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Abstract
The contribution aims at subject-specific analyses of student solutions of an exercise
from an electrical engineering signal theory course. The basis for the analyses is
provided by praxeological studies (in the sense of the Anthropological Theory of
Didactics) and the identification of two institutional mathematical discourses, one
related to higher mathematics for engineers and one related to electrical engineering.
Regarding the relationship between institutional observations and analyses of students’
solutions, we refer, among others, to Weber’s (1904) concept of ideal types. In the
subject-specific analyses of student solutions we address in particular transitions and
interrelations within single processing steps that refer to the two mathematical dis-
courses and different forms of embedding of mathematics into the electrical engineer-
ing context. Finally, we present a few ideas for teaching.

Keywords Mathematical practices . Student solutions . Ideal typical discourses .

Institutions . Anthropological theory of the didactic

Introduction

The use of mathematics in engineering courses and its adequate conceptualisation is a
frequently addressed issue (e.g. Alpers, 2017; Alpers et al., 2013; Barquero et al., 2011,
2013; Czocher, 2013; Harris et al., 2015; Rooch et al., 2016). In previous research we
have dealt with this in the context of signal theory (Hochmuth & Peters, in press;
Hochmuth & Schreiber, 2015). In particular, we have referred to Castela and Romo
Vázquez (2011) in which institutional references of mathematical practices (in the
sense of the Anthropological Theory of Didactics (ATD) (Bosch & Gascón, 2014;
Chevallard, 1992)) were reconstructed. In (Peters & Hochmuth, in press) we have also
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taken up their idea of an extended praxeological model, which they used to distinguish
between practical and academic knowledge aspects in a vocational context. In contrast,
we focused on investigating various elements of mathematical knowledge taught within
a signal theory course in the context of an electrical engineering university program.
We distinguished between a mathematical HM- and a mathematical ET-discourse1 and
showed, that the extended model and the identified discourses allow to figure out a
complex interweaving of mathematical and engineering practices that cannot be
conceptualised on the basis of a view that separates mathematics, the application of
mathematics and engineering science. For characterising the mathematical discourses,
we most notably used studies by Bissell and Dillon (Bissell & Dillon, 2000; Bissell,
2004, 2012).

In this study, too, the ATD serves as our theoretical framework. ATD is also used by
González-Martín and Hernandes-Gomes (2018, 2019), where they address curricular
differences between mathematics and engineering courses. In particular, they ask about
the appropriateness of practices with regard to aspects of the integral concept and the
use of integrals in calculus and mechanics courses. Similarly to Dammann (2016, p.
97), they notice that the mathematical requirements in statics lie primarily in the areas
of basic arithmetic, the processing of linear equations and systems of equations, and
that it is not necessary for students within statics to master the mathematical procedures
of differential and integral calculus. By curricular differences we mean the phenome-
non that there are mathematical topics or argumentation contexts that are dealt with in
higher mathematics, but not in engineering courses, or that are substantially different in
engineering courses and vice versa. This lack of fit is an important observation and
certainly gives cause to think about appropriate adjustments and, if necessary, to
incorporate them into the curriculum.

In contrast to these investigations, our research interest is directed towards refined
analyses of mathematical practices in the engineering sciences and the interplay of
different mathematical discourses within these practices. In (Peters & Hochmuth, in
press) we analysed an exercise and could identify transitions and interrelations within
single processing steps of a sample solution that goes beyond the vision of a pure
application of mathematics in the engineering context, a vision which has been coined
by Barquero, Bosch and Gascón (2011) as applicationism. Both the analysis of the
exercise and the figured-out characteristics of the HM- and the ET-discourse referred to
the institutional level in the sense of the ATD. If one now looks at solutions of the
exercise by individual students, the question arise, whether the identified transitions and
interrelations possibly appear as breaking points in solution processes, or, more
generally, whether and how they can be found there. To answer this question is the
main objective of this paper.

Since ATD distinguishes between institutional praxeologies and individual activities
the question comes up how institutional analyses can be used to analyse student
solutions. In our view, this question is not fully answered in ATD. For more details
regarding the appraisal and argumentations in ATD studies we refer the reader to

1 The acronyms HM and ET were introduced by Peters and Hochmuth (in press) to denote the two relevant
contexts of “Höhere Mathematik” (HM, higher mathematics) and “Elektrotechnik” (ET, electrical engineer-
ing) and associated discourses. HM and ET are the standard German actronyms for these contexts. Although
the English term electrical engineering requires the acronym EE, for reasons of consistency we stick here to
the acronym ET.
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section 3. To make progress on this issue, we need to clarify the meaning and analytical
status of discourse more concretely than in previous contributions. Following our
preceding work our use of discourse still focuses on subject-specific2 aspects and is
based on the concept of praxeology in ATD. Beyond that, however, it will prove
fruitful in the following to link the notion of discourse with Weber’s (1904) concept of
ideal types. The ideal type concept turns out to be compatible with the ATD framework
and from it methodical steps can be derived for analysing individual contributions on
the basis of institutionally based models. From the point of view of the ATD Gascón
and Nicolás (2017) have dealt with Weber: With reference to Weber’s distinction
between normative and scientific statements, the authors specified the position of the
ATD with regard to responsibilities and objectives of didactics as a science. To our
knowledge, the ideal type concept has not been discussed in the ATD so far.

We have structured our contribution as follows: In section 2 we characterise both the
electrical engineering (ET) and the higher mathematics (HM) context representing
important reference points for our analyses of the signal theory exercise and related
student solutions. To illustrate the characterisations of two different mathematical
discourses and to delimit the two contexts, we use the topic of complex numbers and
their different subject-specific rationales in electrical engineering and higher mathemat-
ics. Finally, we give a short introduction to amplitude modulation, the specific subject of
the exercise. In section 3, we introduce the ATD notions that we will subsequently use to
grasp subject-specific aspects. Against the background of differences regarding the two
course-contexts we introduce the two institutional mathematical discourses, the HM-
and the ET-discourse and connect them to Weber’s (1904) concept of ideal types.
Additionally referring back to the theory of rational explanation (Schwemmer, 1976)
and with the focus on subject-specific aspects we finally identify a methodical procedure
with four steps for applying the institutional analysis to individual student solutions.
Section 4 then starts by an institutional analysis of the exercise. The presented analysis is
based on the analysis in (Peters & Hochmuth, in press), but develops it further with a
view to the intended use in the current contribution. Applying the ideal typical mathe-
matical discourses, we generate a praxeological model which we also present as a
graphical scheme. The model is subsequently used to analyse the student solutions
following the previously identifiedmethodical steps. In particular we provide answers to
the question of whether and how the institutionally identified transitions and interrela-
tions regarding the mathematical discourses can be found there. In section 5 we finally
discuss the obtained insights and present a few ideas for teaching based on them.

Context of the Study: Signal Theory and Amplitude Modulation

Focus of our analyses are student solutions of an exercise from a signal theory course.
Signal theory courses are one of the first in-depth courses in electrical engineering
studies at German universities. They are usually scheduled for the third or fourth

2 In the institutional context, we usually skip the institutional and simply speak of subject-specific. This seems
justified to us, since discipline-specificity is unthinkable without institutions. With regard to the individual
level, we use the term individual subject-specific. The term subject-related, on the other hand, addresses
aspects that consider the individual as subject, including societal and psychological moments.
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semester, after students have attended courses on higher mathematics for engineering
and introductory theory-orientated electrical engineering courses. Signal theory is
considered to be very mathematical, while the extent to which formal mathematical
concepts are elaborated varies. Sometimes it is offered as a Fourier analysis course, as
found in mathematics studies, where electrical engineering terms or problems are
hardly considered. In contrast our contribution deals with data from a signal theory
course that is strongly oriented towards electrical engineering. The variation of math-
ematical formalism is also present in the definitions of electrical engineering concepts.3

Engineering concepts are closely related to physical quantities. They are always related
to measurement and to real phenomena.4 These observations already indicate two
characteristics of the electrical engineering context: on the one hand the reference to
reality, and on the other hand a very different degree of explication of this reference to
reality, which is accompanied by a different degree of mathematical formalisation. This
is also mentioned by Fettweis (1996, p. i) and addressed as a dilemma: an increasing
mathematical formalisation of concepts can make it increasingly difficult to understand
their physical meaning and justification.

The notion of system refers to a third characteristic: Frey and Bossert (2009)
generally understand a system to be “an abstracted arrangement that relates several
signals to one another. This corresponds to the mapping of one or more input signals to
one or more output signals”. (p. 3). They first introduce a system type that is easy to
handle mathematically and consider only one input and one output signal each, since
“this makes the system thinking [Systemgedanke] easier to grasp.” (p. 6). A system can
be understood as a black box that responds to a specific input signal with a specific
output signal. Studies by Bissell and Dillon (Bissell & Dillon, 2000; Bissell, 2004,
2012) show that system thinking and the electrical engineering way of doing and
talking about mathematics, differs from the way of mathematicians. The authors argue
that “this linguistic shift is more than just jargon, and more than just a handy way of
coping with the mathematics” (Bissell & Dillon, 2000, p. 10).

To further illustrate the electrical engineering way of thinking and doing mathemat-
ics, we give a short overview on how complex numbers and relating concepts like
phasors are treated in an introductory course on electrical engineering and in a course
on higher mathematics for engineers respectively. The following observations are based
on standard literature, lecture notes and students’ notes for two consolidated standard
courses which are held every year at the University of Kassel. Complex numbers play
also an important role in the exercise (cf. Appendix) we examine in this paper. We will
argue that in those courses the respective rationales of complex numbers and their
justifications are different and that these variations constitute partly conflicting resp.
complementary reference points for students in the signal theory course.

In Albach (2011), a standard textbook for introductory courses on electrical engi-
neering, phasors are introduced with the purpose to graphically describe time-
dependent sinusoidal5 functions, see Fig. 1. The first introduction of phasors is without

3 For example, compare definitions in the two books by Frey and Bossert (2009) and Fettweis (1996). Both
books are recommended as standard literature for the signal theory course we are studying.
4 For a more detailed discussion of such epistemological issues regarding the relationship of mathematics and
empirical sciences we refer to Hochmuth und Peters (in press).
5 Circuits are operated with sinusoidal current- and voltage forms in the power supply network as well as in
many other important areas.
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references to complex numbers: A phasor [Zeiger] is an arrow with a specific length
and a specific angle with respect to a reference.

When analysing electrical components, the amplitude ratio of the input signal to the
output signal and the phase shift caused by the component are of primary interest.
Therefore, phasors are important graphic tools for interpretation and analysis of
electrical engineering processes. Current- and voltage ratios in electrical networks
can be displayed and analysed graphically in phasor diagrams without using complex
numbers or differential equations. For the purpose of an algebraic description of
phasors, the plane in which phasors are drawn, can be considered as the complex
plane. The phasor can now be understood as a complex quantity that symbolically
represents the time-dependent voltage (see Albach, 2011, p. 42). The compatibility of
the rules for manipulating phasors and the calculation rules of complex numbers is
justified via physical relations. Furthermore, for a sinusoidal quantity the following
holds: Acos ωt þ φð Þ ¼R Aej ωtþφð Þ� � ¼R Aejωtejφð Þ, where A is the amplitude, ω is
angular velocity, φ is the phase angle (each independent of time) and j denotes the
complex unit in electrical engineering. The factor A ¼ Aejφ then is the mathematical
representation of the phasor, graphically represented by an arrow with length A and
angle φ with respect to a reference zero angle. The function A ej ωtð Þ is a representation
of a rotating phasor in the phasor- or Argand diagram.

In the course on higher mathematics for engineers, complex numbers are considered
in the first semester in the context of Linear Algebra (Strampp, 2012). Their introduction
is motivated by the solvability of the equation x2 + 1 = 0. For this purpose, real numbers
are extended by a number i with the property i2 = − 1. This approach is typical for the
whole chapter: the rational is aimed at an elaboration of the solvability of equations. This
results in considerations about the general solution of algebraic equations, the
fundamental theorem of algebra and Vieta’s formula. Calculation rules for complex
numbers are derived without introducing and proving formal concepts, but by stating
that all rules which are relevant for calculating with real numbers should continue to be
applicable (p. 59): Also, in further contexts it is pointed out that various terms are an
extension of already known concepts from real numbers. For example, the complex
exponential function eiϕ , which is introduced to serve as an abbreviation for cos(ϕ) +
sin(ϕ)i. Although the chapter is clearly designed to develop a practical approach to the
concepts and rules of calculation, it is subject to an orientation towards the inner-
mathematical, generalisation-oriented rational of academic mathematics.

In addition to the algebraic view on complex numbers, the chapter contains another,
geometric, orientation: An analogy to vectors is established, but the vector concept is
also distinguished from complex numbers: “We speak of phasors6 [Zeiger] and not of
vectors, since complex numbers, unlike vectors, can also be multiplied. This

6 We translated the German term Zeiger with the term phasor, which already refers to electrical engineering
concepts. But electrical engineering aspects play no role in the course and Strampp (2012) does not refer to
them either. Another possible translation of Zeiger, without the connection to engineering concepts would be
pointer. But we decided to use phasor for the following reason: In German, the term Zeiger is used both in
electrical engineering and in mathematics courses for engineers, but with different meanings (reference to
electrical engineering concepts vs. geometrical object with no further references). By using the term Zeiger
instead of vector Strampp (2012) can thus establish a connection to the electrical engineering courses without
dropping the inner mathematical conception of complex numbers. This aspect of using the same term, that has
different meanings in different course-contexts is in jeopardy of being lost through translation.
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multiplication extends the multiplication of real numbers.” (p. 60). This phasor concept
in the higher mathematics context differs from the phasor concept in the electrical
engineering context: In HM the geometrical representation of complex numbers as
arrows in the Argand diagram is used as a visualisation of calculation rules. In ET
phasors are arrows that represent measurable, time-dependent quantities such as alter-
nating voltages or currents. Complex numbers are then used for the convenient
algebraic description of phasors.

In summary, whereas the electrical engineering context is notable for system
thinking and for references to reality with different degrees of explication of this
reference accompanied by different degrees of mathematical formalisation, the higher
mathematics context is characterised by statements without references to reality and an
inner-mathematical understanding and justification of concepts, in particular and, a
generalisation-oriented rational following academic mathematics and a concentration
on calculation rules.

The exercise we investigate in this paper belongs to amplitude modulation (AM), a
central topic in signal theory. The principle of amplitude modulation is illustrated in
Fig. 2:

The amplitude of a high-frequency carrier signal (Fig. 2, left) is varied corresponding to
the course of the low-frequencymessage signal s(t) (Fig. 2, middle). The AM signal (Fig. 2,
right) can be represented as x(t) =A[1 +m s(t)] cos(2πf0 t) where cos(2πf0) is the carrier
signal. The modulation index m is the ratio between the amplitude of the carrier signal and
the amplitude of themessage signal, in addition the restrictions max

t∈R
js tð Þj ¼ 1 und 0 <m <

1 apply. With amplitude modulation, several message signals (e.g. for different radio
stations) with different carrier frequencies can be transmitted via antenna and received
without crosstalk between signals at the receiver (radio set) depending on the chosen
frequency.

Fig. 1 Relationship between phasor and time-dependent function (Albach, 2011, p. 32)
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The Anthropological Theory of the Didactic and Ideal Typical
Mathematical Discourses

ATD is a research program to study (mathematical) practices from an institutional
perspective. The notion of institution within the ATD is related to the work by Mary
Douglas (1986), who draws on ideas of Durkheim and Fleck. Her main point relevant
for ATD is the elaboration of the idea that all knowledge depends on (social) institu-
tions and conversely all institutions are based on shared knowledge (p. 45). In the
following we will take a closer look of how observations regarding institutional
practices and contexts can be referred to individual subject-specific analyses. In this
respect, we will refer in particular to Weber’s concept of the ideal type and, finally,
propose a procedure in four steps. But first we will introduce some basic terms of the
ATD. These constitute our starting point for linking the characterisations reported in
section 2 with Weber’s concept of ideal types.

The 4 T-Model and the Institutional Dependence of Knowledge

In ATD knowledge is related to human activities including not only aspects of know-
why but also practical knowledge in the sense of know-how. This is subsumed under
the term praxeology:

What exactly is a praxeology? ... One can analyse any human doing into two
main, interrelated components: praxis, i.e. the practical part, on the one hand, and

Fig. 2 Carrier signal (left), message signal s(t) (middle), and AM signal x(t) (right)

Fig. 3 Graphical representation of complex numbers. Students’ lecture note
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logos, on the other hand.… How are P [Praxis] and L [Logos] interrelated within
the praxeology [P/L], and how do they affect one another? The answer draws on
one of the fundamental principles of ATD ... according to which no human action
can exist without being, at least partially, ‘explained’, made ‘intelligible’, ‘justi-
fied’, ‘accounted for’, in whatever style of ‘reasoning’ such as an explanation or
justification may be cast. Praxis thus entails logos which in turn backs up praxis.
(Chevallard, 2006, p. 23)

A praxeology thus is a basic epistemological model to describe knowledge in the form
of the two inseparable and interrelated blocks Praxis and Logos. Those two blocks can
be differentiated further: the praxis block P (know-how) consists of problems or tasks T
and a set of relevant techniques τ used to solve them. The logos block L (know-why)
consists of a two-levelled reasoning discourse.7 On the first level, the technology θ
describes, justifies, explains etc. the techniques and on the second level the theory Θ
organises, supports and explains the technology. Since praxis and logos are dialecti-
cally interrelated, every aspect of praxis (i.e. tasks or techniques) is related to the
discourse. In short praxeologies are denoted by the standard 4T-model [T, τ, θ, Θ].

In the Chevallard quote, the part “in whatever style of ‘reasoning’ such as an
explanation or justification may be cast” refers to the idea that institutional conditions
constitute the technological-theoretical discourse and the practices available. Regarding
in particular the relationship of institutions and techniques, Chevallard (1999) writes:

Finally, in a given institution I, with regard to a given type of task T, there is
usually only one technique, or at least a small number of institutionally
recognised techniques, to the exclusion of possible alternative techniques - which
may actually exist, but then in other institutions. (p. 225, our translation)

Accordingly, we use the notion scope of the technique to address the set of tasks, which
can be solved with the institutionally recognised technique. In considering one specific

7 Within the ATD the term discourse, e.g. in expressions like “reasoning discourse” or “a discourse on praxis”
is used in the etymological sense (e.g. Bosch & Gascón, 2014, p. 68).

Fig. 4 Graphical representation of the institutional analysis
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piece of knowledge in different institutions, different praxeologies emerge: different
types of tasks are relevant, different solution techniques are adequate, and different
reasoning discourses are acceptable and constitutive. These relationships are addressed
by the term institutional dependence of knowledge. In view of section 2, we can
accordingly say that in the institution of electrical engineering, the ET-context, and in
the institution of higher mathematics, the HM-context, there are different praxeologies
concerning complex numbers. Furthermore, the characterisations of the two contexts
can be understood as descriptions of institutional aspects that shape the logos block and
thus, due to the dialectic of praxis and logos, also the practical part of praxeologies. In
the following we understand the characterisations of the two contexts as
characterisations of two different mathematical discourses8 and associate praxeologies
or praxeological elements to the mathematical ET-discourse or the mathematical HM-
discourse, if they can be characterised according to the institutional ET- or the
institutional HM context, respectively.9 In order to articulate the references to the
different institutional mathematical discourses, we use the further notations τHM and
τET as well as θHM and θET.

The Difference between Institutional Praxeologies and Individual Activities

The institutional dependency of knowledge implies that human activities are constitut-
ed and located in institutions: A praxeology does not present itself as something
individual, but as something institutional and societal. To stress the difference between
institutional praxeologies and actual individual activities, Chevallard uses the notion of
relation to objects (of knowledge): Institutions are based on shared knowledge, every
object of knowledge O is in relation to the institution I, noted as RI(O). A praxeology is
a concept to study the subject-specific content of those relations. Similarly, every
person X, that acts with an object of knowledge O is in an individual relation to it,
noted as R(X,O).

A person X becomes a good subject of I relative to the institutional objectO when
his personal relation R(X,O) is judged to be consistent with the institutional
relation RI(O). This person may also prove to be a bad subject,… and may, in the
end, be expelled from I. Here is where a development relating to intra-institu-
tional evaluation comes into play, relating to the mechanisms according to which
I is led to pronounce, through some of its agents, a verdict of conformity (or non-
conformity) of R(X,O) to RI(O). . … In particular, the institutional relation … is
nobody's personal relation, … : conformity is not identity. (Chevallard, 1992, p.
146/7)

8 This use of the term discourse goes beyond an etymological understanding (cf. footnote 6). We extend
thereby a term which already exists within the ATD. Our extended understanding blends into the already
existing concepts (e.g. institutional dependence of knowledge). We do not use the term discourse in the sense
of discourse theory. Due to the limited word count, we refrain from further elaboration of possible connections
and delimitations.
9 The two mathematical discourses can also be connected to the work of Artaud (2020), where she describes
two types of didactical transposition processes: An external didactical transposition process, originating in
academic mathematics research institutions. Here one can locate the HM-discourse. And an endogenous
didactical transposition process concerning processes within the engineering institution. Here one can locate
the ET-discourse.
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In summary, identified institutional praxeologies and discourses must be distinguished
from individual actions and their products. But, although persons do not have to
reproduce the specific institutional logos in a specific institution context, they provide
points of references for their actual practices. Consequently, institutional praxeologies
also provide important reference points for analyses of individual products, but cannot
be directly and unmediatedly be related to them. Research in mathematics education
sometimes neglect this difference10 and rather identifies individual actions and institu-
tional praxeologies. Regarding these arguments, it is important to stress once again that
we are focusing on subject-specific aspects. For example, Hardy (2009) analyses
students’ interpretations of institutional praxeologies in view of political and educa-
tional issues. Thus, of course, differences between students’ actions and institutional
praxeologies are considered. But, focusing on the subject-specific, if students use the
right symbols and write things down as they have been worked out in practice, both
actions are identified with each other. Because of these implicit identifications the
insightful explanations of the student’s interpretation possess an hypothetical character
also with respect to subject-specific aspects and not only with respect to the considered
political and educational issues. To support the overall relevance of these latter issues
Hardy proposed further studies (p. 357). However, it is not reflected in detail how this
could actually contribute to clarify differences regarding subject-specific issues, par-
ticularly in view of general characteristics of discourses.

HM- and ET-Discourse and Weber’s Notion of Ideal Type

To deal further with the issue of the difference between institutional praxeologies and
individual products regarding the HM- and ET-discourse we will recur in the following
to Max Weber’s (1904) construct of ideal type. Its use in empirical research to explain
individual actions has been investigated for many decades. We will refer to and adapt
these diverse and in part in-depth investigations focusing on subject-specific aspects.
This methodological considerations will enable us in the following to indicate a suitable
approach (see the four steps at the end of this section) and to clarify its possibilities and
limitations.

Weber (1904) introduces ideal types as a construction,

which is obtained by mental enhancement of certain elements of reality. Its relation-
ship to the empirically given facts of life consists merely in the fact that where
connections of the kind represented abstractly in that construction ... are determined
or suspected to be effective to some degree in reality, we can pragmatically visualize
and understand the peculiarity of this connection on an ideal type. This possibility can
be both heuristic and indispensable for the representation of value.…The ideal typical
term … is not a ‘hypothesis‘, but it wants to show the direction of hypothesis
formation. It is not a representation of the real, but it wants to give the representation
unambiguous means of expression. ( p. 64/5, our translation)

10 As expressed within ATD as difference between institutional and individual relations to objects of
knowledge.
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According to Weber’s introduction, we interpret the two mathematical discourses as
ideal types and the underlying characterisations of the discourses as a result of “mental
enhancements” regarding aspects of mathematical practices within specified institu-
tional contexts. Furthermore, we use the two ideal typical mathematical discourses as
heuristics for our subject-specific analyses of the exercises and the student solutions as
well as to formulate hypotheses. Thus, following Weber’s formulation, we assume that
the ideal typical discourses are to a certain extent effective and represent a means of
expressing something real in sample solutions and students works on exercises.
Thereby the relevance of this something in individual productions cannot be substan-
tiated by the ideal typical discourses themselves, but has to be shown in the individual
productions in a concrete and subject-specific way.

Weber’s construct of the ideal type has been widely criticised and expanded in the
social sciences (see Shubat, 2011, especially Chapter 1.4). There is no space here to
elaborate on this in detail. Regarding our use, the following question adapted from
Schwemmer (1984, p. 177) is particularly relevant to avoid circularity: In which way do
the characterisations associated with the mathematical discourses enter into the empir-
ical studies of individual productions and their results without withdrawing the
characterisations from empirical criticism? Our standpoint on this is the following:
Whether something is apparent in individual-related data whose concrete meaning can
be demonstrated by means of one of the two mathematical discourses is empirically
open with regard to the following two dimensions. (1) From a subject-specific point of
view, the appearance must be shown in the specific context of exercises and related
praxeologies. Thus, for example, it could be proven empirically that a subject-specific
context cannot be reconstructed as a particular case of application of the mathematical
discourses. (2) In subject-related respects, for example with regard to the question of
whether a student experiences the identified aspects as such, corresponding claims are
accessible to empirical criticism. Here, it could be proven empirically that the connec-
tions formulated by means of mathematical discourses do not contribute to an under-
standing of the students’ thoughts about her actions. In this article we focus on (1), the
subject-specific perspective. With regard to the rational explanation of concrete indi-
vidual products, we adopt a further argument by Schwemmer (1976, p. 142) concerning
the precondition of purpose-rationality as a methodological postulate: Our subject-
specific analyses are based on the assumption that solutions and works on exercises
follow the demand for a respective institutionally set subject-specific rationale. This is a
methodological requirement, since otherwise (i.e., assuming that the students and their
works do not follow any particular institutionalised disciplinary rationale) any relation-
ship between institutional disciplinary analyses and the analysis of concrete exercises
would be questioned from the outset.11

Methodological Consequences for Subject-Specific Analyses

Against the background of ATD concrete individual actions or their products are thus
considered to be explained if their rational can be connected to praxeological analyses and

11 This does not contradict the empirical openness discussed above with regard to the two mathematics
discourses, since a concrete case could follow a different disciplinary rational, which might be completely
independent of the ones we reconstructed.
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the identified ideal typical discourses. In this respect, observations should be justified that
certain mathematical actions can be substantiated on the basis of praxeologically recon-
structed practices, including the consideration of ideal typical discourses. This implies
formulating hypotheses in observation language [Beobachtungssprache]12 with a view to
the respective subject-specific context. Specifically examined action situations are then to be
validated with regard to the existence of corresponding observation correlates
[Beobachtungskorrelate].13 Hereby, the ideal typical discourses identified by us prove to
be genetic concepts, i.e. they function as a guideline for hypothesis formation and allow the
rational to be grasped in a concrete action situation with regard to its institutional meanings.
The insights into practices gained through the discourses are of course not considered to be
valid for all times. Thus, for example, the modification of institutionalised practices (for
example, a modified treatment of complex numbers in higher mathematics courses) can
change the role of the identified ideal typical discourses in the reconstruction of concrete
practices.

In summary and with regard to our subject-specific focus, this results in the
following sequence of methodical steps:

1. At the institutional level, praxeologies are to be identified and connected to ideal
typical discourses.

2. Hypotheses in the specific context of signal theory or the exercises are to be
formulated using observational language.

3. Concrete material (exercises, sample solutions and students’ solutions) is to be
validated with regard to corresponding observation correlates.

4. If these are available, concrete material can be explained on this basis.

In the next section we first present the institutional analysis of the lecturer’s sample solution
with a view to using it as a reference for the analyses of the students’ solutions (step 1). This
will also illustrate the ATD concepts introduced in this section. Thereby we will use the
graphical method developed in (Peters & Hochmuth, in press) to present the result of the
institutional analysis, see Fig. 4. In the next step we move on to the student work and
formulate corresponding hypotheses (step 2) in observational language. With reference to
these hypotheses, we will then identify observation correlates with respect to the rationales
and, in particular, the ideal typical mathematical discourses (step 3). Finally, we explain the
student solutions regarding their institutionalised subject-specific rationales (step 4). Herewe
use the graphical scheme, i.e. Figure 3 without text, to represent the analysis results of the
students’ solutions, see Figs. 5a, 6a, 7a, 8a, and 9a.

Analyses of the Student Solutions

The exercise and the sample solution are presented in the appendix: The complete
exercise consists of three items. Results for items 1 and 2 and the complete sample

12 Using observation language means to describe an observation without interpretations (Schwemmer, 1976,
p. 165), whereas interpreting means to show actions as rational in purpose or sense (p. 168).
13 The observation correlate of an action is the part of the action that is observed and described in observation
language (Schwemmer, 1976, p. 168).
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solution for item 3 is shown. In item 1, a given message signal should be amplitude
modulated. For this purpose, the given term s(t) = cos(Ωt) must be inserted in the
formula for amplitude modulation: x(t) = A[1 +m s(t)] cos(2πf0 t). In item 2, this term
should then be represented as an expression of three harmonic oscillations. And finally,
in item 3, that is focussed in our analyses, x(t) has to be graphically displayed in the
complex plane as a rotating phasor with varying amplitude, using the relationship cos
2πftð Þ ¼R exp j2πftð Þf g and the result of item 2.

Step 1: Institutional Analysis

Item 3 is solved in three steps: [1] Transforming mathematical expressions, [2]
Interpreting mathematical expression to draw a diagram, and [3] drawing the phasor
diagram. The main part of the exercise, to display x(t) as a rotating phasor in the
complex plane, is a task (T) in the sense of the ATD. We then assign technique and
technology to each of the three solution steps [1] to [3], and only roughly summarise
theoretical aspects (see the bold framed rectangle in Fig. 4). This assignment of
techniques and technologies is then differentiated and refined in a second analysis step,
in which the three techniques assigned to the steps [1] to [3], are considered as subtasks
T1 to T3 (see the corresponding light framed rectangles in Fig. 4). All in all, we also
present the result of the analysis in Fig. 4 graphically. This graphic representation will
afterwards serve as a scheme for the analysis of the student solutions.

First we consider the three techniques that we assigned to the steps [1] to [3]: Each
of the three techniques in T is located within the HM-discourse: [1] To transform
mathematical expressions (τHM), [2] to interpret this expression for drawing a diagram
(τHM), and finally [3] to draw a phasor diagram (τHM) are activities that are present in
the corresponding higher mathematics course. For example, Fig. 3 shows a diagram
from the first lecture of the signal theory course which dealt with repeating the
properties of complex numbers according to the prior HM-course (definitions, calcu-
lation rules, phasors as visualisations of properties of complex numbers).

The mathematical expressions in the exercise and the diagram to be drawn are more
complicated than corresponding content in the higher mathematics course, but the

Fig. 5 a Analysis result for C1. b Student solution C1
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techniques themselves are certainly HM-typical. Furthermore, there is no aspect here
that suggests a location of the techniques within the ET-discourse.

Second, we consider the corresponding technologies: We have located the corre-
sponding technologies within the ET-discourse. Here, aspects of scope and purpose and
elements of justification arise that can no longer be located in the HM-discourse. In the
following we will go through steps [1] to [3] and discuss the corresponding technol-
ogies in more detail:

[1] The signal x(t) must first be transformed in lines (1) to (3) (τHM). Then x(t) can be
interpreted as a real part of a rotating carrier phasor with a time-dependent
amplitude A(t) and aspects of amplitude modulation could be visualised in the
diagram. This scope of the technique is based on the idea of graphically
representing the principles of amplitude modulation, therefore this first technique
is justified within the ET-discourse (θET). This justification, that is linked to the
overall aim of the task and also already links to steps [2] and [3] of the solution
process, can be further focused on the first step: In particular the calculation step

Fig. 6 a Analysis result for C2. b Student solution C2

Fig. 7 a Analysis result for I1. b Student solution I1
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from line (2), in which x(t) could be interpreted as a real part of three rotating
phasors drawn in the origin, to line (3), in which x(t) can be interpreted as a
rotating carrier phasor with time-dependent amplitude A(t), is central here. Only if
x(t) is represented as in line (3), x(t) can be interpreted as amplitude modulated
and a phasor diagram can be drawn in which the amplitude modulation of the
signal x(t) can be displayed graphically. There is no justification within our
reconstructed HM-discourse, that justifies the step from line (2) to line (3).

[2] In the next step the mathematical expression must be interpreted in order to draw
the diagram (τHM). The central point here is that the components of x(t) must be

Fig. 8 a Analysis result for I2. b Student solution I2

Fig. 9 a Analysis result for I3. b Student solution I3
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interpreted as belonging to the respective frequencies and thus to the respective
signals (θET).

[3] Finally, the third technique is the drawing of the phasor diagram (τHM). Here,
however, this HM technique is embedded in the ET-discourse, since it is a
geometric illustration of a modulation process (θET). The phasor diagram is an
alternative representation of the amplitude modulation in Fig. 2 (right). It has the
advantage over the representation in Fig. 2 (right) that some effects relevant to
amplitude modulation can be displayed.

In total, three techniques with corresponding technologies arise for steps [1] to [3], each
of which is characterised by an embedding of HM-techniques in the ET-discourse.
Relevant theoretical aspects come from theory of modulation and theory of complex
numbers. In Fig. 4 this part of the analysis is illustrated in the bold framed rectangle.
How the embeddings look like in each case will be clarified in a next step of analysis:
Each of the three techniques will be considered as a separate subtask, T1 to T3, with its
own techniques and technologies. In Fig. 4 these parts of the analysis are illustrated in
the light framed rectangles.

In T1, to transform x(t), the identity cos 2πftð Þ ¼R exp j2πftð Þf g given in the problem
definition must be applied (τHM). For the justification (θHM) of this step, the relation
between the representation of a complex number in polar form and in exponential form
is relevant. In the following, calculation rules for complex numbers (θHM) are applied,
namely factoring out of the real part and of exp(j2πf0t) (τHM). These are techniques that
occur in higher mathematics courses and are also correspondingly justified inner-
mathematically. There are no references to ET aspects.

In T2, to interpret x(t) as a phasor that could be drawn in the Argand diagram, two
relevant techniques play a role: First, the expression in line (3) must be interpreted as a

Fig. 10 Student solution N1

Fig. 11 Student solution N2
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projection of a phasor onto the real axis (τHM). This technique is assigned to the HM-
discourse, since also in higher mathematics complex numbers are understood as
phasors, represented in Argand diagrams. The projection of the phasor on the real axis
is interpreted as a real part of the complex number (cf. Fig. 3 and Strampp, 2012). This
is justified in the introduction of complex numbers via the connection of complex
numbers, phasors and exponential representation (θHM). And then the expression in the
square brackets, A(t), must be interpreted as modulation (τET). Here knowledge about
how the different frequencies are assigned to the different signal types, how carriers and
message signals are related by the modulation process, and how this is reflected in the
multiplication and the additions in the mathematical expression is relevant (θET).

In T3, the drawing of the phasor diagram, first the phasors must be drawn (τHM). This
technique is located in the HM-discourse. But the concrete way in which the phasors
have to be drawn, sideband phasors on top of carrier phasors, is explained by the fact
that modulation is a superposition of signals (θET). The corresponding technology is
thus located in the ET-discourse. Here again a HM-technique embedded in the ET-
discourse appears, which could be differentiated in a third step of analysis, which we
will refrain from because it is not necessary for the analysis of the students’ solutions.
As a second technique, rotational aspects have to be marked by drawing curved arrows,
which are labelled with the respective frequencies (τET). This does not occur in higher
mathematics courses and refers to electrical engineering aspects, hence our location in
the ET-discourse. The markings also indicate that these are general periodic signals:
This is based on the electrical engineering conception of the representation of signals
by rotating phasors and that the length of the phasor exp(j2πf0t) changes time-
dependently according to A(t). So, the technology is also to be located in the ET-
discourse.

Our analysis regarding the role of the two mathematical discourses in the three steps
of the solution show that the embeddings take different forms in each case (see also
Fig. 4): For the first step the embedding is formed only from HM-discourse aspects. In
this case an interpretation in the sense of applying mathematics in the engineering
context is plausible. For the second step the embedding is formed from both HM-
discourse aspects as well as ET-discourse aspects. And for the third step the embedding
contains another embedding of a HM-technique in the ET-discourse and its aspects.
Except for step one, the view that mathematics is (simply) applied in electrical
engineering is not adequate. Instead, diverse transitions between the two mathematical
discourses appear. They constitute breaks in the sense that they each follow a different
rational. These breaks often remain implicit, although they represent an important
aspect. The breaks indicate places that are not accessible from a single discourse and
its techniques, and thus mark something additional to be learned.

Steps 2 to 4: Analyses of Students’ Solutions

Following the institutional analysis which showed that the shift of representation from
the symbolic to the graphic form is the core of the solution and involves specific
transitions between mathematical discourses, we will analyse the student solutions
especially with regard to this shift of representation and focus our explanations on
transitions between the mathematical discourses. We use the graphical representation of
the institutional analysis as a reference for analysing the student solutions and as a tool
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to graphically represent the result of our analyses: Praxeological aspects that cannot be
identified in the student solutions, because the data does not provide this, are crossed
out in the corresponding diagram. Aspects that can be identified in the student solution
and correspond to the aspects in the lecturer sample solution are displayed without
specific marking. Aspects that are present but different are circled with dashes.

In total 15 students handed in their solutions for this exercise. According to the
assistant’s marking we categorised them as follows:

& Correct diagram: phasor diagram with no or minor corrections, e.g. added arrows
indicating the direction of rotation or angle labels (4 solutions). See also C1 and C2
in Figs. 5b and 6b.

& Incorrect diagram: phasor diagram with major corrections, e.g. added arrows
indicating phasors or adding a whole correct phasor diagram (5 solutions). See also
I1 to I3 in Figs. 7b, 8b, and 9b.

& No diagram: student solutions, that contain calculations but no diagram (6 solu-
tions). See also N1 and N2 in Figs. 10 and 11.

To protect the students’ privacy, we have rewritten the solutions without reproduc-
ing the assistant’s marking. All student solutions considered contain correct solutions
for items 1 and 2 of the exercise, possibly with the exception of minor sign errors. In the
remainder of this section we follow, thesis by thesis, steps 2 to 4.

Thesis 1: The Sample Solution Is Realised in Student Solutions

The student solution C1 in Fig. 5b largely follows the sample solution. Of the three
steps in the solution process, steps [1] and [3] can be identified in C1. Step [2] is not
identifiable, therefore it is crossed out in Fig. 5a. However, the exercise assignment did
not ask for an explicit interpretation, so the absence is not a deficit.

In step [1] the transformation of x(t) can be recognised as a HM-technique
embedded in the ET-discourse. In particular, the step from line (2) of the sample
solution to line (3), which is especially associated with the ET-discourse, is
present. The change from line (2) to line (3) in itself represents, in the sense of
our approach, a subject-specific observation correlate for the interplay of HM- and
ET-discourse. In step 3 both aspects, the drawing of the phasors in their specific
relations as well as the indication of rotational aspects are present. The validation
of the observation correlates here essentially follow the institutional analysis; there
is nothing in the student solution that suggests otherwise. With regard to the
transitions between the mathematical discourses, we can state that, except for step
two, the transitions from the institutional analysis occur. This supports our expla-
nation of the student work C1 with regard to thesis 1 on the basis of the discourse-
related observation correlate: The student solution C1 realises a correct solution in
the sense of the sample solution. This does not imply that arguments and justifi-
cations can be found in the individual considerations of the students that realise
further ideal typical aspects in the context of the change of presentation. However,
the text-related analysis does at least point to this possibility.
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Thesis 2. There Are (Almost) Correct Diagrams in Student Works, without the Step
from Line (2) to Line (3) from the Sample Solution

The student solution C2 in Fig. 6b contains a correct diagram. Steps [1] and [2] are not
present. The corresponding parts in Fig. 6a are crossed out. Especially the transformation
step of the sample solution to line (3) is not realised. The diagram can be related to the
solution for item 2: Acos2π f 0t þ Am

2 cos 2π f 0−Fð Þðð tÞ þcos 2π f 0 þ Fð Þð tÞÞ. There, the

Fig. 12 Visualisation of curve and corresponding phasors with GeoGebra

Fig. 13 Representation of x(t) = A[1 +m cos(Ωt)] cos(2πf0t) as the real part of a rotating phasor A(t) exp(j2πf0t)
with ω0 = 2πf0
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cosine representation does not allow to separate the different frequencies of carrier and
message signal, which is, however, at the core of the representation in line (3) of the sample
solution. This student work also does not contain any verbal justifications, the observation of
which would allow further interpretations regarding the individual rationale. The correct
drawing of the diagram, however, allows an institutionally supported interpretation possible
within the ET-discourse: concepts from basic lectures in electrical engineering, which
associate elementary signals and their cosine representations with a corresponding phasor
representation (see Fig. 1), are used to create the diagram. This provides a justificationwithin
the ET-discourse that differs from the institutional analysis, thus the corresponding parts in
the diagram are circled in dashed lines. It allows the correct diagram to be drawn without
having to grasp what appears to be essential in the institutional context of amplitude
modulation. This follows directly from the institutional analysis and is compatible with an
explanation of the student solution, which identifies it as the realisation of the indicated ideal
typical mathematical discourses: The drawing of the phasor diagram can be interpreted as
HM-technique that is embedded in the ET-discourse, but with ET-aspects that differ from
the institutional analysis and bridge the void that is formed by the missing amplitude
modulation related ET-aspects. So, the step from line (2) to line (3) in the sample solution
is not necessary to create a correct diagram since other ET-aspects, in particular the
relationship between cosine and phasor (cf. Figure 1), could constitute a bridging.

Thesis 3: In Student Solutions that Do Not Contain a Diagram or a Wrong Diagram,
both Obvious and no ET-Discourse Aspects Occur. In both Groups of Works, References
to the HM-Discourse Occur. In Other Words, the Relationship between the ET-Discourse
and the HM-Discourse Can Be Very Different in Student Solutions

We first deal with the solutions with incorrect diagrams (I1, I2 and I3 in Figs. 7b, 8b
and 9b) and then move on to the student works without a diagram (N1 und N2 in
Figs. 10 und 11). We do not give a diagram for the analyses results for N1 and N2.

In the student solution I1, see Fig. 7b, steps [2] and [3] can be identified. The result from
item 2 is not transformed further, so the aspects that correspond with step [1] are crossed out
in Fig. 7a. The student solution contains an interpretation with references to carrier phasor,
two other phasors (representing the sidebands) and the respective frequencies but not to the
corresponding mathematical expressions. Especially aspects, that focus the relationship of
complex numbers, exponential representation and phasors are missing. Therefore, the HM-
aspects in subtask T2 are crossed out and the praxeological aspects in step [2] are solely
located within the ET-discourse. In step [3] both aspects, drawing of phasors in their specific
relation as well as the indication of rotation are present. But the phasors are not drawn in the
Argand diagram. The student solution essentially contains correct and relevant aspects for
graphically representing amplitude modulation. However, the assistant corrected this solu-
tion by providing the diagram from the sample solution. This indicates that the student’s
solution is not an adequate representation in terms of the institutional teaching-learning
context. Student solution and sample solution differ in the following sense: the diagram in
the sample solution contains phasors drawn into the Argand diagram and thus contains not
only the link between amplitude modulated signal and phasors, but also the link to the
mathematical description by complex numbers. This link to mathematisation is missing in
the student solution I1. So, the HM-aspects in subtask T3 are replaced by ET-aspects. Step
[3], like step [2], is solely located in the ET-discourse.

254 International Journal of Research in Undergraduate Mathematics Education (2021) 7:235–260



This solution can thus be explained as a mathematically informal realisation of the ET-
discourse: phasors are graphical representations of signals, which can be handled without a
mathematical description (see also the introduction of phasors and complex numbers in
electrical engineering in section 2). Transitions between discourses are not present.

The student solution I2 in Fig. 8b contains all three steps from the sample solution, but
with significant deviations. Therefore, all three steps in T are circled in dashed lines, see
Fig. 8a. In step [1] a variety of techniques are tried out: The given relationshipΩ ≪ 2πf0 is
used to eliminate the Ω-part in the cosine. The attempts with Fourier transform and low-
pass filter are represented in subtask T1 by an additional ET-technique and –technology
block that is not present in the schema of the institutional analysis. In the end the relation
given in the problem definition is used to attempt finally a graphical representation of the
term A 1þ m½ � Re e j2π f 0t

� �
. All ET-discourse references appearing in this work, were

covered in previous lectures of the course. The interpretation of the mathematical expres-
sion in step [2] focusses ET-discourse aspects like signals and oscillation. References to
the Argand diagram, HM-discourse on complex numbers, or ET-aspects such as the
connection of cosine or complex exponential function with the phasor representation are
not present. Therefore step [2] is located solely in the ET-discourse. In I2 the Argand
diagram is present, but no phasors. x(t) is drawn as double arrow on the real axis.
Therefore, the HM-technique embedded in an ET-discourse is present, but different from
the institutional solution. Rotation resp. oscillation aspects are indicated, but these again
differ from the sample solution. In summary both, HM-aspects and the ET-discourse, are
clearly present, but not in a coherent and, in terms of the institutional solution, goal-
oriented manner. In particular, the link between mathematical terms and their graphical
representation in the spirit of modulation principles is missing.

The student solution I3 in Fig. 9b does not contain step [1]. Steps [2] and [3] are
present, but differ from the institutional analysis. Therefore, the corresponding aspects
in Fig. 9a are crossed out or circled in dashed lines.

Several elements in this solution indicate aspects of step [2]. First, each of the three
cosine-terms is underlined with a different colour. Each term is thus individually interpreted
as something to be drawn. These colours can also be found in the diagram, the respective
phasors are marked accordingly. The ET-aspects from subtask T2 are not present. The text
explains the drawing, so it also gives hints on how to interpret the mathematical expression
(in order to draw it). It contains functional aspects: “all values for x(t)”, insertion aspects, and
“x(t1)”, “x(t2), x(t3)” for the three phasors. The Phasor diagram from the HM repetition in
the first lecture of the signal theory course is reproduced (cf. Fig. 3). Step [2] is therefore
located in the HM-discourse. The last aspect is also relevant for Step [3], that is also located
in the HM-discourse. The three cosine terms are drawn as three different phasors each. In
addition to the three phasors, the diagram also contains elementary properties of complex
numbers: the connection between the cosine and the complex exponential function as phasor
and the complex conjugate. Rotational aspects are missing. Subtask T3 is solely located in
the HM-discourse. The student solution I3 can be explained as a realisation of a pure HM-
discourse. It mirrors the student solution I1, but with HM- instead of ET-discourse. Aspects
indicating a connection to amplitude modulation are missing and transitions to the ET-
discourse do not occur.

The solution to item 3 in N1 contains only an interpretation, that could be associated
to step [2], cf. Fig. 10. The part of the calculation in item 2 to which this statement
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refers is “…(cos(Ωt + 2πf0t) + cos(Ωt − 2πf0t))”. The arguments of the cosine terms are
each interpreted as a complex number in Cartesian representation, whose imaginary
parts cancel each other out due to different signs. This ignores the fact that there are no
complex numbers and that the terms under consideration are arguments of cosine
functions that cannot simply be added. We assign this part of the solution to the ET-
discourse: the relation to oscillations and the relation between time-dependent sinusoi-
dal functions, i.e. oscillations, and complex numbers is relevant in the ET-discourse. In
the solution N1, the cosine is obviously also not interpreted as a time-dependent
function, but as a somewhat unclear mixture of oscillation and complex number.

While the solution N1 has ET-discourse aspects, albeit incorrectly, the solution N2
does not contain ET-discourse aspects. In this work, the addition theorems are not used
to transform the cosine terms. Instead, cosine terms are rewritten using the complex
exponential function, the multiplication is performed according to the calculation rules,
and then converted back into cosine terms. This corresponds to the rationale of the HM-
discourse to use the complex exponential function to simplify calculations.

With regard to thesis 3, we can therefore conclude that here too, the student work
could be explained on the basis of praxeological aspects and, in particular, the ideal
typical mathematical discourses. In contrast to theses 1 and 2, the explanations are
much more diverse, depending on the complexity of thesis 3. With regard to a transfer
of these subject-specific explanations to individual and subjective justifications, anal-
ogous considerations apply, as they were formulated in the concluding discussion of
thesis 1 and will be taken up again in the following final chapter.

Discussion

The praxeological approach enabled us to explain student solutions of an exercise in the
context of amplitude modulation. The detailed analyses of the exercise and the student
work were based on an identification of different ideal typical mathematical discourses
within the signal theory course. Moreover, we have described a systematic sequence of
methodical steps enabling a well-founded and productive connection between on the
one hand institutional and ideal type analyses and on the other hand individual student
work. The extensive use of a graphical tool for representing praxeological structures
allow us to understand deeper possible relationships between the interrelated mathe-
matical discourses and their effects, which transcends the vision of the role of math-
ematics in engineering as something essentially to be applied. This refers both to the
sample solution and thus to institutionalised taught knowledge, as well as to individual
student solutions with their very own discourse configurations. The latter results goes
beyond analyses in which praxeological models are used as a reference to prove that
student solutions differ from this reference.

In view of the (possibly non-existent) correspondence between subject-specific
explanations and the subjective considerations of the students, we like to share the
following remark: The ideas and considerations on which our analyses are based
are compatible with actual-empirical research approaches in the field of subject
science, which aim to reconstruct subject-related patterns of reasoning (Holzkamp,
1985, chapter 9). Studies concerning the extent to which the explanations pre-
sented in section 4 fit with students’ individual considerations would of course
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require further empirical data, for example interviews. But their analyses presup-
pose, in terms of research logic, such praxeological analyses and subject-specific
explanations that we have presented.

Our outcomes potentially enable HM- and ET-lecturers to make didactic decisions
about whether or not to explicate various mathematical discourses that are effective in
electrical engineering courses. Here, of course, appropriate didactic tools must be devel-
oped that do not use the research-related terms introduced in this paper. Simplified variants
of the graphical representation of the praxeological analysis, see Fig. 3, could eventually
be quite useful for lecturers to identify changes and breaks in mathematical discourses.
Analogously, one could argue with regard to our analyses of the student work: Here, on
the one hand, discourse-relevant observations or diagnoses would be possible and, on the
other hand, these could of course form a basis for appropriate feedback to the students.
Both suggestions could be useful and effective for teaching and learning, even if our
explanations do not correspond one-to-one with the ideas of the teachers when creating the
sample solution or of the students when working on the exercises, since the aspects we
identified refer to some extent to the institutional knowledge to be taught.

Finally, we give an example of how our findings can be used to develop concrete
suggestions for modifying exercises: In the course on higher mathematics, which our
sample students have attended, nearly all exercises concerning complex numbers cover
standard topics including change of representation, calculations with complex numbers
and determining the roots of polynomials. The following exercise is an exception:

Which curves are described in the complex plane by

ae−ti þ beti; a; b∈ℝ constant; t∈ℝ?

This exercise was hardly worked on by students of the course, and was labelled with
“too difficult” in the students’ lecture notes. The exercise immediately changes its
character when software such as GeoGebra can and may be used. Then one can see,
among other things, that circles and ellipses appear as curves (see Fig. 12).

The illustration of the terms as phasors gives rise to a connection between algebraic
and geometric aspects of complex numbers (see our characterisation of the HM-
discourse in section 2): By representing the two complex numbers as aligned phasors,
the peak of their sum always moves on the curve. Moreover, this exercise can further be
adapted so that a similar type of curves appears as the one relevant to the complex phasor
diagram of the exercise we examine in this contribution.14 In other words: By using
software, an otherwise essentially unprocessed task can be extended in such a way that it
becomes connectable to the mathematical ET-discourse of our considered exercise.

As far as we know, such an approach of modifying the teaching in higher mathe-
matics has been little studied up to now. Generally, application problems from the main
subjects are supplemented to show that mathematics can be applied in a meaningful
way, which mainly addresses mathematics for engineering. In our suggestion of an
exercise, the HM-discourse would be expanded with regard to the mathematical ET-
discourse, or rather its practices, in order to establish connections to signal theory,
which addresses elements of mathematics in engineering within HM.

14 Here we also refer to the work of De Oliveira and Nunes (2014) who investigate rotating phasor pathways
derived from different standard amplitude modulation systems.
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Appendix: Exercise and sample solution

The exercise under consideration is structured in three items:

1. A message signal s(t) = cos(Ωt) has to be amplitude modulated. The result is x(t) =
A[1 +m cos(Ωt)] cos(2πf0t)

2. The result of item 1. Has to be written as the sum of three harmonics. The result is

x tð Þ ¼ Acos 2π f 0tð Þ þ Am
2

cos 2π f 0t þ Ωtð Þ þ Am
2

cos 2π f 0t−Ωtð Þ

3. The result of item 2. Has then to be displayed graphically in the complex plane as a
rotating phasor with varying amplitude.

Our analysis focusses item 3. of the exercise. The exact problem definition of item 3 is:

3. Graphically display x(t) in the complex plane as a rotating phasor with varying
amplitude using the relationship cos 2πftð Þ ¼R exp j2πftð Þf g and the result under
item 2.

Sample solution:
One first writes

x tð Þ ¼ Acos 2π f 0tð Þ þ Am
2

cos 2π f 0t þ Ωtð Þ þ Am
2

cos 2π f 0t−Ωtð Þ

¼ AR exp j2π f 0tð Þf g þ Am
2

R exp j 2π f 0t þ Ωtð Þð Þf g

þ Am
2

R exp j 2π f 0t−Ωtð Þð Þf g

¼R exp j2π f 0tð Þ Aþ Am
2

exp jΩtð Þ þ Am
2

exp − jΩtð Þ
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A tð Þ

8>>><
>>>:

9>>>=
>>>;

ð1Þ

and interprets the expression in the square bracket as a real-valued time-dependent
amplitude A(t), which modulates the carrier phasor exp(j2πf0t) rotating at frequency f0
in Fig. 13.
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