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Abstract
When solving counting problems, students often struggle with determining what they
are trying to count (and thus what problem type they are trying to solve and, ultimately,
what formula appropriately applies). There is a need to explore potential interventions
to deepen students’ understanding of key distinctions between problem types and to
differentiate meaningfully between such problems. In this paper, we investigate under-
graduate students’ understanding of sets of outcomes in the context of elementary
Python computer programming. We show that four straightforward program condition-
al statements seemed to reinforce important conceptual understandings of four canon-
ical combinatorial problem types. We also suggest that the findings in this paper
represent one example of a way in which a computational setting may facilitate
mathematical learning.

Keywords Combinatorics . Computing . Computational activity . Permutations .

Combinations

Introduction and Motivation

In elementary combinatorics, there is a common set of distinctions between four
fundamental types of counting problems. The two-by-two table, pictured in Table 1
below, is a component of most discrete mathematics or combinatorics textbooks (e.g.,
Martin 2001; Mazur 2010; Tucker 2002), and it offers general formulas for four basic
problem types that involve arranging or selecting r objects from a set of n items (Tucker
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2002). One axis represents whether or not elements can be repeated, and the other axis
represents whether or not different orders of elements yield distinct outcomes (we will
explain these formulas in subsequent sections of the paper). Having students under-
stand these four problem types well enough to apply the formulas appropriately is a
main goal of helping students count successfully. Indeed, a central aspect of being able
to solve counting problems is understanding and having some conceptual grounding for
these four basic types of counting problems and their corresponding formulas.

We briefly offer canonical examples of these four problem types, which correspond
to the problems in Table 2 below (note, we also elaborate more on these problem types
in the “Results” section). In the upper left of the two-by-two grid, we have arrangement
with unrestricted repetition problems, such as How many 2-character strings can be
made from the numbers 1 through 5, where repetition of characters is allowed? Here
repetition is allowed, so something like 22 is allowed, and order matters because a
string such as 12 is considered different from 21. In the bottom left we have permu-
tation problems, such as How many 2-character strings can be made from the numbers
1 through 5, where repetition of characters is not allowed? Here order matters, as we
are counting strings of numbers, but the problem states that repetition is not allowed.
Thus, we would count strings like both 12 and 21, but not 22. Note, a problem
involving arranging all elements of a set (How many ways are there to arrange the
numbers 1 through 5?) is a special case of this kind of problem. In the bottom right we
have combination problems, such as How many 2-element subsets can be made from
the numbers 1 through 5? Here order does not matter because we are counting subsets
(and order is irrelevant in sets), and repetition again is not allowed. So, we would count
{1,2} and {1,3}, but not {1,1} and also not both {1,2} and {2,1}. Finally, in the top
right we have selection with repetition problems, where order does not matter but
repetition is allowed. An example of such a problem is, How many non-decreasing 2-
character sequences can be formed from the numbers 1 through 5, where repetition of
characters is allowed? Here since repetition is allowed, we count outcomes like 11 and
22. However, because the sequences are non-decreasing, while we would count 12 and
23, we would not also count 21 and 31. We will explore these problems in detail
subsequently in the paper. We note further that for each of these four problem types,
there tend to be corresponding canonical types of outcomes – for example, permuta-
tions tend to count strings or sequences, while combinations tend to count subsets.
Problem types thus articulate certain counting problems that satisfy certain constraints,
and outcome types represent the actual outcomes that those problems tend to count. We
have attempted to articulate this fact in these examples and in Table 2.

There is abundant evidence that students struggle to distinguish between these
problem types (e.g., Annin and Lai 2010; Batanero et al. 1997; CadwalladerOlsker
et al. 2012; Lockwood 2014a, b). Typically, this arises in differentiating between

Table 1 Ways to arrange or select r objects from n items (Adapted from Tucker (2002))

Arrangement (ordered outcome) Selection (unordered outcome)

Unrestricted repetition nr
nþ r−1

r

� �
¼ nþr−1ð Þ!

n−1ð Þ!r!
No repetition P(n,r) = n!

n−rð Þ! C(n,r) = n!
n−rð Þ!r!
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permutations and combinations (e.g., Lockwood 2014a), but deciding whether a
problem involves selection with or without repetition can also be challenging for
students (e.g., Batanero et al. 1997). Although some researchers have tried to find
ways to help students understand these important distinctions (e.g., Lockwood et al.
2015; Reed and Lockwood 2018), there is still much to learn about how to help
students meaningfully understand distinctions between these four fundamental types
of problems.

In this paper, we report on an alternative useful way of distinguishing between the
four problem types in Tables 1 and 2. This perspective emerged during a study in which
we interviewed undergraduate students using Python programming as they solved
combinatorics problems. In designing combinatorial tasks to have students code in
Python, we used some simple constructs in Python (for loops and particular conditional
statements) that reflected the respective distinctions in the two-by-two table. Table 2
shows counting problems that correspond to the four quadrants in Table 1. In Table 2,

Table 2 Examples of Python code that will yield respective problem types
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for each quadrant, we include a) a statement of a counting problem of that type, b)
Python code that would enumerate all of the outcomes of the respective problems, and
c) the set of outcomes that the given code would produce (including the total amount).
Note the structural similarity between the four bits of code; we will subsequently
elaborate on this figure in the “Additional Mathematical Discussion - Selection with
Repetition and Completing the Two-by-Two Table” section. In addition, in Appendix 2
we elaborate details of how the Python code works for readers who may want more
detail.

We make the case that when the students engaged in these tasks, they deepened their
understanding of the distinction between these problem types (and, in particular, this
came about by their attending to outcomes). We argue that the Python programming,
the representations of each of the outcomes, and the formulas that were reflected in the
code together offered an effective approach by which to enhance students’ combinato-
rial reasoning and activity.

Having students use such programming to solve counting problems is motivated by
a desire to investigate a broader phenomenon of examining the role of computing in
enriching students’ reasoning about and learning of mathematical concepts. In this
paper, our goal is to highlight a potential pedagogical innovation that sheds light on our
understanding of how students might reason about an important combinatorial idea
(namely, the difference between fundamental types of counting problems) in a mean-
ingful way. We hope that by considering this distinction in terms of basic programming
tools, we offer a novel representation and way of understanding these fundamental
counting formulas.

There is thus an overarching research question that we attempt to address in this
study, which is, In what ways can computational activities inform and affect students’
reasoning about mathematical concepts? To address this question more specifically, we
seek to answer the following research question in this paper: In what ways did certain
programming structures and conditional statements enrich and deepen students’ rea-
soning about the nature of the outcomes of several fundamental types of counting
problems? Note, we are careful not to claim causality (that is, we do not claim that
computational activity caused students to reason more deeply about counting), nor do
we make claims about whether those combinatorial understandings could or would
have developed in a non-computational setting. However, we do explore the interaction
between students’ computational activity and their combinatorial understandings, and
our aim is to show ways in which the students’ combinatorial reasoning was enriched
and deepened by their computational activity. To present results that answer this
research question, we describe two pairs of undergraduate students’ work on combi-
natorial tasks in a computational environment.

Relevant Literature and Theoretical Perspectives on Combinatorial
Thinking and Activity

In this section, we situate this study within the broader literature base, and we also
articulate the theoretical perspectives that guided the design and implementation of this
study. We first discuss literature on combinatorics, and then we describe how we are
taking combinatorial thinking for the purposes of this paper. We address relevant
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literature and theory on computation in the “Relevant Literature and Theoretical
Perspectives on Computational Activity” section.

Relevant Literature on Combinatorics

Attention to Fundamental Problem Types in the Literature

Distinctions between fundamental problem types has been a topic of interest since the
inception of combinatorics education research. There is a long history in combinatorics
education research of examining students’ reasoning about various types of problems.
This began with work by Piaget and Inhelder (1975) and was continued by Fischbein
and colleagues (such as Fischbein (1975), Fischbein et al. (1970), and Fischbein and
Gazit (1988)), who focused on developmental stages and orders of difficulty for young
students in solving basic problem types. These studies demonstrate that researchers
have long valued such distinctions, although the particular attention on articulating
stages of development and order of difficulty of problems is not our focus in this paper.

To our knowledge, and after searching the literature, there has been no research
conducted on the teaching and learning of selection with repetition problems (the upper
right quadrant of Tucker’s (2002) table shown in Table 1). This is perhaps not surprising,
as such problems tend to require understanding of sophisticated ways of encoding
outcomes and are typically reserved for more advanced settings than are typically
studied in combinatorics education research. We discuss these problems further in the
“Additional Mathematical Discussion - Selection with Repetition and Completing the
Two-by-Two Table” section and Appendix 1, but we want to point out that there is not
currently literature that explores student reasoning about such problems.

Student Difficulties with Four Fundamental Problem Types

As we have noted, researchers have demonstrated that students struggle to learn and
distinguish between these fundamental problem types (e.g., Annin and Lai 2010;
Batanero et al. 1997; CadwalladerOlsker et al. 2012). At the heart of this difficulty
may be that students often apply formulas without understanding them – not that they
willingly refuse to understand them, but they struggle to understand why formulas
count specific outcomes. When this happens, counting can become a mysterious and
often frustrating activity in which one must make an educated guess about which
formula to use. This phenomenon is not unique to combinatorics, but it can be
especially prevalent in counting, in which “each problem seems to be different”
(Martin 2001, p. 1), and there is “no specific theory” for solving problems (Tucker
2002, p. 169). In particular, many researchers have cited that a common error and
struggle for students is to determine whether a problem involves counting combinations
or permutations. For instance, Batanero et al. (1997) cite “errors of order” as being one
of the primary errors that students encounter (they specifically define this as follows:
“This mistake consists of confusing the criteria of combinations and arrangements, that
is, distinguishing the order of the elements when it is irrelevant, or, on the contrary, not
considering the order when it is essential” (p. 191–192)). Annin and Lai (2010) also
discuss difficulties that students have maneuvering issues of order in counting.
Lockwood (2014a) previously showed examples of students not being sure of how to
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differentiate between when “order matters” and when it does not. Lockwood (2014a)
reports that when solving a counting problem, an undergraduate student said “… I just
kind of go off my gut for it, on the ones that don’t specifically say order matters or it
doesn’t matter” (p. 33). This response is perhaps reflective of students’ approach to the
distinction between permutations and combinations – they may not have concrete,
reliable ways to differentiate between the two.

Similar phenomena occur when students have to distinguish between other kinds of
problems. For example, Batanero et al. 1997 also articulated an error of repetition, in
which “The pupil does not consider the possibility of repeating the elements when it is
possible, or he/she repeats the elements when there is no possibility of doing so” (p.
192). This error highlights an interchange between the two problem types within the
row of the table in Table 1 along the axis that determines whether or not order is
allowed. This kind of error is representative of other ways in which students may
confuse problem types or be unclear about whether or not elements in an outcome may
be repeated.

Efforts to Allay these Difficulties

Several researchers have attempted to find productive and effective ways of helping
students understand these four key problem types. Lockwood (2013, 2014a, b) has
argued that one way to help with this issue and difficulty is to have students focus more
explicitly on what outcomes they are trying to count. Lockwood contends that by
focusing on the set of outcomes, students can reason about the nature of outcomes as a
way to clarify what is being counted, thus helping to determine whether or not order or
repetition matter. We explore this notion further in the “Characterizing Combinatorial
Thinking and Activity for the Purposes of this Study” section.

There are also cases in which researchers have designed interventions to help
students reflect on their own activity in order to develop formulas. For example,
Lockwood et al. (2015) had undergraduate students engage in guided reinvention
during a 10-session teaching experiment (see Steffe and Thompson 2000, for more
detail on the teaching experiment methodology). They had the students solve problems
of various kinds in a specific sequence in order to help the students develop formulas
on their own (specifically formulas n!, nr, nPr, and nCr). The students successfully
reinvented the formulas and demonstrated that they could use them effectively in most
instances. In another case, Reed and Lockwood (2018) attempted to help undergraduate
students understand basic types of counting problems by having them solve problems
of various types (again those reflected by formulas n!, nr, nPr, and nCr), and then
categorize those problems according to commonalities the students perceived.1 Then,
the researchers had the students articulate those commonalities and then come up with
general formulas for how to solve the problems. Here again the students successfully
developed formulas and were effectively able to articulate differences between problem
types and their respective formulas. In each of these cases, the focus was on the
formulas for arrangement with unrestricted repetition, arrangement without repetition,
and selection without repetition, but not selection with repetition problems.

1 The students categorized them according to the problem types reflected in the first three quadrants of the
two-by-two table – they were not given any selection with repetition problems.
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In summarizing this literature, we see that there has been a considerable focus on
helping students understand basic problem types. Students struggle to differentiate be-
tween problem types, but there have been efforts to help them differentiate more success-
fully. Although some effective ways to facilitate students' reasoning about fundamental
problem types exist, we consider the results in this paper as offering another, alternative
way to enrich students’ thinking about and understanding of these important problem
types. This approach we propose has the additional feature of incorporating computing,
which, as we address in the “Relevant Literature and Theoretical Perspectives on Com-
putational Activity” section, represents an increasingly desirable practice and perspective.

We now take a moment to characterize how we are taking combinatorial thinking for
this study and to outline our theoretical perspective toward counting. Doing so will
establish particular language and ideas that we will use throughout the paper, and it will
also provide motivation for the computational aspect of the study described in this paper.

Characterizing Combinatorial Thinking and Activity for the Purposes of this Study

A Model of Students’ Combinatorial Thinking

In this paper, we use Lockwood’s (2013) model to frame how we are taking students’
combinatorial thinking, which frames students’ combinatorial thinking in terms of three
key components: Formulas/Expressions, Counting Processes, and Sets of Outcomes
(Fig. 1). Formulas/Expressions are mathematical expressions that yield some numerical
value. A formula or expression is what a student may write as “the answer” to a
counting problem, such as 5·4·3·2·1, C(10,4), or n!. Counting Processes are the
imagined or actual enumeration processes in which a student engages – that is, the
steps or procedures that one completes when solving a counting problem. This could
involve a procedure such as creating a case breakdown, applying the multiplication
principle, or generating a systematic list. Sets of Outcomes are the sets of elements that

Fig. 1 Lockwood’s model of students’ combinatorial thinking (Lockwood 2013)
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are being counted in a combinatorial problem. The cardinality of the set of outcomes
typically determines the answer to the problem.

We will explore these components in more detail throughout the paper, but we
briefly exemplify them by discussing a particular counting problem that Lockwood
(2013) used: “How many 3-letter ‘words’ are there using the letters A, B, and C
(repetition of letters allowed)?” (p. 256). To see the relationship between counting
processes and formulas/expressions, we follow Lockwood in noting that a certain
process can elicit a particular formula or expression. For example, a counting process
to solve the above problem would be iteratively to consider options for each position in
the word and use multiplication. We could argue that there are three options for the first
position, for any of those there are three options for the second position, and, similarly,
for any of those there are three options for the third position. Because the number of
options is independent at each stage (and will yield distinct outcomes), we can multiply
the number of options at each stage together.2 This process of considering options for
each position yields a particular expression of 3·3·3. Similarly, given an expression like
3·3·3, one could interpret it as reflecting an underlying counting process.

Additionally, there is a relationship between a counting process and a set of
outcomes, in that a certain process will generate particular outcomes of that process.
Indeed, we use the term outcomes in the set of outcomes component because they are
the result of (or outcome of) some particular counting process. Lockwood (2013) says
the following of this relationship: “Counting processes may generate some set of
outcomes, and conversely, a given set of outcomes may be enumerated (or its size
may be determined) via some counting process” (p. 255). She also notes that, “In
addition to generating a set of outcomes, a counting process can impose a structure onto
a set of outcomes (and, in fact, different counting processes can result in different
structures)” (p. 256). In the example of the 3-letter ‘words,’ the process of repeated
multiplication will generate an alphabetical list of 3-character sequences consisting of
As, Bs, and Cs. This demonstrates that there can be relationships between the compo-
nents. These relationships describe ways in which a student may implicitly or explicitly
coordinate more than one of these components.

Related to this model, we also adopt a set-oriented perspective (Lockwood 2014a), in
which counting is viewed as inherently involving the determination of the cardinalities of
sets of outcomes. Specifically, this set-oriented perspective toward counting is “a way of
thinking about counting that involves attending to sets of outcomes as an intrinsic
component of solving counting problems” (Lockwood 2014a, p. 31). Practically, adopting
this perspective means that this is how we view students’ counting, and that we value
activity in which students are generating, using, and reasoning about sets of outcomes. In
designing this study, then, we prioritized developing tasks that would allow students to
make explicit connections with their set of outcomes. For example, some of the tasks and
follow up questions involved pointed questions about how the students’ outcomes (the
outputs of the programs) would specifically be listed and structured – more details are
given in the “Methods” section. These kind of prompts highlight our perspective that
students’ reasoning about outcomes is an important part of their combinatorial thinking

2 This reflects the multiplication principle, which is a guiding principle that describes when it is appropriate to
multiply in counting problems. See Tucker (2002), Lockwood et al. (2017), and Lockwood and Purdy (2019)
for more details about the multiplication principle.
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and, more specifically, such reasoning about outcomes might be an integral aspect of how
they understand and distinguish between problem types.

Using Computing to Reinforce the Relationship between Counting Processes and Sets
of Outcomes

Students understanding the relationship between counting processes and sets of out-
comes entails understanding that a counting process they employ will generate a
particular set of outcomes, which is organized and structured in some way. Research
suggests that this is particularly important for students to develop. Lockwood has
previously argued that being able to understand connections between sets of outcomes
and counting processes is an essential aspect of successful counting (Lockwood 2013,
2014a; Lockwood et al. 2015), and this is related to the set-oriented perspective
described previously. We propose that one way to reinforce the relationship between
counting processes and outcomes is to have students explicitly articulate a counting
process and then get feedback on what the output of that process is. One way to
accomplish this is to leverage computational activities, allowing students to write
computer programs to list sets of outcomes, and then have immediate feedback on
the results of their process. The idea is that such activity can potentially strengthen the
connection between counting processes and sets of outcomes, which can help students
solve counting problems. By having to clearly articulate steps so that a computer
program can understand them, and then seeing the output of the process in the form
of sets of outcomes, the computational activity can help students better understand and
strengthen the relationship between counting processes and sets of outcomes.

To summarize, then, prior research has suggested that it is desirable for students to
connect and reinforce counting processes and sets of outcomes. One of the main
premises of this study is that the computer (via simple Python programming) can be
an effective way to help students articulate a process clearly and then get immediate
feedback for how that process generates outcomes. This is why we are leveraging
computing in this study. Before we elaborate the specific computational activity and
how it relates to the four problem types in the two-by-two table (Table 1), we pause
briefly to introduce literature on computational activity and describe how we are taking
such activity in this study.

Relevant Literature and Theoretical Perspectives on Computational
Activity

Computing and Computational Activity

The 2005 Joint Task Force for Computing Curricula report broadly defined computing
by saying, “In a general way, we can define computing to mean any goal-oriented
activity requiring, benefiting from, or creating computers” (p. 9), and we adopt this
definition for this paper. Weintrop et al. (2016) developed a “taxonomy of practices
focusing on the application of computational thinking to mathematics and science” (p.
128), shown in Fig. 2. We use this taxonomy of practices, especially the computational
activities associated with Computational Problem Solving Practices (the third column
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in Fig. 2), to characterize computational activity in our study. Practically, for the results
described in this paper, the students engaged in basic programming tasks in Python, and
this primarily included preparing problems for computational solutions, programming,
assessing different approaches/solutions to a problem, and troubleshooting and
debugging.3

We acknowledge that computation can be a broad term that entails activity that does
not necessarily need to involve a machine as a computer. We still use it as a descriptor,
but we clarify that in this paper we are specifically examining students’ work as they
engaged in programming on a computer. Ultimately, we are interested in examining
students’ observable activity of engaging with computing, and at times we use the
terms computing, computational activity, and computation as descriptors of our stu-
dents’ work.

Mathematics Education Research Involving Computing

There is a history of mathematics education researchers using computational environ-
ments to help students learn mathematics. Most notably, Papert (e.g., 1980, 1993)
introduced the language LOGO that was explicitly designed to help young students
reason about mathematical concepts. His legacy lives on today in the theory of
constructionism (e.g., Harel and Papert 1991). More recently, there has been increased
attention on investigating elements of computational thinking and activity within math-
ematics education in particular. This is seen, for example, in recent efforts to understand
computing (e.g., Lockwood et al. 2019) and computational thinking (e.g., DiSessa 2018;
Gadanidis et al. 2018; Hickmott et al. 2018; Kotsopoulos et al. 2017; Sinclair and
Patterson 2018) within mathematics. There have also been recent studies that have

3 There are connections to the students’ activity to other parts of the taxonomy, including using computational
models to understand a concept and constructing computational models, but we do not have space to detail
how the students’ Python programming relates to these other practices.

Fig. 2 Computational thinking practices in mathematics and science taxonomy (Weintrop et al. 2016, p. 135)
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continued to explore students’ experiences with programming in particular within math-
ematical contexts, both among children (e.g., DeJarnette 2019) and undergraduates (e.g.,
Buteau and Muller 2017). The field’s interest in computational thinking and activity
within mathematics continues to grow, particularly as computers and programming
become increasingly accessible and integrated into students’ everyday lives.

Of particular relevance to the study presented in this paper is previous work by
Fenton and Dubinsky (1996), who developed the programming language ISETL in
order to teach mathematical concepts. Fenton and Dubinsky also saw the potential value
in using computers to reinforce mathematical ideas, and he specifically developed
materials to teach discrete mathematics in an ISETL programming environment. There
are similarities with our work and that of Fenton and Dubinsky, as we are both explicitly
recognizing and seeking to leverage the overall connection between programming and
the teaching and learning of mathematics (especially discrete mathematics). However, a
main difference is in the nature of the programming language that we are using, which
has implications for generalizability of our findings. Whereas Fenton and Dubinsky’s
program put forth the development and use of a particular, new language in ISETL, we
seek to use existing languages to reinforce combinatorial concepts. By using Python,
which is a widely-used language, we are optimistic that tasks we develop or findings we
observe may be broadly applicable to a variety of teachers and students. Even more, the
loops and conditional statements we emphasize in the paper are commands that could
work in any number of existing programming languages.

Methods

We report on data from two teaching experiments (Steffe and Thompson 2000) with
two different pairs of students. These were conducted as part of a larger study in the
United States that examined the role of computing in combinatorics. In this section we
describe the participants, the data collection, and the data analysis.

Participants

For the data reported in this paper, we focus on interviews with two pairs of students who
offered evidence of how they reasoned about the operations of != (“not equal”) and > (“
greater than”) in Python, and how they connected those operations to their reasoning about
basic problem types. Both pairs were recruited from vector calculus classes at a university
in the US. In previous work in combinatorics education, we have had positive experiences
with vector calculus students as a population, as they tend to be motivated and relatively
mathematically mature while still being novice counters. They each participated in an
individual 30-min selection interview in which they solved counting problems. We sought
students who would not simply recall counting formulas or ideas, and we also wanted to
recruit students who could engage with problems and articulate their thinking. We con-
ducted selection interviews in order to determine this, and all four of the students described
in this paper fit these criteria. All students were monetarily compensated for their time.

In the selection interviews, we asked students about their previous programming
experience. In addition, we had several ways to try to determine students’ initial
combinatorial experience. We first asked students what classes they had taken in high

313International Journal of Research in Undergraduate Mathematics Education (2020) 6:303–346



school and college to get a sense of their exposure to concepts in discrete mathematics
(we asked specifically if they had taken probability, statistics, and computer science).
Then, we showed students a list of several symbols, some of which might be associated

with combinatorics4: nCr, , C(n,r), A × B,
n
r

� �
, n!, nPr, P(n,r) and ∑

1≤ k ≤10
k. We

asked students if they had seen each symbol before and, if so, what they
thought the symbol meant and what it did. This allowed us some insight into
students’ familiarities with combinatorial formulas. Then, we had students solve
several basic counting problems, which further let us see whether they were
trying to recall formulas and how they were reasoning about these problems.
Because we primarily wanted to see how students would reason about counting
problems, we did not select students who referred regularly to certain problem
types or who only seemed to be recalling formulas. If the selection interviews
suggested that the students had little prior counting experience (had not seen
the previous symbols and did not try to recall formulas in their combinatorial
problem solving), we refer to them as novice counters.

Pair 1

Pair 1 consists of two female students whose pseudonyms are Charlotte and Diana. The
selection interviews showed that they were novice counters – neither had taken courses
involving counting, neither recognized any of common combinatorial symbols nCr,

C(n,r)
n
r

� �
, nPr, or P(n,r) (they recognized n!, but only in a non-combinatorial setting

as noted in the previous footnote), and their work on the problems suggested they were
not recalling formulas. In addition, they both stated they had no programming experi-
ence in high school or in college. We paired them together because they had similar
backgrounds and abilities, and they also had schedules that allowed them to meet
together over the course of the term. Charlotte was a second-year student and Diana
was a first-year student at the time of the interviews, and both students were majoring in
chemistry with an interest in forensic science.

Pair 2

Pair 2 consists of two male students whose pseudonyms are CJ and Corey. The
selection interviews showed that CJ was a novice counter – he had not taken courses
involving counting, he did not recognize the combinatorial symbols (aside from n!,
again in a non-combinatorial context), and in his work he did not indicate that he was
recalling formulas. Corey had some moderate prior exposure to counting formulas,
which he said he had seen in a pre-calculus course in high school. He did recognize
some of the symbols, although he explained them vaguely as having to do with

4 We make a brief note about n!. Typically students recognize n! as the product of the positive integers from 1
to n, and they are exposed to this in calculus (especially Taylor series expansions). However, such exposure
typically does not imply that they have a combinatorial interpretation of n factorial as the number of
arrangements of n distinct elements (further insight about students’ reasoning about factorials can be found
in Lockwood and Erickson 2017).
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arranging objects. In spite of Corey’s occasional reference to past problems, his
problem solving convinced us that he was thinking carefully about problems (not just
applying formulas) and was adept at articulating his thinking, and we thought he would
be a good fit to pair with CJ. CJ and Corey had more programming experience than did
the Pair 1 students. They had each taken a programming course in high school, and
Corey was enrolled in a MATLAB for engineers course during the time of the
interviews, but they explicitly stated that they did not feel particularly comfortable
with programming and did not consider themselves to be very familiar with program-
ming. They, too, were paired together because they had similar backgrounds and
abilities and schedules that aligned. CJ was a first-year civil engineering major, and
Corey was a first-year mechanical engineering major.

Note that we decided to pair students with relatively similar backgrounds and
abilities. Our rationale for this was that we wanted to examine relatively new phenom-
ena (the role of computing in combinatorics), and we wanted to be able to do so without
also needing to account for students having vastly different backgrounds. In future
studies, we plan to examine these phenomena with different students with varying
backgrounds.

Data Collection

The data collection for this study occurred during two paired teaching experiments
(TEs). Steffe and Thompson (2000) say that a main purpose for such a methodology is
“for researchers to experience, firsthand, students’ mathematical learning and reason-
ing” (p. 267). Steffe and Thompson specify that sessions of a TE (called a teaching
episode), consists of a teaching agent, students, a witness, and a method of recording (p.
273). The teaching experiment methodology allows for a researcher to explore student
reasoning over a period of time and to observe how they think about and learn
particular mathematical concepts. Thus, during a TE, the interviewers formulate and
test hypotheses about students’ thinking both within and across teaching episodes, and
“teaching actions occur in a teaching experiment in the context of interacting with
students” (p. 277). By taking the students through a sequence of tasks and regularly
asking clarifying questions throughout the interviews, we were able to examine the
students’ reasoning over time and in a variety of contexts.

During all of the TEs, the students sat together and worked at a computer (a large
desktop in the interviewer’s office) in the programming environment PyCharm
(JetBrains 2017). This environment allowed the students to type and edit code, and
when they ran the code, the output would appear in an adjacent window. The students
could then look at and reflect upon the output of their code. The students were given
paper handouts with problem statements, and the tasks and prompts were also written
in PyCharm, and the students used PyCharm to edit and run the Python code. We
videotaped and audiotaped the interviews, and we also took a screen video recording
of their work on the computer. This allowed us to view the students’ on-paper work
and their interactions, as well as what they programmed and how they used the
computer in real time. The students informally took turns typing, but we did not put
formal constraints on who programmed on which problems.

The TEs involving Pairs 1 and 2 were conducted more or less concurrently during one
academic spring term. Pair 1 met for a total of 16 hours, and Pair 2 met for a total of
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12.5 hours.5 Interviews with Pair 1 occurred, at times, several days before Pair 2, and so we
had some time to adjust and prepare for Pair 2 interviews. However, our research team was
generally progressing interview by interview and not making large adjustments between
teaching experiments (such as adjustments we might make if we had engaged in an entire
retrospective analysis of Pair 1’s TE before conducting Pair 2’s TE). This structure was
largely due to practical reasons, as we needed to conduct both TEs in one term, and the term
was not long enough to conduct them successively. We acknowledge that this lack of
retrospective analysis between TEsmay be a limitation of the study, but we also see value in
having conducted multiple TEs.

Tasks

Over the course of the TEs, we gave the students a variety of counting tasks in which they
were asked to use the computer to help determine the answers to counting problems. In
many cases they solved or attempted to solve the problem first by hand, and then we
would prompt them to code the solution to the problem. In other cases, they used the
computer to solve the problem, and they regularly went back and forth between by-hand
work and work on the computer. Generally, we had them engage in programming directly
by writing and running code, and sometimes we had them evaluate excerpts or outputs of
code. The students often used code from prior problems, sometimes copying and pasting
previously used code and then editing or adjusting it. We frequently asked follow up
questions or asked them to reflect on their thinking and activity. In this way, the TEs were
relatively interactive. On the whole, in designing these tasks we chose counting problems
that we thought (based on prior research or experience) would elicit certain combinatorial
ideas. We have used some similar problems previously (e.g., Lockwood et al. 2015; Reed
and Lockwood 2018), but never in a computational context. Thus, a broad design principle
was to take tasks that we knew were effective in non-computational settings and then
adjust them for a computational setting. Typically, this adjustment meant asking students
to write code for a problem that would not just produce a numerical value, but that would
actually create a complete list of the outcomes.

Figure 3 shows the first task we gave to all of the students. For the students whowere not
familiar with Python, we wanted to expose them to a program and let them see examples of
the syntax. For these students, seeing the program gave some common syntax and language
to talk about, and we instructed them how to run it. By engaging with this code, they could
think more about what the program was doing and what the different components of the
program and the syntax did.

For the purposes of this paper, we focus especially on the tasks involving the develop-
ment of arrangements with unrestricted repetition, arrangement without repetition (permu-
tations), and selectionwithout repetition (combinations). In this sectionwe provide examples
of the kinds of tasks that we used to elicit particular ideas related to these problem types.
These are not the only tasks we offered the students, and, in some cases, we investigated

5 Specifically, Pair 1 met over 11 sessions that were each 60–90 min long over the course of 7 weeks. They
met on TR of Weeks 1, 2, and 3, T of Week 4, TR of Week 5, and T of Weeks 6 and 7. Pair 2 meet over 9
sessions that were each 60–90 min long over the course of 4 weeks. They met MWF of Week 1, M of Week 2,
MWF of Week 3, and WF of Week 4.
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other combinatorial concepts with additional tasks. We are highlighting the tasks that are
relevant to the results in this paper.

Arrangements with Unrestricted Repetition

For arrangement with unrestricted repetition tasks, we chose problems whose outcomes
have elements that can be repeated (we further discuss this problem type in the “Outcomes
as a Bridge between Code and Traditional Formulas” section). In the problems in Table 3,
elements from a given set can be repeated, and we want to count different arrangements of
different elements within an outcome as distinct (for example, the license plate 112ABC is
different than 211ABC).

Arrangements without Repetition

For arrangement without repetition tasks, we chose problemswhose outcomes have elements
that cannot be repeated and the order of elements matters. Table 4 gives some examples of
tasks we used. Note that in some cases we explicitly gave students code (we discuss
particulars of the code further in the “Additional Mathematical Discussion - Selection with
Repetition and Completing the Two-by-Two Table” section) because we wanted novice
programmers to be able to examine (rather than create) code. Note that we began with
arranging all objects and then later restricted to arranging some but not all of the objects.

Selection without Repetition

For selection without repetition tasks, we chose problems whose outcomes have
elements that cannot be repeated, where the order of elements does not matter.

Fig. 3 The first computing task given to students

Table 3 Sample questions for arrangements with unrestricted repetition

A license plate consists of six characters. How many license plates consist of three numbers
(from the digits 0 through 9), followed by 3 lower case letters (from the first 5 letters in
the alphabet), where repetition of characters is allowed? Write some code to solve this problem.
What is a mathematical expression that represents the number of outputs of your code?

Write a program to list (and determine the total number of) all possible outcomes of
flipping a coin 7 times.
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Table 5 gives some examples of such tasks. Note that here, in some cases, we
explicitly provided some code (which we will discuss further in the “Avenues for
Future Research” section). As with the permutations, we did this because we
wanted the students, as relatively novice programmers, to be able to make sense
of and hopefully subsequently use this greater than operation.

Data Analysis

As the interviews progressed, during the teaching experiments it was clear that the use of the
!= to and the > symbols, in conjunction with nested for loops, were reinforcing valuable
combinatorial ideas for the students. We wanted to understand how these symbols and
conditional statements potentially enriched students’ understandings of combinatorial prob-
lem types (and distinctions between problems such as permutations and combinations).
Thus, in analyzing data for this paper, we attended particularly to episodes in which the
students interacted with these particular conditional statements. To do this, we first reviewed
transcripts, particularly episodes inwhich the students used, referred to, or reflected upon the

Table 4 Sample tasks for arrangement without repetition
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!= or > symbols in their code. We created documents with all of the instances
from the transcripts involving the use of the != or > symbols, and we analyzed
these documents using the qualitative analysis software MAXQDA 2018
(VERBI Software 2017). We specifically identified instances of two kinds of
ways in which the students interacted with these conditional statements. First,
we observed episodes when the students spoke explicitly about the conditional
statements, such as explaining or reasoning about what they did. This often
occurred when students were explaining their work or were evaluating given
code. Second, we also observed instances when the students used the condi-
tional statements in their combinatorial activity – that is, they incorporated !=
or > into their code as they solved a problem.

We reviewed the entire documents as a research team, and we found that we had
episodes that illustrated student reasoning about the conditional statements (and their
relationship to combinatorial problem types and outcomes) within each problem type.
We also identified and analyzed instances in which students coordinated both types of
conditional statements. Ultimately, we view this paper both as offering a theoretical,
mathematical discussion and as sharing empirical findings. This is reflected in the
results, as we provide both mathematical discussion of combinatorial ideas in a
computational setting and evidence of student reasoning about those ideas in such a
setting. In light of these goals, during analysis we decided to organize our findings
according to problem types (as in Table 1), and we selected episodes that would best
represent the students’ reasoning about conditional statements on these particular
problem types. This analytical process allowed us to examine the students’ reasoning
about the symbols within these conditional statements, and we sought to create a
narrative (Auerbach and Silverstein 2003) about their reasoning about and use of those
symbols. As the results will demonstrate, these symbols were related for the students,
and the symbols seemed to provide an effective way for them to differentiate between
the kinds of outcomes they were counting.

Table 5 Sample questions for selection without repetition
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Results

We organize the results into the following parts. In the “Arrangement with Unrestricted
Repetition Problems”, “Arrangementwithout Repetition Problems,” and “SelectionWithout
Repetition Problems” sections, we describe the students’ work on the three respective
problem types of arrangement with unrestricted repetition, arrangement without repetition,
and selection without repetition. We first discuss the mathematical ideas involved in each of
those problem types, and then we present the students’ work and their reasoning about the
code. The goal in these sections is to demonstrate that the students developed solid
understandings of each of these problem types in terms of the respective for loops and
conditional statements they programmed in Python. Then, in the “Students’ Reasoning
about both != and > Conditionals” section we briefly present data in which the students
reasoned about and coordinated more than one type of conditional statements.

Arrangement with Unrestricted Repetition Problems

Arrangement with Unrestricted Repetition – Mathematical Discussion

In this problem type, we are counting arrangements of objects where order
matters and where we are allowed to repeat elements. For example, such a
problem may say “How many 3-character sequences can I make from the
numbers 1, 2, 3, 4, 5, and 6, where repetition of numbers is allowed?” To
answer this, we can consider the number of options we have for each of the
three distinct spots. Because we can repeat elements, we have six options (the
numbers 1 through 6) for what can go in each position. This counting process
reflects an expression of 6·6·6 and yields 216 total outcomes. The general
formula isnr, as we have n options for each of the r positions.

If we wanted to list the outcomes using Python code, we could use nested
for loops as seen in Fig. 4. This code generates all of the outcomes as
described above, as the nested for loops iterate through each item in the set
Numbers, following an odometer strategy (English 1991) and producing a
lexicographic list. The print statement within the nested loops prints the out-
comes, and the Counter tracks the total number of outcomes and is printed at
the end. Notice there are no additional restrictions or conditional statements
within the for loops or the code. For an output of the code, enter the code into
a Sage Math Cell (http://sagecell.sagemath.org/). For those who want more
detail on the mechanics of how this code could produce outcomes, in
Appendix 2 we have included a more detailed description of how the Python
code works in generating outcomes to a given counting problem.

We now present episodes involving both pairs of students that demonstrate their
work on arrangement with unrestricted repetition problems.

Arrangement with Unrestricted Repetition – Student Work

We first describe Charlotte and Diana’s worked on the License Plate problem,
which states, “A license plate consists of six characters. How many license plates
consists of three numbers (from the digits 0 through 9), followed by 3 lower case
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letters (from the first 5 letters in the alphabet), where repetition of characters is
allowed?” Charlotte first clarified what was being counted, asking, “And then
when it says, where repetition of characters is allowed, that’s like – it could be
000AAA?,” which we confirmed. They then created the code in Fig. 5 by
borrowing techniques from previous problems. When asked how the code might
structure the list of outcomes, Diana responded with the explanation in the excerpt
below.

Diana: Yeah. It’ll probably do – it’ll keep these – because these are the
starting points. So, like the triple 0 and then it’ll probably go like 001,
002, 003, and include all those different combinations. And in terms of
like a mathematical expression, I was thinking, maybe it might multiply
the options by each other. So, like with our paper here – Since this is 0 –
9, then there are ten options [refers to Fig. 6]. And there’s ten options
here, and there’s ten options here. It might do 10 times 10 times 10 times
5 times 5 times 5. Because there’s five options here.

Note that in her response, Diana (even if implicitly) allowed for repeats by
listing the 000 and 001, etc. By leveraging the structure of the nested loops and
the fact that they were repeatedly drawing from sets of Numbers and Letters,
we infer that they were able to account for repetition being allowed.

We similarly asked Corey and CJ to write code that answered a refined version of the
License Plate problem, where the digits were chosen from the numbers 0 through 5

Fig. 4 Python code that prints ordered triples from the numbers 1–6, where elements can be repeated

Fig. 5 Charlotte and Diana’s code for the License Plate problem
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rather than 0 through 9.6 The students produced the code in Fig. 7 (and they later edited
their code and realized they did not need multiple sets for numbers and letters).

We asked the students what they thought might happen when they ran the code in
Fig. 7, and they had the following exchange (Corey initially misspoke and said there
were five numbers, but they later addressed that and switched to six numbers).

Int. 1: So what do you think will happen? Tell me what you were doing.
Corey: So, for each it’s once again doing the same thing as it did here, but each array
is just one character on the license plate. So, setting the first five characters like just
the constant. The last character could be A, B, C, or D. And then that would just be
for letters to A. And then it would go through again and it would get to letter to B.
And then for letter to B it would have another five which would be A, B, C, D, E. So
it should – the total number should be 5 times 5 times 5 times 5 times 5 times 5.
CJ: So you’re saying the first one will 000AAA. And then 000AAB? 000AAC.

The point here is that the students seemed to realize that their code was producing 6-
character outputs where repetition was allowed – CJ noted that 000AAA, 000AAB,
000AAC would be the first three outcomes. After this conversation they ran the code
and found that they were correct in their prediction.

Both pairs of students solved additional arrangement with unrestricted repetition
problems in a similar way, including the Coin problem (Write a program to list (and
determine the total number of) all possible outcomes of flipping a coin 7 times). Again,
both pairs used nested for loops, arriving at the correct answer of 27. For example, CJ
and Corey’s code for this problem is seen in Fig. 8, which was similar to the code
Charlotte and Diana produced.

The purpose of presenting the examples in this section is to show that the
students used nested for loops for problems involving arrangement, where repe-
tition of elements was allowed. Further, both pairs used this same overall code
structure to solve these problems.

6 This change was made to reduce the number of outcomes, as PyCharm did not easily display all the
outcomes in the original problem.

Fig. 6 The students’ expression for the License Plate problem
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As we move on to problems involving arrangement without repetition and
selection without repetition in the following sections, we will contrast the structure
of code used to solve those problems with code used to solve arrangement with
repetition problems in this section. As we will see, by adding conditional state-
ments after each for loop, the nested for loops can be tweaked relatively easily to
account for arrangements without repetition (permutations) or selection without
repetition (combinations).

Arrangement without Repetition Problems

Arrangement without Repetition – Mathematical Discussion

In this problem type, we solve problems in which order matters but repetition is not
allowed, so we consider arrangements where elements of an outcome cannot be
repeated. For example, such a problem may say “How many 3-character sequences
can I make from the numbers 1, 2, 3, 4, 5, and 6, where repetition of numbers is not
allowed?” To answer this, we can consider the number of options we have for each of
the three distinct spots. Because we cannot repeat elements, we have six options (the

Fig. 7 CJ and Corey’s initial code of their License Plate problem

Fig. 8 CJ and Corey’s code for the Coin problem
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numbers 1 through 6) for what can go in the first position, then for each of those we
now have five options for what can go in the second position, and then for each of those
we have four options for what can go in the third position. This counting process
reflects an expression of 6·5·4, which yields 120 total outcomes. The general formula
for arranging r objects from n objects is the product n· (n – 1) · (n – 2) ·…· (n – r + 1),
so there is a total of r terms. This product can also efficiently be expressed as n!/(n – r)!,
as a number of terms cancel.7 These are called r-permutations (Tucker 2002), and they
are often denoted as P(n,r).8

To write Python code to list all of the outcomes and to determine the total number of
outcomes, we note that we are considering available options for each position, so we
can again use nested for loops. However, we also need to account for the fact that in this
case we cannot repeat elements. Thus, we must incorporate a condition (in the form of a
conditional if statement) that precludes the counting (and printing) of outcomes with
repeated elements. To do this, we include a condition that specifies that the outcomes
get counted and printed only if the number in each successive position is distinct from
(not equal to) the numbers in the previous positions. As seen in Fig. 9, we incorporate
this by using the “if j!= i” command, where, as we have noted, the symbol != means
“not equal to.” Thus, the code in Fig. 9 generates all of the outcomes as described
above. Again, the print statement within the nested loops prints the outcomes, and the
Counter keeps track of the total number and is printed at the end. The conditional if
statements with! = symbols make it so outcomes with repeated elements are not printed
and do not contribute to the total – thus this code only counts those outcomes where
elements are not repeated. Note we include both the k != i and k != j because we want
no repetition throughout the sequence of numbers (if we only had k != j we might have
an outcome like 121). Generally, if we are arranging r objects from a set of n distinct
objects, we would have r nested loops and an original set of size n.

To write code that reflects the number of arrangements of n distinct objects, yielding
an answer of n!, we would have n nested for loops where we include a conditional
statement after each for loop to ensure that no elements repeat. Again, such a problem is
a special case of P(n,r) problems.

Arrangement without Repetition – Student Work

We originally introduced the != symbol outside the context of permutations, and the
students seemed to understand it as a way to account for ensuring certain elements
would not be equal. We reintroduced the symbol in the context of permutations when
we gave them the 5-People problem (Fig. 10). We included the code in the problem,
and we asked them to make sense of it. Here we present Charlotte and Diana’s work on
this problem, noting that CJ and Corey did similar work.

7 There is another useful interpretation of the quotient n!/(n-r)!, in which we consider arranging all n objects of
the set. But, since we only care about the first r positions, for each arrangement of the first r positions, the
arrangements of the remaining n-r positions all actually constitute equivalent outcomes (hence the division by
(n-r)!). However, this interpretation is not relevant to this paper and we do not elaborate on it further.
8 Observe that another common counting formula, n!, is a special case of these r-permutations. P(n,n) = n!
which is the number of arrangements of an entire set of n distinct objects.
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Int. 2: What do you think the code’s doing?
Charlotte: Gosh, a lot of code.
Diana: I think for sure that the statements have the exclamation point each time,
that’s making it so that these values will not repeat, which makes sense when you
have five people because you can’t just repeat a person.
Charlotte: Yeah, that makes sense. Yeah, kind of what she was saying, I think the
code, yeah, just trying to figure out how many different arrangements each person
can be in and then yeah, each of these exclamation points, like Diana said, is to
make sure John isn’t sitting in two different seats at the same time.

Charlotte and Diana seemed to make sense of the != condition in terms of the
context of the problem, with Charlotte viewing the != condition as ensuring that a
person (for example, John) could not sit in two seats at the same time. In
considering a solution to the problem, they realized that the answer was 5!, and
we asked them about how that solution is reflected in the code. In the excerpt
below, Charlotte reiterated her understanding of the != symbol, explaining that it
eliminates options for each position. This demonstrates that by connecting the
conditional statement in the code, the students were able both to eliminate a
choice for the next position and reduce the number of options for the next
position. In this way, the code served to connect the set of outcomes and counting
process, in terms of Lockwood’s (2013) model.

“How many ways are there to rearrange 5 people: John, Craig, Brian, Angel, and Dan?” Below 

is some code that counts the number of arrangements. What does this code do? Note, the ! 

symbol means “not,” so j != i means “j is not equal to i.”

Fig. 10 The statement of the 5-people problem as given to the students

Fig. 9 Python code that prints arrangements of 3 numbers from the numbers 1–6
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Int. 1: Do you see the kind of factorial at all in the code? Like in the structure of
the code or is that harder to see.
Charlotte: Yeah, in a way because with the P2 not equaling P1 then it eliminates
one of the options, so then there’s only four. So, like, this first for loop you have
five options, for this one it’s getting rid of one, so there’s only four. Then it gets
rid of two, so there are three options, then it gets rid of three, so it’s two options.
And then it gets rid of four, so there’s only one option.

Even though we illustrated their solutions to problem involving arranging all n
elements of a set, the students also solved r-permutation problems, where they
had to arrange r objects from n objects. In particular, Charlotte and Diana
tended to edit their previous code that consisted of n for loops to only include
r for loops. Charlotte recognized an r-permutation as being related to an n-
permutation problem, saying, “It’s still the same type of problem, but we’re just
limiting the amount that’s in the print.” CJ and Corey similarly reasoned about
r-permutations, describing the purpose of the != symbol as “It would do 1, 1, 1
if we didn’t have the not equals to.” The point of these examples is to
emphasize the role of the != symbol in their code.

Eventually, we asked both pairs of students about that formula for arranging
n distinct objects (a special case of P(n,r)). Both pairs arrived at the formula of
n!. We gave them the prompt that said, “How does your code in this worksheet
reflect your answer in [the problem above]? In particular, what role does
the != sign play in your mathematical formula? Charlotte and Diana’s response
to this prompt suggests they understood how the conditional statement of their
code related to their formula.

Charlotte: Right, I think it definitely comes across like, as a part of the factorial
it’s, I wanna say, 5 times 4 times 3 times 2 times 1, the why it’s decreasing is
because of that not equal to sign. So, you like can’t have the same letter or
number multiple times.
Int. 1: Okay, great, is that what you’re thinking too Diana?
Diana: Yeah, and like, specifically like in the n formula […] Like, you’re
subtracting like you’re subtracting a greater number each time by one because
it’s going down to like the next lowest number or the next highest number. And
that just shows that it’s not equal to itself like no object can be equal to itself in
the string of whatever you’re building.

Particularly in Diana’s response, we see that the not equals to constraint in the code was
related not just to the general formula she had found, but also to the outcomes that were
being created. She included the != command because “no object can be equal to itself in
the string of whatever you’re building.” This comment suggests to us that she under-
stood how including the != condition in the code affected outcomes, and that it would
only include outcomes with no repeated elements within them. Similarly, CJ and Corey
made sense of the != condition in their formula for n!. They related it to a problem in
which they were asked to arrange the letters in the word ROCKET.

CJ: So, it doesn’t account for all n of them all over again.

326 International Journal of Research in Undergraduate Mathematics Education (2020) 6:303–346



Corey: Because the way the code’s working is it’s just matching each one of the
letters with another letter. So, if you didn’t have that not equals sign ROCKET,
for example, would just print out R, R, R, R, R.

In subsequent work, both sets of students also found the formula for arranging r objects
from n objects, and they similarly argued about the != not allowing for elements to be
repeated.

In this section, we have demonstrated that both pairs of students made sense of the
role of the! = conditional statement, and they contrasted code that included the !=
condition with the nested for loops that did not include !=. They seemed to understand
the != condition in terms of outcomes and realized that including that condition in their
code would not allow outcomes with repeated elements to be printed. They were able to
do this both when arranging all n elements of a set or arranging r of n elements in a set.

Selection without Repetition Problems

Selection without Repetition – Mathematical Discussion

For selection without repetition problems, repetition is not allowed and order does not
matter. Combinations count unordered selections (as opposed to arrangements) of r
objects from n distinct objects. Said another way, combinations count sets rather than
sequences. There are a couple of different ways to solve these problems. We briefly
mention the most common solution method, and then we elaborate another approach
that aligns nicely with a solution that involves coding.

The most common way to solve these problems is to focus on a relationship between
combinations and permutations. We note that for any set of r distinct objects, there are
r! ways to arrange the objects. Thus, we know there are r! times as many arrangements
of r objects chosen from n objects as there are selections of r objects. Because we know
(from above) that there are n!/(n - r)! arrangements of r objects from n objects, we can
divide this value by r! to find the total number of combinations. Therefore, there are n!/
((n – r)!r!) total selections (or combinations) of r objects from a set of n distinct objects.
For example, when counting permutations of 3 numbers from the numbers 1–6, we
could count 123, 132, 213, 231, 312, and 321 all as 6 distinct outcomes. For combi-
nations, though, these each represent a single subset {1, 2, 3}, and we don’t want to
distinguish between arrangements of those three numbers. Thus, a way to think about
this is that for any subset of 3 numbers from 6 numbers, there are 3! = 6 arrangements
of those numbers. Since we know there are 6!/3! total arrangements of 3 from 6
numbers, then to find the combinations in which order doesn’t matter we can divide
that total by 3!. Hence, there are 6!/(3!3!) total subsets of 3 elements from the numbers
1 through 6. This highlights the notion of equivalence and emphasizes the fact that in a
list of permutations there are r! equivalent arrangements of each set of r elements.

There is another way to think about generating and listing combinations. We
could generate the following list of 3-element subsets from the numbers 1 to 6
by holding a first number constant, and then cycling through additional options
where subsequent numbers must be strictly greater than previous numbers (Fig.
11). By writing the numbers in ascending order, we avoid repeating numbers
and duplicating orderings.

327International Journal of Research in Undergraduate Mathematics Education (2020) 6:303–346



Notice that if we list in this way we can see a sum of sums: (4 + 3 + 2 + 1) + (3 + 2 +
1) + (2 + 1) + 1, or 10 + 6 + 3 + 1, for a total of 20. In terms of understanding the nature
of what is being counted and comparing outcomes to other problem types, this is a
useful way of thinking about combinations.

We note that if we tried to code the typical closed-form formula, it is inefficient for a
computer to list all of the arrangements and then “divide out” (or not print) those
elements that are equivalent. In coding this, then, we focus on the notion of listing sums
of sums, which is the latter approach described above. Here we use the greater than sign
(>) to help us list these sums of sums (note, we could equivalently use the < sign). We
include a condition that specifies that the outcomes get printed only if the number in
each successive position is greater than the number in the previous position. This
prevents reordering elements and excludes duplicates of 123 (specifically, 132, 213,
231, 312, and 321) from being printed. As seen in Fig. 12, we incorporate this by using
the if j > i condition, where the symbol > literally means that j must be numerically
greater than i.9 Thus, this code in Fig. 12 generates all of the outcomes as described
above. Again, the print statement within the nested loops prints the outcomes, and the
Counter keeps track of the total number and is printed at the end. The conditional if

Fig. 11 A list of 3-element subsets from the set of numbers 1 through 6

9 Including j > i also subsumes the case in which j might be equal to i. Thus, we do not need to include both
j != i and j > i, as the j > i includes these cases. Further including k > j this also accounts for k being greater
than i, so it is not necessary to also include a command in which k > i as well. Including additional constraints
like k > i or j != i would not be incorrect, but they are not necessary.
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statements with > symbols make it so duplicate outcomes with re-ordered elements are
not printed and do not contribute to the total.

We note that we only employ this > technique if we are actually comparing
numerical values, and so we intentionally encode our set of elements as
numbers. Note, Python does allow for string comparisons, but it compares
strings lexicographically according to ASCII characters, which is not something
we would expect students to know or predict. Thus, in coding combinations
using the > technique, we restrict to encoding strings as numbers and compar-
ing numbers. We acknowledge that requiring encoding strings as numbers is a
potential additional complication of a computational setting, which could be
viewed as a limitation of this computational approach. The students in this
study did not show difficulty in making connections between isomorphic
problems, but we grant that this could be a difficulty for some students.
However, we also point out that encoding outcomes is actually a very desirable
and important combinatorial practice that we want to develop in students (e.g.,
Lockwood et al. 2015), as the combinatorial properties and relationships of sets
of distinct objects are the same whether those objects are people, letters,
numbers or something else. So, creating an isomorphism between a set of
distinct objects and a set of numbers does not change the number of arrange-
ments, and it is instructive for students to know this. We address this issue
fur ther in the "Conclus ion, Discussion, and Avenues for Future
Research" section.

Selection without Repetition – Student Work

The two pairs of students engaged in slightly different work on these problem types, but
they made similar kinds of connections with the Python code. In this section, we
describe both pairs’ approaches to combination problems and highlight connections
they made between such problems and conditional statements in Python.

In solving problems involving combinations, Charlotte and Diana engaged in quite a
bit of initial by-hand work before they coded, and they solved the problem by reasoning
about equivalence. Charlotte and Diana seemed sure that they did not want to count

Fig. 12 Python code that prints (unordered) selections of 3 numbers from the numbers 1–6
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outcomes in which the same elements were ordered as distinct, and they articulated the
idea of “duplicates” to talk about such outcomes. In particular, they solved the 2-Book
problem, which states Suppose you have 8 books and you want to take a pair of them
with you on vacation. How many ways are there to do this? After reasoning about the
problem and how they might code it for quite some time without being sure of how to
proceed, the interviewer prompted them to try to consider the problem by hand. They
then solved it by hand, arguing that they could have 8·7 total pairs of books and
realizing that they could divide by 2 to account for duplicates (see the exchange below).
Thus, they arrived at an answer of (8·7)/2 (Fig. 13), which is correct.

Charlotte: I would just say eight times seven.
Diana: Yes, but probably divided by two because there will be duplicates like
with the marble scenario. With that you can take two books with eight options,
then seven, then that goes to six if you divide that by two you get twenty-
eight?
Charlotte: Yes.
Diana: I think there are twenty-eight ways to do it because it eliminates you
taking Book A, and Book B; or Book B, and then A because it’s the same thing.

To connect this idea to the code, we introduced the idea of using “if j > i” by asking
them to think about the code in Fig. 14 and to decide whether it would solve the
problem (notably, we provided this code for them to evaluate).

The following exchange shows Charlotte and Diana interpreting this task. Notice
that they made sense of the role of the j > i condition both in the code and in the printed
outcomes. They returned to this idea of not wanting to count duplicates, and they made
sense of the code in terms of that perspective.

Int. 1: Okay. Cool. Great. Now let’s try. What do you think that’s doing?
Diana: Yeah, it gets rid of the duplicates because it prevents it – j has to be bigger
than i, if i is 1, then j can be anything above it, but then you can’t have it be flip-
flopped.
Int. 1: Good. What do you mean flip-flopped?
Charlotte: You can’t have 2, 1; then j being 1 isn’t bigger than 2.

Fig. 13 Charlotte and Diana’s initial expression for the 2-Book problem
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Int. 1: Mm-hmm. Okay. Great. So how do you think, what do you think the total
will be, and how do you think the outcomes would be structured?
Charlotte: I feel it might be the 28 that we calculated. How it’s structured, it’ll do
one paired with two through eight. Then two paired with three through eight.
Then keep going three through, four through eight.
Int. 1: Great. What’s sort of expression would give you that total? Can you write
it down, based on the code?
Diana: It seems it would be 7 plus 6 plus 5 plus 4 plus 3 plus 2 plus 1.

In this excerpt we see that both students were attuned to not wanting duplicates –
outcomes of both 1,2 and 2,1. When asked how the outcomes were structured, they
connected the 28 they had gotten to the ways in which 1 was paired with 2–8, 2 with 3–
8, etc. In this way, they seemed able to relate the code to a sum of sums solution to this
problem, in particular 7 + 6 + 5 + 4 + 3 + 2 + 1. This was tied closely to the set of
outcomes they had found.

After they had solved the 2-Book problem, Charlotte and Diana solved the 3-Book
problem (Suppose you have 8 books and you want to take three of them with you on
vacation. Can you write code to list all of the ways you can choose your three books?
What do you expect the structure of the list of outcomes to look like?). They extended
their reasoning on the previous 2-book case to the 3 books, as seen in their correct code
below (Fig. 15).

To summarize Diana and Charlotte’s work on these combination problems, they
did not come up with the use of the conditional > statement on their own, but they
were able to make sense of it when it was presented and were able to understand
what it was doing in terms of the printed outcomes. They focused especially on
“duplicates” and realized that using the > symbol would prevent duplicates they
didn’t want from getting printed. Then, they demonstrated that they could extend
this kind of reasoning as they coded additional problems.

Corey and CJ also worked on combination problems, and they began with the
2-Marbles problem (Suppose you have six different marbles in a bag. Write out all
of the possible ways you could pick two marbles out of the bag, without replace-
ment?). We initially encouraged them to do some by-hand listing on this problem,

Fig. 14 Code we gave the students on the Book problem
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and in particular CJ came up with the list in Fig. 16. As he made his list, he said,
“These are all the different ways you can pull marbles out. This is just 5 plus 4
plus 3 plus 2 plus 1,” and this sum is represented in the structure of his list. We
note that it was particularly fortuitous for CJ to encode the marbles as the numbers
1 through 6, because it seemed to help attune him to the idea that having the
second number greater than the first number eliminates duplicates.

The students then set out to try to code the outcomes of the problem. They
came up with the code in Fig. 17, and we had the following exchange. In
particular, we note that they were attuned to what the > conditional statement
accomplished in their code. We conjecture that CJ was able to reason about this
conditional statement in part because he had written the outcomes as strictly
increasing pairs of numbers.

Fig. 15 Charlotte and Diana’s code on the 3-Book problem

Fig. 16 CJ’s initial by-hand list on the 2-Marble problem
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Corey: If i is not equal to j - This would be with replacement. If we can’t have 1,
2; and 2 1. I’m just writing it to help me think about how I could go about
actually writing this out.
[…]
Int. 1: CJ, you observed something in there about the second column.
CJ: If it just goes through systematically the way a computer thinks, looking at
the next one and then using it; then our second column always has to be bigger
than our first column. If j is bigger than i then it won’t ever print 2 and then 1.
[…]
CJ: The i not equal to j that just makes it so it can’t be 1, 1; or 2, 2. If j was bigger
than i, then print it. These are all the orders, it won’t ever do the same combina-
tion twice because it won’t choose 1 and 2; then 2 and 1.

In this excerpt CJ and Corey indicated that they were including the > condition because
they wanted to produce a set of outcomes in which only one of 1,2 and 2,1 would be
included. Also, they could think critically about the difference between the != and the >
conditional statements and what each was doing in terms of their outcomes. We
emphasize that the point of this example is that as they engaged in the activity of
coding (and coming up with a way to have the computer generate strictly increasing
pairs of numbers), CJ and Corey were very aware of the nature of the outcomes they
were trying to count. That is, they were reasoning about the set of outcomes in order to
inform their counting process. In contrast to Charlotte and Diana’s work, where their
initial solution of (8·7)/2 reflected the more traditional approach to combinations (and
the equivalence in the typical formula for combinations), we point out that listing
combinations lexicographically was a natural thing for CJ to do. This suggests that the
nested sum structure that our code reflects is not a contrived property that we imposed
on students, but, at least in this case with CJ and Corey, it arose naturally.

CJ and Corey extended to the 3-Marbles problem (Suppose you have six different
marbles in a bag. Write out all of the possible ways you could pick three marbles out of
the bag, without replacement). They discussed adjusting their code from the 2-Marbles
problem by adding another for loop and again focusing on using the > symbol. They
had some discussion of whether or not they needed to include != as well, deciding that
having “if j > i” also prevents j from equaling i, and they generated the following by-
hand list (Fig. 18a) and code (Fig. 18b).

They then ran the code, and it produced 20 outcomes that aligned with their list. This
episode highlights their continued use of the > sign to code these problems.

Fig. 17 Corey and CJ’s code for the 2-Marble problem
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As an additional illustrative example of students’ work on these combination
problems, Charlotte and Diana were working on the Lollipop problem (How many
ways are there to give 3 identical lollipops to 8 different kids (if no kid can have
more than 1 lollipop)?). The following exchange shows Charlotte and Diana
reasoning about how to code the Lollipop problem. They had some basic loop
structure written, but they were considering what conditional statements to include.
This was important as they thought about whether they wanted to use a conditional
statement involving != or >, and this indicates their understanding of what each
symbol was doing.

Diana: Or, well – I think we need to fix our for loop – like edit it a little bit more,
but it is numbers in the set, so it should arrange it correctly because we’re using
that syntax that needs numbers. But you’re right. We do need like a – i is not
equal to i, or whatever.
Charlotte: Yeah, but I don’t think we need the ‘greater than’ sign.
Diana: I think it could be useful, though. Because otherwise we’re gonna have to
do ‘not equal to this, not equal to this, not equal to this.’ But if we use the ‘greater
than’ sign, we just need to say, yeah, ‘k is greater than j,’ so, it doesn’t repeat
itself.
Charlotte: But then the problem with that – because each slot is something
different, so you could have 1, 2, 3, and 3, 2, 1. Because they’re completely
different things. So –.
Diana: Could it though? Because if k needs to be greater than j, you couldn’t have
3, 2, 1. Because that would mean that k would be 1 and that’s less than 3.
Charlotte: Oh, right.

They then wanted some clarification about what it meant for the lollipops to be
identical, and we clarified that there is no difference between, say, lollipop A and
lollipop B. This led them to the conclusion that they did indeed want to use the greater
than sign. As we see again, they realize what each condition is doing in terms of the
outcomes they were trying to count.

Charlotte: Just like this part works [referring to the conditional statement].

Fig. 18 a, b: CJ and Corey’s list and code for the 3-Marbles problem.
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Int. 1: Okay. Yeah.
Charlotte: Because, yeah, then it eliminates the factor of duplicates.
Int. 1: Okay. And can you say again, how that ‘greater than’ sign eliminates the
duplicates like you said?
Diana: So, like it says that k is not able to be less than j, it always has to be greater
than. So, and in the example of the 1, 2, 3, it’ll print 1, 2, 3, but then when it
comes to printing 2, 3, 1, it won’t be able to do it because k can’t be 1 when these
two are 2 and 3.

This example demonstrates that the students were wrestling with how to solve the
Lollipop problem, and they were able to figure it out by attuning to the particular
outcomes they were trying to count. This suggests that being able to distinguish
between outcomes using! = and outcomes using < offered a useful perspective through
which the students could reason about the nature of the outcomes. CJ and Corey also
worked on the Lollipop problem, and they similarly reasoned about outcomes and the >
symbol as they coded this problem.

Students’ Reasoning about both != and > Conditionals

We conclude the “Results” section with data in which the students solved a problem
that involved coordinating two different types of problems. In particular, the Lollipop &
Balloon problem states, How many ways are there to distribute 3 unique lollipops and
3 identical red balloons to 8 different kids (if no kid can have more than 1 object)? In
this problem, students must code so they can account for unique lollipops (which
involves permutations) and identical balloons (which involves combinations). The
students had previously correctly coded a problem involving 3 identical lollipops and
3 identical balloons, and so they adjusted their code based on that problem. In the
following exchange they discuss their approach to the problem, and they first came up
with a mathematical solution (Fig. 19). We acknowledge that the fact that they solved
the problem mathematically first limits suggests that the computation setting was not
necessary for them to reason about the problem. However, as we demonstrate in this
episode, the computational setting offered an additional perspective that enriched their
understanding of outcomes and what they were counting.10

Charlotte: Do you think that it’s going to be the exact same thing [referring to the
question of 3 identical lollipops and 3 identical red balloons]?
Diana: I think it’s going to be a little bit different because I think that the three
unique lollipops means that we’re getting rid of – or we’re accounting for the
duplicates now. Like, we don’t have to get rid of them, or divide them out.
Charlotte: Okay. So, we can say 1, 2, 3 – Okay. So, we can still do – So, we’ll do
these three because positions for the lollipops, and then we have the three

10 In addition, the mathematical solution they developed was not generated completely independently of any
computational work. It emerged in a setting in which they had been working with the computer for multiple
hours, and even if they did not directly draw on the computer in deriving this solution, we contend that both
computational and noncomputational ideas and representations all contributed to a particular milieu in which
the students were working.
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different positions for the balloons. So, starting with the lollipops. Yes, you have
the 8 times 7 times 6, and then you don’t divide it by anything.
Diana: Yeah. Because they’re unique. So, in an order like, 3, 2, 1, and you wanna
count this different than like 1, 3, 2. Right?
Charlotte: Okay. But then for the balloons – So, you would do the 5 times 4 times
3, but then divide out the 6?
Diana: Yeah.
Charlotte: And then these are multiplied together?
Diana: That makes sense to me.

To solve the problem, they reasoned about a counting process by differentiating
between the nature of the outcomes in permutations and combinations. They
coded the answer to the problem (Fig. 20), and, as they describe in the
following exchange, they thought about the difference between the >
symbol and the != symbol. The underlined portion below demonstrates their
reasoning about each symbol in terms of the kinds of outcomes they wanted to
count – the greater than accounts for duplicates, and the not equal to makes
sure elements do not repeat.

Diana: Well, we would have like j is not equal to i, right?

Fig. 19 Charlotte and Diana’s expression for the solution to the Lollipops Balloons problem

Fig. 20 Charlotte and Diana’s code for the Lollipops Balloons problem
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Charlotte: Yes.
Diana: Okay. If j is not equal to i – And then k is not equal to j, k is not equal to
i?
Charlotte: Mm-hmm. All right.
Diana: Seems good.
Charlotte: Yeah. I think so. Yeah. I think that looks good.
Interviewer 1: Okay. So, yeah. Tell me what you did and why you think that will
work out.
Charlotte: So, you kinda just changed – Instead of j happening to be greater than
i, we just changed it to j not equal to i. Because the j being greater than i was
accounting for duplicates, and so since we’re allowed to have duplicates this time,
then we’ll just wanna make sure that you don’t get 1, 1, 1. That’s what the j not
equal to i stands for.
Interviewer 1: And I know you said this before, but by duplicates, what do you
mean?
Charlotte: So, with duplicates it will be like, 1, 2, 3 and 3, 2, 1.
Interviewer 1: Okay. Cool.
Diana: Yeah. And in this case, like they are counted as separate outcomes, so I
guess, they’re no longer duplicates, but yeah, we keep calling them that because
that’s what they were in the last problem.

The students’ work on this problem that coordinates both != and > suggests that
they understood how to coordinate those conditional statements and what each
meant in terms of their outcomes. CJ and Corey solved the same problem by
developing similar code, and they also articulated similar distinctions between
the two conditionals.

Conclusion, Discussion, and Avenues for Future Research

In this section we briefly highlight a couple of key points of discussion. First,
we discuss the importance of outcomes and summarize our results in terms of
outcomes. In doing so, we discuss formulas and what we are learning about
students’ formulas. Second, we provide additional mathematical discussion of a
fourth problem type as it relates to code and the two-by-two table. This
discussion will relate to avenues for future research, which we present in the
“Avenues for Future Research” section.

Outcomes as a Bridge between Code and Traditional Formulas

In this paper, we have shown that students were able to reason about, understand, and
use nested for loops and particular conditional statements within those for loops to
computationally generate lists of outcomes for three main types of problems. In doing
so, the students demonstrated that they could draw upon their experience with coding to
make connections with what they were trying to count. Ultimately, we contend that the
value in reasoning about the code, and the specific conditional statements, was in
drawing attention to the outcomes being generated (in the sense of Lockwood 2013).
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That is, the symbols in the Python code seemed to enrich the students’ combinatorial
reasoning by affording opportunities for the students to strengthen connections to the
kinds of outcomes they were counting. Further, it seemed to facilitate productive
discussions about the outcomes, especially whether repeats or duplicates counted as
distinct. We argue that these kinds of discussions contributed to a more well-rounded
understanding of these combinatorial problem types. Because of the demonstrated
difficulty that students face in deciding what counting situation they are in (e.g.,
Annin and Lai 2010; Batanero et al. 1997; Lockwood 2013), we argue that the use
of coding in this context offers an alternative and effective way in which to think about
distinctions between these main problem types.

One point of discussion is that sometimes a common closed-form mathematical
solution to a counting problem does not naturally translate to a listing procedure using
programming commands. The clearest example of this is in coding solutions to combi-
nation problems. In our study, the students solved combination problems computation-
ally by leveraging the “if j > i” constraint to ensure that no elements in an outcome were
repeated. This naturally translated to coding sums of sums (sometimes of sums), which
is a valid solution to combination problems. However, it does not represent the more
commonly known formula for combinations, n!/((n - r)!r!) which involves the idea of
equivalence and dividing out by duplicate outcomes. From a computational perspective,
it would be very inefficient to code a solution that would reflect that particularly formula.
That is, it is inefficient for a computer to list all of the arrangements and then “divide
out,” or get rid of, those elements that are equivalent. By generating all permutations and
then only printing or counting non-duplicated elements, the programmer (and the
computer) would have to do considerable extra work.

In this study, the students managed to reason about both kinds of mathe-
matical expressions for combinations. For example, Charlotte and Diana were
able to make meaningful connections between the closed form of n!/((n - r)!r!)
and their code. They understood the idea of “duplicates,” and they essentially
thought about (and handled) duplicates in two different ways. In the code, they
eliminated duplicates by coding constraints that did not allow the computer to
print duplicates, and in the closed-form expression they divided out outcomes
from permutations based on equivalence. An implication of this phenomenon is
that this example of combinations might offer a useful opportunity to talk with
students about efficiency and coding, particularly by demonstrating that some
mathematical expressions do not correspond to efficient code. It also highlights
why mathematical expressions and formulas might be valuable and demon-
strates some limitations of a purely computational perspective.

More broadly, this suggests that there are some ideas that are fundamental to
counting (such as notions of equivalence) that result in inefficient ways to program
counting processes. A critic might say that there is then little value in examining
computational approaches, but we maintain that computation has valuable perspectives
to offer. In particular, the computational approach involving the “if j > i” condition
focuses students on what they are trying to count, and they must clearly articulate the
nature of the outcomes. It is important to identify ideas that are particularly valuable
mathematically (such as equivalence) and highlight them in non-computational ways,
just as it is important to emphasize ideas that are particularly valuable computationally
(such as certain commands that distinguish between types of outcomes). For example,
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Diana’s quote below highlights the value of the coding process in helping to deepen her
reason about what constitutes an outcome in a given situation.

Diana: I feel like it was also helpful to learn how to do them because then that
helps me figure out how to translate a math problem on paper into code. But then
also, it helps me see the structure of what it’s actually printing and if it’s gonna do
123, 124, it’s not gonna do 132. So, you know that that is not going to be an
outcome.

Additional Mathematical Discussion – Selection with Repetition and Completing
the Two-by-Two Table

We have already discussed the 2-by-2 Table shown in Table 1 (we display it again in
Fig. 23), and we have described students’ work on three of those types of problems
(arrangement with repetition, arrangement without repetition, and selection without
repetition). In our study, we only had students look at these three problem types,11 but
we now briefly make an additional mathematical observation about selection with
repetition problems. We save details of the mathematics for Appendix 1, but the point
here is to highlight this fourth problem type for the sake of completion and to make
useful mathematical connections. In these selection with repetition problems, we are
selecting objects (so order does not matter), but we can repeat objects. An example of
this type of problem is (adapted from Tucker 2002, p. 195): “Suppose I have 6 types of
hot dogs, and I want to buy three hot dogs for lunch. In how many ways could I do
this?” An equivalent way of framing this problem is, “How many strictly non-
decreasing sequences of length three are there from a set of 6 distinct elements?” If
we think about code like that in Fig. 22, then, we can see how the greater than or equal
to symbols in the conditional if statements exactly correspond to this question of
counting strictly non-decreasing sequences. Code that lists such sequences is in Fig.
21. The general formula (discussed in Appendix 1) to solve this kind of problem is C(n
+ r - 1,r).

With this fourth problem type in mind, we now summarize an important
relationship between three natural conditional statements within nested for loops
and the two-by-two table (Table 1 and Fig 23) we have discussed previously. For
simplicity, we have presented examples of code involving two nested loops that
print pairs of elements from a set of the numbers 1 through 5. Notice that it is
natural to consider four cases that constrain relationships between elements in the
set: a) those elements can be equal (with no additional restriction), b) the elements
cannot be equal (!=), c) the elements can be related by strict inequality (>, with the
second elements being strictly greater than the first), or d) the elements can be
related by non-strict inequality (>=, with the second elements being greater than or
equal to the first). These are four natural ways to relate elements in a set, and they

11 As we have noted, there have been no studies that examine students’ reasoning about selection with
repetition problems. We did not include such problems in our study because we were limited in scope of topics
we could cover, and we made this mathematical connection to code after we had gathered our data.
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are reflected in Fig. 22 below. We organize them so they correspond to the two-
by-two table in Fig. 23.

In summary, these four ways of relating elements correspond nicely to the four
common types of counting problems reflected in the two-by-two table (Tucker
2002). We contend that this is a potentially useful insight for researchers, teachers,
and students who may be reasoning about and solving counting problems.

We acknowledge that these particular structures (nested for loops and conditional
statements) are not the only or the best ways to program solutions to such problems.
These problems may be more efficiently coded in other ways, such as recursion, and as
n and r increase in size it is clear that needing to use r nested for loops becomes tedious
and inefficient. However, the point here is that this code structure (nested for loops with
four basic conditional if statements) involve very basic code with which students can
interact, and they provide a clear point of contrast that emphasizes important differ-
ences in how they relate to four basic problem types. These relationships may allow for

Fig. 21 Code that lists strictly non-decreasing sequences

a) elements can be equal d) elements can be related by non-

strict inequality

b) elements cannot be equal c) elements can be related by strict 

inequality

Fig. 22 Code that yields appropriate outputs for the four respective problem types
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important connections to be made between counting processes (as represented by the
code) and sets of outcomes (as represented by the output of the code), which Lockwood
(2013) has posited is important in her model. We are not arguing that computing is the
only kind of activity students should use to understand these ideas, nor are we
proposing that this is necessarily better than other methods that have been suggested
for deepening students’ understandings of counting problems. We do, however, hope
we have made the case that there were some compelling and productive ways of
thinking about these combinatorial concepts that seemed to emerge for the students
within a computational setting.

Avenues for Future Research

In terms of future research, broadly these findings provide an existence proof
that meaningful mathematical ideas can be introduced and reinforced in com-
putational settings. Our case of combinatorics offers but one example of ways
in which computational structures and representations connected synergistically
with mathematical concepts. This suggests that there is more to study and learn
related to the relationship between computational activity like programming and
students’ mathematical reasoning and activity. There are opportunities in future
studies to examine other ways in which computing might facilitate students’
mathematical reasoning, both within other combinatorial concepts, and in other
mathematical domains as well. There is much more to be done to explore
relationships between computational activity and mathematical thinking and
learning, and the field would benefit from more exploration of ways in which
computing and mathematics may complement each other. The students we
worked with engaged in several computational thinking practices outlined by
Weintrop et al. (2016), especially what they call Computational Problem Solv-
ing Practices (specifically programming, preparing problems for computational
solutions, and troubleshooting and debugging). We see potential for other
studies to explore how students might engage with and use other practices
within Weintrop et al.’s taxonomy in a variety of mathematical domains.

More specifically in terms of combinatorics, it would be worthwhile to explore other
potential ways of coding combinations in particular, and to consider whether recursive
formulas or programs elicit similar productive student reasoning. We have had a narrow
focus on for loops and conditional statements, but we see potential for additional
computational structures that may provide insight about combinatorial concepts.
Again, this might involve exploring additional practices that Weintrop et al. (2016)
elaborate within their taxonomy of computational thinking practices.

Fig. 23 Ways to arrange or select r objects from n items (Adapted from Tucker (2002))
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Another clear direction for future research is to study student reasoning about
selection with repetition problems. As noted previously, this has been an under-
researched combinatorial structure, likely because it tends to be a more advanced topic.
However, given the connection we described in this paper to other conditional state-
ments in Python, there are potential opportunities to focus on students’ reasoning about
such problems.
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Appendix 1

Here we provide a more detailed discussion of selection with repetition problems,
which is a standard approach (e.g., Mazur 2010; Tucker 2002). The following question
is an example of this type of problem (adapted from Tucker 2002, p. 195): “Suppose I
have 6 types of hot dogs, and I want to buy three hot dogs for lunch. In how many ways
could I do this?” One way to solve such a problem highlights a clever way to encode
outcomes and make sense of the more general formula. If we consider an actual menu
with 6 types of hot dogs and then consider placing xs on the menu to indicate which hot
dogs we want to buy, we can end up with a menu like the one in Table 6. We listed out a
few different possibilities in the first 6 rows of the menu.

Notice that for each of the six rows in the menu, we could encode the outcomes as
strings of three xs and five |s. For example, the entry in the first row, which represents
three regular dogs, could be encoded as the string xxx | | | | |. The entry in the second
row, which represents two regular dogs and a super dog, could be encoded as xx | x | | |
|. The entry in the fifth row, which represents one super, one footlong, and one Dodger
dog, is encoded as | x | x | | x |. In this way, counting the total number of outcomes is a
matter of counting strings of length 8 that contain 3 xs and 5 bars. To count this, we can
simply choose 3 of the 8 positions in which to place xs, and then the remaining
positions must be bars (see Lockwood et al. 2018 for an extended discussion of

Table 6 Representation of several outcomes of the Hot Dog problem

Regular Super Footlong Bratwurst Dodger Chili

xxx

xx x

x x x

xx x

x x x

x xx
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interpreting such a situation as a combination problem). Thus, there are C(8,3) ways to
buy 3 hot dogs from 6 types of hot dogs, where repetition is allowed. Note that more
generally, if there are n types of objects, and we want to select r with repetition, there
will be r xs and n – 1 bars (one fewer than the number of types). Thus the general
formula to solve this kind of problem is C(n + r – 1,r).

An equivalent way to frame this question is to ask, “How many strictly non-
decreasing sequences of length three are there from a set of 6 distinct elements?”
Notice that these outcomes would be 111, 112, 113, 114, 115, 116, 122, 123, 124, 125,
126, 133, 134, 135, 136, 144, 145, 146, 155, 156, 166, 222, 223, 224, 225, 226, 233,
234, 235, 236, 244, 245, 246, 255, 256, 266, 333, 334, 335, 336, 344, 345, 346, 355,
356, 366, 444, 445, 446, 455, 456, 466, 555, 556, 566, 666. For any of these outcomes,
though, they correspond to an arrangement of three xs and five bars, where the numbers
in the 3-element sets represent in which categories the xs go. For example, 111
corresponds to xxx | | | | |, 223 corresponds to | x x | x | | |, and 366 corresponds to | |
x | | | x x. This perspective of encoding outcomes offers another way to count these
problems. If we think about code like that in Table 2, then, we can see how the greater
than or equal to symbols in the conditional if statements exactly correspond to this
question of counting strictly non-decreasing sequences. This code generates exactly the
set of outcomes we listed above (in the same order).

Appendix 2

Here, we provide a more thorough discussion of the code presented in the lower left
corner of the two-by-two table (Tucker 2002), and in particular in Table 2 of the body
of the paper. That is, we will explain why the code in Fig. 25 counts arrangements with
no repetition. This is intended to provide clarity for readers who are unfamiliar with
programming or who are unfamiliar with Python syntax. The other programs used in
this paper rely on the same concepts, although there may be more for loops and
different additional conditional statements. In explaining the code, we will introduce
for loops and conditional statements, which are important in framing the students’
work. For clarity, we have labeled the line numbers in the code.

Fig. 24 Code that counts selection with repetition problems
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The code begins by defining an ordered list, “Numbers = [1,2,3,4,5].” The list
contains the integers 1, 2, 3, 4, and 5, and is ordered as written. The command in line
(2), “Counter = 0,” creates a new integer variable, called Counter, that we will use to
count the number of outcomes our code produces. Each time we produce a new
outcome, we will increase the value of Counter by 1 (this occurs in Line (7)). Line
(3) begins a for loop. The command “for i in Numbers:” will do a series of commands
for each element in the set Numbers. In Python, indentation is an important element of
specifying commands, and it helps to determine whether commands are nested. The
series of commands is relayed in the instructions nested within the for loop, where
instructions are considered nested within a loop while they are indented further (to the
right) than the loop. The nesting ends when the program reaches a line that is not

indented further to the right. In this case, lines (4) through (7) are nested within the for
loop, and will be carried out for each i in Numbers, whereas line (8) is not nested within
the for loops. Hence, the command “for i in Numbers:” will carry out the nested
commands five times, once per element in Numbers in the order in which they appear
(in this case, the numerical order 1, 2, 3, 4, and 5).

For each i in Numbers, the nested instructions will be carried out with i designated as
a given value. For example, the first time lines (4) through (7) are carried out will be
when the value of i is 1. Similarly, the command “for j in Numbers:” will carry out the
instructions nested within it (lines (5) through (7)) for each value of j in Numbers. That
is, lines (5) through (7) are carried out a total of 25 times (one time for each ordered pair
(i,j), where both i and j are elements of Numbers).

For each value of i in Numbers and j in Numbers, the program will follow the
command “if j != i:,” which we refer to as a conditional statement. That is, as long as
the condition j != i is met, the program will follow the instructions nested within the
conditional statement (lines (6) and (7)). If the condition is not met, then the program
will skip over these instructions (in this case, as the remaining instructions are nested
inside, the program will do nothing). Lines (6) and (7) accomplish two things: first, the
ordered pair (i, j) is printed; and second, the value of Counter is increased by 1.12

Hence, the program will follow the instructions to print (i,j) and to increment the
counter for only those pairs (i, j) where j is not equal to i.

Fig. 25 Code that counts arrangements with unrestricted repetition
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In sum, for each value in Numbers, the program will iterate through every value in
Numbers, printing each pair of distinct numbers as well as keeping track of the total
number of pairs that has been printed. Due to the conditional statement, these pairs are
precisely those without repetition, showing we are counting and listing the desired
outcomes. Line (8), “print(Counter),” prints the value of Counter after all previous
instructions have been followed, giving the total number of arrangements of the
numbers 1 through 5, where repetition is not allowed.
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