain size, how students reason about the relationship between mathe-
matics and physics is of great interest to educational researchers. Studies have focused 
on physics students’ understanding of calculus (e.g., Bajracharya & Thompson, 2016; 
Christensen & Thompson, 2012; López-Gay et al., 2015; Schermerhorn & Thompson, 
2019), differential equations, (e.g., Wittmann & Cakir, 2008), and linear algebra (e.g., 
Karakok, 2019; Serbin et al., 2020; Wawro et al., 2019, 2020). Physics students are 
often required to take several undergraduate mathematics courses, as the content is 
often leveraged in their physics courses. Quantum mechanics, in particular, draws on 
several linear algebra topics, such as matrices, vector spaces, bases, inner products, 
and eigentheory. Undergraduate physics students thus have to use what they learned in 
their Linear Algebra courses within the context of quantum mechanics (e.g., Karakok, 
2019). As Caballero et al. (2015) noted, researchers have documented that reasoning 
about undergraduate mathematics in physics contexts can be a difficult endeavor for 
students.

“Math may be the language of science, but math-in-physics is a distinct dialect of 
that language” (Redish, 2006, p. 1). This presents a potential challenge in that mathe-
matics content can be used differently in physics courses than in what students previ-
ously encountered in their undergraduate mathematics courses. Caballero et al. (2015) 
explained, “While students see many of the mathematical tools and techniques used in 
upper-division physics in their math courses, the operationalization of these tools in 
their physics courses can be strikingly different” (p. 5). For instance, bases of vector 
spaces in quantum mechanics contexts are orthonormal, whereas that is not the case 
for all vector spaces students encounter in their linear algebra courses. A second exam-

ple involves the spin component operator matrix �Sn =
ℏ

2

[
cos𝜃 sin𝜃e−i𝜙

sin𝜃ei𝜙 −cos𝜃

]
 along the 

general direction n̂ ; determining its eigenvalues and eigenvectors involves utilizing 
Euler’s identity and trigonometric identities, normalizing, and relegating imaginary 
components to the second term to arrive at �+⟩n = cos

�

2
�+⟩ + sin

�

2
ei��−⟩ and 

�−⟩n = sin
�

2
�+⟩ − ei�cos

�

2
�−⟩ as eigenvectors for eigenvalues ℏ

2
 and −ℏ

2
 , respectively.

The previous example, which has eigenvectors written as a superposition of kets 
in Dirac notation, leads to another potential challenge inherent in this math-in-
physics dialect: the different representations and notation systems used in quantum 
mechanics courses and mathematics courses (e.g., Wagner et  al., 2012). One par-
ticular example that is very pertinent to quantum mechanics is demonstrating flex-
ibility in using both matrix notation and Dirac notation (e.g., Gire & Price, 2015; 
Schermerhorn et  al., 2019; Wan et  al., 2019). Wawro et  al. (2020) investigated 
physics students’ metarepresentational competence with these two notation sys-
tems. They found that “students’ rich understanding of linear algebra and quantum 
mechanics includes and is aided by their understanding and flexible use of differ-
ent notational systems” (p. 020,112–2). Wan et al. (2019) discussed how structural 
features of quantum notations can foster or hinder students’ reasoning about inner 
products and quantum probabilities. They found that Dirac notation brackets helped 
students make sense of inner products of energy eigenstates and state vectors. Over-
all, familiarity with using both matrix notation and Dirac notation is essential for 
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solving problems in quantum mechanics, but developing fluency within and across 
both notation systems could be nontrivial for students.

Another potential challenge in reasoning about mathematics in physics contexts is 
that students have to connect the two domains by interpreting the mathematical sym-
bols in terms of the physical phenomena they symbolize. Redish (2006) suggested that 
physicists and mathematicians may interpret equations differently due to the meanings 
they attribute to symbols. Thus, students may reason about equations and symbols 
differently in mathematics and physics contexts (e.g., Wagner et al., 2012). Caballero 
et al. (2015) reviewed literature on student reasoning about mathematics in upper divi-
sion physics courses and found that “fluency with procedural mathematics is often not 
the primary barrier to student success” (p. 4), rather “students often struggle to inter-
pret/make sense of mathematical expressions in terms of the appropriate physics (i.e., 
connecting the math and physics)” (p. 4). Her and Loverude (2020) discussed a similar 
finding that physics students demonstrated fluency in using mathematical procedures 
but experienced difficulty with interpreting matrix equations in terms of a physical 
system. Learning to interpret mathematical symbols and structures in terms of physi-
cal phenomena is an important, yet nontrivial, endeavor for physics students as they 
reason about mathematics in physics contexts. We further investigate the complexity 
of physics students’ mathematical reasoning in the current study.

Theoretical Framework

One common theorizing of students’ reasoning about and use of mathematics 
within a physical context leverages the notion of a modeling cycle. For example, 
such modeling cycles include Redish and Bing’s (2009) model (see Fig. 2a), Wilcox 
et al.’s (2013) Activation, Construction, Execution, Reflection (ACER) Framework 
(see Fig. 2b), and Blum and Leiß’s (2005) cognitive modelling cycle (see Fig. 2c). 
Despite their prevalence in mathematics and physics education research literature, it 
has been documented that cycles are not always suitable for tasks in engineering and 
physics contexts because student reasoning does not always follow a cyclical pattern 
(e.g., Czocher, 2013). Thus, we draw on the theoretical constructs of mathematiza-
tion and interpretation that are commonly presented in these models, instead of lev-
eraging their cyclical nature.

The aspects of mathematization and interpretation are commonly used in models 
of student reasoning about mathematics in physics. Redish and Bing (2009) indi-
rectly referred to mapping physical structures into mathematical ones as mathema-
tizing, Blum and Leiß (2005) explained it as what transforms the real model into a 
mathematical one, and Wilcox et al.’s (2013) “Construction of the model” step is lik-
ened by Caballero et al. (2015) to mathematization as described by Karam (2014):

Mathematizing is understood as the process of constructing a mathematical rep-
resentation for a physical situation (in the broad sense). This process can be seen 
as a translation from the physical world (e.g., observations and experiments) into 
mathematical structures (e.g., numbers, functions, and vectors). (p. 5-6)
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Mathematizing is an essential problem-solving skill that students need to develop 
to structure physical situations in terms of mathematics, which allows them to use 
mathematical procedures and properties to solve problems. Researchers have inves-
tigated students’ ability to mathematize and how instructors can support students’ 
development of mathematizing skills (e.g., Caballero et al., 2015; Kanderakis, 2016; 
Karam, 2014). Researchers have also focused on physics students’ ability to inter-
pret mathematical symbols and structures in terms of physical concepts. The notion 
of interpreting involves making sense of mathematics in terms of physics, such as in 
explaining the physical meaning of mathematical symbols (Uhden et al., 2012).

These reasoning skills of mathematizing and interpreting are central aspects of 
Uhden et al.’s (2012) mathematical-physical model (Fig. 2d), which frames our study. 
We draw on Uhden et al. theory proposed in several of their works (Karam, 2014; 
Karam et al., 2011; Pietrocola, 2008; Uhden et al., 2012). Uhden et al. (2012) used 
the distinction of technical and structural skills to propose a modelling cycle of how 
mathematical knowledge is used in modelling physical situations (see Fig. 2d). In  
their modelling cycle, one simplifies and structures phenomena from the world and 
performs varying degrees of mathematization, denoted by the upward arrows in the 
figure. One uses technical skills to perform mathematical operations, denoted by 
the loop to and from the pure mathematics part of the figure. These technical skills 
involve reasoning with mathematical concepts and procedures. One interprets math-
ematical structures in terms of the corresponding physical phenomena denoted by 

Fig. 2  Various modeling cycles for students’ use of mathematics in physical problems
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the downward arrows in the figure. We chose to draw on Uhden et al. model because 
it highlights the entanglement of mathematics and physics that students navigate. 
We leverage Uhden et al. constructs of technical and structural skills as a framework 
for analyzing physics students’ reasoning about mathematics on a quantum mechan-
ics problem.

Technical skills involve employing properties of mathematical systems in physics 
contexts, such as in performing algorithms. They are characterized as being “con-
nected to the internal context of mathematical knowledge” (Pietrocola, 2008, p. 
7). Technical skills are associated with the instrumental ability to use knowledge 
of mathematical concepts and procedures as a tool to solve problems in physics; 
this particular use of mathematical skills is independent of connections to physics. 
Karam (2014) elucidated two types of technical skills: procedural and conceptual. 
Technical-procedural skills involve using mathematics to perform manipulations or 
procedures, such as in solving an equation. These skills are related to procedural 
knowledge (Hiebert & Lefevre, 1986; Star, 2005), which encompasses “knowledge 
of procedures that is associated with comprehension, flexibility, and critical judg-
ment” (Star, 2005, p. 408). We focus on the aspect of flexibility, a central facet of 
students’ decision-making when choosing a particular problem-solving approach. It 
“incorporates knowledge of multiple ways to solve problems and when to use them” 
(Rittle-Johnson & Star, 2007, p. 562). Thus, we posit that flexibility in choosing  
procedures is an important aspect of students’ use of technical-procedural skills. 
Technical-conceptual skills involve giving conceptual explanations of mathematical  
rules and procedures. These skills are akin to Hiebert and Lefevre’s (1986) conceptual  
knowledge, defined as “knowledge that is rich in relationships…a connected web of  
knowledge, a network in which the linking relationships are as prominent as the dis-
crete pieces of information” (p. 3–4).

Structural skills incorporate reasoning about the interconnectedness of math-
ematics and physics and are “based on the capacity of employing the mathematical 
knowledge for structuring physical situations” (Pietrocola, 2008, p. 7). Karam et al. 
(2011) suggest that structural skills are related to “the recognition of the deep con-
nection between the physical content and the mathematical formulation of a particu-
lar concept” (p. 2), and the authors describe different types of structural skills: math-
ematizing, interpreting, deriving, and analogizing. Broadly speaking, they associate 
mathematizing with translating from physics to mathematics and interpreting as 
translating from mathematics to physics. Karam et al. suggested that the structural-
mathematizing skill is the process of translating from the physical world to mathe-
matical structures and formulas, and that this “depends on being able to think math-
ematically, which involves not only a significant understanding of mathematical 
concepts and theories, but also the ability of abstracting, idealizing and modelling 
physical phenomena” (p. 2). The structural-interpreting skill involves making sense 
of mathematics in terms of physics, such as in explaining the physical meaning of 
mathematical expressions or equations, such as interpreting mathematical symbols 
in a formula in terms of the physical phenomena that they symbolize. Furthermore, 
interpreting is an important aspect of the advancement of science. As Karam (2014) 
stated:
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The fact that we are able to find more physics through the interpretation of 
mathematical expressions testifies that mathematics is not merely a language 
that offers a precise description of physical phenomena, but that in many cases 
the mathematical formalism guides the physical thought. (p. 9)

Indeed, in Dirac’s seminal text (1947), after delineating a set of assumptions that 
completely defined relations between states of a dynamical system at a point in time, 
Dirac stated that the relations “appear in mathematical form, but they imply physi-
cal conditions” (p. 23). He further offered a preliminary example: “if two states are 
orthogonal, it means at present simply a certain equation in our formalism, but this 
equation implies a definite physical relationship between the states, which further 
developments of the theory will enable us to interpret” (p. 23) empirically. Even in 
the early stages of the development of quantum mechanical theory, interpreting was 
paramount.

Methods

The participants were 12 undergraduate physics students, of which eight (pseudo-
nyms A#) were enrolled in a junior-level Quantum Mechanics course at University A, 
a large research institution in the Northwest US. The other four participants (pseudo-
nyms C#) were enrolled in a senior-level Quantum Mechanics course at University C, 
a medium-sized research institution in the Northeast US. The second author assigned 
these numeric pseudonyms to identify participants from course rosters. All but one 
student, A32, had taken a Linear Algebra course prior to enrolling in the Quantum 
Mechanics course. Based on University A and C’s Linear Algebra course descrip-
tions, the content covered included: linear equations, row echelon form, matrix alge-
bra, determinants, linear independence, orthogonality, vector spaces, matrix repre-
sentations of linear transformations, eigenvalues, and eigenvectors. At University A, 
two students, A8 and A11, were concurrently enrolled in a second Linear Algebra 
course that covered vector spaces, linear transformations, eigenspaces, diagonaliza-
tion, singular value decomposition, orthogonality, inner product spaces, and spectral 
theorems. At University A, the Quantum Mechanics course began with a review of 
linear algebra content, including determinants, matrix operations, eigenvalues, eigen-
vectors, linear transformations, and properties of Hermitian matrices. At University 
C, the students took a separate Mathematical Methods in Physics course that covered 
pertinent linear algebra content.

Semi-structured interviews (Bernard, 1988) with each participant were conducted 
with the broad goal of gaining insight into how students reason with linear alge-
bra concepts in quantum mechanics contexts. The interviews were recorded, tran-
scribed, and written work was retained. We analyzed the participants’ responses to 
the problems shown in Fig. 1.2 Follow-up questions were asked as needed during the 
interview to gain clarity regarding a participant’s response.

2 Two of the 12 students did not complete Problem a) because of time constraints during the interview.
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Our analysis process involved first performing inductive open coding (Miles 
et  al., 2013) on each student’s transcript, labeling chunks with a code capturing 
what knowledge or skill the student implicitly used or explicitly described as they 
engaged with the problems. The authors independently open coded four students’ 
transcripts, compared, and created a primary code list, which the first author used 
to code the remaining transcripts. When new codes emerged from interpreting the 
remaining transcripts, the new codes were added to the original list.3 To check for 
internal consistency, the transcripts were coded again to ensure that no transcript 
segments were missed or miscoded.

We then performed deductive coding by assigning these original codes one 
of four a priori parent codes: structural-mathematizing, structural-interpreting, 
technical-conceptual, or technical-procedural. These parent codes derive from 
Uhden et al.’s (2012) and Karam’s (2014) descriptions of structural and technical  
skills, as well as Hiebert and Lefevre’s (1986) and Star’s (2005) description of 
conceptual and procedural knowledge. We coded the students’ reasoning as lever-
aging structural skills whenever students translated between mathematical objects 
and their corresponding physical entities via interpreting or mathematizing. We 
assigned the parent code of structural-mathematizing when the student reasoned 
about physics content in terms of mathematical structures. We used the structural- 
interpreting code when the student interpreted the mathematical symbols 
or results in terms of the physics context. These coded structural skills differ 
from technical skills, which students can perform solely by using mathematical 
knowledge or procedures that are not tied to the physical context. We thus coded 
the students’ reasoning as leveraging technical skills whenever the students used 
mathematical conceptual or procedural knowledge on the tasks without having to 
reason about the mathematical structures or properties in terms of any physical 
entities. We assigned the technical-conceptual code when the student used their 
conceptual knowledge of mathematical concepts (by either explicitly explaining 
the concept or implicitly using that concept in their solution) and the technical-
procedural procedural code when the student used mathematical procedures or 
procedural flexibility as they solved the interview problems. The original codes, 
grouped according to their parent codes, are presented in Fig.  3. Two of the 
original codes of recognizing that probabilities sum to one and using the inner 
products ⟨+�−⟩ = 0 , ⟨+�+⟩ = 1 were assigned two parent codes of technical-
conceptual [◼1 and ◼3, respectively] and technical-procedural [●12 and ●15, 
respectively] because students simultaneously demonstrated skills in reasoning 
about these concepts and using these procedures as they solved the problems. 
Overall, coding in this manner allowed us to investigate the students’ use of 
structural and technical skills. See the Results section for a discussion of how we  
analyzed these coded structural and technical skills to inform our claims.

3 Our subjectivities influenced our data analysis and code creation. What we noticed in the interview 
data was influenced by our knowledge of mathematics and quantum mechanics. For instance, we could 
infer that a student used a mathematical property (e.g., distributivity) in their written work, even if they 
did not explicitly verbalize that.
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Results

Our analysis revealed two main findings. First, we found that students use intricate, 
nonuniform problem-solving methods with reasoning that moves fluidly between 
structural (mathematizing and interpreting) and technical (conceptual and proce-
dural) skills in quick succession, in their solutions for problems A and B (Fig. 1). 
Second, we found that students’ technical and structural skills related to reason-
ing with inner products, orthonormal bases, basis, change of basis, and probability 
supported their flexibility in choosing an appropriate problem-solving approach on  
these problems. Our analysis leveraged Uhden et al.’s (2012) model, which facilitates 
an illumination of the entanglement of mathematics and physics. We discuss these 
findings and use the symbols ⭓#, ▲#, #, and ◼# listed in Fig. 3 to refer to the coded 
technical and structural skills throughout the Results.

The Intricacy of Students’ Problem‑solving Methods

Our first main finding highlights the intricacy of students’ problem-solving methods 
that were evident in their responses to problems A and B. Students’ reasoning moved 
fluidly between structural (mathematizing and interpreting) and technical (conceptual 
and procedural) skills in quick succession. They did so in ways that were nonuniform 

Fig. 3  Codes for structural-interpreting, structural-mathematizing, technical-procedural, and technical-
conceptual skills
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across the students. This highlights the complexity of the students’ mathematical  
and physical work, which could not be adequately captured by a more straightfor-
ward modeling cycle such as Redish and Bing’s (2009) map-process-interpret-evaluate  
model or Wilcox et al.’s (2013) activate-construct-execute-reflect model.

To determine this finding, we organized the codes of each student’s technical and 
structural skills in chronological order according to when the student used the skill 
during their work on the problem. We then compared the skills progression across 
students to try to identify patterns in the sequence of the skills used. We found no 
apparent patterns, which illustrates the idiosyncratic and intricate problem-solving 
methods used by the students. Figures 4 and 5 illustrate the progression of each stu-
dent’s use of structural-mathematizing, structural-interpreting, technical-procedural, 
and technical-conceptual skills on problems A (Fig. 4) and problem B (Fig. 5). For 
brevity, we omit some codes in the description of students’ reasoning throughout 
the results section. In the following three subsections, we provide in-depth analysis 
of three students’ problem-solving methods, namely A13 on problem A and C12 
and A8 on problem B, to illustrate students’ varied and intricate use of structural 
and technical skills. We chose these students as illustrative examples to exhibit work 
from both Universities A and C and to highlight A8’s unique (within this dataset) 
problem-solving method.

A13’s Use of Structural and Technical Skills on Problem A

A13 used intricate problem-solving methods evident their use of a variety of struc-
tural and technical skills throughout their4 work on problem A. They began by set-
ting up the formula needed for calculating the probability that psi’s spin component 
is up along the z-axis. A13 explained their reasoning as:

Fig. 4  Progression of students’ structural and technical skills on Problem A

4 We use the gender-neutral singular pronouns “they” and “their” to refer to the students throughout this 
paper.
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“So probability is given by... you take the bra of what you were expecting out 
versus the ket of what’s coming in, and you take the norm of that squared. So, 
in the case of this, you’d have what’s coming out, well you want the spin com-
ponent up or down. It’s in the z-axis, so we’ll do plus first, plus bra with the psi 
ket, and you’d square. So, this would, expanding that out, you get the plus, uh, 
bra for the z-axis.”

A13 recognized that the basis and axis matched in the problem setting, so they 
could use the probability formula from the probability postulate [▲5,▲12]. They 
also recognized that it was appropriate to use Dirac notation to calculate the inner 
product [▲10]. A13 also knew that to determine the probability that the spin com-
ponent was up along the z-axis, they needed to use ⟨+� as the bra in the inner product 
[▲11]. Overall, A13 used several structural skills to mathematize the problem situa-
tion to the equation P = �⟨+��⟩�2.

A13 then completed the probability calculation using P = �⟨+��⟩�2 . They per-
formed the technical-procedural skills of substituting 3√

13
�+⟩ + 2i√

13
�−⟩ in for ��⟩ 

and writing the inner product as a product of a bra and a linear combination of kets 
(see Fig. 6) [●11,●20]. A13 then used structural-interpreting, technical-conceptual, 
and structural-mathematizing skills as they explained their reasoning: “It’s good 
because they’re both in the z basis, the kets are both in the z basis ’cause [if] this was 
like in the x you’d have this longer, more complicated math to do.” A13 interpreted 
the mathematical symbols to acknowledge that the kets in the inner product are both 

Fig. 5  Progression of students’ structural and technical skills on Problem B
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expressed in terms of the z basis [⭓5]. In doing so, they interpreted the symbols 
3√
13
�+⟩ + 2i√

13
�−⟩ and the problem statement to conclude the basis and axis match 

[⭓2], and they reasoned that kets in an inner product must be expressed in the same 
basis [◼6]. They acknowledged that if ��⟩ was expressed in terms of a different basis 
that did not match the axis, they would have “more complicated math to do,” as that 
would require a change of basis [▲3]. Thus, A13 switched between using various 
technical and structural skills as they completed calculated the probability calcula-
tion using the formula P = �⟨+��⟩�2 , and they then used structural-interpreting, 
technical-conceptual, and structural-mathematizing skills to explain their reasoning.

Finally, A13 used more technical skills to finish their calculation of the probabil-
ity P = �⟨+��⟩�2 . After using the distributive property and the commutativity of 
vector addition and scalar vector multiplication [●7,●8]. A13 then described the 
skipped steps in their calculation of ⟨+�+⟩ = 1 and ⟨+�−⟩ = 0 , saying, “A bra times 
a ket with the same value is just 1, and then a bra times a ket of different values plus 
one- one would be 0.” We coded this as A13 using the technical-conceptual and pro-
cedural skill of reasoning about the inner products of the orthonormal z-basis vec-
tors being ⟨+�+⟩ = 1 and ⟨+�−⟩ = 0 [●12,◼3]. A13 then finished the calculation by 
taking the norm of 3√

13
 and squaring it to find the probability of 9

13
 [●13,●17]. They 

then interpreted the result of the calculation, explaining “so you get 9 over 13 would 
be the probability, and it would get spin up” [⭓3].

A13 used a similar approach for calculating the probability that the spin component 
of angular momentum was down along the z-axis. A13 explained, “Then likewise for 
spin down, you’d have uh, minus and your psi squared,” and they wrote P = �⟨−��⟩�2 . 
We coded this as the structural-mathematizing skill of recognizing that the same 
approach works for finding both the up and down spin probabilities [▲14]. After using 
technical-conceptual and technical-procedural skills to explain and complete their cal-
culation, A13 at first reached an incorrect conclusion but quickly self-corrected: “…
And so the, uh norm of that would be 2i times negative 2i, so that would go, so it’d just 
be 2 over 13. Or no, scratch that. 4 over 13. Not 2.” A13 used the structural-interpreting 
skill to interpret their result to be incorrect for the problem [⭓4]. They explained:

Fig. 6  A13’s written work for 
Problem A
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“I forgot to do 2 times 2. Yeah. So, 2 times 2 is actually 4…’cause I was think-
ing not, 2 plus 9 is not 13, ’cause you’d get a total probability of 1, ’cause the 
particle has to go up or down, so if that was 2, you’d get a total probability of 
11 thirteenths, which is not 1, but looking at it now, 4 thirteenths over 9 thir-
teenths is 13 over 13, which is 1, so the probability, total probability is 1.”

In this explanation, A13 used various structural-mathematizing, structural-interpreting, 
technical-conceptual, and technical procedural skills in quick succession. A13 recognized 
that there were two possible results of the measurement that corresponded to two probabili-
ties [▲2]. They then recognized that the two possible probabilities add to one [●15,◼1], 
and they made sense of their probability solution in the problem context, which helped 
them check their answer [⭓3,⭓6].

Overall, A13 began problem A by using several structural skills to mathematize the 
situation described in the prompt, set up the probability formula needed for the calcu-
lation, and explain their thinking. A13 switched between using structural-interpreting, 
technical-conceptual, and structural-mathematizing skills primarily related to reason-
ing about basis and inner products as they explained their reasoning. They used mostly 
technical-procedural skills to finish their calculation of the probabilities P = �⟨+��⟩�2 
and P = �⟨−��⟩�2 . A13 then used various structural and technical skills related to rea-
soning about probability in this quantum mechanics context to interpret and correct 
their results. A13 thus used various structural and technical skills in quick succession, 
and these skills did not follow a particular sequence. This highlights the intricacy of 
students’ use of technical and structural skills while solving this quantum mechanics 
problem.

C12’s Use of Structural and Technical Skills on Problem B

All of the students in our data set used various structural and technical skills as they 
worked on and reasoned about problem B, which necessarily involved a change of 
basis. C12’s work serves as an exemplar for the intricacy of the details evident in stu-
dents’ problem-solving methods. C12 first mathematized the situation in the problem 
prompt using the structural-mathematizing skills of knowing to use Dirac notation for 
the calculation [▲10], using the probability formula [▲12], using y⟨+� and y⟨−� in the 

inner product part of the probability formulas P+,y =
���y⟨+��⟩���

2

 and P−,y =
���y⟨−��⟩���

2

 , 

respectively, when finding the probability that the spin component was up or down 
along the y-axis [▲11]. C12 then recognized that a change of basis was necessary 
[▲7] and changed y⟨+� to be written in terms of the z basis using the appropriate 
change of basis equations [●4,●21]. As they did so, C12 wrote the Hermitian adjoint 
of � + ⟩y as y⟨+� =

1√
2
⟨+� − 1√

2
i⟨−� and explained, “since this is the complex conju-

gate, um, I flipped the sign for i” [●10]. C12 then substituted y⟨+� and ��⟩ in the inner 
product y⟨+��⟩ to write it as a product of linear combinations of bras and kets: 
(

1√
2
⟨+� − 1√

2
i⟨−�)( 3√

13
�+⟩ + 2i√

13
�−⟩) [●11,●19,●20]. They then used the used the 

distributivity and commutativity of scalars with bras and kets, arithmetic with real and 
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complex numbers, the appropriate order of operations, and the orthonormality proper-
ties of the basis vectors (i.e., ⟨±�±⟩ = 1 and ⟨±�∓⟩ = 0 ) to compute the inner product 
to equal 5√

26
 [●3,●7,●8,●12,●14,◼3]. In total, C12’s problem-solving method to 

begin their work first utilized structural-mathematizing skills and then mostly technical- 
procedural skills to compute the inner product.

Next, C12 took the norm squared of this result of the inner product to determine 

P+,y =
����

5√
26

����

2

=
25

26
 . They explained, “I have to square this. It’s 25 over 26. If I didn’t 

make a math error, then to my knowledge, it would be 1 over 26… Okay that’s good. It 
adds up to one.” C12 thus used the technical-procedural skills of finding the norm and 
squaring the number [●13, ●17] and the structural-mathematizing skill of recogniz-
ing that two possible results of the measurement (i.e., up or down along the y-axis) 
yields two probabilities [▲2]. C12 used this along with their technical-conceptual and 
technical-procedural skills of reasoning that the sum of the probabilities of all possible 
outcomes is one to subtract 25

26
 from one to find the other probability, that the spin com-

ponent of angular momentum was down along the y-axis, as 1

26
 [●1,●15,◼1]. C12 

repeated their method to check that their anticipated result for the probability that the 
spin component of angular momentum was down along the y-axis was in fact 1

26
 (see 

Fig. 7). C12 then interpreted their determined probabilities in the context of the prob-
lem [⭓3].

In total, C12’s problem solving method integrated all four varieties of structural 
and technical skills in quick succession. This example of C12’s method on problem 
B demonstrates the complexity of students’ use of technical and structural skills and 
the intertwined nature of mathematical and physical reasoning while solving this 
quantum mechanics problem.

Fig. 7  C12’s written work on 
Problem B
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A8’s Use of Structural and Technical Skills on Problem B

A8 exhibited a complex problem-solving approach (and thus method) that differed 
from C12’s. A8 began by comparing possible approaches for changing basis (see 
written work in Fig. 8a). They explained:

There are two ways to go about it, um, one of them is to put this vector in 
some phi prime that’s in the y basis, and then just do y plus phi prime y, cause 
it makes calculations, and it follows the same rules as this. Um, the other pos-
sibility is to do, is to take the spin up y and go to whatever it is in the z, in the z 
basis, cause we have this in the z basis. Um, they’re both equivalent.

A8 explained that they could either change ��⟩ to be “in the y-basis” (i.e., a lin-
ear combination of y-basis vectors) and use the probability formula P =

���y⟨+��⟩y
���
2

, 
or they could change y⟨+� to “whatever it is in the z-basis,” which would yield 
����
(

1√
2
⟨+� − 1√

2
i⟨−�)��⟩

����

2

 . They used a variety of structural and technical skills just 

in their initial deliberation of problem B. A8 used structural-mathematizing skills 
of acknowledging an alternative procedure [▲3], knowing to use the probability 
formula [▲12], and recognizing that they needed to perform a change of basis 
[▲7]. A8 also used the technical-conceptual skill of recognizing that a change of 
basis was necessary to perform the inner product [◼5] and the technical-procedural 
skill of having flexibility in choosing an appropriate problem-solving approach 
[●9]. A8 then used the structural-interpreting skill of recognizing that the two 
problem-solving approaches would result in the same probabilities [⭓7].

A8 decided to change ��⟩ to be a linear combination of y-basis vectors, the first option 
they had mentioned. They then went on to use various technical-procedural skills as they 
performed the change of basis. A8 added the change of basis equations (given on a refer-
ence sheet) �+⟩y =

1√
2
�+⟩ + i

1√
2
�−⟩ and �−⟩y =

1√
2
�+⟩ − i

1√
2
�−⟩ , which yielded 

�+⟩y + �−⟩y = 2√
2
�+⟩ [●2,●5,●21]. They then divided both sides of the equation by 

√
2 

Fig. 8  A8’s written work on Problem B
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to get 1√
2
�+⟩y +

1√
2
�−⟩y = �+⟩ , which is a z-basis vector written as a linear combination 

of the y-basis vectors (Fig. 8b). A8 then subtracted the change of basis equations, which 
yielded �+⟩y − �−⟩y = 2√

2
i�−⟩ , and divided both sides by 

√
2i to get 

1√
2i
�+⟩y −

1√
2i
�−⟩y = �−⟩ to get the other z-basis vector written as a linear combination of 

the y-basis vectors (Fig. 8b) [●3,●7,●14,●16]. They substituted �+⟩ = 1√
2
�+⟩y +

1√
2
�−⟩y 

and �−⟩ = 1√
2i
�+⟩y −

1√
2i
�−⟩y into ��⟩ = 3√

13
�+⟩ + 2i√

13
�−⟩ and simplified the equation 

to yield ��⟩y =
5√
26
�+⟩y +

1√
26
�−⟩y (Fig. 8c) [●2,●3,●8,●18]. A8 then verified their 

work by checking that the resulting vector “is normalized because, because twenty, you just 
double check, 25 and 1 is 26.” A8 knew that quantum state vectors need to be normalized 
[▲15], so they checked that the quantum state ��⟩ was indeed normalized [●28]. A8 then 
used the structural-interpreting skill to recognize that the result of the calculation was a 
vector in the y-basis [⭓8]. This work was all in service of changing ��⟩ to be a linear com-
bination of y-basis vectors so that the requested probabilities could be calculated.

To calculate the probability that the spin component is up along the y-axis, A8 

computed ���y⟨+��⟩y
���
2

=
25

26
 by squaring the coefficient of �+⟩y , taking for granted that 

y⟨+�+⟩y = 1 and y⟨+�−⟩y = 0. They explained, “now we can really easily pull out the 
probabilities … we just have that plus y, squared is gonna be… 25/26, and for the 
other one, this is gonna be 1/26”. A8 mathematized the situation to conclude that 
they could square the coefficients when the vectors in the inner product are expressed 
in terms of the same basis [▲4] and mathematized that because there are two possi-
ble results of the measurement (i.e., up or down along the y-axis), there are two 
probabilities [▲2]. A8 also used the technical-procedural skills of taking the norm 
of the coefficient [●13] and squaring it to find the probability [●17], as well as sub-
tracting that probability from 1 to find the complementary probability [●1]. Overall, 
A8’s method on problem B serves as an exemplar of the observed complexity in the 
students’ problem-solving methods. They used various structural and technical skills 
in nonuniform ways that did not follow a particular sequence, illustrating the intri-
cacy of students’ mathematical and physical reasoning while solving a quantum 
mechanics problem requiring a change of basis.

Students’ Technical and Structural Skills Supported their Flexibility 
in Choosing an Appropriate Problem‑solving Approach

Our second main result that we present from our data analysis is that students’ tech-
nical and structural skills supported their flexibility in choosing an appropriate 
approach for the problems. We explored the students’ reasoning behind their deci-
sions to use certain problem-solving approaches. To perform this analysis, we iden-
tified segments of the students’ interview transcripts where the student justified their 
choice in using a particular approach and assigned those segments the code, “Flexi-
bility in Choosing Approach” [●9]. We aggregated all of the segments labeled with 
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this code and identified which part of the problems the students were working on as 
they decided which approach to use. We identified three places in the students’ work 
in which they described their choice of problem-solving approach: calculating 
�⟨+��⟩�2 and �⟨−��⟩�2 , calculating ���y⟨+��⟩���

2

 , and calculating ���y⟨−��⟩���
2

 . To see 
which technical and structural skills the students used as they chose their problem-
solving approach or reflected on their choice, we identified all of the other codes that 
were assigned within those segments. We then decided which coded technical and 
structural skills were relevant to the students’ choice of problem-solving approach. 
This helped us identify which technical and structural skills supported the students’ 
flexibility.

Students’ Technical and Structural Skills Related to Inner Products 
and Orthonormal Bases Supported their Flexibility in Their Approach 
for Calculating �⟨+��⟩�2 and �⟨−��⟩�2

The students’ technical and structural skills supported them in choosing between 
two possible approaches that could be used to calculate the probability that the spin 
component of angular momentum was up or down along the z-axis (i.e., �⟨+��⟩�2 
and �⟨−��⟩�2 ). For Problem A, there are two main approaches that could be used to 
calculate the probability that the spin component of angular momentum was up or 
down along the z-axis: that is, to compute P± = �⟨±��⟩�2 . The first approach 
involved calculating P+ = �⟨+��⟩�2 by substituting ��⟩ = 3√

13
�+⟩ + 2i√

13
�−⟩ into the 

inner product to get P+ =
����
⟨+�( 3√

13
�+⟩ + 2i√

13
�−⟩)

����

2

 , using the distributive and com-

mutative properties to find P+ =
����

3√
13
⟨+�+⟩ + 2i√

13
⟨+�−⟩

����

2

, using known properties 

⟨+�+⟩ = 1 and ⟨+�−⟩ = 0 to reduce the equation to P+ =
����

3√
13

����

2

 , and simplifying to 

P+ = 9∕13 . The procedure for determining the complementary probability 

P− = �⟨−��⟩�2 can be performed similarly to conclude that P− =
����

2i√
13

����

2

= 4∕13.   

Alternatively, the second approach allows students to skip most of the procedures  
in the former approach: students could square the norm of the coefficient of �+⟩ or 
�−⟩ , respectively, in ��⟩ = 3√

13
�+⟩ + 2i√

13
�−⟩ to find P+ and P− . Most of the students 

used the latter procedure, as it is simple and efficient. For instance, when the inter-
viewer asked C12 why they chose to use this procedure, they said “because it’s the 
quickest way. Um, yeah. I mean I could go through all the Dirac stuff and all that, 
which is ultimately just going to lead me here.” We include this description of the 
approaches that the students considered using because their reasoning here includes 
the acts of considering various options and using their understandings of the mathe-
matical or physical concepts to decide on an approach. In what follows, we discuss 
how students’ technical and structural skills related to inner products [⭓5,◼6] and 
orthonormal bases [▲1,▲6,●12,◼3] supported their flexibility [●9] in choosing 
an appropriate approach to calculating �⟨+��⟩�2 and �⟨−��⟩�2.
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First, students’ technical and structural skills related to inner products [⭓5,◼6] sup-
ported their flexibility in choosing this problem-solving approach. To be able to skip the 
steps in the first aforementioned approach of evaluating the inner product 
⟨+�( 3√

13
�+⟩ + 2i√

13
�−⟩) , students first used the structural skill of interpreting the mathe-

matical symbols to recognize that the vectors in the inner product ⟨+�( 3√
13
�+⟩ + 2i√

13
�−⟩) 

were linear combinations of vectors from the same basis [⭓5]. Their technical-conceptual 
skill of recognizing that vectors in an inner product must be in terms of the same basis 
[◼6] then allowed them to use the inner products of z-basis vectors. For instance,  
A8 described their reasoning about this as:

Because this is written along the z-axis, I’m assuming that we’re working in 
the z-basis here, standard representation. Then you do … norm squared of plus 
with psi [ �⟨+��⟩�2 ], and by the same rule I talked about earlier, about how we 
have this just plus plus minus minus equals 1 [ ⟨±�±⟩ = 1 ], then all you get here 
is plus and minus. Literally just pull out these same coefficients, so you get 3 
over root 13 squared and 2 over root 13 squared. So you get 4/13 and 9/13.

A8 acknowledged that “we’re working in the z-basis here,” meaning that the vec-
tors in the inner product were either elements of the z-basis or linear combinations 
of z-basis vectors [⭓5]. Their technical-conceptual skill of knowing that the vectors 
in the inner product were expressed in terms of the same basis [◼6] allowed them 
to take advantage of properties of the z-basis. Overall, the students’ skills related to 
reasoning about inner products supported their flexibility in choosing this approach 
to problem A.

Second, the students’ technical and structural skills related to properties of 
orthonormal bases [▲1,▲6,●12,◼3] supported their flexibility in choosing to 
use the more efficient approach to solving problem A. The students used structural-
mathematizing skills to recognize that �+⟩ and �−⟩ comprise an orthonormal basis 
[▲1,▲6] which allowed them to use technical skills involved in using the inner 
products of orthogonal basis vectors: ⟨±�±⟩ = 1, ⟨±�∓⟩ = 0 [●12,◼3]. For example, 
when asked about how they found their answer, A11 explained:

Since this is a basis, uh, plus with a plus is equal to 1 [ ⟨+�+⟩ = 1 ], whereas 
plus with a minus is equal to 0 [ ⟨+�−⟩ = 0 ]. So, if I was to distribute a plus 
[ ⟨+ |] out to all of these, this would give us zero automatically because they’re 
orthogonal. This would go to 1, so I square that. Same thing with the other 
way, because minus plus is equal to 0.

Reasoning about orthonormal bases, namely that ⟨±�±⟩ = 1 and ⟨±�∓⟩ = 0 
[●12,◼3], allowed students to anticipate that evaluating inner products by distribut-
ing [●8] ⟨+� to ( 3√

13
�+⟩ + 2i√

13
�−⟩) and ⟨−� to ( 3√

13
�+⟩ + 2i√

13
�−⟩) would leave only 

the coefficient of �+⟩ and �−⟩ , namely 3√
13

 and 2i√
13

 , respectively [●6]. This allowed 
them to skip these steps and instead calculate the probabilities by squaring the norm 
of the coefficients of �+⟩ and �−⟩ . Overall, the students’ technical and structural skills 
related to reasoning with inner products [⭓5,◼6] and orthonormal bases 
[▲1,▲6,●12,◼3] supported their flexibility [●9] for calculating P± = �⟨±��⟩�2.
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Students’ Technical and Structural Skills Related to Basis and Change of Basis 
Supported their Flexibility in their Approach for Calculating �y⟨+��⟩ �2

To calculate �y⟨+��⟩ �2 , the students recognized a need to perform a change of 
basis, and they had the choice to either change ��⟩ = 3√

13
�+⟩ + 2i√

13
�−⟩ to be writ-

ten in terms of the y-basis or change �+⟩y to be written in terms of the z-basis. The 
students’ technical and structural skills supported their decision in choosing their 
problem-solving approach. In particular, the students’ technical and structural 
skills related to reasoning about the basis that the vectors in the inner product 
were expressed in terms of and about the properties of orthonormal bases sup-
ported their choice to perform a change of basis. Their technical and structural 
skills also supported their flexibility in deciding which of the aforementioned two 
possible approaches to use.

The students’ technical and structural skills related to reasoning with basis [⭓1] 
and inner products [◼2,◼5,◼6,▲16] supported their choice to perform a change of 
basis. For example, A13 described their reasoning on this problem as:

You’d either have to change this [ ��⟩ ] to y-basis to fit this, which would not be 
fun probably, or change your y-basis to z-basis… psi is in a completely differ-
ent basis, so you can’t just multiply out in- when they’re in different bases, so 
you have to switch bases.

As exemplified in A13’s reasoning, the students used their structural skill of 
interpreting that “psi is in a completely different basis” [⭓1]. They recognized 
that ��⟩ is a linear combination of z-basis vectors, which does not match the basis 
expression of y⟨+� , the other vector in the inner product. The students then used their 
technical-conceptual skills to recognize that the vectors in the inner product needed 
to be expressed in terms of the same basis for them to be able to perform the inner 
product [◼2,◼5,◼6]. For instance, C6 claimed, “you can’t do anything until you’re 
in the same basis.” The students then used the structural-mathematizing skill of rec-
ognizing that a change of basis is necessary to be able to perform that inner prod-
uct [▲16]. Thus, the students’ technical and structural skills related to reasoning 
about the basis of the vectors in the inner product supported their choice to perform 
a change of basis.

The students’ technical and structural skills related to the orthonormality of the 
bases and the associated inner product values also supported their choice to perform 
a change of basis [▲6,●12,◼3]. Some students discussed how changing basis made 
the calculations simpler because of the orthonormality of the bases. For instance, 
A21 explained:

I wanna be able to read off those coefficients really easily and do this in bra ket 
notation if these are in the same uh basis. If I’m expressing plus y [y⟨+� ] in the 
z-basis then I can make all those assumptions about one, you know, the pluses 
and the minuses, the cross terms are gonna be zero. But if I were to do this in 
the y-basis … like write this out as like let’s say y plus, but against all of this 
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[ 3√
13
�+⟩ + 2i√

13
�−⟩ ], then I can’t make any assumptions about that, so I don’t 

really know how to calculate that in bra ket language.

A21 claimed it was necessary to change basis to make assumptions about the 
inner products of the various (orthonormal) basis elements, such as ⟨±�∓⟩ = 0 
[●12,◼3]. A21 suggested that leaving the inner product as y⟨+�(

3√
13
�+⟩ + 2i√

13
�−⟩) 

with the vectors expressed in terms of different bases would not allow them to use 
⟨±�∓⟩ = 0 . Thus, the need to take advantage of the orthonormality property 
[▲6,●12,◼3] informed their choice to perform a change of basis. C5 also suggested 
that a change of basis was necessary for the “inner products to be nice” [◼5]:

Because my state vector was given in the z-basis, if I’m doing the inner prod-
uct of the positive y with that, I need that to be written in the z-basis, or to do 
those inner products to be nice. So I guess the plus and plus gives you one 
[ ⟨+�+⟩ = 1 ]. The plus and minus gives you zero [ ⟨+�−⟩ = 0].

Taking advantage of the orthonormal basis properties motivated the students’ selec-
tion of the change of basis approach. The students used their structural-mathematizing 
and technical-conceptual skills to leverage that the y-basis and the z-basis are both 
orthonormal [▲6], which implies that ⟨±�±⟩ = 1 , ⟨±�∓⟩ = 0,y⟨±� ± ⟩y = 1 , and 
y⟨±� ∓ ⟩y = 0 [●12,◼3]. These structural and technical skills informed their choice of 
approach and therefore their flexibility.

In addition to informing their decision to perform a change of basis, the students’ 
structural and technical skills also supported their flexibility in choosing a change 
of basis approach: either changing ��⟩ to be a linear combination of y-basis vec-
tors or changing y⟨+� to be a linear combination of z-basis vectors. Three students 
attempted the former approach; A8 did so correctly after acknowledging the two 
possible approaches:

There are two ways to go about it, um, one of them is to put this vector [ ��⟩ ] 
in some phi prime that’s in the y-basis, and then just do y plus phi prime y 
[ y⟨+��

�⟩y ] … it follows the same rules as this. Um, the other possibility is to 
do, is to take the spin up y and go to whatever it is in the z, in the z-basis. Um, 
they’re both equivalent.

Expressing ��⟩ as a linear combination of y-basis vectors allowed A8 to 
square the norms of coefficients of y-basis vectors [▲4]. A8 recognized that 
both methods were “equivalent” and yielded the same probability result [⭓7]. 
A8 reflected on their choice of approach and compared the efficiency of the 
two methods: “The other method is probably faster if you think of it. Actually, 
I don’t know if it’s really faster. You just save so much time on this side, if you 
do it this way” [●9]. In summary, A8’s structural-mathematizing skill [▲4] and 
structural-interpreting skill [⭓7] supported their flexibility [●9] in acknowledg-
ing the two approaches, comparing their efficiency, and choosing one for solving 
the problem.

Most students chose to use the approach of changing y⟨+� to be a linear combi-
nation of z-basis vectors, and their structural and technical skills [▲8,●19,●21] 
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supported their flexibility [●9] in doing so. Some students chose this one due to 
computational ease. For instance, A6 explained:

Change of basis was up here, the very first thing, so you can’t do anything 
until you’re in the same basis. So, this vector [ y⟨+� ] is itself, I mean I can just 
call this a plus y in the y basis, but I needed plus y in the z basis, because this 
was in the z basis. If I really wanted to, I could have changed this [ ��⟩ ] to the y 
basis. Um, this [ y⟨+� ] is a lot easier because we had the spins sheet, so I changed 
this from the y basis to the z basis here, so then both of them were in the z basis.

The students had access to a “spins sheet” containing the equation � + ⟩y = 
1√
2
�+⟩ + 1√

2
�−⟩ . This made the change of basis procedure “a lot easier,” only 

involving substitution [●19] and not the solution of a system of equations. 
These students’ technical-procedural skills of using substitution [●19] and 
given equations [●21] supported their flexibility by allowing them to compare 
the efficiency of possible approaches. A13 also acknowledged that changing ��⟩ 
to be in terms of the y-basis vectors “would not be fun probably,” so they chose 
to change the basis that y⟨+� was expressed in terms of, instead. A11 similarly 
recognized that changing ��⟩ to be in terms of the y-basis vectors would involve 
more work, explaining, “I didn’t really want to have to deal with that math, but 
like- like I could have done it, because I know that’s something you can do now, 
but I didn’t really want to.” These students’ structural-mathematizing skill of 
recognizing that changing y⟨+� to be in terms of the z-basis vectors was easier 
for them than changing ��⟩ to be in terms of the y-basis vectors [▲8] supported 
their flexibility 9] in choosing an appropriate way to change basis. Overall, the 
students’ structural and technical skills related to reasoning about change of 
basis [▲8] via substituting and using equations [●19,●21] supported their flex-
ibility in choosing this method of changing basis.

Students’ Technical and Structural Skills Related to Reasoning with Probability 

Supported their Flexibility in their Approach for Calculating ���y⟨−��⟩���
2

To calculate ���y⟨−��⟩���
2

, the probability that the spin component of angular momen-
tum was down along the y-axis for the given state, the students could either use the 
same approach they used to calculate ���y⟨+��⟩���

2

 or subtract ���y⟨+��⟩���
2

 from 1. Over 

Fig. 9  C5’s written work for calculating the probability that the spin component of angular momentum is 
down along the y-axis on Problem B
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half of the students performed or suggested the latter. For instance, C5 explained, 
“The probability of minus y is equal to one minus 25 over 26, and so it’s 1 over 26” 
(see Fig. 9). In general, the students first used their structural skill of mathematizing 
the scenario of having two possible outcomes (i.e., the spin component of angular 
momentum being either up or down) to recognize that there are only two possible 
probabilities, P+ and P− [▲2]. The students used their technical conceptual and pro-
cedural skills to reason that the probabilities of two possible outcomes sum to 1 
[●15, ◼1]. Given that the first probability they determined was P+ =

25

26
 , the stu-

dents used the fact P+ + P− = 1 to conclude P− = 1 −
25

26
=

1

26
 [●1].

Some students acknowledged that this method was more efficient than using the 
same method used to calculate ���y⟨+��⟩���

2

 [▲3,●9]. A11 explained: “if you really 
want to do the math again, it would be the same thing as just 1 minus the 1 over 26.” 
A11 acknowledged an alternative of “doing the math again” and that it would result 
in the same answer. This demonstrated that A11 was aware of multiple approaches 
[▲3] and consciously chose one that helped them avoid “doing the math again” 
[●9]. A21 similarly acknowledged the alternative approach [▲3]: “The probability 
of going up or down is gonna be a hundred in this case, but yeah I’m just gonna go 
with 1/26. But if I was doing this on a test, and I was taking my time, I would just 
calculate this out by using minus in the y-basis.” A21’s explanation implied that the 
alternative approach took more time, so they instead used P− = 1 −

25

26
=

1

26
 

[●1,●9]. Thus, A21’s technical-conceptual and technical-procedural skills 
[●15,◼1] of reasoning about the probabilities of two possible outcomes adding to 
100% supported them in choosing their problem-solving approach. Overall, drawing 
on their structural and technical skills related to reasoning with probability 
[▲2,●1,●15,◼1] supported the students’ flexibility by enabling them to choose an 
appropriate approach for calculating ���y⟨−��⟩���

2

.

Discussion

Given the entanglement of mathematics and physics, it is essential for undergraduate 
physics students to learn how to reason with mathematics as they address physi-
cal problems. This is a complex endeavor for students as it involves potentially 
using mathematical concepts in different ways than in their mathematics courses 
and connecting their mathematics and physics reasoning via interpreting and math-
ematizing. The constructs of interpreting and mathematizing are commonly used in 
researchers’ models of student reasoning about mathematics in physics. In this study, 
we leveraged Uhden et  al.’s (2012) and Karam’s (2014) framework of students’ 
technical (conceptual and procedural) and structural (mathematizing and interpret-
ing) skills to investigate the intricacy and flexibility of physics students’ reasoning 
about mathematics in relation to physics content addressed in two quantum mechan-
ics problems. We addressed the research question: How do undergraduate physics 
students reason with mathematical concepts and procedures as they solve quantum 
mechanics problems? Through our qualitative analysis of interview data from twelve 
physics students, we presented two primary findings: 1) the students used intricate 
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problem-solving methods that leveraged several mathematical concepts with reason-
ing that moves fluidly between structural and technical skills in quick succession, 
and 2) the students’ technical and structural skills related to reasoning about linear 
algebra and probability concepts informed their flexibility in choosing a problem-
solving approach.

Our results identified that the students used idiosyncratic problem-solving meth-
ods that did not follow simplified sequential patterns of reasoning such as mathema-
tize, perform computations, interpret. The students’ reasoning relied on and moved 
fluidly between structural (mathematizing and interpreting) and technical (concep-
tual and procedural) skills, which illustrates the intricacy of students’ reasoning on 
these problems. No student’s reasoning followed patterns or cycles as straightfor-
ward as models suggested by previous research in both mathematics education and 
physics education (Blum & Leiß, 2005; Redish & Bing, 2009; Wilcox et al., 2013). 
Although these models have merit for various pedagogical or research purposes, 
they do not adequately capture the complexity of the students’ intertwined math-
ematical and physical work. Using the Uhden et al. (2012) model (Fig. 2d) allowed 
us to tease apart the nuances of students’ mathematizing, interpreting, and technical 
skills as they engaged in problem solving.

Our results also demonstrated how these students reasoned about various linear 
algebra concepts in their work, particularly: properties of bases, orthonormal bases, 
inner products, and change of basis. This contributes to what is known about stu-
dent reasoning with these concepts. The students’ work on these quantum mechan-
ics problems illustrates ways that physics students have to leverage their under-
standing of several linear algebra concepts within that context. Furthermore, how 
these concepts were leveraged or used in computation in this context often differed 
from what students would typically encounter in an undergraduate Linear Algebra 
course. For instance, a basis for a vector space is a linearly independent set that 
spans the space – there is no orthogonality or normality condition on a basis in 
general. However, the bases students used in these quantum mechanics problems, 
naming the z-basis ( �+⟩ and �−⟩ ) and y-basis ( �+⟩y and �−⟩y ) for the spin-½ system, 
are necessarily orthonormal because of quantum mechanical properties.5 Further-
more, the z-basis and y-basis are two of the most frequently used bases in this sys-
tem. In fact, the relationship between them was derived in the students’ courses and 
kept track of as an important relationship; it was notated as a linear combination 
(linear superposition) of the basis kets in Dirac notation: �±⟩y =

1√
2
 �+⟩± i√

2
 �−⟩ . 

Thus, when the students carried out a change of basis from y to z or vice versa, they 
carried out algebraic substitutions using these equations. This differs from the 
approach common in linear algebra courses that utilizes coordinate vectors and 
change-of-basis matrices.

5 In the spin-½ system, the spin observable has only two possible measurement values, ±ℏ∕2 . A postulate 
of quantum mechanics conveys that the only possible measurements of an observable are the eigenvalues 
of the corresponding operators. Measurements are real-valued, which necessitates using Hermitian opera-
tors, which provide an eigenbasis for the corresponding system.
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Our second main result shows that students’ technical and structural skills 
related to reasoning about linear algebra and probability concepts supported their 
flexibility in choosing a problem-solving approach. Flexibility is an essential 
aspect of problem-solving, as it involves being aware of multiple approaches to 
solve a problem and choosing an appropriate one. Other researchers have demon-
strated how conceptual knowledge can support procedural flexibility (e.g., Rittle-
Johnson et  al., 2015). This finding is furthered in our study. In particular, when 
students draw on their mathematical knowledge to inform their approach for solv-
ing these quantum mechanical problems, it relies on their understanding of how 
the mathematical concepts and physics concepts are intertwined. Students using 
their mathematical conceptual understanding in their work on these problems has 
more complexity involved than just reasoning about the mathematical concepts 
and procedures because students have to reason about them in relation to the phys-
ical concepts with which they correspond. Students do not only perform math-
ematical computations; they also keep track of what those mathematical structures 
mean in terms of the physics. Thus, it is not just that mathematics and physics are 
entangled, but rather that the students’ reasoning about mathematics and physics 
is also entangled.

Engaging in this research has raised for us the deliberation of what qualifies as 
mathematics and what qualifies as physics, particularly at this content level. To what 
extent are mathematics and physics actually inextricable within quantum mechanics? 
For instance, the way in which Dirac explicated the benefit of his newly-developed 
notation conveys a sentiment of inseparability:

This notation allows a more direct connexion to be made between the formal-
ism in terms of the abstract quantities corresponding to states and observa-
bles and the formalism in terms of representatives-in fact the two formalisms 
become welded into a single comprehensive scheme. (Dirac, 1947, page v, 
emphasis added)

Kets in Dirac notation behave mathematically like vectors, and the mathematics 
of vector spaces frame the structural behavior of vectors such as scalar multiplica-
tion, vector addition, and inner product computation. Thus, when solving a problem 
in Dirac notation, there isn’t a clean line between when students are reasoning about 
mathematics and when they are reasoning about physics. We hope our research can 
further the conversation between mathematics and physics education research about 
productive ways to frame and theorize both learning and our content areas so as to 
best make sense of student reasoning across and within the disciplines.

With respect to teaching implications, our research contributes to raising the 
mathematics community’s awareness of what concepts from mathematics courses 
are used and in what way by students in physics courses. Our analysis revealed the 
centrality of: basis, orthogonality, normality, change of basis, algebraic substitution 
and simplification of vector equations or system of equations, and inner product in 
the solution process for a quantum mechanical problem. Linear algebra instructors 
could integrate problems into their course that not only facilitate the development of 
conceptual and procedural skills from linear algebra but also demonstrate the mathe-
matization of linear algebra in quantum mechanics. See Fig. 10 for such an example.
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While the aforementioned concepts are all core to a linear algebra course, additional 
mathematical concepts were shown to be central to students’ problem-solving approaches, 
namely the probabilistic relationship of complementary and mutually exclusive events, 
distribution, and operations with complex numbers. Although not a focus of this paper, 
competency with algebraic simplifications related to moduli and exponents were essential 
to this problem. For instance, two students made a computation error similar to what is 
often colloquially known as “Freshman’s Dream” in Problem B. For example, A13 com-
puted � 3√

26
−

2√
26
�2 = 9

26
+

4

26
=

1

2
 , rather than � 3√

26
−

2√
26
�2 = � 1√

26
�2 = 1

26
 (see line 2 

in Fig. 11).6 All of these mathematics concepts are relevant for larger spin systems as well 
as other quantum mechanical observables; for example, measuring position involves an 
infinite-dimensional Hilbert space and the inner product for the probability calculation 
involves integration of complex-valued functions. The analysis in this study focused on 
one specific type of quantum mechanical problem in a specific physical context. Future 
research could further address how physics students leverage their understanding of linear 
algebra concepts in other quantum mechanical contexts.

Fig. 10  Instructional example of problems that relate change of basis to quantum mechanics

6 There is also a conjugation error in Fig. 10. Line 1 should contain -i rather than + i.

Fig. 11  A13’s work on the spin-
up aspect of Problem B
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