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Abstract
This study compares the relative influence of syntax, semantics, and pragmatics in
university students’ interpretation of multiply quantified statements in mathematics,
both before and after instruction. Like previous studies, results show that semantics
plays a heavy role in student interpretation, especially before instruction. Unlike
previous studies, our data suggests that the patterns of student interpretation rely more
upon the mathematical context than upon the order of the quantifiers. We operationalize
two of Grice’s (1975) pragmatic Maxims to evaluate whether they help explain which
interpretations are harder for students to adopt for various statements. Our data support
the claim that students find it easier to construct relevant interpretations, but do not
support the claim that students find it easier to construct interpretations that render the
statement true. Finally, based on our sample from six Transition to Proof classes across
the US, we observe that after their experiences in such courses students became more
sensitive to syntax in their interpretation of the statements.

Keywords Logic . Quantifiers . Syntax . Semantics . Pragmatics . Transition to proof

Advanced mathematical language involves a number of very particular conventions of
syntax and interpretation because mathematicians strive to communicate precise mean-
ings with fidelity. Previous studies have particularly investigated how students make
sense of statements that combine universal (∀) and existential (∃) quantifiers, which we
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shall call multiply quantified (MQ) statements. Such statements appear quite frequently
in advanced mathematics and experts almost always use them in a consistent manner,
though the precise nature of the relationships conveyed varies in important ways (c.f.
Durand-Guerrier and Arsac 2005). Prior studies have assessed students’ naïve readings
of such statements (Dubinsky and Yiparaki 2000) and have proposed and evaluated
certain methods of teaching students to interpret MQ statements as mathematicians do
(Dubinsky et al. 1988; Dubinsky and Yiparaki 2000; Durand-Guerrier and Arsac 2005;
Roh and Lee 2011). This study seeks to extend our insights into student interpretation
of MQ statements by contributing a theoretical framework of the interpretation process.
We evaluate this framework through carefully designed survey instruments adminis-
tered to Transition to Proof students both before and after relevant instruction. We
investigate the constituent influences syntax, semantics, and pragmatics each may play
in the ways students construct meaning for MQ mathematical statements. In particular,
we address the following research questions:

& To what extent do quantifier order, mathematical context, truth of the normative
construal,1 and relevance of the normative construal help explain variations in
student interpretations of MQ statements in mathematics?

& How does student interpretation of MQ statements in mathematics change after
experiencing Transition to Proof instruction?

Insights from Prior Literature

Interpreting MQ statements in mathematics resides at the interface between mathemat-
ical logic and mathematical language. We concur with previous researchers that while
there exist formal rules for trying to render mathematical language purely syntactic
(able to operate by precise rules ignorant of subject matter), mathematicians rarely
operate in such a manner (Durand-Guerrier and Arsac 2005; Weber and Alcock 2005)
and teaching novices will almost certainly require some balance between syntactic rules
and semantic sense-making (Durand-Guerrier 2003; Durand-Guerrier et al. 2012).

To portray this duality between syntax and semantics, consider the following
paradigm examples of the kinds of “pairwise” relationships conveyed by MQ state-
ments: identity and inverses. The identity relationship is a relationship between one
object e ∈ S and all others in a set x ∈ S. To express the idea that this one object
interacts with all others in a particular way, mathematicians write “∃e ∈ S such
that ∀x ∈ S, e ∗ x = x ∗ e = x.” Placing the existential quantifier before the universal
quantifier is understood to convey such a “one to every” relationship, as portrayed in
Fig. 1. The inverse relationship is between pairs of objects such that each member of a
set (x) has a corresponding object with which it is paired (x−1). To express this
relationship, mathematicians write “∀x ∈ S, ∃ x−1 ∈ S such that x ∗ x−1 = x−1 ∗ x = e.”

1 We use the term “normative construal” to describe the way mathematicians interpret statements of a given
form. We use the term “normative” to convey that the understandings we intend for students to develop are
those generally agreed upon within the mathematical community.
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Placing the universal quantifier before the existential is understood to convey such an
“each to some” relationship as portrayed in Fig. 1.2 Following previous studies we shall
henceforth refer to the former type of statement as “EA” and the latter as “AE.”

The Role of Syntax

Syntax describes the way that the grammar and structure of the statement itself
influences the meanings it conveys. Students learning advanced mathematics are often
taught particular rules for dealing with MQ statements in general. Durand-Guerrier and
Arsac (2005) present some rules of “natural deduction” from Copi (1954) that could be
used to work with these statements in precise, rule-based ways. More simply, those
authors explain that the “dependence rule” states that quantities that appear later in a
statement may depend upon those that appear earlier (as the choice of inverse depends
on the choice of x). Roh and Lee (2011) also point out the “independence rule” that
states that quantities appearing with earlier quantifiers should not depend upon those
later in the statement (as the identity e does not vary with choice of x). These are ways
syntax may dictate interpretation of the statement, and many previous studies recom-
mend teaching such rules (e.g. Dubinsky and Yiparaki 2000; Epp 2003). The impor-
tance of sentential order in determining the meaning of MQ statements has been taught
rather successfully using game theoretic ideas (Dubinsky and Yiparaki 2000; Glivická
2018) and using analogies that relate sentential order to temporal order (Dawkins and
Roh 2016; Roh and Lee 2011).

The Role of Semantics

Semantics refers to the ways that a reader’s understanding of the ideas referenced in a
statement give meaning to that statement. Imagine a student read the definitions of
identity and inverse for the first time without prior instruction on mathematical
quantifiers and the assumed meaning of quantifier order. In such cases, students may
make sense of the definitions by thinking about familiar instances of identities (0 or 1)
and inverses (−x and 1/x). Considering these examples, students may infer that the
former are “one to every” relationships and the latter are “each to some” relationships.
In this way, students may use their knowledge of the relevant mathematical relation-
ships to give meaning to the formal statements (c.f. Pinto and Tall 2002), as opposed to
drawing this information from the syntactic form of the statement itself. Another
example of this is the way that students have been observed to think epsilon depends
upon delta in limit definitions in the same way that the function value depends upon the
input value (Swinyard 2011). David, Roh, and Sellers (2019) found a similar effect in
the ways students made meaning for the Intermediate Value Theorem. In these two
cases, the semantic understanding leads students to interpret the definition in a non-

2 We acknowledge that the example of inverses (and our diagram thereof) could be overgeneralized in the
sense that “each to some” relationships need not include every element in the second in a pair and multiple
elements of the first set may be paired to the same element. Also, the pairing may be fixed for each member of
the first set (functional) or more flexible (Durand-Guerrier and Arsac 2005).
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normative way, but it demonstrates how quantification structure can be induced from
semantic features. Durand-Guerrier and Arsac (2005) listed some particular qualities of
a semantic context that they anticipate would exacerbate or alleviate problems with
using the dependence rule, but they did not make predictions or test them regarding
specific statements as is done in this study.

How then do students make meaning of unfamiliar, multiply quantified statements?
There is not a single answer to this question and we do not expect the answer is the
same in every semantic context. Nevertheless, prior studies provide some insight.
Dubinsky and Yiparaki (2000) provide the most extensive study of students’ untrained
interpretations of a range of multiply quantified statements in various contexts. Some of
their primary findings were that:

& students were unaware of their interpretation process,
& students interpreted everyday statements using their view of the world (semantics)

often without attending to the syntax of the statement (the quantifiers at times
seemed to be ignored),

& students discussed statements largely in terms of their understanding of the context/
situation that it referred to, rather than in terms of the statement itself, as a result
they had trouble thinking of an alternative situation in which the truth-value of the
statement would change,

& students found it easier to interpret AE statements and tended to interpret vague
everyday statements as conveying “each to some” relationships, and

& students had more difficulty interpreting multiply quantified statements in
mathematics.

These findings hold some important implications for how researchers analyze novice
students’ interpretations. If students read pre-consciously (i.e., are not aware of inter-
pretation and do not analyze their own interpretive process) and do not attend directly
to the role of the quantification phrases (or their order), then some of the “structure” that
dictates the intended meaning of a mathematical statement for mathematicians remains
inert in their reading (Dawkins and Cook 2017).

It is thus important to maintain that the conventions that mathematicians use to
interpret MQ statements are neither necessarily correct (though they are useful) nor
embedded directly in language itself. To see that these conventions are not necessarily
correct, Epp (2003) provides examples of everyday statements that do not abide by
mathematical conventions (matching EAwordings to “each to some” relationships). To
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see that these conventions are not in language, one may consider a follow-up that
Dubinsky and Yiparaki (2000) introduced to their initial interview study. The authors
tried to teach students to see the influence of quantifiers order (EAvs. AE) by engaging
them in a game. Each player selected a value of a variable in the role of a quantifier, and
the order of quantifiers in the statement dictated the order of play (see also Glivická
2018). While some students recognized how changing the order of play changed
whether a statement was necessarily true or false (i.e. which player had a winning
strategy), at least one protested that these rules of the game were not “in the statement”
(Dubinsky and Yiparaki 2000, p. 44). While some may object that the order of
quantifiers is “in the statement,” the convention that this order carries particular
meaning is not “in the statement.” Rather, any reader goes through an (unconscious
or conscious) interpretation process to make meaning for a statement. Mathematicians
have simply refined their interpretations so there is a tight match between their use of
syntax and semantics.

The Role of Pragmatics

Finally, Dawkins and Cook (2017) found that, in addition to syntax and semantics,
pragmatic issues sometimes influenced how undergraduate students interpret mathe-
matical statements. In particular, some students decided that disjunctions such as “16 is
even or 15 is odd” are false because the statement should be “16 is even and 15 is odd.”
In this case, Dawkins and Cook argue that students are using “false” to mark that the
statement is an inappropriate speech act rather than to say that it is untrue. Those
authors used Grice’s (1975) Maxim of Quantity that states “Make your contribution as
informative as is required” (p. 45) to explain these students’ reasoning. Since a speaker
ostensibly knows that both “16 is even” and “15 is odd” are true, then it is reasonable to
expect them to use the connective and between them. The truth-functional use of or
conflicts with the normative use of or, which is understood to convey alternatives or
uncertainty (Dawkins 2019). The implication that someone making an or assertion is
conveying some level of uncertainty or alternative is conventionally understood as part
of the pragmatics of conversation, rather than syntax or semantics.

Theoretical Framework for Interpretation

In this section we shall outline ways in which we conceptualize the various elements of
the interpretation process to facilitate our investigation into the ways syntax, semantics,
and pragmatics contribute to students’ meaning making for MQ statements. This
involves presenting a theoretical framework for the interpretation process, building
on the work of Stenning and van Lambalgen (2004, 2008).

Figure 1 above presents our basic analysis of the two types of relationships that MQ
statements generally convey. Previous studies have used the language AE (“for every-
there exists”) and EA (“there exists-for every”) to alternatively refer to 1) the structure
of a mathematical statement, 2) the normative interpretation shared among mathema-
ticians, and 3) a student’s interpretation of those statements. While we continue to use
those two-letter codes for convenience, we adopt a different terminology to distinguish
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these constituents of the analytical process. Consider the definition of identity stated
above: “∃e ∈ S such that ∀x ∈ S, e ∗ x = x ∗ e = x.” The wording of the statement clearly
exhibits EA structure. We refer to the meaning an individual makes for any such
wording as their construal of the statement. The construal shared among mathemati-
cians –EA means “one to every” – we call the normative construal. Each student will
construe a statement in ways tantamount to “one to every,” “each to some,” or
something else.

We relate the statement and student construal using Stenning and van Lambalgen’s
(2004, 2008) notions of reasoning toward an interpretation and reasoning from an
interpretation, as portrayed in Fig. 2. For adults, reading is primarily a pre-conscious
process by which the reader transforms the sequence of words into some mental
representation (reasoning toward an interpretation), which we shall call a student
construal. Obviously, students can engage in this process consciously, inasmuch as
reading mathematical statements can be highly effortful and require rereading (e.g.
Fletcher et al. 1999). However, we understand Dubinsky and Yiparaki’s (2000) claim
that many students in their study were unaware of their own interpretation process as
saying that many novice mathematics students reason toward an interpretation pre-
consciously. In our example of identity, most students very likely do not consciously
consider “one to every” versus “each to some” pairings, but rather generalize from their
knowledge of paradigm identities such as 0 or 1. It is in this process of reasoning
toward an interpretation that we hypothesize that syntax, semantics, and prag-
matics each have constituent influences upon the ways students construe a
statement. Because this process is often pre-conscious, we must infer the role
of these various aspects by comparing students’ reading of closely related
statements. Stated another way, since reading a statement often takes less than
one second, much of the mental processing that goes into forming a mental
representation is “under the hood” and is not consciously available to the
reader. Once the reader has interpreted the statement, they then use their
construal to draw inferences – reasoning from an interpretation – such as the
whether the statement is true/false and why.
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The model of interpretation in Fig. 2 is a researcher model in that it does not attempt
to reflect what is consciously available to the reader. Students often do not distinguish
the set of words in the statement from their construal of the statement’s meaning, as
Dubinsky and Yiparaki (2000) observed. The multiple construals in the diagram
represent elements of the interpretation process that are available to us as experts and
not necessarily to participants in the study. We can anticipate the most common student
construals because they will approximate the normative construal of some permutation
of the given statement (switching quantifier order and/or variable order). However, the
final example of non-normative construal is not of this type, as some student construals
will not be. We assume that no construal is inaccessible to adult students in advanced
mathematics courses, but syntactic, semantic, and pragmatic factors make certain
construals more easily accessible than others. We portray this in the diagram through
the thickness of the arrows to various construals. We further anticipate that shifting
construals once one is adopted can be rather difficult and effortful (e.g. Dawkins and
Cook 2017), which is not portrayed in the diagram.

We parse the task-based elements that students may use to reason toward an
interpretation in the following way: quantifiers, predicate, and referent. In the defini-
tion of identity, the quantifiers are “∃e ∈ S such that ∀x ∈ S,” the predicate is “e ∗ x = x ∗
e = x,” and the referent is a particular set S, operation ∗, and choice of e. We consider
the influence of quantifiers in student construal as reflecting the role of syntax in
interpretation. If students construct meanings based primarily in their understanding of
the predicate and referent, we considered this most directly an influence of semantics.
In both cases, we can evaluate the role of each element by systematically changing the
quantifier order, the predicate, and the referent to observe shifts in student interpreta-
tion. Also, if students explain the definition of inverse with reference to paradigm
examples, this constitutes evidence of the role of semantics in interpretation.

To assess the role of pragmatics, we operationalize two of Grice’s (1975) pragmatic
maxims. Grice’s maxims express rules by which interlocutors in discourse may draw
reasonable implications from another’s statements that may reach beyond the strict
meaning conveyed in the statement. The two we consider are a Maxim of Quality “Try
to make your contribution one that is true” (p. 46) and a Maxim of Relation “Be
relevant” (p. 46). If the Maxim of Quality influences student reasoning toward an
interpretation, then we expect students would be more likely to construe statements so
as to make them true. For normatively true statements, this would have no effect or aide
in normative construal. For normatively false statements, we expect this would nudge
students toward a non-normative construal under which the statement is true. From our
standpoint as researchers, this means the maxims may constitute criterion by which a
certain construal is more or less accessible to students as they read (easier or harder to
construct).

Regarding the Maxim of Relation, we observe that certain construals convey
meanings that are more semantically reasonable or interesting. If the Maxim of Relation
influences student reasoning toward an interpretation, then we expect students will find
it easier to construe statements in ways that make them convey semantically interesting
information (i.e., statements that are worth saying). For statements that are normatively
relevant, this would have no effect or aide in normative construal. For statements whose
normative construals are uninteresting or absurd, we expect this would increase the
frequency of non-normative construal. We assume that these maxims are operative in
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the process of reasoning toward an interpretation, which we understand as primarily
pre-conscious. Thus we are not invoking the Maxim of Relation with respect to
students’ subjective sense of interestingness, but rather we hypothesize that certain
relations are more easily conceived of in the first place and alternatives will simply not
come to mind without some conscious effort. Assessing the normative construals by
this criterion involves a certain amount of expert judgment, which we shall address
when we present our research tasks in the methods section.

Methodology

In this section we summarize the design of our survey instrument, data gathering
methods, coding process, and analysis process.

Design of the Survey Instrument

In line with our framework for interpretation, we designed tasks that would vary the order
of quantifiers, the context and predicate, and the referents. We desired to keep the set of
tasks relatively short to maximize students’ voluntary participation when they completed
the assessment online outside of class time. Figure 3 presents the set of four statements,
each with two referents, that comprise the eight research tasks. For each task, students
were given the following prompt: “Determine whether the following statements are true or
false and explain why. Try to explain in simpler terms what each statement says about the
[given function/segment/ray].” For the geometry tasks, we added “We use the notation
d(A,C) to mean the distance between points A and C” and a diagram of a ray or segment.

These tasks varied the order of quantifiers in each statement to assess the role of
syntax in interpretation. They varied the mathematical context and the referents to
assess the role of semantics. We attempted to vary the relevance of the normative
construal to assess the role of the Maxim of Relation. Statement S1’s normative
construal is mathematically interesting as it defines a function being bounded above.
Statement S2’s normative construal merely depends upon the fact that the set of real
numbers is unbounded above, and is true of every real-valued function. We judge this at
least a minor breach of the Maxim of Relation, since the choice of referent is irrelevant.
This implies that S2 should be harder to construe normatively than S1. Statement S3’s
normative construal is mathematically interesting as it conveys the fact that rays extend
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to all positive distances away from the endpoint (unlike segments). This is a form of the
Real Ray Axioms in Blau (2008). The normative construal of S4 is in contrast rather
absurd because it states that two particular points have infinitely many different
distances between them. S4 violates the pattern that many relationships in geometry
are functional (distance is a function of the two points compared), as was pointed out by
Durand-Guerrier and Arsac (2005). We judge this a clearer violation of the Maxim of
Relation and thus expect that S4 is harder to construe normatively than S3. In selecting
contexts, we also made sure that in one context the relevant statement was of EA form
(S1) and in the other it was of AE form (S3).

Finally, to assess the influence of the Maxim of Quality in student interpretation, we
varied whether the first task in each context was normatively true or normatively false.
By switching the order of presentation of the two referents in each context, we created
two versions of the survey instrument: T-First version and F-First version (see Table 1).
These two versions of the survey instrument contain the same tasks: four function tasks
followed by four geometry tasks. In both contexts, the T-First version initially presents
the referent that makes the first statement true and the F-First version initially presents
the referent that makes the first statement false. Table 1 also presents the normative
truth-value and normative construal for each statement/referent pair.

Administration of the Survey Instrument

Six instructors of Transition to Proof courses from five different universities in the
United States allowed their students to participate to our research study in Spring 2018.
Such Transition to Proof courses have become increasingly common in mathematics
programs in the United States. David and Zazkis (2019) identified such courses in the
mathematics programs of 179 out of the 215 US colleges and universities classified as
having high or very high research output. Those authors found that 81% of such courses
covered a standard set of topics: “symbolic/formal logic, truth tables, propositions,
quantifiers, methods of proof (including contradiction and induction), number systems,
set relations and functions, infinite sets, and cardinality” (p. 6). Cook et al. (2019)
provide comparative analysis of the most commonly used texts for such courses. We did
not gather more specific data about the content or instruction in the six courses we
studied. Students in these courses are usually in their second or third year of university.

In order to gather the student responses from multiple universities, we created an
online platform that all participants could access to complete the version of the survey
assigned to them. We administered the survey instruments twice for the same partic-
ipants, before and after their classes covered topics related to MQ statements. We refer
the former to pretest and the latter to posttest, respectively. We only invited students to
complete the posttest at least one week after they had completed instruction and
summative assessments on MQ statements. Some professors agreed to offer a minor
incentive to students who completed both surveys. Students could earn this incentive
while opting out of the study to make sure study participation was voluntary. In total,
119 students completed the pretest and among them, 77 students completed the posttest
and agreed to take part in the study. In this paper, we report our results from the 77
students who completed both pretest and posttest. We randomly assigned the student
participants into the two groups and students remained in the same group for pretest
and posttest. The T-First group had 43 respondents while the F-First had 34.
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Data Coding

Our codes for student responses describe the nature of the construal we infer that the
student constructed for each statement. According to our model of interpretation
(Fig. 2), this involves mapping back from the inferences students drew about
each statement to the most likely construal that would lead to those inferences.
The first source of evidence for coding was the explanation combined with the chosen
truth-value. If there was vagueness or uncertainty about our initial code, we also
compared to the students’ responses to sister tasks (e.g. compare EA sine to EA line
and AE sine) to gainmore insight into their likely construal.We first randomly selected a
small portion (20%) of the data that the two authors coded independently. Through
follow-up discussion, we agreed to adopt three basic codes (EA, AE, Other) for our
models of student construal. These corresponded respectively to whether students
expressed a “one to every” construal, an “each to some” construal, or anything else.
Responses fell into the third category if they entailed some other quantification structure,
only quantified one variable, or if they construed the predicate in a manner incompatible
with the normative construal (see Table 2). We use the phrase rate of normative
construal to refer to the percentage of students who construed a statement/referent pair
in a manner compatible with the way mathematicians do.

Table 2 Examples of student responses and codes assigned (one example of each code in each context)

Researcher-assigned
code

Task Student-assigned
Truth-value

Student explanation

Function context

AE-X AE line True For any given x, I can provide an M that
is larger than f(x) by, for example, simply
defining M as f(x) + 1.

EA-X EA line False The function f(x) increases infinitely. I,
therefore, cannot provide a number M
such that all outputs f(x) fall below that M.

AE-M AE line True There is always a larger real number

EA-M EA sin True This is true for all numbers M > 1.

Other EA line False Let M be 0, so if x is 1, then M < f(x)

Geometry context

AE-X AE ray True For every number, there is a point on the
line where the distance from A to that
point will equal the number.

EA-X EA ray False distance of A and C can only be one
number not every positive real number

AE-M AE ray True There’s a point C that would create such
distance called S

EA-M EA ray False If C lies 5 away from A, then d(A,C) =5; if
we let s = 6, then clearly d(A,C) does not
equal s.

Other AE ray True when C is equal to s
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As stated above, we adopted a fully online data gathering approach in part so we
could gather more data from various sites across the United States. Naturally,
conducting interviews would have improved our ability to infer the nature of student
construals of the statements. However, according to our model of the interpretation
process, this would not have improved our ability to assess how students reasoned
toward an interpretation since we do not assume students are consciously aware of or
have conscious control over that process (at least initially). Thus, interviews would not
have improved our analysis of the rates of normative construals, they would only have
improved our confidence in our inferences about their construals.

We did not code the dependence that students conveyed between the two variables
because we could not reliably code all of the data in this manner. As was predicted in our
framework for interpretation (specifically that syntax does not solely dominate interpre-
tation), we observed that some students relied heavily on a semantic meaning (e.g.
boundedness of the sine function) such that their explanation left some quantification
implicit. For example, many students responded to the EA sine task with a value or range
for M without explicitly noting that the relation held for all x. To capture this distinction
among the responses coded either AE or EA, we further coded explanations as conveying
explicit (X) quantification if they attended to the quantification of both variables or implicit
(M) quantification otherwise. Once we agreed upon this two-part coding, each author
coded another 40% of the data independently. Throughout the rest of the coding process,
we selected complex responses to discuss as a research team, which allowed us to
continually negotiate and refine the codes to maintain the reliability of the coding process.

Data Analysis

Our first research question considers the influence of “quantifier order, mathematical
context, truth of the normative construal, and relevance of the normative construal” in
student interpretation. To address these, we compared student construals and the rates
of normative construal across tasks that varied only by quantifier order, context, and
referent. Further we compared student responses between the T-First and F-First
groups. Regarding our second research question about changes in student interpretation
over the course of instruction, we analyzed the patterns of interpretation from pretest to
posttest. We present each type of analysis we conducted in detail in the results section
alongside the findings for each.

We anticipated that our data would demonstrate that, at least prior to instruction,
semantics and pragmatics would strongly influence student interpretation. Dubinsky
and Yiparaki (2000) claimed that students found AE statements easier to interpret, and
were more likely to construe EA statements with a “each to some” construal. This
suggests that the syntax was dominant in student interpretation. We rather hypothesized
that semantic relevance would be more dominant in interpretation, so students would
find it easier to construct “one to every” construals on the function tasks and “each to
some” construals on the geometry tasks. Accordingly, we hypothesize that the rate of
normative construal would be higher on the EA function tasks and the AE geometry
tasks, according to the Maxim of Relation. We hypothesize that the T-First group would
have a higher rate of normative construal on the first task in each context than would
the F-First group, according to the Maxim of Quality. We did not register any of these
hypotheses, so we consider our findings exploratory.
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Results

We organize our results by the various types of analyses we conducted. First, we
present findings regarding the rates of normative construal by task, time, and group.
Second, we describe analyses comparing individual student construal across task,
specifically whether quantifier order and referents influenced student construal. Third,
we consider how often the students’ explanations gave explicit attention to the quan-
tification structure of the task.

Rates of Normative Construal

Figure 4 presents the rates of normative construal by time and task, juxtaposing the
performance of the two groups on each chart. We remind the reader that in order to
compare the two groups’ performance by task, the order of the tasks on the charts does
not match the order in which the F-first group responded to the tasks.

The first trend these data show is that students more frequently construed the first
statement in each pair normatively. This appears visually as the jagged appearance of
each graph. There are two possible explanations for this phenomenon. First, this pattern
may confirm our hypothesis about the Maxim of Relation, namely that students were
less likely to construct the normative construal when its meaning was either uninter-
esting (the EA function statement) or patently false (the AE geometry statement). We
claim it is uninteresting to note that each function output is exceeded by some real
number, since it makes the choice of function irrelevant (thus specifying a function
might be viewed as violating a maxim). Further, we view it as absurd to claim that the
distance between two particular points is every positive real number, inasmuch as
points and distances on rays naturally invoke an “each to some” relation (Durand-
Guerrier and Arsac 2005). Under this explanation of the data, the pattern demonstrates
the role of both semantics and pragmatics in student interpretation. The alternative
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explanation for this data pattern relates to task order, because students always saw the
more “natural” (according to normative construal) statement first. It may be that
students construed the second statement less normatively because they had to develop
a new construal for a very closely related statement, which was more challenging. The
first explanation is content specific, while the second is content general. Our task
design does not directly provide a way to distinguish between these alternative
explanations, but we shall later provide evidence that the second explanation alone
cannot account for the data.

The second pattern we notice in these data is that the AE sine task resulted in some
of the lowest percentages of normative construal overall. The AE sine task’s low
normative construal rate should be viewed in part as a product of the analytical method.
Since the sine function is bounded (the EA statement is true), then a single value of M
satisfies the predicate for all real numbers x. Thus while the AE statement entails a
slightly different construal (e.g. M could be .5 when f(x) = 0), the statement can be
verified by selecting M = 2 for all x. Under either construal the statement is true, and
students declared it so 88% of the time overall. When a student explains their
interpretation of the AE sine task by noting that M = 2, this is insufficient evidence to
indicate whether the student held a “one to every” or “each to some” construal. Without
clear evidence that students understood how M could depend upon x, we did not code
their responses as a normative “each to some” construal. Thus, it is likely that more
students responded to the AE sine task according to a normative construal, but their
explanation did not provide enough evidence for us to discern it. Many other explana-
tions provided clearer evidence of either a “one to each” or an “every to one” construal.

A third pattern we observe in Fig. 3 is that on the posttest the rate of normative
construal greatly increased for the more difficult statements (function EA and geometry
AE), resulting in a more consistent rate of normative construal across group and
context. Indeed, the rate of normative construal was between 58% and 80% on all of
the posttest tasks except the AE sine task. This can be explained in two ways as above.
Either students’ improved their ability to construct less relevant construals, which was
the greater challenge on the pretest, or they became more able to shift construals for
similar statements.

To further illustrate the first and third data trends, Table 3 presents the difference
between normative construal rates on each AE/EA task pair. On the pretest,
these differences ranged from 25.6% to 61.8% with an average difference of
39.5%. On the posttest, these differences ranged from 2.9% to 32.6% with an
average difference of 16.9%.

Table 3 Difference in normative construal between more and less relevant statements

Group EA-AE sine pre EA-AE line pre EA-AE sine post EA-AE line post

T-First (N = 43) 44.2% (19) 25.6% (11) 32.6% (14) 11.6% (5)

F-First (N = 34) 61.8% (21) 38.2% (13) 23.5% (8) 2.9% (1)

AE-EA ray pre AE-EA seg pre AE-EA ray post AE-EA seg post

T-First (N = 43) 37.2% (16) 44.2% (19) 20.9% (9) 11.6% (5)

F-First (N = 34) 26.5% (9) 38.2% (13) 17.6% (6) 14.7% (5)
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Influence of Task Order

One of our primary hypotheses about student interpretation considered the influence of
the Maxim of Quality, which assumes that speakers will say something true. If this
maxim influenced students’ interpretations of the given statements, then reading
(normatively) false statements first would make students more likely to search for a
construal that rendered the claim true. We would thus expect that the F-First group
would have a lower rate of normative construal on such tasks. We only consider the
first task in each context to account for the ways their initial reading influenced how
students read subsequent, closely related statements. The rate of normative construal
differed between groups by 10% or more on the following tasks: EA sine pre, EA line
pre, AE line pre, AE segment pre, and EA sine post. Thus, the strongest evidence that
the order of presentation affected student construal appeared on the function tasks prior
to instruction. In this case, we see that the F-first group was actually more successful in
finding a normative construal for both EA function tasks. This suggests that, in this
context, reading the statement with reference to the linear function first aided students
in construing the definition of bounded above with reference to both functions. This
disconfirms our hypothesis regarding the Maxim of Quality.

However, the geometry tasks caution against a general explanation that seeing a
false statement first helps interpretation. The direction of the differences between the
groups was exactly the opposite on the four geometry tasks than on the four function
tasks. The group who saw the ray first (of which S3 is true) more frequently construed
the geometry tasks normatively than did the group who saw the segment first (of which
S3 is false). So, while there seemed to be some effect due to order of presentation, it
varied with semantic content and not merely with the truth-value of the statement. This
provides evidence for the role of semantics in interpretation, though in a manner
inconsistent with our operationalization of the Maxim of Quality.

Considering the effect of order of presentation after students’ experiences in Tran-
sition to Proof courses, the picture grows more complex. The two groups’ rate of
normative construal on the geometry tasks was nearly identical after instruction. On the
function tasks, the T-First group outperformed the F-first group on all three tasks they
previously underperformed on, and vise versa. This effect contributed to the fact that
while the F-first group’s overall rate of normative construal (maximum of 8) increased
from 4.06 to 5.00, the T-first group showed greater gains by increasing from 3.84 to
5.19. Either we should infer that one task order benefits novices while the other benefits
students with more experience, or the T-first group simply improved more from pretest
to posttest. We do not have clear evidence to distinguish these two explanations. The F-
first group showed lower gains at least in part because their rate of normative construal
on the EA line task decreased from pretest to posttest by more than 17%. Their
performance on the EA sine task also decreased by more than 12%.

Individual Student Analyses: Influence of Quantifier Order and Referent

We assessed the influence of syntax, focused on the quantifier part of the statement, by
comparing each student’s construal of statements that varied only in the order of
quantifiers (EA function vs. AE function; AE geometry vs. EA geometry). Figure 5
presents the percentage of students who construed such pairs of statements in the same
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way. In other words, this is the percentage of students who interpreted corresponding
EA and AE statements with the same construal (we ignored construals coded “other” in
this analysis). The sine task showed the greatest frequency of invariant construal at both
times, as might be expected due to the difficulty in coding responses to the EA sine task
described above. Due to the methodological challenge posed by the sine tasks, we shall
focus on the other three. On the pretest students construed the other three pairs of
statements the same way between one third and one half of the time. On the posttest this
rate dropped from between one eighth to one third of the time. Thus, it was quite
frequent before instruction that reversing quantifier order did not elicit a novel construal
and students became more sensitive to quantifier order by the time of the posttest.

Another pattern we notice in Fig. 4 is that students were better able to switch
construals when the order of quantifiers changed on the geometry tasks than on the
function tasks. On the posttest, about one third of students interpreted the function-
related EA and AE statements the same, while only about one sixth of students
interpreted the geometry-related EA and AE statements the same. This pattern suggests
that students’ ability to shift construals was context sensitive, reflecting the persistent
role of semantics over pure syntax in interpretation. This finding helps distinguish
between the two explanations given earlier for the first pattern in the rates of normative
construal. If the only reason the second and fourth tasks in each context were harder
was because it is difficult to shift interpretations for very similar statements, this could
not explain why students were consistently better at doing so in geometry contexts.
That means that some content-specific features of these statements render certain
construals less accessible than others. We anticipated that this would be the case based
on the Maxim of Relevance, but we anticipated that the AE function construals would
be more easily accessible than the EA geometry construals. Thus, our evidence
supports the claim that there are semantic factors that make some construals more
and less easy to construct, but we cannot conjecture from our limited set of tasks what
they are.

We also compared students’ construals of the same statement regarding each pair of
referents. One would hope that students would not completely shift their interpretation
of a statement based on the object to which it currently refers, but Dubinsky and
Yiparaki’s (2000) reported that students interpreted statements largely in terms of their
understanding of the state of affairs it describes. Figure 6 displays the percentage of
students who shifted their interpretation from EA to AE or from AE to EAwhen only
the referent changed. Notice, we ignored cases in which one or both of the construals
was coded “other.” As in other cases, the AE function rates were affected by the fact
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that many student responses to the AE sine task were too ambiguous to code
reliably. Indeed, the AE sine and AE line tasks display a mathematical differ-
ence in the sense that a single value of M verifies the former and infinitely
many values of M are necessary to verify the latter. There is thus a mathemat-
ical reason why student interpretations of those two tasks shifted based solely
on the change of referent. On the other tasks, no more than 10.4% of the
students shifted construals based on the referents (5.8% of students on average).
This suggests that referents did not play a very prominent role in student
interpretation of the statements, at least not to the point of completely changing
the quantification structure.

Implicit and Explicit Quantification in Explanation

As noted in the methods section, some students’ explanations did not explicitly
reflect quantification of both variables. For instance, students sometimes
responded to EA sine tasks by merely providing a value for M. Indeed, we
conceptualized our study anticipating that some students would use a semantic
conception such as the boundedness of sine to implicitly construct the quanti-
fication structure of the statement, rather than drawing on some content-general
understanding of MQ statements. In such cases, we expected student responses
to focus on the bound M without attending explicitly to the variation of x. To
capture this aspect of student explanations, we coded each EA or AE construal
as exhibiting implicit or explicit quantification.

Figure 7 presents the percentages of student responses that were coded with each
type of quantification. We do not separate the groups for this analysis because we saw
no clear reason why task order would influence the explicitness of quantification. The
difference between each combined bar and 100% represents the number of construals
coded “other.” These data suggest that the percentage of codable responses (AE or EA)
went up from pretest to posttest I every case and that the primary increase came in
responses with explicit quantification structure (i.e. they attended to both variables in
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some way). These results likely indicate that between the pretest and posttest students
developed better tools for reasoning about the quantification structure of MQ state-
ments and made them more articulate in explaining their reasoning. The sine tasks
elicited the most implicit quantification, since so many students responded only in
terms of M, which constituted a mathematically valid response.

Discussion

This study investigates the ways that students draw upon syntactic, semantic, and
pragmatic features to give meaning to MQ statements in mathematics. Consistent with
prior studies, we see that semantics played a prominent role in student interpretation,
especially on the pretest. Our study adds to these prior studies in two particular ways.
First, we constructed our instrument to help us quantitatively distinguish the influences
of various aspects of interpretation, in addition to qualitative interpretation of student
responses. Second, we sought to evaluate particular hypotheses about the role of
pragmatics, specifically the influence Maxim of Quality and Maxim of Relevance.
Our data did not support the role of the Maxim of Quality, since our study participants
who saw a false statement first actually outperformed their peers in constructing the
normative construal of the function items. Our data did support the role of the Maxim
of Relevance to some extent. Students had less trouble constructing “one to every”
construals for the function tasks and “each to some” construals for the geometry tasks.
Because this matched our hypotheses around which the tasks were constructed, we
infer that students had more trouble constructing the construals for statements that were
less interesting (AE function) or relatively absurd (EA geometry). While students’ rate
of normative construal was higher on all such items after instruction, at both time
periods students were better able to construct the (relatively absurd) normative con-
strual for the EA geometry tasks than the (less interesting) normative construal for the
AE function tasks. It is possible that the normative interpretations were less accessible
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to students for reasons unrelated to our judgments of relevance, since this same pattern
of normative construal could likely be explained using alternative criterion. Thus, the
conservative interpretation is that some pragmatic criteria are at play to render certain
semantic meanings more accessible than others, but we cannot from our data determine
exactly what those criteria are.

Upon comparing their observations of student interpretations of MQ statements in
everyday and mathematical contexts, Dubinsky and Yiparaki (2000) recommend that
mathematics instruction “remain in the mathematical realm” (p. 55) to avoid the dis-
analogies between everyday contexts and mathematical ones. We accordingly conduct-
ed our study with exclusively mathematical statements. However, our findings empha-
size the fact that some of the complexities of linguistic interpretation articulated by
Grice’s (1975) pragmatic maxims do not cease to influence students’ reasoning toward
an interpretation, even in mathematical contexts. We expect that further studies should
explore more about the pragmatics of mathematical language, meaning the rules for
what implications can reasonably be drawn beyond the explicit meaning of a given
statement, both for experts and for novices. Further, we know little about the pragmatic
aspects of interpretation that are specific to mathematics texts, which is a worthy arena
for future investigation.

Our study also adds to prior research by documenting how experiences in Transition to
Proof courses helped students improve their rates of normative construal, which we
interpret as a shift toward syntax playing a larger role in student interpretation. On the
pretest, students construed statements with reversed quantifier order in the same way
between 35.1% and 58.4% of the time, consistent with Dubinsky and Yiparaki’s (2000)
finding that syntax remained relatively inert in many students’ interpretive processes.
However, experiences in their classes supported a 15.5–22.1% decrease in the rate at which
students interpreted statements with reversed quantifiers in the sameway. This suggests that
our sample of six transition to proof courses from across the United States already exhibit
some success in achieving Dubinsky and Yiparaki’s (2000) recommendation to “help
students learn to use the syntax of a statement as a tool for making sense of it” (p. 55).

More positively, relatively few students shifted their construal of a given statement
based solely on a change in the referent. The exception to this appeared on the sine
tasks in which the different referents make a meaningful difference in the standards for
verification of the statement. This suggests that students’ shifts in interpretation may
reflect a meaningful difference in the relationship between statement and referent,
though the referent by no means changes the normative construal.

It is worth comparing our findings regarding the role of semantic context in MQ
statements to the conceptual analyses conducted by Durand-Guerrier and Arsac (2005).
Those authors note that the dependence rule – objects quantified later in a statement
may depend upon those quantified earlier in a statement – is so obvious in geometric
contexts that quantification often remains implicit. For instance, the statement “all
segments have a midpoint” (p. 157) hides the existential quantification on the midpoint
itself, since the relationship of midpoint to segment is one of natural dependence (e.g.
by construction). Those authors point out that this dependence is not so obvious in
other settings, and thus the dependence rule is in more danger of being violated
elsewhere. The geometric relationship between points and distance in our task is
consistent with Durand-Guerrier and Arsac’s observation, and we deemed the EA
geometry statement relatively absurd because its normative construal violates that
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dependence. Why then were students relatively successful in constructing that norma-
tive construal and declaring it false? Durand-Guerrier and Arsac (2005) claim that the
dependence rule is thus “nearly without interest in geometry” (p. 149) because it is
semantically so obvious. This observation may shed some light on why this construal
was more available to students than was the AE function normative construal, but we
do not see a clear way to generalize the principle to anticipate on which other tasks less
relevant construals will be more or less accessible to novice readers (Table 4).

Table 4 Summary of questions/ hypotheses, relevant comparisons, and primary findings

Question/ Hypothesis Data compared Findings

Influence of syntax Rate at which students
construed corresponding
EA and AE pairs the same

- Students were less sensitive to syntax prior to
instruction (35–47% of students construed
reordered statements the same way, ignoring
sine tasks).

- Students were more sensitive to syntax after
instruction (13–31% of students construed
reordered statements the same way, ignoring
sine).

Influence of semantics Rates of normative construal
across context and across
referents

- The rates of normative construal were higher
on EA function items than EA geometry
items and on AE geometry items than on AE
function items, especially on the pretest.

- The rate at which students construed
reorganized pairs the same way was lower
on geometry items than on function items.

- Students shifted interpretation due to reference
relatively infrequently

Influence of pragmatics –
Maxim of Quality

Rates of normative construal
on the first task in each
context by group

- This hypothesis was not supported. Rather, the
primary difference between groups was that
students in the F-first group performed better
on the function items.

Influence of pragmatics –
Maxim of Relation

Rates of normative construal
on EA function and AE
geometry tasks versus
those on AE function and
EA geometry tasks

- This hypothesis was supported, especially
before instruction. Rates of normative
construal were consistent with our
predictions based on our judgment of which
normative construal were more
mathematically interesting or natural.

- After instruction, the rates of normative
construal were more consistent across the
tasks.

Change in student
interpretation over time

Pre and post normative
construals

- The number of tasks construed normatively
increased from pre to post by an average of
1.17 tasks out of 8 overall.

- The primary increase in normative construal
occurred on the “less natural” items AE
function and EA geometry.

Attendance to quantification Rates of explicit and implicit
quantification

- The percentage of responses that could be
coded and the percentage of explanations
with explicit quantification were both higher
on the posttest. Students became better at
explaining their construals.
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Limitations and Future Directions

Our study design reflects our desire to study changes in students’ interpretation using a
sample drawn from a number of classrooms. To conduct the study at multiple sites
without taking class time and with minimal incentives for student participations, we
had to keep the number of items small and accept the relative brevity of many student
explanations. Clearly, an interview setting would allow for more fidelity in coding
student construals, but it would afford neither the number of participants we recruited
nor the range of locations from which data was gathered. Nevertheless, the ambiguity
of many student responses poses a clear limitation to our findings. Future work could
use the responses we gathered in this study to validate a multiple choice form of the
research tasks in which students select a provided response that most closely approx-
imates their thinking.

One of the primary challenges posed by ambiguity of student response was
distinguishing “one to every” and “each to some” construals on the AE sine task.
However, this difficulty is rooted in the logic of the task since the EA statement’s truth
implies the corresponding AE statements’ truth, which makes their normative
construals rather difficult to distinguish. It seems that this same difficulty would arise
with any context in which the EA form of a statement is true.

We chose only to vary our task order in very controlled ways in order to test
our hypothesis about the Maxim of Quality (that speakers make their contribu-
tions true). We could have conducted other interesting analyses had we ran-
domized our task order. This likely would have required larger sample sizes,
since there would be more implicit groups for comparison. Though our choice
was motivated, our explanations of the data are limited by the fact that the later
statements in any context are likely harder to interpret than the first, simply due
to the challenge of shifting interpretations. Our study did not provide direct
ways to control for that effect. Especially as we did not find evidence
supporting the Maxim of Quality’s role in interpretation, future studies could
adopt a more thorough randomization of task order to better distinguish the
effects of relevance and shifting construals. Naturally, adding other mathemat-
ical statements and contexts could also extend our findings.

Our predictions based on our operationalization of the Maxim of Relation were
supported by the data. This lends some support to the claim that this maxim influences
students’ interpretations of MQ statements in mathematics, but alternative explanations
could be formulated. We are less committed to the application of this particular maxim
in this particular way than we are to the general principle that researchers can use
pragmatic maxims to interpret (and even predict) student interpretations. This study
provides a “proof of concept” for this general approach. We hope that future work will
attend more to the ways that this lens can be extended and improved to better
understand student reasoning rather than to the precise accuracy of our
operationalization thereof.
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