
Characterizing students’ conceptual difficulties
with mathematical induction using visual proofs

Josephine Relaford-Doyle1 & Rafael Núñez1

Published online: 3 August 2020
# Springer Nature Switzerland AG 2020

Abstract
This paper describes a study that used a novel method to investigate conceptual
difficulties with mathematical induction among two groups of undergraduate students:
students who had received university-level instruction in formal mathematical induc-
tion, and students who had not been exposed to formal mathematical induction at the
university level. The method used a ‘visual proof by induction’ – a simple image that is
designed to demonstrate a theorem that would be formally proven using mathematical
induction – to investigate students’ conceptualizations of mathematical induction. We
report two major findings: first, the majority of students who were familiar with formal
mathematical induction had difficulty using the image to justify the theorem, suggest-
ing that their knowledge of the proof method was intimately linked to the algebraic
method and thus largely procedural in nature. Second, students who had not studied
formal mathematical induction generally used the image as the basis of a standard
inductive generalization and did not recognize that the image could be used to establish
the necessity of the theorem. Surprisingly, these students often expressed conceptual-
izations of natural number that were inconsistent with the formal characterization that
forms the basis of formal mathematical induction. Implications for education are
discussed.

Keywords Mathematical induction . Visual representations . Visual proof

Introduction

Studies have repeatedly documented students’ considerable difficulties in learning
mathematical induction. In particular, various studies have revealed that students who
master the procedure of mathematical induction (that is, students who can perform the
base case and inductive step) often lack conceptual understanding of these steps, why

International Journal of Research in Undergraduate Mathematics Education (2021) 7:1–20
https://doi.org/10.1007/s40753-020-00119-4

* Josephine Relaford-Doyle
jrelaford@ucsd.edu

1 Department of Cognitive Science, University of California, San Diego, 9500 Gilman Dr, La Jolla,
CA 92093, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s40753-020-00119-4&domain=pdf
https://orcid.org/0000-0003-3642-4211
mailto:jrelaford@ucsd.edu


they are necessary, and why they allow for the conclusion that a theorem is necessarily
true for all natural numbers (Lowenthal and Eisenberg 1992; Woodall 1981; Baker
1996; Harel 2001). This finding – that students have procedural but not conceptual
understanding of mathematical induction – seems to be at odds with developmental
psychologists’ claims that children as young as five can engage in an informal version
of mathematical induction before they receive any training in the formal procedure
(Smith 2003; Baroody 2005).

This apparent inconsistency may be due to limitations in the existing research in
mathematical induction, both formal and informal. Formal mathematical induction
consists of a specific algebraic procedure, and studies of students’ understanding of
the formal method have a hard time disentangling procedural from conceptual obsta-
cles. Additionally, the small number of studies claiming to find evidence of untrained
children’s ability to engage in informal mathematical induction haven’t convincingly
demonstrated that children understand the necessity of their conclusions, and thus may
actually bear on standard inductive reasoning.

In this study we use a new method to assess both trained students’ understanding of
mathematical induction, as well as untrained students’ capacity to engage in an
informal version of mathematical induction. We use a ‘visual proof by induction’ –
an image designed to demonstrate a theorem that could be formally proven using
mathematical induction. The image is simple and free of algebraic notation, thus
allowing us to explore (1) whether students who are familiar with formal mathematical
induction can transfer their knowledge to a new, non-algebraic representational system
(where the algebraic procedure of mathematical induction no longer applies), and (2)
whether students who are not familiar with the formal method spontaneously use the
image to recognize the necessity of the theorem it represents, and if not, what
conceptual obstacles they encounter.

A Note on Terminology

As there is some overlap in the words used to describe the various forms of proof and
reasoning relevant to this article, a brief clarification of terms is necessary.

Formal mathematical induction is a formal mathematical proof technique that can
be used to demonstrate that a particular property holds for all natural numbers n = 1, 2,
3,…. A formal proof by mathematical induction has two steps: first, in the base case, it
is shown that the property holds for some initial value, typically n = 1. Then, in the
inductive step, it is shown that if the property holds for some arbitrary value k, then it
must also hold for its successor k + 1. By the Axiom of Induction (one of the Dedekind-
Peano axioms of natural number), it follows that the property is true of all (infinitely
many) natural numbers.

Researchers have noted that formal mathematical induction has both a procedural
component and a conceptual component (Baker 1996; Harel 2001; Lowenthal and
Eisenberg 1992; Woodall 1981). In this paper, procedural knowledge of formal
mathematical induction refers to an ability to perform or comprehend a proof by formal
mathematical induction; that is, a student with procedural understanding could suc-
cessfully carry out the base case and the inductive step (which, for our purposes in this
paper, would entail performing the correct algebraic manipulations). Conceptual
knowledge of formal mathematical induction refers to a deeper comprehension of the
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proof technique, including understanding why the base case is necessary, the role of the
inductive step, and why together those two steps allow for the conclusion that the
property holds for all natural numbers. Unlike procedural understanding, conceptual
understanding of formal mathematical induction isn’t linked to any particular proce-
dure; it wouldn’t rely on algebraic manipulations of k and k + 1, but rather it would
entail a more general understanding that the proof technique involves establishing the
truth of a base case and an invariance of the relationship between successive instances.
In principle, this type of conceptual understanding could be transferred to different,
non-algebraic representational systems.

Despite its name, formal mathematical induction is actually a form of deductive
reasoning; based in the axioms of natural number, it demonstrates the necessity of the
result for all natural numbers, such that counterexamples are impossible. This is very
different than everyday inductive reasoning, which involves generalizing a rule from a
finite (and usually quite limited) number of observed cases (for instance, one might see
a robin, a pigeon, and a dove and conclude that all birds can fly). The resulting
inductive generalization is distinct from a formal proof by mathematical induction in
that it remains flexible to the possibility of counterexamples (in our example, penguins
are still birds despite the fact that they can’t fly). Inductive reasoning is commonplace
in everyday life; formal mathematical induction is a formal technique that requires
explicit instruction in mathematics to master.

Finally, throughout this paper we will refer to a distinct form of reasoning, informal
mathematical induction. Informal mathematical induction refers to a type of reasoning
in the domain of natural number in which the reasoner generalizes a rule based on
observed cases (similar to inductive reasoning), and recognizes the necessity of the
result such that counterexamples in the natural numbers are recognized as impossible(as
in formal mathematical induction). This form of reasoning is called informal because it
does not require that the reasoner see or perform a formal proof of the result.

Background

Formal mathematical induction is a notoriously difficult method for students of all
levels, including pre-service teachers, to learn (Ernest 1984; Fischbein and Engel 1989;
Avital and Libeskind 1978; Movshovitz-Hadar 1993; Stylianides et al. 2007). In
particular, studies have repeatedly shown that students may develop procedural fluency
while still lacking conceptual understanding of the proof method; in other words, they
may be able to successfully carry out the base case and inductive step, but fail to
understand the meaning of these steps or why they are necessary (Baker 1996; Harel
2001; Lowenthal and Eisenberg 1992; Woodall 1981).

Formal mathematical induction always consists of a specific procedure, and so when a
student encounters difficulty it can be hard to assess whether it is procedural or conceptual
in nature. For instance, Baker (1996) analyzed videos of advanced secondary and
undergraduate students writing and analyzing formal proofs by induction, and character-
ized procedural and conceptual knowledge as follows: “Procedural knowledge was
demonstrated by recognizing a missing base case, recognizing correctly argued proofs,
and identifying the elements of a proof bymathematical induction. Conceptual knowledge
was demonstrated by identifying the need for multiple base cases and conceptually
describing mathematical induction” (pg. 7). The line between procedural and conceptual
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is blurry here; for instance, someone may recognize a missing base case either because
they know that it’s Step 1 of the formal mathematical induction procedure, or because they
understand that without the base case the inductive step cannot actually demonstrate the
truth of the theorem for all natural numbers. Labeling that knowledge as “procedural”
obscures the potentially rich conceptual understandings that may be at play.

The difficulty of disentangling procedural from conceptual knowledge is apparent in
how Baker classifies particular students’ performance on his task. He presents two
examples of student-generated descriptions of formal mathematical induction (pg. 14):

Student 1: “First you show that the statement is true for the first number P1. Then
you assume it is true for any number k and show that you can get to the next
number Pk+1.”

Student 2: “1. Prove base case. 2. Prove that for any arbitrary starting point, if that
point gives a true value then the next consecutive point also gives a true value.”

Baker classifies Student 1 as demonstrating procedural understanding, and Student 2 as
having shown conceptual understanding. Is this distinction valid? Both students have
correctly described how to perform a proof by mathematical induction; while Student 2
may have used more sophisticated language, their response is not qualitatively different
than that of Student 1. But this raises the question: how can one demonstrate purely
conceptual understanding of formal mathematical induction, when the method itself is a
procedure?

Existing studies of students’ difficulties learning formal mathematical induction ask
participants to read, produce, or provide explanations of formal proofs. Thus, these
studies have by necessity focused on students who have received at least some training
in the formal method of mathematical induction. Another line of research that has
received less attention has examined untrained children’s ability to engage in an
informal version of mathematical induction. An operational definition of informal
mathematical induction is given by Smith (2003), who characterizes it a type of
reasoning which entails observing a base equality or inequality, assessing universality
about number, and gauging necessity about number. In other words, in informal
mathematical induction the reasoner (a) observes one or more particular cases of the
theorem, (b) generalizes the theorem to all natural numbers, and (c) recognizes that the
theorem is necessarily true of all numbers.

Crucially, (c) recognition of mathematical necessity distinguishes informal mathe-
matical induction from everyday inductive reasoning. In inductive reasoning, the
reasoner generalizes a rule based on observed cases; for instance, after multiple
encounters with red apples a child might come to believe that all apples are red.
Importantly, however, this generalization remains flexible to the existence of counter-
examples; it is possible that there are apples that are not red, and should the child come
across one they would update their rule appropriately. Informal mathematical induction,
on the other hand, involves recognizing the necessity of the result, such that counter-
examples are impossible; the generalization truly applies to all possible cases, without
exception. At the same time, informal mathematical induction is distinct from formal
mathematical induction in that the reasoner need not provide an explicit justification or
proof of the necessity of the result.
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Some developmental psychologists have claimed that children as young as 5–
7 years old can engage in informal mathematical induction, which is somewhat
surprising given the significant conceptual difficulties that older students face when
learning the formal method. This is also a surprising claim in light of various studies
that have repeatedly shown that children don’t develop an understanding of logical
necessity until age 8–11 (e.g., Miller et al. 2000; Morris and Sloutsky 2001). The
evidence supporting the existence of informal mathematical induction in young chil-
dren is quite limited. Smith (2003) claims to have found that children as young as 5–
7 years old can reason by informal mathematical induction. In his study, children were
presented with two containers, either both empty or one empty and the other containing
one item. First, each child was asked to add one item at a time to each of the containers;
this was then repeated. After observing the results of a few iterative additions, the child
was asked various questions about the results of hypothetical additions to the boxes (for
instance, “If you add any number here and the same number to that, would there be the
same in each or more in one than the other?”). Smith found that the majority of children
responded correctly; they generalized that adding the same number to two equals gives
the same result. Next Smith assessed recognition of necessity by asking, “Does there
have to be same number in each, or not?” Fewer than half of the children answered this
question correctly, providing only very limited evidence that children recognized the
necessity of their generalization. Moreover, as Baroody (2005) notes, simply answering
such a yes-or-no question correctly doesn’t necessarily indicate that the child is
convinced of the necessity of the outcome, so even the correct responses don’t provide
compelling evidence for recognition of necessity. Thus, Smith’s study doesn’t actually
provide solid evidence that understanding of necessity – a defining feature of informal
mathematical induction – is present in children. Instead, the study bears more on
inductive reasoning in the domain of natural numbers (Rips et al. 2008).

Baroody (Baroody 2005; Baroody et al. 2013) makes a case for informal mathe-
matical induction with the story of a kindergartener named Nikki. Baroody asks Nikki
what the largest number is, and the girl responds, “A million.” He then asks her what
number comes after a million, and after a moment’s thought she replies, “A million and
one.” He asks what number comes after a million and one, and the girl responds, “A
million and two.” He asks the same question again, and the girl answers, “There is no
largest number.” Baroody says that Nikki’s reasoning demonstrates a primitive, infor-
mal version of mathematical induction; indeed, that it is informal mathematical induc-
tion that allows Nikki to “comprehend infinity.” These are compelling claims, but this
story provides no evidence that Nikki understands the necessity of her answer. Her
response – while consistent with informal mathematical induction – is also consistent
with everyday inductive reasoning.

Visual Proofs by Induction

In summary, previous studies of students’ understanding of formal mathematical
induction are limited in two key ways. First, in studies using formal proofs the line
between procedural and conceptual difficulties can be hard to define, making it unclear
where the students’ difficulties may be originating. Second, studies of informal math-
ematical induction have failed to conclusively demonstrate that children recognize the
necessity of the result, and thus do not make a clear distinction between informal
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mathematical induction and everyday inductive reasoning. In this study we attempt to
address both of these issues by examining undergraduates’ understanding of a visual
proof by induction – an image that can be used to demonstrate that a particular theorem
is necessarily true, but which does not explicitly refer to any specific algebraic
procedure. Two examples of such visual representations are given in Fig. 1.

These images display a finite number of particular cases of the theorems they are
intended to demonstrate, and so it could be that they function similarly to a set of
examples presented numerically: they may serve as the basis for a standard inductive
generalization, allowing the viewer to conclude that the theorems are probably true for
all natural numbers. However, these images contain additional structure that is not
present in numerical examples, and which could be exploited to show that there can be
no counterexamples to the theorem in the natural numbers. To demonstrate this,
consider the image in Fig. 1(b), which shows that the sum of the first n odd numbers
is equal to n2. The image shows only the first six cases of this theorem. However, the
structure of the image provides evidence that the pattern will necessarily continue to
every natural number. Specifically, the square shape of the image is preserved if and
only if the next layer contains the next odd number of dots. Figure 2 details one way of
demonstrating this using the image; while this argument wouldn’t be accepted as a
formal proof, it establishes that the pattern necessarily continues and thus could be
considered a rigorous demonstration of the theorem.

The status of images such as these in mathematics is controversial; while some argue
that some images can act as stand-alone proofs (e.g., Borwein and Jörgenson 2001;
Brown 2008), most mathematicians and philosophers of mathematics would reject
them as a valid means of mathematical justification (for a discussion of the role of
visualization in proof, see Giardino 2010; Hanna 2000). In this article, we are neutral as
to what is the status of these images in mathematical justification; it is not of central
concern whether they should or should not be accepted as valid mathematical proofs.
Instead, we consider them examples of “generic proof by figurate number” (Kempen
and Biehler 2019), in that they reduce the level of abstraction of the mathematical
theorem, making them potentially accessible to viewers with no particular training in
formal mathematics while still providing enough structure to demonstrate the necessity
of the theorem.

Fig. 1 Visual proofs of theorems that could be formally proven using mathematical induction. (a): 1 + 2 + 3 +
… + n = (n2 + n)/2. (b): 1 + 3 + 5 +… + (2n – 1) = n2. Figures adapted from Brown (1997)
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In this study we use the visual proof in Fig. 1(b) to investigate students’ conceptual
understanding of mathematical induction. As described above, the visual proof can be
used to arrive at a comparable result as a formal proof by induction; that is, it can
demonstrate the necessity of a theorem and the impossibility of counterexamples within
the natural numbers. However, visual evidence uses an entirely different representa-
tional system than formal mathematics, and so the procedure of formal mathematical
induction no longer applies (i.e., there is no algebraic notation like k and k + 1). Instead,
in order to use a visual proof as justification of a general theorem, the viewer must
apply a conceptual understanding of mathematical induction by recognizing that it
requires establishing the truth of some initial instance and showing that the relationship
between successive instances is invariant. By examining the conclusions that people
draw from the image and the ways in which they do and do not use the visual proof to
justify the theorem we can assess the extent to which students’ understanding of formal
mathematical induction depends on the specific algebraic procedure, and characterize
some genuinely conceptual difficulties with formal mathematical induction that may
have gone overlooked in previous studies. Specifically, we can address the following
research questions:

& RQ1. How do participants who are unfamiliar with formal mathematical induction
interpret the image? Specifically, do they recognize the necessity of the theorem it
represents? If not, what conceptual obstacles keep them from doing so?

& RQ2. How do participants who are familiar with formal mathematical induction use
the image to justify the theorem? Can they transfer their knowledge of mathemat-
ical induction to this new representational format, or is their knowledge of math-
ematical induction intimately linked to the algebraic procedure required by the
formal method?

In regard to RQ1, we would expect all university undergraduates, regardless of
familiarity with formal mathematical induction, to recognize the key features of the
image (the odd numbers in each layer, and the squares formed at each iteration). We
would also expect all undergraduates to recognize that the image represents the first six
cases of a pattern that could be extended. Finally, in consideration of claims (Smith
2003; Baroody 2005) that even young children can engage in informal mathematical

Fig. 2 (a) To construct the next layer, begin by considering the current outermost later. (b) Make a copy of this
layer, and move it one unit up and one unit right. (c) This results in two open positions that must be filled in
order to maintain the square shape. (d) Since the original outermost layer contained an odd number of dots,
and since the difference between consecutive odd numbers is exactly 2, the next layer must contain the next
consecutive odd number of dots. Thus, adding the next consecutive odd number will necessarily result in the
next square
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induction, we would expect undergraduate participants to do the same; that is, we
expect that even participants unfamiliar with formal mathematical induction would
recognize the necessity of the theorem represented by the image, and thus conclude that
the theorem has no counterexamples in the natural numbers.

Previous work has shown that students who have been trained in formal mathemat-
ical induction frequently possess procedural (but not conceptual) understanding of the
proof method (Baker 1996; Harel 2001; Lowenthal and Eisenberg 1992; Woodall
1981); based on this, we predict for RQ2 that undergraduates who are familiar with
formal mathematical induction might have difficulty transferring this knowledge to a
new representational format. If this is the case, we would expect to see these partici-
pants recognizing the necessity of the theorem but referring to formal mathematical
induction to provide justification rather than using the image to provide a demonstra-
tion of the theorem.

Method

All participants were undergraduate students from a major research university and were
tested individually. We recruited participants from two distinct student populations.
The first group (n = 22, 11 males and 11 females) consisted of students (mostly
mathematics majors) who had taken and received at least a B- in Mathematical
Reasoning, an upper-division mathematics course that covers various proof techniques
including formal mathematical induction. While there is some variation between class
sections, instructors in this course cover a variety of examples of formal mathematical
induction (including base cases other than n = 1 and strong induction) and link the
proof technique to the Axiom of Induction. As these students had all received
university-level instruction in formal mathematical induction (MI), we refer to this
group as MI-Trained. Our second group of participants (n = 17, 9 males and 8 females)
was recruited through the general subject pool and consisted of students with a variety
of majors including psychology, cognitive science, and linguistics. None of these
students had taken the Mathematical Reasoning course, or any other university-level
course covering formal mathematical induction, and so we refer to this group as MI-
Untrained. Importantly, all our participants were highly educated adults at a prestigious
university, such that we expected them to be familiar with the mathematical concepts
relevant to the task.

Open-Ended Explanation Task

Procedure Participants were given a worksheet with the visual proof in Fig. 1(b),
and were instructed to explain how the picture was related to the statement, “The
sum of the first n odd numbers is equal to n2.”1 In the first phase of the study we

1 There were three slightly different versions of the task: one in which participants were given the full
statement, one in which they were given a fill-in-the-blank version (“The sum of the first n odd numbers is
equal to _______”), and one in which they were asked to guess the entire statement that they thought the
image was intended to represent. However, in this report we consider only those participants who demon-
strated understanding of the complete statement “The sum of the first n odd numbers is equal to n2”, either
because it was given in the task or because they successfully generated it. For these participants, there were no
significant differences between task versions for any of the findings reported in this article.
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asked each participant to create a “tutorial video” in which they explained their
reasoning to an imagined third-party audience as clearly and completely as possible.
Before filming their tutorial video each participant was given as much time as they
needed to read the task and plan their response. During this time they had access to
pencils, pens, colored markers, and additional blank paper, and were free to mark
the task worksheet in any way they found helpful. Once they were ready, the
participant filmed their tutorial video. Both the planning and the filming stages
were entirely self-paced and occurred without the researcher present. The partici-
pant’s speech, writing, and gestures towards the worksheet were recorded by a
camera positioned directly above their workspace for subsequent analysis (Fig. 3).

Analysis Two raters independently coded the tutorial video footage based on spe-
cific criteria. First, the raters distinguished between case-based and pattern-based
explanations. Case-based explanations used the image to describe one or multiple
specific cases of the statement (e.g., showing how the first 3 layers of the image
depict 1 + 3 + 5 = 32). In contrast, pattern-based explanations offered a general
description a pattern in the image (e.g., explaining that the picture shows consec-
utive odd numbers of dots in each layer, and that at each stage the layers form a
square). Coders also noted responses which explicitly mentioned that the pattern
could be extended beyond just the first six cases depicted in the image, and any
instance of a rigorous justification of pattern extension (comparable, although not
necessarily identical, to the argument in Fig. 2).

Semi-Structured Interview

Procedure Once the participant finished their tutorial video the researcher returned
to the room and conducted a semi-structured interview. The purpose of this second
phase of the study was to assess in a standardized way the conclusions that the
participants had drawn from the image. Specifically, we were interested in deter-
mining whether after working with the visual proof the participant had generalized
the statement to cases not depicted in the image (generalization), and if so, whether
this conclusion was truly extended to all natural numbers (necessity). To assess
generalization, we asked each participant two questions: (1) “Do you think the
statement is true in all cases?”, and (2) “What would be the sum of the first 8 odd
numbers?” Importantly, these questions alone were not enough to determine wheth-
er the participant recognized the necessity of the statement. In daily life, the word
“all” is used quite loosely, as when we say “All birds can fly” or “All Californians
love the beach”. In mathematics, however, the universal quantifier “all” is much
stronger in that it implies the impossibility of counterexamples. In order to assess
whether each participant recognized the necessity of the statement we asked a
follow-up question: we suggested the existence of large-magnitude counterexam-
ples (“Very large numbers where the statement actually isn’t true”) and asked what
they thought about this possibility. Any participant who expressed significant doubt
at this possibility was asked how they might argue against the existence of large-
magnitude counterexamples. The interview was recorded in the same manner as the
tutorial video.
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Analysis The interview footage was independently coded by the same two raters. Any
participant who answered “Yes” to question (1) and quickly applied the rule to answer
“64” to question (2) was considered to have generalized the statement. To assess
whether this generalization extended to all natural numbers, two coders rated each
participant’s expressed doubt or resistance to the possibility of large-magnitude coun-
terexamples on a 0–5 scale. Scoring criteria and corresponding sample responses are
given in Table 1. For later analysis, scores of 0–3 were associated with low resistance to
counterexamples, while scores of 4 and 5 were considered high resistance. For partic-
ipants who expressed high resistance to counterexamples, the coders also noted how
they argued against such a possibility, including whether they produced a rigorous
image-based argument and/or mentioned or performed a formal proof by mathematical
induction.

Questionnaire Finally, each participant filled out a short questionnaire indicating their
age, gender, major, and the names of any university-level mathematics classes that they
had completed. Participants also were asked to indicate if they were familiar with the
term “mathematical induction”, and if so, to describe what they knew about it.

Results

Tutorial Video There were no significant differences between the duration of the time
spent planning for MI-Trained and MI-Untrained participants (Trained M = 7.51 min,
SD = 5.2 min; Untrained M = 9.31 min, SD = 5.6 min; t(37) = −1.03, p = 0.31), or the
duration of their tutorial videos (Trained M = 6.26 min, SD = 5.49; Untrained M =
4.12 min, SD = 2.16 min; t(37) = 1.49, p = 0.15). In their tutorial videos, 10/17 (58.8%)
MI-Untrained participants relied on case-based strategies (using the image to describe
one or multiple specific cases of the theorem), while 7/17 (41.2%) produced pattern-

Fig. 3 Participant workspace
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based explanations (describing a general pattern present in the image). MI-Trained
participants overwhelmingly preferred pattern-based strategies (20/22, 90.9%), with
only 2 MI-Trained participants producing case-based explanations (9.1%). MI-
Untrained participants were significantly more likely to produce case-based explana-
tions than were MI-Trained participants (Fisher Exact Test, p = 0.026; Odds Ratio =
6.63; 95% CI 1.02, 76.84; Fig. 4). Only one of the 17 MI-Untrained participants (5.9%)
mentioned that the pattern represented in the image could be extended beyond the first
six cases. A greater number (12/22, 54.5%) MI-trained participants mentioned the
possibility of pattern extension; five MI-Trained participants used the image to dem-
onstrate that the pattern necessarily continues. MI-Trained participants were signifi-
cantly more likely than MI-Untrained participants to mention the possibility of pattern
extension (Fisher Exact Test, p = 0.0018; Odds Ratio = 17.82; 95% CI 2.07, 866.16).

Discussion of Tutorial Video MI-Trained and MI-Untrained participants employed
different strategies in their explanations. Untrained participants often used the image
to walk the viewer through one or multiple specific cases of the theorem, while trained
participants were more likely to describe a general pattern in the image. The untrained
participants’ reliance on case-based strategies suggests that they may have been
viewing the image as a set of examples, which just happened to be presented visually
rather than numerically, and not considering the possibility that the pattern necessarily
continues. Furthermore, qualitative analysis suggests that many MI-Untrained partici-
pants were unaware of the invariance of the pattern represented in the image. Untrained
participants often chose to re-draw the image as part of their explanation, and in some
cases these drawings violated essential features of the original image (Fig. 5). Specif-
ically, some untrained participants produced images that did not maintain the regular
row-column structure, suggesting that these participants may have been genuinely
unaware of the invariance of the pattern represented in the image. MI-Trained partic-
ipants were more likely to describe the general pattern represented by the image, and to
mention that the pattern could be extended indefinitely. However, it was still only a

Table 1 Scoring criteria and sample responses for rating participants’ resistance to the possibility of large-
magnitude counterexamples

Score Criteria, Sample Response

0 No resistance; clearly accepts the existence of counterexamples
“That makes sense, I believe that.”

1 Very little resistance; it is likely there are counterexamples
“That makes sense. I’d ask to see what the number was.”

2 Unsure or neutral to the existence of counterexamples
“Since I haven’t explored the math I couldn’t make a statement about it.”

3 Somewhat doubtful of the existence of counterexamples
“It seems like the pattern should hold, but when it gets to high numbers I guess that’s possible.”

High Resistance to Counterexamples

4 Very doubtful of the existence of counterexamples
“I’d be skeptical of that without evidence.”

5 Complete rejection; states counterexamples are impossible
“That seems impossible, that doesn’t make sense.”
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relatively small percentage of MI-Trained participants who mentioned the possibility of
pattern extension, and an even smaller portion who used the image to justify why the
pattern represented in the image necessarily extends to every natural number.

Data from the tutorial video suggests two results. First, MI-Untrained participants do
not explicitly describe the image as representing a pattern that could be extended
indefinitely, and in some cases may be truly unaware of the necessity of pattern
extension. Second, MI-Trained participants, while more likely to mention pattern
extension, do not tend to spontaneously use the image to justify the necessity of the
statement. However, the fact that many of our participants neglected to mention certain
aspects of the image during their tutorial videos doesn’t necessarily imply that they
were unaware of these features. In the next part of the study we used a semi-structured
interview to probe specific aspects of the conclusions our participants drew from the
visual proof, including their assessment of necessity of the theorem.

Semi-Structured Interview The vast majority of participants indicated a willingness to
generalize the statement to cases not depicted in the image (Fig. 6a). There was no
difference between the MI-Untrained and MI-Trained groups in their willingness to
generalize (Untrained 16/17, Trained 22/22, Fisher Exact Test, p = 0.44). However, MI-
Trained participants were significantly more likely than Untrained participants to show
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Fig. 4 MI-Trained participants overwhelmingly preferred pattern-based explanations, while the majority of
MI-Untrained participants provided case-based explanations

Fig. 5 In their tutorial videos someMI-Untrained participants produced images that violated the essential row-
column structure of the original figure
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high resistance to large-magnitude counterexamples (Fisher Exact Test, p = 0.007,
Odds Ratio = 7.02; 95% CI 1.4, 41.2; Fig. 6b). Seventeen of the 22 MI-Trained
participants (77.3%) expressed a high degree of doubt regarding the existence of
counterexamples (characterized by a resistance score of 4 or 5). In contrast, only 5
out of the 16 (31.3%) MI-untrained participants who generalized the statement
expressed a high degree of doubt towards the possibility of counterexamples.

Participants who expressed significant doubt about the existence of large-magnitude
counterexamples were asked how they would argue against such a possibility. TwoMI-
Untrained participants used the image to produce a rigorous image-based justification,
while 8 out of the 17 MI-Trained participants who showed high resistance to counter-
examples did so. In general, MI-Trained participants showed a preference for the
formal proof method; 75% mentioned that they could use formal mathematical induc-
tion to argue against counterexamples, and 25% actually completed a formal proof,
even though it wasn’t a required part of the task.

Discussion of Semi-Structured Interview We observed that, while participants in both
groups were willing to generalize the theorem to nearby cases, only MI-Trained
participants subsequently showed a high degree of resistance to the possibility of
counterexamples. This suggests that MI-Untrained participants were not engaging in

Fig. 6 All participants were willing to generalize the theorem to nearby cases (a). However, MI-Untrained
participants were significantly less likely to show a high degree of doubt that large-magnitude counterexam-
ples to the statement are possible (b). Figures from Relaford-Doyle and Núñez (2017)
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informal mathematical induction (characterized by recognition of necessity), but were
instead engaging in everyday inductive reasoning and using the visual evidence as the
basis for an inductive generalization. Additionally, MI-Trained participants, while
generally recognizing the necessity of the theorem, had a difficult time transferring
their knowledge of formal mathematical induction to the new, non-algebraic represen-
tational system, which suggests that many trained students’ understanding of formal
mathematical induction may have been largely procedural in nature.

When responding to the possibility of large-magnitude counterexamples, many of
our MI-Untrained participants made statements about natural numbers that were
inconsistent with the formal characterization that is required for mathematical induc-
tion. Specifically, we observed that MI-Untrained participants frequently expressed a
belief that very large-magnitude natural numbers may be unpredictable or follow
different rules than smaller numbers. For instance, when asked about the possibility
of large-magnitude counterexamples, three MI-Untrained participants responded as
follows:

& “I guess that makes sense. Like the larger numbers could be, like, outliers, or
something like that.”

& “Based on my impression, just based on this observation, I think it would work, but
when it gets to really high numbers, um, it’s possible that, like (pauses). I can see
maybe it gets kind of fuzzy. Because at extremes things tend to not work as they do
normally.”

& “I guess this model proves to be true for, until, maybe like 99. I know it would be
true. I don’t know, I consider 99 a big number…Like maybe the model decon-
structs at a thousand or a million, I don’t know, but it’s too hard to draw a million
dots.”

These responses all suggest that these participants believe that large numbers may have
qualitatively different properties than small numbers, such that rules that apply to small
numbers may no longer work at larger magnitudes. This is a reasonable conclusion to
draw – in practice there are many differences between small and large numbers: small
numbers (like one through nine) are encountered more frequently, have simple numer-
ical notation and lexical structure, and are easier to use in computations. However, this
finding is surprising in that it is in opposition to the widely-held assumption in
developmental psychology that “mature” conceptualizations of natural number are
consistent with the Dedekind-Peano axioms, in which the entire set of natural number
is governed by the same logic (Cheung et al. 2017; Rips et al. 2008; Sarnecka and
Carey 2008). In contrast, MI-Trained participants expressed formally-consistent con-
ceptualizations of natural number, either by invoking technical notions like the induc-
tive step or by referring to the regularity of counting (for a full qualitative analysis of
participants’ comments regarding natural number, see Relaford-Doyle and Núñez
2018).

Questionnaire and Individual Differences

Unsurprisingly, MI-Trained participants had taken significantly more university-level
math classes than the MI-Untrained participants (Trained M = 6.6, SD = 2.20;
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Untrained M = 2.94, SD = 2.02; one-tailed t(37) = 5.33, p < 0.01). However, in neither
group was number of math courses taken significantly related to any outcomes during
either the tutorial video or interview phases of the study (median split in both groups,
Fisher Tests all non-significant). The fact that no outcomes were related to either
pattern completion ability or amount of exposure to general mathematics indicates that
the difference in our two groups’ performance is related specifically to differing levels
of exposure to mathematical proof-writing in general, and perhaps to formal mathe-
matical induction in particular.

Various studies have shown that female undergraduates tend to express lower
confidence in their mathematical abilities than their males peers (Tariq et al. 2013;
Peters 2013; Felder et al. 1995); thus, we may expect female participants in our study to
show relatively lower resistance to the suggestion of large-magnitude counterexamples
than their male peers. To explore a possible effect of sex, participants’ resistance to
counterexamples was analyzed with a 2 (Sex: Male versus Female) × 2 (Training:
Untrained versus Trained) between-subjects ANOVA. The main effect of training on
resistance to counterexamples was significant (F(1, 34) = 8.75, p < 0.01). There was a
marginal main effect of sex (F(1, 34) = 3.26, p = 0.08), and no interaction between sex
and training (F(1, 34) = 1.27, p = 0.27). However, for our analysis we were not
concerned with mean resistance scores, but rather whether the participant expressed
high resistance to counterexamples (categorized by a resistance score of 4 or 5). We
observed no significant differences in the likelihood of expressing high resistance to
counterexamples between males and females in either group (Fisher Exact Test,
Trained p = 0.31, Untrained p = 1). Furthermore, non-parametric testing revealed a
significant effect of training on resistance to counterexamples (Mann-Whitney test,
U = 88.5, p < 0.01), but no significant effect of gender (U = 138.5, p = 0.2).

General Discussion and Implications for Education

RQ1. How do participants who are unfamiliar with formal mathematical induction
interpret the image? Specifically, do they recognize the necessity of the theorem it
represents? If not, what conceptual obstacles keep them from doing so?

We observed that, while the majority of MI-Untrained participants were willing to
generalize the target theorem to nearby cases, the majority showed relatively little
resistance to the possibility that large-magnitude counterexamples may exist. This
result – generalization without the recognition of necessity – suggests that these
participants used the visual proof as the basis for an inductive generalization and did
not engage in informal mathematical induction. This interpretation is further supported
by the observation that the majority of MI-Untrained participants used case-based
strategies in their explanations, thus treating the image as a set of discrete examples,
rather than as the first cases in a pattern that could be extended indefinitely.

This result is inconsistent with claims in developmental psychology that children as
young as five years old can spontaneously reason by an informal version of mathe-
matical induction (Smith 2003; Baroody et al. 2013). There are at least two possible
explanations for this inconsistency. First, it is possible that people with no training in
formal mathematical induction, including young children, can reason by informal
mathematical induction in simple contexts (like recognizing that the natural numbers
are infinite), but that this reasoning breaks down when the mathematical content is
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more sophisticated. In other words, there may be some limited capacity for genuine
informal mathematical induction that pre-exists formal training. A second possibility is
that, like our adult participants, the children in Baroody’s and Smith’s reports were
simply engaging in standard inductive reasoning, and that it has been mischaracterized
as “informal mathematical induction”. As described earlier, the existing empirical work
has failed to convincingly demonstrate that children can recognize necessity of the
theorem, which is a critical component of informal mathematical induction. Further
work is required to characterize the nature of generalizations that untrained people, both
children and adults, make in different mathematical contexts. Specifically, future
studies must carefully assess untrained people’s recognition of the necessity of math-
ematical generalizations, thereby disentangling informal mathematical induction and
everyday inductive reasoning.

Of central importance is the question, what obstacles kept our MI-Untrained
participants – all highly educated adults who are presumably comfortable with
addition, odd numbers, and squaring – from using the visual proof to recognize
the necessity of the theorem? We were surprised by the number of MI-Untrained
participants who made statements about the natural number system that were
inconsistent with the formal characterization required for mathematical induction.
Many participants expressed a particular misconception – that very large numbers
behave differently or follow different rules than smaller, more familiar ones – and
this may have impeded their ability to generalize the theorem to all natural
numbers. This suggests that one conceptual roadblock that students may face when
first encountering formal mathematical induction is a lack of understanding of the
natural number system as it is formally characterized in the Dedekind-Peano
axioms. Even at the college level, instructors should not assume that their students
already possess formally-appropriate conceptualizations of the natural number
system. Students may benefit explicit instruction in the Dedekind-Peano axioms
and their implications in the natural number system, which are sometimes left out of
formal instruction (Zazkis and Leikin 2010).

RQ2. How do participants who are familiar with formal mathematical induction
use the image to justify the theorem? Can they transfer their knowledge of math-
ematical induction to this new representational format, or is their knowledge of
mathematical induction intimately linked to the algebraic procedure required by the
formal method?

While our MI-Trained participants were significantly more likely than our
Untrained participants to express a high degree of doubt about the existence of
counterexamples, they frequently referred to the formal mathematical induction to
justify this claim. While a few MI-Trained participants were able to use the image to
demonstrate the necessity of the theorem, most did not provide any image-based
argument for the general theorem. In other words, the majority of MI-Trained
participants didn’t transfer their knowledge of formal mathematical induction to
the novel representational system. This is consistent with previous work (Baker
1996; Harel 2001; Lowenthal and Eisenberg 1992; Woodall 1981), which has
shown that students often have only procedural knowledge of mathematical induc-
tion; they know how to perform the formal algebraic proof, but lack the general
conceptual understanding that they would need to construct an argument in a
different representational system.
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However, it is also possible that our MI-Trained participants who did not provide
an image-based justification did have conceptual understanding of mathematical
induction, but simply rejected the visual representation as a valid means of justifi-
cation. In the case of formal mathematical induction, it is the Axiom of Induction
which allows for the conclusion that the theorem will hold for all natural numbers;
mathematics students may have been wary of using a non-axiomatic representa-
tional system to justify such a conclusion. More generally, it could also be the case
that this pattern of results is reflective of students’ awareness of the general norms
of mathematical justification. In most modern mathematics, pictures and other
visual representations are considered useful psychological aids but are explicitly
disallowed in formal proofs. Students are often suspicious of or reluctant to use
purely visual representations in mathematics, particularly in contexts of justification
(Eisenberg and Dreyfus 1991; Inglis and Mejía-Ramos 2009). The fact that so few
of our MI-Trained participants produced rigorous image-based arguments may not
indicate a lack of conceptual understanding, but might instead reflect negative
attitudes towards the use of visual representations in mathematics. Therefore, we
cannot conclude from our evidence alone that MI-Trained participants are genuine-
ly unable to produce image-based arguments; they may simply be unwilling to do
so.

This raises an important point about how mathematical induction, and mathe-
matical proof in general, is taught. In virtually all other areas in mathematics, it is
widely acknowledged that transferring between multiple representations helps
students to develop conceptual understanding of mathematical content
(Schoenfeld 1985; Lesh et al. 1987; Pape and Tchoshanov 2001). For instance,
algebra teachers want students to learn that a function can be represented as an
algebraic equation, as an input-output table, or as a graph (e.g. Brenner et al. 1997);
indeed, possessing truly conceptual knowledge of functions implies that a student
can transfer flexibly between these different representational systems. The same is
not always the case for mathematical justification, where students often learn that a
proof must be written as a symbolic, propositional argument. If students are
exposed to only one means of representing a mathematical proof, they may struggle
to develop deep conceptual understanding of the proof techniques they learn. Why
should we expect students to know there’s more to formal mathematical induction
than an algebraic procedure, when every example they see consists of that
procedure?

In order to develop genuinely conceptual, representation-independent knowledge
about formal mathematical induction, students may benefit from being exposed to a
variety of “proofs” in which the same concepts are applied in different representa-
tional systems. For instance, both formal mathematical induction and images such
as the one used in this study rely on establishing the truth of the theorem for some
starting value, and then demonstrating the invariance of the relationship between
successive instances. A student who has seen only the formal proof may easily
come to believe that the inductive step is simply an algebraic procedure involving k
and k + 1. A student who has also seen and understood a visual proof by induction
may be in a better position to understand that the inductive step demonstrates the
constancy of the relationship between successors, and why this allows for the
conclusion that the theorem will be true for all natural numbers. While our study
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doesn’t demonstrate the pedagogical value of visual proofs by induction, future
work could explore the potential educational benefits of supplementing instruction
in formal mathematical induction with visual representations in order to foster deep
conceptual understanding of the proof method.

Conclusion

This study used a novel method to investigate undergraduate students’ conceptual-
izations of mathematical induction and explore the conceptual difficulties that
students may face when learning this proof method. Using a ‘visual proof by
induction’ – a simple image that represents a proof by formal mathematical induc-
tion in an accessible, non-symbolic representational system – we were able to
explore both trained and untrained students’ conceptualizations around the proof
method. Our results suggest that MI-Untrained students used the image as the basis
for an inductive generalization, but not informal mathematical induction; while they
initially stated that the theorem was true for “all” numbers, most untrained students
were willing to accept the possible existence of counterexamples, and thus did not
recognize the necessity of the theorem. In some cases this may have been due to a
lack of understanding of the key features of the image (as in participants who
violated these features when they redrew the image; Fig. 5). However, qualitative
analysis of MI-Untrained students’ responses indicate another possible source of
difficulty: many undergraduates may possess non-normative conceptualizations of
natural number, thus making them more likely to believe that the theorem could
break down for large-magnitude numbers. In contrast, MI-Trained students were
highly resistant to counterexamples; however, most indicated a preference for
formal mathematical induction and had difficulty using the image to provide a
rigorous justification for the theorem. Consistent with previous findings, this
suggests that these students’ knowledge of mathematical induction is largely pro-
cedural in nature, and reliant on applying a specific algebraic procedure. Based on
these results, we make two recommendations for educators and researchers inter-
ested in fostering conceptual understanding of mathematical induction in students.
First, instructors should provide novice students with explicit instruction in the
Dedekind-Peano Axioms in order to ensure that all students possess the under-
standing of the natural number system that is required for recognizing why math-
ematical induction is a valid proof method. Second, instructors and researchers
could explore the potential pedagogical benefits of supplementing instruction in
formal mathematical induction with rigorous “proofs” in different representational
formats, including visual proofs by induction. Future work should explore whether
encouraging students to “translate” their knowledge between different representa-
tional systems – one algebraic, and the other visual – may help students develop
deeper conceptual knowledge of formal mathematical induction.
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