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Abstract
Over the last forty years of mathematics education research, a coherent body of
knowledge has accumulated regarding the teaching of limits. On this basis, it remains
a challenge to identify goals and design tasks compatible with ordinary teaching
conditions. This paper reports on a teaching experiment carried out in France with
year 12 students, which led to the formulation by the students of a correct formal
definition of the infinite limit for sequences, with minimal background logical prereq-
uisites and in the course of a 2-h session. On a more theoretical level, the teaching
project was developed in the framework of didactic engineering, and provides oppor-
tunities to contribute to the ongoing work on its adaptation to the specific context of
tertiary education. In the a priori analysis, we highlight the didactical potential of tasks
of differentiation between neighboring concepts as a pathway to advanced mathemat-
ical concepts. In the a posteriori analysis, we focus on the nature and extent of teacher
intervention in the shaping of a mathematical milieu that is conducive to the definition
of an advanced mathematical concept.
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Introduction

In their paper of 1996 On the understanding of the concept of limit, Cottrill and
Dubinsky could already refer to a vast didactical literature highlighting the central role
of this concept in advanced mathematical thinking, and documenting the wealth of
difficulties students faced when confronted with the formal definition of limits. They
noted rather pessimistically: BWe have not, however, found any report of success in
helping students to overcome these difficulties.^ (Cottrill et al. 1996, p.174). Twenty
years later, limits still play a central role in didactical research on the teaching and
learning of advanced mathematical concepts, and the research literature on this topic
has continued to be produced at an unabated pace. The general outlook, however, is
brighter than reported in 1996. In particular, recent teaching experiments such as Roh
and Lee’s (2017) proved reasonably successful in helping small groups of first year
university students make sense of the formal definition of the notion of converging
sequence given by the researchers; a success that was established by studying students’
ability to make sensible use of the formal definition in the context of a proof task.

The goal of this paper is twofold: on the one hand, it reports on the design and the
implementation of a teaching session aiming for the formulation by students of a correct
and formal definition of the notion of infinite limit for sequences, in ordinary teaching
conditions in terms of group size (classes of 30 to 35 high school students) and teaching
time (a 2-h session). On the other hand, this case-study gives us the opportunity to
tackle two issues of general interest for the research on the teaching and learning of
advanced mathematical concepts. In part 2, we will discuss the role of differentiation
between neighboring concepts, both from an epistemological and a didactical perspec-
tive. In part 4, in addition to documenting the observed learning trajectories of the
students in the four implementations, we will endeavor to analyze the multilayered role
of the teacher in the session. To this end, we will use an adaptation of the framework
developed by Cécile Ouvrier-Buffet for the design and analysis of Situations of
Definition Construction (Ouvrier-Buffet 2006, 2011, 2013).

As far as instructional design is concerned, the session was designed within the
theoretical framework of didactic engineering. We refer the reader to the paper of
Artigue (1988) and Barquero and Bosch (2015) for general descriptions of this
framework, and of its connections to both the theory of didactical situations (TDS)
and the anthropological theory of the didactic (ATD). A recent survey emphasizing the
challenges of the adaptation of this framework to tertiary education can be found in
(González-Martín et al. 2014). As is standard in didactic engineering, the paper will
report on it in two steps. In parts 2 and 3, we will present the preliminary analysis based
on the research literature, then lay out the specifics of the session in a given teaching-
context. On this occasion, we will highlight some key elements of the a priori analysis
so as to justify our choices (such as: starting with infinite limits rather than with finite
limits; using the question of the uniqueness of limits to trigger socio-cognitive conflict;
using Bnot bounded above^ as a stepping-stone for the target-definition), and to make
explicit hypotheses as to their expected impact on the behavior of students in the
teaching sessions. Part 4 will be devoted to the a posteriori analysis, whose main goal is
to analyze the actual behavior of students in the experiment – which was carried out
four times – and compare it to the hypothesized behavior. The essential feature of
didactic engineering was underlined by Artigue:
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Controlled realizations in classrooms should thus be given a prominent role in
research methodologies for identifying, producing and re-producing didactic
phenomena, for testing didactical construction. (Quoted in (Barquero and
Bosch 2015, p.250))

To put it in a nutshell, the two-hour session was designed for students with an
experience of limits involving numerical or graphical conjectures, and the use of a
series of techniques (algebra of limits, limits of standard functions, squeeze theorem)
that were given without proof. The session aims for two intertwined but distinct goals
pertaining to the formal definition of the infinite limit: (1) make students realize that, in
some contexts, their informal knowledge of limits is inadequate, and that these contexts
require that a definition be established; (2) lead students to formulate a (correct)
definition which they acknowledge to be correct. The classroom work alternates
individual work of students (pairs of students, actually) and collective discussion under
the guidance of the teacher. The two-hour session has three main phases: in phase 1,
students are asked to sort a short list of sequences according to whether or not they tend
to +∞; the collective discussion of the sorting is meant to trigger socio-cognitive
conflict regarding the uniqueness of the limit; the main expected outcome of phase 1
is the acknowledgement of the need of a definition to settle the uniqueness issue.
Students are then asked to write down tentative definitions for the infinite limit; we will
call these candidate-definition. In phase 2, a sample of these candidate-definitions is
collectively discussed, under the guidance of the teacher; the main expected outcome of
phase 2 is not that the target-definition be formulated, but that standard misconceptions
on limits be dispelled. In phase 3, the formal definition of Bnot bounded above^ is used
as a starting point, and students are encouraged to suggest a way to strengthen this
condition in order to reach a condition which is both necessary and sufficient for a
sequence to tend to +∞; in other words, a condition that is definitory of the target
concept. On all four occasions, phase 3 led students to formulate a correct definition of
the infinite limit. On three out of four occasions, the definitory condition suggested by
the class was not the standard

∀M∈ℝ ∃nM∈ℕ ∀n∈ℕ n≥nM⇒un≥A;

but the unusual, yet logically equivalent

∀M∈ℝ ∃nM∈ℕ ∀m∈ℕ unMþm≥A:

This case-study on limits will enable us to discuss two issues of general interest for
research on Advanced Mathematical Thinking (AMT): As to the range of didactic
strategies for the introduction of advanced mathematical concepts; and as to the form
and level of teacher guidance in sessions which aim to introduce such concepts.

The specific challenges for the teaching of AMT concepts have long been analyzed
from two main viewpoints. On the one hand, epistemological and didactical tools have
been used to study the nature of the concepts and design adapted learning trajectories
(Tall 1991). Along this line of investigation, we drew mainly on the work of Dorier,
Robert and Rogalski on FUG concepts (Formalizing – Unifying – Generalizing
concepts) (Dorier 1995; Robert 1998; Hache and Robert 2013) and their insertion in
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the Bmathematical landscape^ of students, even though we also took the genetic
decomposition approach of Cottrill et al. (1996) into account. On the other hand, a
more cognitive approach allows for the fine-grained analysis of the standard miscon-
ceptions about limits, and points to the dialectic between the (mathematical) definition
of a concept, and the image of this concept students have constructed along their
didactic trajectory. Of course, we are referring to the Tall and Vinner’s classic distinc-
tion between concept-image and concept-definition, a distinction which aims to capture
the distance between mathematics as a mental activity and mathematics as a formal and
deductive system:

We shall use the term concept image to describe the total cognitive structure that
is associated with the concept, which includes all the mental pictures and
associated properties and processes. (…) it needs not be coherent (…).^ (Quoted
in (Tall 1991, p.7))

In the design of this engineering we took both lines of investigation into account. First,
from an epistemological viewpoint, it can be argued that some advanced mathematical
concepts can also serve a purpose of conceptual clarification through conceptual
differentiation; a purpose which calls for a task design which differs from the one
adapted for concepts whose main purposes are formalization, unification, and general-
ization. For the fundamental concepts of mathematical analysis, a brief excursus into
the history of mathematical analysis will help us back this claim. Second, from the
cognitive viewpoint, explicit differentiation between neighboring concepts can lead to a
re-organization of the loosely organized concept-image of students, and to the inclusion
of the concept-definition as a part of the concept-image. More specifically, studies (see
(Davis and Vinner 1986) and (Mamona-Downs 2001) for surveys) have consistently
shown that students usually conflate three distinct mathematical properties of numerical
sequences, namely:

(1) Tending to positive infinity.
(2) Not being bounded above.
(3) Being strictly increasing (at least from a certain rank).

The main hypothesis underlying this engineering is that students can be entrusted
the task of making explicit the differences between these three properties, and that
this process of differentiation can lead to the formulation of a precise, formal
definition of property (1). Hence, in this design, the misconceptions as to property
(1) are not seen only as obstacles which the designer knows have to be overcome;
they are also the explicit object of students’ work, and stepping-stones for the
formulation of the target-definition.

This case-study on limits also provides an opportunity contribute to the ongoing
work on the role of guidance – by a teacher, a lecturer, a manager-observer (Ouvrier-
Buffet 2006) or a researcher – in experiments or engineerings designed in the frame-
work of TDS or RME (Realistic Mathematics Education). As far as TDS is concerned,
the survey paper of González-Martín et al. (2014, p.118) pointed out that for advanced
mathematical concepts Bthe teacher can play a more active role^ (than in primary or
lower-secondary education). Although this paper provided no analysis of this aspect,
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one can be found in (Bloch and Gibel 2011). From the perspective of guided reinven-
tion, in the analyses of Swinyard’s experiment (Swinyard 2011; Larsen and Swinyard
2012) the main research question also bore on students: BIn the process of generating a
precise definition of limit, what challenges do students experience, and how are such
challenges resolved?^ (Larsen and Swinyard 2012, p.466). Indeed, these detailed
studies of how two pairs of 1rst-year university students got to reason correctly about
limits over a long period of time (10 sessions of 1 to 1 ½ hours) provided a wealth of
information on which we drew. In the conclusion of the paper of 2011, the author
acknowledged: BTo be clear, Amy and Mike’s reinvention efforts were scaffolded in
significant ways – as the researcher, I intervened on multiple occasions to guide them
towards paths I felt might be productive.^ (Swinyard 2011, p.112.) This scaffolding is
described more explicitly in (Larsen and Swinyard 2012) and in (Martin et al. 2014).

In the second part of this paper, we endeavor to describe and analyze the learning
trajectories of students on the one hand; the nature and role of teacher’s scaffolding on
the other hand. The nature and extent of teacher intervention is of great theoretical
significance, either in TDS or RME. TDS is a constructivist framework insofar as it
relies on a theory of learning based on the tenet that new knowledge is gained when a
new equilibrium is reached after a phase of destabilization of some previous knowledge
(of lesser scope or depth). This destabilization is triggered when students engage in
tasks for which their previous knowledge proves inadequate, inefficient, or inconsis-
tent. New knowledge is to be constructed by students trough their interaction with a
well-designed mathematical milieu and with peer-students. Ideally, the milieu sends
enough feedback for students to gradually adjust to it and generate a consensual
appropriate response, either in the form a new procedure (for situations of action), a
new formulation (situations of formulation) or a rational argument (situation of vali-
dation). This central, ideal phase of the design is said to be adidactic insofar as it should
take place without direct didactical intervention of the teacher (while pedagogical
interventions – such as refocusing students on classroom work – remains part of the
picture). Of course, the adidactic phase comes after a didactic phase of devolution – in
which the task is entrusted to the students by the teacher – and is followed by a final
didactic phase of institutionalization, in which the teacher is to alter the status (and,
more often than not, the wording) of the response produced by the students in the
adidactic phase and make it both public and decontextualized.

This approach proved fruitful for the teaching of mathematics at the primary and
lower-secondary levels; its classic studies bear on fractions, decimals, or the enlarge-
ment of geometrical shapes. It’s adaptation to AMT, however, remains challenging. For
a number of reasons, some pertaining to the nature of advanced mathematical concepts
in general (Robert 1998; Artigue et al. 2007), some of which are specific to the limit
concept and will be spelled out in the first part of the paper, we did not design a session
with an adidactic core. Rather, we opted for a codidactic situation – also called
situations with an adidactic dimension (Bloch and Gibel 2011; González-Martín
et al. 2014), in which didactic teacher intervention is explicitly taken into account as
an element which contributes to shaping the milieu. The level and nature of
Bscaffolding^ and Bguidance^ is regarded as a didactic variable.

In the design, we endeavored to maintain what we considered to be the highest
possible level of adidacticity, for two reasons, which reflect the dual nature of didactic
engineering as both a protocol for instructional design - whose success is to be
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measured by what students manage to do/learn – and a research protocol – whose
success is to be assessed through the empirical control of grounded hypotheses/
forecasts regarding didactic phenomena. As far as instructional design is concerned,
we are not willing to forsake the basic tenets of socio-constructivism as to how new
knowledge is generated by rational agents. The basic principles are so general that they
should be valid for kindergarten and university students alike. As far as testing research
hypotheses is concerned, since our main hypothesis is that students can be entrusted
with a task of conceptual differentiation between neighboring concepts, intrusive
teacher intervention would blur the data and weaken the validation of this hypothesis.
Even though the two perspectives concur to favor a high level of adidacticity, it should
be noted that this can cause tensions among the various participants in the experiment.
In particular, the goal of the researcher is to test hypotheses, which means that he/she
must warrant that the conditions allow for falsification or verification alike. The
teachers, however, need the two-hour session to lead to a definition of the infinite
limit, and want to maintain a trusting relationship with the students; a relationship
which depends on his/her support; a relationship which might be negatively affected
should the students leave with the impression that the session was a failure.

For these reasons, the a posteriori analysis of the experiment will pay attention not
only to the cognitive trajectory of the students – so as to compare it to the hypothesized
trajectory – but also to the nature and level of teacher intervention. Teacher intervention
can be studied from a variety of theoretical perspectives (Fischbein and Mariotti 1997;
Stephan and Rasmussen 2002; Yackel 2002; Bartolini Bussi and Mariotti 2008;
Bridoux 2016). Following Bloch and Gibel’s proposal for the study of codidactic
situations (Bloch and Gibel 2011), we will pay a close attention to the evolution of
the mathematical milieu, both it itself – as a growing set of examples / non-examples /
counter-examples, diagrams, gestures, mathematical properties, and semiotic registers1

– and in terms agency: ability to spot a counter-example, ability to generate a new
diagram, ability to rephrase a property, etc. However, rather than using the formal
scheme suggested by Bloch and Gibel, we will rely on the framework which Cécile
Ouvrier-Buffet specifically developed for the design and analysis of Situations of
Definition Construction (SDC).

Literature

Epistemological and Cognitive Aspects of the Limit Concept – Didactical
Consequences

In the field of mathematics education, the teaching of limits has been one of the main
focuses of attention for those working on advanced mathematical concepts. A whole
chapter bore on this topic in the 1991 handbook on Advanced Mathematical Thinking
(Tall 1991), and the topic was also a key example in the other chapters such as Vinner’s

1 In her reaction to (González-Martín et al. 2014), Artigue stressed the importance of Bpaying more attention to
the linguistic and semiotic dimensions of TDS and developing its potential in that respect; looking for
connections with approaches more focused on semiotics and discourse, is certainly a necessity for having
TDS more productively used in university research (…).^ (Artigue 2014, p.137)
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chapter on the role of definitions in teaching and learning of mathematics (Vinner
1991), and the chapter on research on teaching and learning of mathematics at an
advanced level (Robert and Schwarzenberger 1991). Since then, publication has
continued at an unabated pace. Since the work of Cornu (1991) and Robert (1983),
research work has been carried out in many theoretical frameworks, some focusing on
cognition (Pinto and Tall 2002) (Oerhtman 2009), some relying on genetic decompo-
sition (Cottrill et al. 1996), and quite a few using the theory of didactic situations
(Robert 83; Bloch and Gibel 2011). Except for a few papers, such as (Mamona-Downs
2001; Przenioslo 2005), most of them analyze empirical data collected in a great variety
of contexts, ranging from the experimental – with very small groups of students
working over a rather (or very) long period of time (Job 2011; Swinyard 2011;
Martin et al. 2014) – to contexts closer to ordinary teaching conditions, either in the
final years of secondary education (Bloch and Gibel 2011; Lecorre 2016) or in the first
year of tertiary education (Robert 1983; Roh and Lee 2017). We feel that this collective
endeavor on the part of the mathematics education community has yielded a rather
coherent body of knowledge, at two levels. First, the analysis of misconceptions, errors,
and obstacles has shed light on the range and the nature of the difficulties to be
overcome. Second, since a wide range of tasks have been carefully designed and tried
out, empirically grounded hypotheses can be made as to the likely impact of such and
such teaching strategy.

In this paper, we will discuss several definitions of lim
n→þ∞

un ¼ þ∞. We will call

Bstandard definition (implicative form)^ the following:

∀M∈ℝ∃nM∈ℕ∀n∈ℕ n≥nM⇒un≥M

The Bstandard definition (non implicative form2)^:

∀M∈R∃nM∈N ∀n∈ nM ;þ∞½ �un≥M

The Bstandard definition (additive form):

∀M∈ℝ∃nM∈ℕ∀n∈ℕ unMþn≥M

The Balmost all definition^ (adapted from (Roh and Lee 2017)):
∀M ∈ℝ un ≥M except for (at most) a finite number of terms.

The range of definitions can be extended by altering the formulation, in particular by
substituting rhetorical formulations for formal ones.

Let us first discuss some of the epistemological aspects of the limit concept which
have an empirically established cognitive impact on students’ access to this notion. We
will restrict ourselves to the three aspects which will play a part in the design of the
engineering.

First, from a cognitive viewpoint, limits can be seen either as processes or as objects,
both being denoted by the single lim symbol; a situation for which Tall coined the term
Bprocept^ (Tall 1991). Using Robert’s classification of students’ Bexpressed models^
(or conceptions) of what it means for a sequence to Btend to …^, the process aspect is

2 The double square-brackets denote the intersection of the interval with the set of natural numbers.
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related to the dynamical model (Robert 1982a, b), while the object aspect is related to
the static/numerical model. Although this dynamic vs static terminology is widely used,
it should not be seen as capturing a pre-mathematical vs mathematical dichotomy.
Indeed, as highlighted by Larsen and Swinyard (2012) most definitions (except for
maybe the Balmost all definition^) have a dynamic side to them, an argument which
strengthens the case for the procept nature of limits. Discussing finite limits, they
distinguish between two processes, that of finding a limit candidate, and that of
checking or verifying that a given number is the limit. With its intricate combination
of nested quantifiers, the standard formal definition can be seen either from a static
viewpoint – as expressing a property of a number with respect to a sequence – or from a
dynamic viewpoint, as the description of a procedure for verification. In proofs and in
theorems, at least in the case of finite limits, limits can be compared and calculated
upon as if they were numbers, simply because they are numbers, even if the lim symbol
is a reminder of the fact these numbers bear a very special relationship to some
sequences.

A second change of viewpoints on limits is necessary to access the formal definition;
a change which is actually a reversal of viewpoints. When it comes to making
conjectures (i.e. finding a limit candidate), the behavior of the variable determines
the behavior of the values of the function or sequence, and the asymptotic behavior is
captured in narratives which ring – indiscriminately – of succession, of causality, and of
implication (Bwhen x tends to…, then f(x) does …^). This temporal precedence of the
values taken by the variable over the values taken by the sequence or function is
consonant with both the abstract mapping concept (with its input and output values),
and with standard procedures used to make conjectures about limits, such as: to
investigate the limit of f at x = a, work out f(x) for values of x which come ever closer
to a; or: to study the limit of sequence (un), work out its values for n = 10, 100, 1000,
1,000,000… and see what happens. In the formal definition, however, the constraint on
the values of the function or sequence comes first; the constraint on the values of the
variable comes second, and is dependent on the first (in a non-functional way,
however). For instance, Swinyard (2011) reported on the various moves he made to
– eventually – prompt students to switch from what he called the Bx-first perspective^
to the By-first perspective^. On the basis of his case study, he suggested that studying
limits of functions at infinity can trigger this change of viewpoints, whereas studying
limits at a point is less likely to. In Roh and Lee’s engineering (Roh and Lee 2017), the
By-first perspective^ was forced on students, since, from the outset, they were required
to study the behavior of a few graphically given sequences using strips of various
widths, to be placed parallel to the x-axis.

A third fact is consistently documented in the literature, regarding the asymptotic
behavior of sequences: a large proportion of students (implicitly) assume that sequences
with a limit (whether finite or infinite) display simple enough patterns in the neighbor-
hood of +∞, in particular when it comes to variations. A crude but widely shared
version of this general belief is that convergent sequences are monotonic (at least from
a certain rank), a phenomenon which Robert called Bmonotonic reduction^ (Robert
1982a; Davis and Vinner 1986). In her dissertation, for instance, Robert asked students
in the first year of tertiary education if they deemed the following sentence to be true or
false: BEvery positive sequence which tends to 0 is a decreasing sequence^ (Robert
1982a, p.169). She surveyed various populations of students – coming from standard to

274 International Journal of Research in Undergraduate Mathematics Education (2019) 5:267–314



elite schools and universities – and got the incorrect answer (BTrue^) with proportions
ranging from 20% to 70% (Robert 1982a, p.204). A slightly less crude belief is that, if a
sequence is convergent, the distance between the terms of the sequence and the limit-
value decreases –whereas the target definition only implies that the upper bound for the
distance between the terms of the sequence and the limit-value decreases. It is quite
likely that this belief is rooted in the standard pre-theoretical formulations – or in the
rhetorical reformulations – of the notion of limit, such as: BIn the real numbers, a
number L is the limit of the sequence (xn) if the numbers in the sequence become closer
and closer to L and not to any other number.^ (Wikipedia, art. Limit of a sequence,
accessed nov. 9, 2017). Even if the literature provides less empirical data regarding
sequences which tend to infinity, our hypothesis is that similar beliefs are also wide-
spread, a phenomenon which could be studied by surveying the answers to a BTrue/
False^ question about the following statement: Bif a sequence tends to +∞, then it is an
increasing sequence (at least from a certain rank)^ (Chorlay 2018). In the second part of
this paper, the a posteriori analysis of the didactical engineering will confirm this
hypothesis.

This phenomenon of Bmonotonic reduction^ is not problematic only because it is a
belief in something which is mathematical incorrect, but also because it can be an
obstacle to the formulation of the definition. Indeed, if we restrict ourselves to
sequences which are monotonic – at least from a certain rank – then, if L denotes a
real number and (xn) a real sequence, the following property:

∀ε∈ℝþ*∀N∈ℕ∃n∈ℕ n > N and jxn−Lj < ε

does imply that limn⟶þ∞xn ¼ L. In other words, if we restrict our attention to
monotonic sequences, the concepts of (finite) limit and subsequential limit conflate.
The situation is even worse for infinite limits since, for monotonic sequences, the
following property:∀M∈ℝ ∃n∈ℕ xn > M does imply that limn⟶þ∞xn ¼ þ∞. In
other words, if we restrict our attention to monotonic sequences, Btending to +∞^ and
Bnot being bounded above^ conflate; and the notion of infinite limit can be defined
with two quantifiers instead of three.

On the basis of these well-documented difficulties, we made several choices and one
key-hypothesis. We decided to design a teaching-session targeting the definition of the
infinite limit, rather the definition of convergence. This should leave out two difficul-
ties. First, since for infinite limits the lim symbol does not denote a number, the
demanding shift of viewpoints between a process-aspect and an object-aspect should
not be required from students; the challenge of the shift from an x-first finding-the-limit
process and the y-first verifying-the-limit process partially remains, however. Second,
the notion of distance – and its formal expression in terms of inequalities involving
absolute values – will play no part. On the downside, the research literature makes it
clear that focusing on infinite limits will lead to interferences with neighboring
concepts. More specifically, our hypothesis is that, on the basis of their experience of
limits, the three following mathematical properties are part of students’ concept image
of the infinite limit:

(1) Tending to positive infinity.
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(2) Not being bounded above.
(3) Being strictly increasing (at least from a certain rank).

Of course, since (1), (2), and (3) are well-defined mathematical concepts, saying that
they are part of students’ concept image – which, by definition, is not a set of well-
defined concepts connected by proven properties – is a mere shortcut. All three
mathematical properties are compatible with the usual procedures to conjecture whether
or not a given sequence tends to +∞ (such as: work out values of the sequence for
Blarge^ values if n; look for patterns of growth), or with elementary procedures to prove
some results about infinite limits (such as: if a sequence is bounded above, or
decreasing, then it does not tend to +∞). Just as well, all three are compatible with
the usual vague rhetorical description of what it means to tend to +∞ (Bto become larger
than any number^, Bto grow ever larger^ etc.). Thus, our hypothesis is based, on the
one hand, on the epistemological analysis summarized above – which suggests that
these are neighboring concepts –, and on the other hand, on the didactical analysis of
the experience of limits students have – in terms of tasks, procedures and formulations
– which builds up an image in which the three notions are connected.

On the basis of this hypothesis, the design of the engineering rests on a key choice:
one can either attempt to design a path to the target definition of (1) which avoids
encounters with the neighboring (2) and (3); or a path to (1) which gives an explicit role
to (2) and (3). For instance, the first choice was made by Bloch (Bloch and Gibel 2011).
Bloch’s design rests on the study of von Koch’s snowflake. Students were asked to
numerically explore two sequences associated to the sequence of geometrical diagrams,
namely the sequence of measures of their lengths, and the sequence of the measures of
their areas. The definitions of limits – infinite for the length, finite for the area – was
eventually given by the teacher, and showed to be an efficient tool to prove the
conjectures made by the students as to the asymptotic behavior of the two sequences.
Bloch’s choice was to work with only two sequences, both of which are strictly
increasing, a context in which (1) and (2) conflate. Most designs, however, take the
neighboring concepts into account: in Robert’s engineering (Robert 1983, p.441),
students were to assess the statement Bif a positive sequence is not bounded above,
then it tends to +∞^; in their design, Roh and Lee (2017, p.40) included non-monotonic
sequences in their list of examples of convergent sequences; Przenioslo’s design (2005)
required that students discuss the validity of a range of arguments presented in
(artificial) written dialogues between Bstudents^ in which the various elements of the
concept image – including misconceptions – appear explicitly. In our design, we take
the whole concept image into account and target not only a formulation of the formal
definition of (1), but also an explicit distinction between (1), (2) and (3).

On the basis of this choice, the fact that the concept image of Binfinite limit^ is one
which conflates (1), (2), and (3) can be seen either as an obstacle to overcome in order
to reach a clear and distinct idea of (1), or as an obstacle and a stepping-stone in this
process. As in Martin, Oehrtman and Swinyard (2014, p.132) and Zandieh and
Rasmussen (2010), this design is based on the second alternative, since an epistemo-
logical analysis, suggest that concepts (2) and (3) are not only different from (1) – yet
connected to (1) – but also potentially conducive to (1). This assumption rests on two
arguments. First, (2) and (3) are, in a sense, simpler (1), at least in terms of the number
of nested quantifiers in the formal definition: two quantifiers (∀∃) for (2), only one
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universal quantifier for Bstrictly increasing^, two for Bstrictly increasing (from a certain
rank)^ (with ∃∀, this time). From a formal viewpoint, the sequence of quantifiers in the
target definition – namely ∀ ∃ ∀ – could be seen as a combinations of the sequences
which appear in the (2), and (3), the ∀∃ sequence from (2) formally expressing the
semantic element Bbecome greater than any given number^, while the ∃∀ sequence
which appears in the formal definition of (3) suggesting syntactic means to capture the
semantic element Band remaining so^. Second, whereas the definition of (3) is conso-
nant with a Bdynamic^, Bx-first^ perspective on sequences, the definitions of Bbounded
above^ and Bnot bounded^ are consonant with a Bstatic^ and By-first^ perspective. This
suggests that focusing students’ attention on (2) is more likely to lead to (1) than
focusing on (3). Moreover, the study of Martin et al. (2014) showed that, even after the
adoption of a y-first perspective, the inclusion in the definition of a first universal
quantifier remained a major difficulty. Starting from the quantified version of the
definition of (2) could help curtail this problem.

This survey of epistemological features which are specific to the limit concept and
have a well-documented cognitive impact helped us explicit – and to some extent
justify – some macro-choices for this instructional design: to study limits at infinity
(even though we did not justify why we started with sequences rather than with
functions defined in neighborhoods of +∞) so as to help the transition from an x-first
to a y-first perspective; to study infinite limits rather than finite ones so as to accom-
modate a procept take on limits and avoid issues related to the notion of distance; to
take into account the concept image of limits –with its likely conflation of three distinct
mathematical concepts – both as an target of the engineering and as a provider of
affordances (and not only constraints); to focus on the connection between Binfinite
limit^ (1) and Bnot bounded above^ (2), the latter concept being fairly familiar to the
students (including the formal definition), bearing a simple enough logical relationship
to the target concept (namely: (1)⇒ (2) but the converse does not hold), and providing a
ready-made y-first formulation which begins with a universal quantifier. However,
these choices have a cost. In particular, focusing on infinite limits implies that the
engineering will not be based on approximation problems, in spite of the fact that these
constitute a major raison d’être for limits in mathematics. Moreover, didactical studies
showed that approximation metaphors form a stable and widely shared core in students’
concept image of limits (Oerhtman 2009); a core which provides a stepping stone for
instructional design (Martin et al. 2014).

Theoretical Perspectives on the Introduction of Advanced Mathematical Concepts

Beyond these very content-specific aspects, we need to take into account more general
frameworks and results bearing on the teaching of advanced mathematical concepts.
These results will either help us explicit and partially justify some macro-choices for
the instructional design, or provide tools for the analysis of the empirical data. We will
first argue for the potential of situations of conceptual differentiation as a pathway
to advanced mathematical concepts, and contrast it with the other situations of
concept-introduction considered in Robert’s framework (Hache and Robert 2013).
We will then present some of the tools which we borrowed – and occasionally
adapted – from Ouvrier-Buffet’s work on Situations of Definition Construction
(SDC) (Ouvrier-Buffet 2006, 2011, 2013).
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Conceptual Differentiation as a Pathway to Advanced Mathematical Concepts

In this paragraph, we shall use the term Bconcept^ in a very general sense, to denote
mathematical objects, properties, procedures, or frameworks (Bframeworks^ as in:
Euclidean-synthetic geometry as distinguished from coordinate geometry). The chal-
lenge of the insertion of a new concept in the Bmathematical landscape^ of students
(Hache and Robert 2013) depends not only on the intrinsic properties of the concept,
but also on the long-term learning trajectory of students, as shaped by curricula. Taking
both aspects into account helps to specify the relationship between the new concept and
the concepts students encountered earlier. In her work, Robert distinguishes between
four such relationships between Bold^ and Bnew^ concepts. Identifying to which of the
four types of concepts any new concept belongs helps to specify the affordances and
constraints for the possible teaching strategies. Robert coined the terms extension
without accident (or smooth extensions) and extension with accident (or rough exten-
sions) to denote the first two types. In both cases, the new notion is (from a mathe-
matical viewpoint) and is seen by students (from a cognitive viewpoint) as an extension
of a notion which students are already familiar with. In some cases, the extension can
be smooth, for instance when introducing the dot product in space geometry to students
who studied the dot product in plane geometry before. More often than not, the
extension is potentially tricky, and this is where a didactical analysis combining
mathematical, epistemological and cognitive aspects is necessary to identify difficulties
and affordances. Standard examples are the passage from counting numbers to deci-
mals, and from plane to space geometry. A third type of concepts is that of Answers to a
Problem. In such a case, the concept is not an extension of something students
encountered earlier, but students have means to test or acknowledge the fact that the
new concept does provide an answer to a problem which students can make sense of on
the basis on their pre-existing knowledge. Whether the new concept has to be intro-
duced by the teacher, or can be discovered by students as the efficient tool in a well-
designed problem-solving task (as the Theory of Didactical Situation recommends),
depends on the concept and the curriculum. For instance, the Pythagorean property can
serve as a tool to work out lengths in many situations involving right-angles; it can be
used to test whether or not some angles are right-angles. For instance, antiderivation
and integration can be seen as means to work out areas under curves.

The fourth type of concept is what Robert, Rogalski and Dorier (1995) called FUG
concepts: concepts which Formalize, Unify and Generalize a wealth of previously
encountered concepts – and many others still unknown to the students. FUG concepts
can also be characterized negatively, insofar as they cannot be seen as extensions of
isolated items of knowledge, and probably cannot be introduced as efficient tools to
solve a well-chosen specific problem that students can make sense of (if not solve).
Although the notion of FUG concept has recently been used in the context of rather
elementary mathematics – to discuss the introduction of the distributive law expressed
with letters, in middle school (Constantin 2017) – the notion was first designed for the
study of challenges which are common in higher secondary and in tertiary education, in
the teaching of advanced mathematical notions. The main case-study relying on this
approach is Dorier’s dissertation on the introduction of the axiomatic theory of vector
spaces in the first year of tertiary education (Dorier 1995; Dorier 2000). The axiomatic
description of vector spaces is, indeed, formal; it captures into a unified formalism a
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large variety of objects: some geometric objects (lines, planes), simultaneous linear
equations and their solution sets, linear differential equations and their solution sets,
matrices etc.; it provides general conceptual tools to handle these objects and many
others: linear dependence/independence, basis, dimension, rank, kernel, duality etc. in
any dimension and on any field. Such FUG concepts were generally introduced by
mathematicians whose goal was explicitly to unify and generalize, on the basis of their
extensive knowledge of mathematics as a whole – or of large parts thereof – in order to
better organize the whole body of knowledge. This creates specific challenges for the
teaching of such concepts. On the one hand, even if one could design a problem-
solving situation for students to first come across the new concept, the problem-solving
context could not bring across to the students the meaning and import of the concept.
Moreover, the introduction of a new and very abstract terminology to describe a single
problematic situation might make the new set of notions sound like unnecessary jargon.
On the other hand, trying to emulate the historical emergence of the concept might lead
to a long and extensive preliminary study of many specific cases. In the case of vector
spaces, Dorier sought to trigger reflective abstraction by combining two levels of
discourse: an object-level discourse, produced by students in a problem-solving con-
text, and a meta-level discourse produced with students about the methods used in
problem-solving. This meta-level discourse is to emerge under the guidance of the
teacher, and can be prompted by questions about the various steps of the problem-
solving endeavor, such as: What justifies them? How can the list of rules or moves be
made minimal? How can they be reformulated in a more formal and context-free
language?

We will take for granted that the formal definition of limits of sequences is not an
extension of something already familiar to the students. We also doubt it can be
successfully introduced as an Answer to a Problem, for reasons which belong to two
categories.

First, we are aware of two attempts to introduce the concept of limit in a problem-
solving situation, both of which leading to results that we deem unsatisfactory. We
mentioned earlier what we consider to be the shortcomings of the snowflake engineer-
ing (Bloch and Gibel 2011). Another attempt is that of Job, in his dissertation (Job
2011). Year 12 students had to study a list of sequences, all increasing, none of which

tending to
ffiffiffi
2

p
. After sorting the sequences according to whether or not they were

bounded above by
ffiffiffi
2

p
, students were entrusted the task of deciding which, among

those which were bounded above by
ffiffiffi
2

p
, provided the best approximation of

ffiffiffi
2

p
. Job’s

work rested on the Lakatosian notion of proof-generated concept, and pursued two
goals: to study whether or not students could (a) reach a sea-worthy definition of the
limit of a convergent sequence in a problem-solving context, and (b) change their
image of definitions in mathematics - from descriptions of objects to tools for proving.
Job provided a thought-through analysis of why this attempt failed for either goal, in
spite of the very propitious experimental conditions (a group of 12 high-achieving
students who volunteered for seven 1-h sessions, under the guidance of the researcher).

A second argument rests on the history of mathematics, since, for centuries,
problems were solved and theorems proved using reasoning which – for the twenty-
first century reader – are consonant with the limit concept, without any definition of
limits being singled out and made explicit. Let us mention two examples of different
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scales and from different periods. In Hellenistic mathematics, Euclid and Archimedes
proved many theorems using a uniform formal proof-scheme: two magnitudes A and B
can be proven to be equal if their difference is less than a sequence of magnitudes
which is bounded above by a geometric sequence of magnitudes of common ratio ½
(Proposition I of Book X (Euclid 1908)). In 1713, in a letter to Hermann, Leibniz
proved what is still usually called the Leibniz criterion for alternating series, and he
proved it the way we still prove it (assuming the completeness of the set of real
numbers) (Leibniz 1859, 272–275). However, he never considered that this well-
known (since Antiquity), versatile and ubiquitous proof-scheme made it necessary to
define a new notion such as Blimit^. Let us mention here the work of Bob Burn (2005),
who devised – but did not experiment – a teaching path going from the historical proof-
scheme to the formal definition.

Consequently, we acknowledge the fact that the limit concept shares many essential
properties with FUG concepts, and that this commonality implies similarities in terms
of teaching strategies. However, we will not go as far as to say that the limit concept is a
FUG concept, for both epistemological and didactical reasons. From a historical
viewpoint, it is indeed Cauchy who, in his teaching at the Ecole royale polytechnique
(Cauchy 1989), presented a systematic organization of the part of mathematics dealing
with functions on the basis of the notion of limit of a variable quantity. This choice for
the large scale deductive structure of function theory, which at the time had competitors
of no lesser systematicity (as in Langrage (1813)), is, to a large extent, still reflected in
today’s analysis: its fundamental concepts (continuity, derivation, integration, number
and function series) are defined in terms of limits; the theory involves existence proofs
(for real numbers, for functions which are solutions of functional equations) for the
defined objects, which was one the main novelties in Cauchy’s exposition. This
situation is very similar to that of the introduction of abstract vector spaces and creates
a similar challenge for teaching: the raison d’être of limits, i.e. the reason why
mathematicians value this notion, can probably not be grasped on the occasion of
one problem-solving session, or even a short series thereof. On this basis, one could
imagine designing a teaching sequence combining the Burn proposal and the Robert-
Dorier approach, with a guided meta reflection on a gradually abstracted proof-scheme.
This is not the choice we made, however; for two reasons. First, this approach might
not take into account the cognitive difficulties to access the notion of limit, and might
lead to a formulation of the definition of the notion of limit without inserting it properly
in a restructured concept image. Second, our goal is to design a teaching sequence
which is compatible with ordinary teaching conditions, in particular in terms of time.

A closer look at the history of mathematical analysis in the nineteenth century
suggests another lead. Mathematicians introduce new concepts for a variety of reasons
and purposes. One of the merits of the FUG approach is to remind us that not all
concepts were introduced to solve new problems, or to solve older problems more
efficiently, or even to help ascertain statements (as for proof-generated concepts).
Concepts are also introduced to unify, generalize, simplify, and – more generally –
streamline parts of mathematics as a body of knowledge. On some occasions, concepts
are also made explicit in a process of conceptual differentiation; not to unify, but to
distinguish between two hitherto conflated notions. It is well-known that, in the course
of the nineteenth century, mathematicians learned to distinguish between point-wise
and uniform properties in analysis – for continuity or for the convergence of sequences
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of functions – in cases where mathematicians of the former generation, such as Cauchy,
saw no difference. In the second half of that century, the distinction between maximum
and least upper bound gradually became standard (Chorlay 2012). At the turn of the
twentieth century, mathematicians learned to systematically distinguish between local
and global viewpoints, theorems and theories (Chorlay 2011).

In these three cases, at least two types of phenomena concurred to foster the
differentiation process. On the one hand, a series of rational moves from mathemati-
cians engaged in the streamlining of proofs; rational moves which the Lakatosian
description of proof-generated concepts captures appropriately: search for exceptions
and refusal of the monster-barring approach, search for hidden lemmas, and exploration
of the realm of unintended objects falling under a seemingly innocuous definition
(Lakatos 1976; Volkert 1987; Chorlay 2012). On the other hand, an evolution of the
syntax of mathematics, and of the norms of proper mathematical writing: explicit use
and ordering of quantifiers in the case of the point-wise / uniform differentiation;
explicit statement of domain for every function and every functional equality in the
case of the local/global differentiation (Chorlay 2011).

The point of this admittedly sketchy historical excursus3 is not only to remind us that
conceptual differentiation is a well-documented drive for concept introduction in higher
mathematics, on a par with unification and generalization, but also to show that it could
be better suited for the introduction of the formal limit concept to students. First, the
formalization of the concept took place in the course of the point-wise/uniform
differentiation, and not in the Cauchy phase of unification. Second, and this is not
specific to the case of the limit concept, it might be easier to insert a new notion in the
mathematical landscape of students on the basis of its differentiating role than on the
basis of its FUG role in higher mathematics. The need, felt by mathematicians on the
basis of their extensive knowledge of mathematics, to unify, generalize and simplify is
not something that can easily be emulated in a teaching protocol. And assuring students
that a newly defined concept is very important – for mathematicians – and will – in the
years to come – be of great use in their study of mathematics may have a motivational
impact, but probably little cognitive impact. By contrast, the need for conceptual
clarification does not require an extensive view of mathematics or a premonition of
future benefits, but only the ability to spot specific inconsistencies in a mathematical
milieu that can be designed for that purpose.

Tools for the Analysis of Situations of Definition Construction

Within the framework of the theory of didactical situation (TDS), Ouvrier-Buffet (2006,
2011, 2013) has been developing specific tools for the design and the analysis of what
she termed BSituations of Definition Construction^. We will first present the elements
of her framework which we will use for the analysis of this design, then suggest
adaptations allowing for the study of student-teacher interaction in a codidactic

3 From a more general standpoint, this excursus exemplifies a use of historical knowledge in research on
mathematical education which seeks to avoid any form of ontogeny-philogeny parallelism, and in which the
notion of Bepistemological obstacle^ plays no part. For methodological discussions grounding these choices,
see (Artigue 1991) and (Chorlay and de Hosson 2016).
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situation. We will eventually sketch a comparison with other works which bear on
defining as a mathematical activity.

Beyond the general framework of TDS, Ouvrier-Buffet relied on the theoretical
constructs of Balacheff (Balacheff and Pedemonte 2016) to identify tools for the design
and the analysis of situations of definition construction. Balacheff calls a conception of
X a state of equilibrium of a cognitive subject with respect to a milieu which can be
described in terms of four elements: a set P of problems for which X is regarded by the
subject as a provider of solutions, and which in return give meaning to X; a set O of
operators which enable the subject to alter the milieu; a system of representation L,
which may use several semiotic registers; and a set Σ of controls which enable the
subject to assess if the modification of the milieu by a given operator is possible (or
not), and efficient (problem solved / problem not solved). This framework was first
designed to study and compare the variety of conceptions – among students of the same
age or at different levels of the educational system – of standard mathematical objects
such as addition, decimals or symmetry. It was later used to characterize forms of
engagement with mathematics, such as argumentation and proof (Balacheff and
Pedemonte 2016). Along this line, Ouvrier-Buffet seeks to characterize three concep-
tions of defining as a mathematical activity.

To describe our classroom experiment, we will have no use for what she calls the
Popperian conception of defining, which bears on large-scale and high-level problems
such as the construction of a whole theory, or the selection of a theory among
competing ones. By contrast, we will retain elements from what she calls the
Aristotelian and the Lakatosian conceptions, both of which aim for concept-
formation rather than theory-building. The Aristotelian conception of the defining
activity targets problems of classification, in which a concept is to be delineated
through the identification of invariant properties (displayed by all the instances of the
concept) and specific differences (distinguishing it from neighboring concepts). Its
controls express logical and linguistic requisites: a definition has to avoid metaphors
and loosely defined terms; it has to avoid vicious circles resulting from a use of the
definiendum (what is to be defined) in the definiens (that which defines); it has to
capture a necessary and sufficient condition; it should be minimal. The operators can be
derived from the controls: eliminate ill-defined terms, weaken conditions that are
sufficient but not necessary etc.

On the basis of Lakatos’s Proof and Refutation (1976), Ouvrier-Buffet outlines a
Lakatosian conception of the defining activity which also fosters concept-formation
either through problems of classification, or through various forms of engagement with
argumentation (e.g. exploring the scope of a conjecture, checking the correctness of a
proof). A first class of operators has to do with examples: generate examples, counter-
examples (to a statement), and non-examples (of the target concept); alter a definition
(or a proof) to take non-examples (or counter-examples) into account. Among these
operators, we will mainly have use for monster-barring, i.e. the strengthening of a
definition aiming to exclude a non-example, or a whole class of these. Other operators
do not bear directly on examples: some bear on proof (in particular: analyze the Bproof^
of an invalid theorem to spot a hidden Lemma); reformulate in a new framework or in a
new semiotic setting; generate new conjectures or new problems (sub-problems,
generalizations etc.). The controls derive from the operators. Clearly, the Aristotelian
and Lakatosian conceptions of defining partially overlap.
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Since our engineering rests on classification rather than proof and conjecture, large
parts of the framework of Ouvrier-Buffet will not be directly of use, in particular the
distinction between in-action definitions, zero-definitions and proof-generated defini-
tions (Ouvrier-Buffet 2011). In particular, for lack of an engagement in proof and proof-
analysis, we will not retain the term Bzero-definition^ to describe the tentative defini-
tions written out then assessed by students in phase 2; we will use the more neutral term
Bcandidate-definition^.

In situations of definition construction, Ouvrier-Buffet studied the impact of a key
didactic variable, namely the degree of explicitness of the requirement that candidate-
definitions be provided by students. Both empirical studies (Ouvrier-Buffet 2006,
2011) strongly suggest that even in the face of well-designed milieus and problematic
situations (of classification or proof) an explicit request for definitions from the
supervisor is a decisive component, either to trigger the shift from an in-action
(meaning: implicit) definition to a zero-definition, or to allow for the inclusion into
the milieu of (explicit) zero-definitions over which students can exert controls and
apply operators.

Although this framework was first devised to provide tools for the design of SDCs
and the analysis of the cognitive trajectories of students in SDCs, it also provides tools
for the analysis of student-teacher interaction. In the a posteriori analysis of phases 2
and 3, we will sort out the various moves of the actors in terms of controls and
operators, while paying attention to who exerts control or applies operators: teacher
or students. In order to capture the specific role of the teacher, we will also distinguish
between cases when he/she actually exerts control or applies operators, and cases when
he/she hints at what students may consider doing in terms of controls and operators.
This will help us ground our claim that the situation did elicit an active engagement of
the students in the defining activity. In other words, that the behaviors of the students
can be seen as gradually building up an adaptative response to the constraints of the
milieu – with a teacher acting as a mediator between the students and the milieu and an
orchestrator of the multiplicity of voices (Bartolini Bussi 1998, 2009; Bartolini Bussi
and Mariotti 2008; Fischbein and Mariotti 1997) – as opposed to a series of uncon-
nected and short-scale applications of the teachers’ instructions. More locally, it will
provide tools to capture the variety of controls and operators used by the students
(either with or without prompt from the teacher) or by the teacher.

Since these analytical tools were crafted in the framework of TDS, a systematic
comparison with other frameworks could be fruitful. This holds in particular for the
framework of Realistic Mathematics Education since genetic decomposition and guided
reinvention were used in several key-studies on the limit concept (Cottrill et al. 1996;
Swinyard 2011). It was also used for instructional design (Martin et al. 2014) in a
constructivist perspective which is similar to ours. Moreover, general tools for the
analysis of defining as a mathematical activity (DMA) were also designed in this
framework by Zandieh and Rasmussen (2010). However, just as we will not use the
totality of the tools provided by Ouvrier-Buffet because we chose a situation of
classification and not one involving conjectures and proofs, this case-study does not
lend itself easily to a description in terms of the DMA framework. First our situation is
one of classification which involves neither modeling nor proving. Second, the DMA
framework allows for the analysis of the diversity of the successive forms of engage-
ments with definitions on a rather long time-scale (a 5-week course). In our engineering,
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students only commit to defining for only one hour, since the first half of the 2-h session
is meant to lead students to acknowledge the need of a definition of the infinite limit. The
second hour can be seen as an instance of the first of the four levels of defining activity,
that of Bsituational activity^ in which a concept-definition is to be created on the basis of
a concept-image (Zandieh and Rasmussen 2010, p.60). Since this phase does not
involving making use of a definition as a tool, we will only be dealing with
definitions-of and not with definitions-for (Zandieh and Rasmussen 2010, p.58).

Layout of the Teaching Session – Elements of A Priori Analysis

Local Teaching Requirements and Constraints

In the final year of secondary education – year 12 in the French educational system – the
curriculum requires that students majoring in mathematics and the sciences study a few
formal definitions regarding limits. On this basis, they are expected to study and
memorize the proofs of a few standard facts about limits, such as: BIf an increasing
sequences has limit l, then all its terms are less than or equal to l^, and BAn increasing
sequence with no upper bound tends to +∞^. On the whole, the encounter with a formal
definition plays a very minor part in the range of tasks entrusted to students in their study
of mathematical analysis. In high school, the focus is on the use of sequences and
functions in modeling and problem-solving, and on the gradual expansion of the
investigative means, thanks to new functions (rational, circular, logarithmic) or new
procedures (derivation, integration). As far as limits are concerned, students are to be able
to make conjectures about limits in a numerical or a graphical context, and to study the
limit(s) of specific functions and sequences by choosing and using the right tool from a
list of rules on the algebra of limits. These rules are usually studied before the definition is
given. The official syllabus suggests that this limited display ofmore formal mathematics
can serve two purposes: to show students that analysis is a deductive theory (on a par
with, say, geometry); and to give an opportunity to use logic (in particular quantifiers).

From a more theoretical standpoint, this Bin-depth study of the notion of limit of a
sequence^ – as the syllabus puts it – seems to be a rather isolated sample of analysis in
a world of calculus. This is very similar to the Spanish situation which Barbé et al.
(2005) analyzed in terms of praxeologies. In both cases, the calculus and the analysis
praxeologies are present in the curriculum, yet they are almost completely disconnected
in practice. This charge of Bdisconnection^ calls for qualification, though, according to
whose practice one considers. From the viewpoint of analysis – which, hopefully, is
that of the teacher –, there are connections indeed: the definition of limits is a sample of
a theory (mathematical analysis); a sample with a technological function, insofar as it
enables one to prove theorems warranting some of the techniques used to handle and
determine limits (algebra of limits, rules about limits and inequalities). However,
assuming that the students’ perspective – grounded in their experience of school
mathematics – is that of calculus, the specifics of this discourse on defining limits
may not only be difficult to understand; the meaning of the whole endeavor might also
be difficult to grasp. The definition of limit might appear to be useless – when it comes
to dealing with the problem-solving and modeling tasks which are entrusted to students
on a daily basis – in addition to being difficult to understand.
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Prerequisites for the Session

There are two kinds of prerequisites for the session: a general familiarity with limits of
sequences, and some familiarity with the formal characterization of some properties of
sequences.

Actually, so as to keep the logical prerequisites to a minimum, only the formal
expression of Bbounded above^ (at least one of them) and its negation play a significant
part in the design. Working on the formal expressions of this property can provide
opportunities to remind students of the meaning of the universal and the existential
quantifiers, but also to come across and discuss expressions involving nested quanti-
fiers. In particular, students should probably be aware of the fact that, on some
occasions, the order of the quantifiers does matter (Durand-Guerrier and Arsac
2005), as can be illustrated by the fact that

∀n∈ℕ ∃M∈ℝ un < M

always holds, which does not mean that all sequences are bounded above. In the
session, we endeavor to make this explicit by using the standard subscript convention;
for instance, we express Bnot bounded above^ as

∀M∈ℝ ∃nM∈ℕ unM ≥M :

We drew on the numerous elements gathered in the preliminary analysis to design a 2-h
teaching session. We will describe the layout of the session and discuss some key
didactic variables.

We will not expatiate on the choice of one of the variables, namely the fact that we
decided right from the start that the specific work on the definition of infinite limits
should not take more than one teaching session. The session was designed with the two
teachers who would implement them, and the fact that they were not willing to spend
more than the usual 2 h they usually spend on the definition of limits was an external
constraint. This constraint, however, was in keeping with our research goal, since we
aimed for a formulation of the definition by students – as was achieved by Swinyard
(2011) and (Martin et al. 2014) but with a very small group of students and over a long
period of time – within a time scale similar to that of (Robert 1983), (Bloch and Gibel
2011), and (Roh and Lee 2017).

The layout of the session has three main phases:

& Phase 1: Students are required to sort sequences according to whether or not they
tend to +∞. Collective discussion on the sorting. Collective discussion on the
connections between limit, variations and upper bounds. Collective discussion on
the issue of uniqueness of a limit. Collective discussion on the need for a definition.

& Phase 2: Students are asked to write down possible definitions – we will call them
candidate-definitions – of B lim

n→þ∞
un ¼ þ∞^, for an unspecified sequence denoted

by (un). Collective assessment of the candidate-definitions.
& Phase 3: Under teacher guidance, formal reformulation of Bnot bounded above^;

acknowledgement of the fact that it is a necessary but not sufficient condition for
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B lim
n→þ∞

un ¼ þ∞^. Collective work on the strengthening of this condition in order to

find a necessary and sufficient (hence definitory) condition.

Phase 1

In the sorting task entrusted to students in the first phase, four didactic variables can be
identified: two bear on the list of sequences to be sorted, namely, (1) the way they are
given (e.g. by formulas or scatter-plots), and (2) the specific properties of each one of
them; a third variable bears on the role of argumentation and justification in the sorting
task; the nature and level of teacher intervention is a fourth variable. In this part, we will
discuss (2), (3), and (4). Variable (1) will be discussed in the a posteriori analysis, so as
to shed light on a general issue about situations of definition construction.

In phase one, students are first asked to work in pairs for 15 to 20 min, and study the
following sequences:

an ¼ n
100

−100 bn ¼ 3n−1000 cn ¼ 100n−n2 dn ¼
ffiffiffiffiffiffiffiffiffiffi
n

pq

en ¼ −1ð Þn � n f n ¼ 10 000−1000� 2

3

� �n

gn ¼ −1ð Þn þ n in 2016ð Þ
gn ¼ −1ð Þn � 10þ n in 2017ð Þ hn ¼ −1ð Þn þ 1ð Þ � n
in ¼ 10 000þ 1000� cos nð Þ jn ¼ −1ð Þn þ 2ð Þ � n

Students are also given a worksheet with a three-column table, and instructed to: Bplace
each sequence in one of the columns. If you place one of them in the middle-column,
explain why .̂ The columns were labeled:

I think the sequence tends to +∞ I don’t know I think the sequence does not tend to +∞

We had several reasons not to ask students to Bprove^ or Bjustify^ all their answers.
First, the techniques they had studied only enabled them – in theory – to fully justify
their answers for some of the sequences. And even among these, this justificatory task
ranged from the familiar to the tricky.

What students are expected to provide are not – at least not always and not
necessarily – proofs, but decisions, as characterized in (Balacheff 1987). To the
standard distinction in TDS between situations of action, situations of formulation,
and situations of validation, Balacheff suggested that a fourth kind of situations be
added, halfway between formulation and validation:

[a situation of decision] requires the mobilization of means of decision, hence
means of validation, without any explicit proof be demanded. What is to be
produced is a valid proposition, not the proof of validity. In the situation of
decision, the intellectual operations of hypothetico-deductive reasoning (…) may
be come into play, without any proof being displayed. The logical and semantic
controls function locally in the process of finding the solution. Eventually, as
mathematicians, we recognize in it an organization which is of a demonstrative
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type, but here, for the subject, it is a tool and not an object. (Balacheff 1987,
p.153. Our translation)

Among the sequences, two subgroups play different but central parts in the design.
Sequences f, g and j are meant to foster conceptual differentiation between infinite limit
and variations: sequence f does not tend to +∞ – since it is bounded above – in spite of
the fact that it is strictly increasing; sequences g and j do tend to +∞, in spite of the fact
that they are not increasing, not even from a certain rank. Thus, neither of the properties
Bbeing an increasing sequence (at least from a certain rank)^ and Btending to +∞^
implies the other. Sequences g and j differ in so far as the size of the Boscillations^ is
bounded for g and not bounded for j. This can be used to show that no combination of
conditions such as Bnot bounded above + bounded oscillations^ is definitory for the
infinite limit.

From a more general didactical viewpoint, challenging students’ image of the
infinite limit by displaying Bboundary examples^ (Watson and Mason 2001; Chorlay
2015), or Bwedges^ (Dawkins and Roh 2016) is a standard move in sessions aiming to
trigger a defining activity (Ouvrier-Buffet 2006).

Sequences e – which goes 0, −1, 2, −3, 4, −5,… – and h – which goes 0, 0, 4, 0, 8,
0, 12, … – are meant to trigger socio-cognitive conflict, for several reasons, and with
several expected benefits.

The decision as to these two sequences cannot be justified by students on the basis of
the course on limits they were exposed to on earlier occasions. Indeed, in the course on
limits, the theorem on uniqueness of limits is usually not stated in year 11; in the classes
where the experiment was carried out it had not been stated in year 12 until then either.
Students do not generally feel the need for any such statement, all the more since the
definite article Bthe^ is usually used right from the start by teachers when informally
introducing limits. The fact that uniqueness seems to Bgo without saying^ is confirmed
by the fact that many year 12 textbooks in France do not even mention it. Needless to
say this theorem – as any theorem about limits – cannot be proved before a definition is
available.

We also claim that the sorting decision for sequences e and h cannot be made on the
basis of purely mathematical arguments. In other words, we claim that, in the absence
of a definition, deciding that sequences e and h do tend to +∞ and to −∞ (for e) or 0 (for
h) is not mathematically incorrect. First, defining and using in proofs a notion of Blimit^
which does not imply uniqueness is mathematically correct, since it corresponds to the
contemporary notion of subsequential limit.4 One could argue that the conceptual
differentiation between Blimit^ and Bsubsequential limit^ is one of the various concep-
tual differentiations which we target in this design; we would not go as far as saying
that, since at no point will it be necessary to carry out explicit work on the concept of
subsequential limit. Second, it so happens that prominent mathematicians chose defi-
nitions for the word Blimit^ which do not imply uniqueness. For instance, in his
Analyse algébrique of 1821, Cauchy wrote:

4 Let l be a real number: by definition, l is the a subsequential limit of sequence (un) if
∀ε∈ℝþ* ∀N∈ℕ ∃nN∈ℕ nN > N and junN −lj≤ϵ:
In other words, l is the a subsequential limit of (un) iff there is a subsequence of (un) which tends to l.
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When a variable quantity converges to a fixed limit, it is often convenient to
denote this limit with a specific notation. This is what we will do, by writing the
abbreviation lim before the aforesaid variable quantity. Occasionally, when one or
several variables converge to fixed limits, an expression involving these variables
converges at the same time to several different limits. We will then denote either
of these limits using double parentheses placed after the abbreviation lim, thus
bracketing the expression at play. Let us assume, for instance, that a positive or
negative variable represented by x converges to the limit 0, (…) then the
expression lim 1

x

� �� �
admits two values, namely +∞ and −∞; and lim sin 1

x

� �� �
has an infinity of values between -1 and 1. (Cauchy 1989, p.26. Our translation)

This acceptance of ambiguous symbols by Cauchy was not restricted to limits, since his
function concept allowed for multivalued functions:

ffiffiffi
4

p ¼ �2, arctan0 = kπ for all
integers k etc. This function concept was by no means specific to Cauchy: it was first
promoted by Euler, in the context of the controversy on the logarithm(s) of negative or
complex variables, and remained a widespread convention in the mathematical com-
munity until the turn of the twentieth century.

The fact that students do not have rational means to decide how to sort sequences e
and h has two consequences, both of which play a crucial part in the design.

First, our goal is to trigger socio-cognitive conflict – in the form of dissensus among
students in the collective discussion phase – triggering the recognition of the need for
something that is not yet available in the didactical milieu. Something that could be
either a definition, or at least a convention as to whether the word Blimit^ should be
used only in the cases where there is one such object, or, just as well, in cases where a
sequences Btends^ to several such objects. It is important that the sequences e and h
themselves display general patterns which are quite easy to grasp, since the goal is to
show that the inability to decide how to sort them does not stem from the difficulty to
understand their behavior, but, rather, from the lack of a settled rule governing the use
of the word Blimit^ in the classroom.

Second, from a mathematical viewpoint, the need to settle the uniqueness issue is a
cornerstone for the conceptual differentiation between Binfinite limit^ and Bnot bound-
ed above^. Indeed, if one does not require that the definition of the word Blimit^ imply
uniqueness, that is, if one chooses to use the word Blimit^ to denote what is now
conventionally called subsequential limit, then the definition of Binfinite limit^ be-
comes:

∀M∈ℝ ∀N∈ℕ ∃nN∈ℕ nN > N and unN ≥M ;

a property which happens to be equivalent to the seemingly weaker property

∀M∈ℝ ∃n∈ℕ un≥M :

Thus, if one does not require uniqueness, Binfinite limit^ thoroughly conflates with Bnot
bounded above^.

This analysis has an impact on the fourth variable, which bears on the nature and
extent of teacher intervention. In the sorting task, we hypothesize that the properties of
the listed sequences and the experience of limits students have will lead to a dissensus if
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the teacher assumes a neutral role, only warranting that decisions are not based on an
incorrect understanding of the behavior of the various limits. Before launching the
second phase, the teacher has to briefly change roles. Since the requirement of
uniqueness is a convention, it cannot be derived from a rational analysis of the
collection of sequences. The teacher will add this requirement to the milieu without
trying to justify it: it will be required that the definition of Binfinite limit^ be such that
uniqueness holds.

To sum up, at the end of the first phase, we expect that the collective discussion
about the sorting task will lead to a consensus – within the collective comprising the
students and the neutral teacher – on the following point:

& The property Bbeing increasing (at least from a certain rank)^ is neither a necessary
nor a sufficient condition for a sequence to tend to +∞.

& Our current use of the word Blimit^ does not allow for a rational and consensual
sorting decision for seemingly innocuous sequences such as e and h. Writing a
definition for Binfinite limit^ could be a way to settle this issue.

& If we chose a definition of Binfinite limit^ which either requires or implies
uniqueness – that is, a definition for which sequences e and h do not tend to
infinity; a definition for which sequences e and h are non-examples of sequences
with limit +∞ – then Bnot bounded above^ would not be a sufficient condition for
Binfinite limit^, even though it is clearly a necessary condition.

Phases 2 and 3

In phase 2, students are first asked to write down what their definition for the infinite
limit would be; the definition should warrant uniqueness. We let them work in pairs,
and give them about five minutes. Then, a sample of the candidate-definitions is
selected by the teacher and displayed for collective discussion (after a short phase of
individual reading). Again, students are asked to assess the candidate-definitions and
decide whether each one of them should be accepted or rejected as a definition for the
infinite limit.

On the basis of the preliminary analysis, we did not expect anyone to come up with
the target definition, either expressed formally as in

∀M∈ℝ ∃N∈ℕ ∀n∈ℕ n > N ⇒ un≥M :

or in a logically equivalent rhetorical formulation such as: Bfor any number M there is a
rank after which all terms of the sequence are greater than M^. Of course, we would not
have considered rhetorical wordings such as Bthe sequence takes on arbitrarily large
values^, Bthe sequences becomes greater than any chosen constant^, Bthe values
becomes ever larger^ to constitute satisfactory definitions; not because of the rhetorical
formulation, not even because the quantification is not as explicit as it could be, but
because these sentences define Bnot bounded above^ or Bincreasing^, but not Binfinite
limit^. In other words, whether in a formal or in a rhetorical register, we did not expect
the third quantifier B… ∀ n ∈ℕ…^ (or Ball the terms of the sequence after a certain
rank^) to come up in the candidate-definitions. Overcoming this obstacle would be the
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goal of phase 3.
A thorough a priori analysis of the preliminary stage of phase 2 – in which pairs of

students write down candidate-definitions – would involve an analysis of the range of
possible answers in terms of content and form, and of its relationship with the state of
the milieu at the end of phase 1. We will not provide this analysis, for two reasons.
First, we feel the preliminary analysis based on the literature is sufficient to back up the
assumption that students will not reach anything qualifying as a definition. Second, the
range of candidate-definitions provided by the students will allow for the unfolding of
the engineering as long as it displays various combinations and expressions of
Bincreasing^ and Bnot bounded above^. Again, the preliminary analysis warrants the
assumption that it will.

The role of the preliminary stage of phase 2 is twofold: to initiate a shift in tasks
(from sorting to defining), and to enrich the milieu through the introduction of
candidate-definitions.

The task of assessing candidate-definition is, in itself, an unusual task in the
French educational system; a task which we can safely assume a large majority
of the students had never been assigned before. On a more local scale, the
students had – until then – spent most of the session working on a collection of
sequences, so as to study their asymptotic behavior. In phase one, sequences
were the object of study, while students’ patchy knowledge of limits provided
tools for this study. Making candidate-definitions the object of study involves a
complete shift of focus which we thought requires some time.

Even if the preliminary analysis left us little hope that the local mathematical milieu
could possibly lead some students to the formulation of the target definition, we
assumed it was rich enough to enable students to rationally assess (and reject) a few
candidate-definitions. In the a posteriori analysis we will have to pay a close attention
to the ability of students to make use of the affordances of this milieu for the assessment
task. The milieu comprises 11 sequences, some being examples of sequences which
tend to +∞, some being non-examples. Beyond this fundamental feature, each of them
displays a combination of properties – in terms of sign, variations, upper or lower
bounds – which could play a significant part when assessing a candidate-definition, or
comparing and contrasting candidate-definitions. In phase one, these properties were
not the object of study, even though they were facts which the teacher made explicit in
order to stress logical connections between properties. Only the a posteriori analysis
will enable us to be confident that drawing, in phase 1, the attention of the students on a
few facts and connections which the teacher deemed relevant actually generated
argumentative resources (and constraints) for students to make use of (and take into
account) in phase 2.

To sum up, at the end of the second phase, we expect that the collective discussion of
phase 2 will have:

& Triggered an active engagement of the students in a non-standard task, namely a
defining task; or, more precisely, the task of assessing candidate-definitions.

& Led to a consensus – within the collective comprising the students and the neutral
teacher – on the following points: Bnot bounded above^ cannot be accepted as
definitory for Binfinite limit^ since the former is a necessary but not a sufficient for
the latter. However, it is our best guess yet, since (1) it is a bona fide mathematical
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property, something that can be defined mathematically - as opposed to mere
images such as Binfinitely large^ etc., (2) at least it is a necessary condition - as
opposed to Bincreasing (at least from a certain rank)^, which is neither necessary
nor sufficient.

In particular, our hypothesis is that in this teaching context – with high school students
with no experience of analysis as a deductive theory, no experience of definition
construction, and very little experience of nested quantifiers – the outcome of phase
2 will be substantial but negative: rejection of Bincreasing^; qualified rejection of Bnot
bounded above^. Thus, the design has a third phase for which we identify two non-
independent key didactic variables: the nature of teacher intervention, and the semiotic
registers. First, once the negative results have been reached, the teacher will be at
liberty to explicitly ask students to focus on Bnot bounded above^ and ask for ways to
strengthen into a necessary and sufficient condition for the infinite limit. Second,
should students have used only rhetorical formulations until then, the teacher will be
at liberty to ask them to rephrase in the formal register. This choice rests on the
elements gathered in the preliminary analysis with respect to the specific affordance
of the definition of Bnot bounded above^. Moreover, in the a posteriori analysis, we will
show that the affordances of the formal register enable students to tinker with
candidate-definitions in order to generate new ones. Our experimental results will show
that this path is viable and fairly robust.

Admittedly, since we did not change these variables throughout the four experi-
ments, we cannot claim that working in the formal register is necessary or even more
likely to lead to the formulation of a correct definition than remaining in the rhetorical
register. In particular, it seems possible for the Balmost all definition^ to emerge in the
rhetorical register. Nevertheless, this definition did not emerge in (Martin et al. 2014);
in (Roh and Lee 2017), it was given by the lecturer for students to assess. Also, the
results of (Martin et al. 2014) suggest that a version of the definition could be reached
in a mixed formal-rhetorical register, by first strengthening Bfor any real number M,
there exists an n for which un ≥M^ into Bfor any real number M, there exists an n after
which un ≥M^. The latter candidate-definition is incorrect due to the use of the same
letter n to denote both a number and all its successors, but it could in turn be modified
into a correct definition expressed in the mixed register. We do not deem it likely that
this path could have been taken if students had started from a purely rhetorical version
of Bnot bounded above^ such as Bthe sequence becomes greater than any given
number^, since we do not consider formulations such as Bthe sequence becomes greater
than any given number and remains so^ as qualifying as a definition.

In order to strengthen the condition Bnot bounded above^ so as to make it not only
necessary but also sufficient for Binfinite limit^, students will be asked to remind the
teacher of formal expression for Bbounded above^:

∃M∈ℝ ∀n∈ℕ un < M ;

then asked to express its negation:

∀M∈ℝ ∃n∈ℕ un≥M ;

International Journal of Research in Undergraduate Mathematics Education (2019) 5:267–314 291



Although there is no logical necessity for it, we will use subscripts in order to be more
explicit on the relations between the variables:

∀M∈ℝ ∃nM∈ℕ unM ≥M :

As regards phase 3, our main hypotheses are that (1) in the given teaching-context, the
students can suggest one of the correct definitions in their endeavor to strengthen Bnot
bounded above; and (2), in the process of collectively assessing the newly generated
candidate-definition, they will be able to select this strengthening as definitory for
Binfinite limit^ on the ground that it is the only one compatible with three constraints
afforded by the milieu:

& One should work in the setting of formal logic.
& Sequence h – which (starting from n = 1) goes 0, 4, 0, 8, 0, 12, … – is a non-

example of Binfinite limit^, because of the uniqueness requirement.
& Sequence j – which takes value 3n for even values of n, and value n for odd values

of n – is an example of Binfinite limit^, which implies that Bincreasing (at least from
a certain rank)^ cannot play any part in the target definition.

The a posteriori analysis will show that students tend to come up with the additive form
of the standard definition.

A Posteriori Analysis

This lesson plan was tried out twice in 2016 and twice in 2017, with year 12 science
majors, in standard teaching conditions in a French high school: a two-hour session, in
classes of 30 to 35 students. The teaching took place in November, while the chapter on
the algebra of limits and its list of admitted rules had been studied in September. At the
beginning of the session, the teacher explained that they were going to resume work on
limits. Of course, the fact that the final aim of the session is the formulation of a
definition of the infinite limit was not mentioned, since one of the objectives of phase
one is to lead students to express – or at least acknowledge – the need of a definition.
The two teachers (denoted 1 and 2) were experienced teachers who were involved in
the design of the session right from the start. This a posteriori analysis will bear only on
the collective phases, which were audio recorded. B2016–1^ will denote the experiment
carried out in 2016 in the class of teacher #1, etc.

Emergence of the Need for a Sorting Criterion in the Case of BMultiple^ Limits

In the collective discussion of phase 1, the sorting of sequences such as en = (−1)n × n,
hn = ((−1)n + 1) × n, and jn= ((−1)n + 2) × n was meant to trigger dissensus among
students, which, in turn, was to lead them to take a step back and begin discussing
their understanding of limits beyond the case of such and such sequence. The first goal
was reached consistently in the four experiments. However, whether or not that led
students to voice, or at least acknowledge, the need for a Bdefinition^ calls for a
nuanced answer.
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Let us take the example of the discussion of (en) in 2016–1. Working in pairs,
students were asked to sort the sequences in one of the three categories: tends to +∞ /
does not / I don’t know.

Teach.: So, what about en? Whose turn will it be … Mathias and Louis-Maxime,
what did you do with this one?
Mattias: we said the values oscillate between the positive and the negative, so it
tended to +∞ and −∞ … we didn’t consider that it tended … so: Bwe don’t
know^
Teach.: Did everyone hear the arguments, the hesitations of Louis-Maxime and
Mattias? (…) repeat what you said Mattias.
Mattias: It tends to +∞ and −∞
Teach. : yes, but it does do not do this [gesture], it does this, that, this … OK ?
and so …
Mattias: If one says that we can have… have both, one could say that it tends to
infinity, but if it has to be … to tend only to infinity then
Teach.: positive infinity
Mattias: that’s what we say.

The student was aware that the sorting problem did not stem from a lack of
understanding of the behavior of (en); but from the fact that, in spite of a clear
understanding of this behavior, the lack of a convenient Btends to +∞ and −∞^
made it difficult to sort. The students spotted the fact that the issue lay in the
uniqueness, and that the sorting task could be carried out if some convention
was settled regarding the use of the phrase Btends to +∞^. From a grammatical
viewpoint, his use of the neutral Bone^ instead of the Bwe^ he used to express
the view of his group is probably indicative of the implicit reference to a
shared convention.

Teach.: yes, with Bpositive^. So, we leave it here [in the BI don’t know column^]
because we don’t know what to say. Did some of you sort (en) in another column?
OK, Augustin.
Augustin: we said it did not tend to +∞.
Teach.: so you sorted it here, why ?
Augustin: … because it does not tend to +∞.
Teach.: hmmmm, we’ve reached heights in argumentation ! … Isabel?
Isabel: well, we know it does [gestures].
Teach.: this sort of … come and go, OK
Isabel: well, it tends … so… it’s sure we cannot sort it in the same categories as
the others and, in math, its either yes or no, so, by deduction …
Student [in the background]: and who says it’s Beither yes or no^!
Teach.: so, in math its either yes or no …
Student [in the background]: it can be Bgreater than or equal to^
Teach.:… either true or false… so one cannot say, given what math is, on cannot
say that sometimes it would do this and sometimes …
Isabel: there is no limit, so if there is no limit then it does not tend to infinity.
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Here also, Isabel took a step back and proceeds Bby deduction^ to justify her sorting
decision – Bdoes not tend to +∞^ – on the basis of her general understanding of
mathematics. In the background, a student attempted to challenge the meta argument by
remarking that in math class we sometimes use expressions which cover several
exclusive cases. In the next minutes, the teacher asked the students whether they agree
or disagree with Isabel’s argument. On the whole, this argument failed to convince part
of the class, either because of its intrinsic nature, or because it is meant to support her
conclusion (Bthere is no limit, so if there is no limit then it does not tend to infinity^); a
conclusion which was met with disbelief. In an attempt to counter Isabel’s deduction,
another student explained:

Romain:… that is, in math, when we see a curve and it has limits, well, then, the
curve cannot go beyond.
Teach.: you mean, something like this [gesture for the horizontal asymptote]
Romain: that’s it.
Teach.: OK, it would be bounded then
Romain: if it does not tend to infinity, then it is bounded.

Romain’s explanation was clearly based on a series of common misconceptions about
limits, yet it attempted to conjure up a general property of limits, and sketched a
deduction: sequences (or functions) with (finite) limits are bounded; so, since sequence
e is not bounded, it tends to infinity. At this point – and, more generally, throughout
phase 1 – the teacher did not prompt students to precisely word the logical connections
between the various properties. However, and from this point onward, the term
Bbounded^ would be part of the mathematical milieu. On other occasions, students
began to toy with other properties in the course of their argumentations. For instance, in
2017–1, in order to defend his sorting of sequence e in the Btends to +∞^ column,
student Kian mentioned that Bthe fact that it is not strictly increasing does not prevent it
from tending to +∞. (…) it tends to both +∞ and −∞.^ In the 2017–2 experiment, when
discussing hn = ((−1)n + 1) × n, a student suggested a way out of the apparent dead-end
by enriching the phrase Btend to +∞^: BI have a question. Could we say that it tends…
with a condition for n? If it tends… it tends for all n-s, not under some condition; here
it tends to positive infinity, but for some n-s, even or odd.^

On all four occasions, robust dissensus settled when it came to sorting those of the
sequences which have Bseveral^ limits (whether finite or infinite), a fact which can be
ascertained in two ways. First, it was never the case that all groups sorted them in a
single category during the first phase of autonomous work. Second, even after occa-
sionally heated exchanges of arguments among groups, no consensual decision was
reached; for instance, in 2017–1, after 5 min of discussion of d, a final vote led to: 4
groups in favor of Bdoes not tend to +∞^, 9 groups in favor of Btends to +∞^, and 4
groups opting for the Bwe don’t know^ column.

By contrast, consensus was soon reached on where the hitch lies: a decision has to
be made to clarify the sorting criterion, a decision bearing on whether or not a sequence
can be said to tend to several limits. In our design, we deemed it possible that, at this
point, students might realize that, in their curriculum, they had never been given a bona
fide definition of limits; and that this is what failed them in this instance. The four
experiments showed a range of reactions.
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In 2017–2, on the basis of the failure to reach consensus on the sorting of ((−1)n +
1) × n, a student suggested the following move:

Student: We need a definition of what it means to tend to infinity.
Teach. [to the rest of the class]: shhh … Listen to what your classmate has to
say.
Student: We don’t know what it means Btend to infinity^ [inaudible].

On this occasion, the teacher could validate this need without meeting any particular
reactions from the class. In 2016–1, students fully agreed that they did not know
enough about limits to make some decisions, but the fact that what they needed was a
Bdefinition^ was partially induced by the teacher in her request for more context-free
formulations:

Teach.: (…) so, eventually, what do we need to decide; to cut short; to know.
Emmanuel: what it is to tend to infinity.
Teach.: yes, Emmanuel, what we call …
Emmanuel: we call the limit … to reach the limit …
Teach.: (…) so what do we need; what do we need to do to …
Student: define.

In 2016–2, things seemed to run just as smoothly, but actually failed to convince part of
the class:

Teach.: So, in these cases of uncertainty, how will we be able to cut short? Yes
Student: Work out the value for n equals infinity.
Teach.: Well, we carried out these calculations, still you disagree among class-
mates … you all have the calculations – remember what we said – you all
observed the same things yet you drew different conclusions. So, we have the
calculations; what do we need to decide?
Simone: Define in which case we have the +∞ limit; can we consider that if a
sequence has limit +∞, even if it also has a limit which is 0 or −∞.
Teach.: Indeed, and what Simone just said – which is very important – is that we
need to define what’s going on, what’s happening. And, in this case, the notion we
need to define is the one which we’ve been working with intuitively since the
beginning; it is the notion of Btends to +∞^, and this notion has to be defined.
Does everyone understand the necessity to formulate a definition? Sharon, I can
see your shaking your head; why not?
Sharon: why Bdefine^?

The teacher then asked students to explain, for the benefit of Sharon, why we
needed a definition. The few reactions merely elaborated on the need to settle
the uniqueness issue. Sensing that it failed to convince many of the need for a
definition, the teacher tried to prompt students to reflect on the current dead-
end from a higher standpoint by asking: Bhow does mathematics work?^, a
question which elicited nothing but nonplussed silence. A student summoned up
the courage to question this Bneed^:
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Simon: Well, actually, I don’t understand why we need to define … the infinite
limit. We know what it is.

Indeed, the exchange that followed shows that the fact that everyone agreed on the
behavior of sequences such as e or f – they tend to positive infinity (possibly: among
other things) – warranted Simon’s contention to the effect that – in a sense – we can tell
when a sequence tends to +∞. He regarded the need for a convention on the uniqueness
issue as a complement to this prior and consensual item of knowledge, and not as
reason to forsake it by going back to the root. Maybe he would have been convinced by
a slightly different formulation. In 2016–1, for instance, way into the second phase it
dawned on one student that what they were trying to do was to define Btend to +∞
only^; the class regarded this formulation as a welcome clarification.

At any rate, even on the occasion where some students failed to be convinced that
the necessary convention as to uniqueness required that a Bdefinition^ be written out,
they engaged in phase two without any difficulty. A complete list of the candidate-
definitions provided by the students in the two experiments of 2016 can be found in the
Appendix. As explained above, we will not analyze these data in this paper.

The Pathway to the Definition in the 2016–1 Experiment

Students were handed out a selection of candidate-definitions (CD 1 to 5, see Table 1
below); they were given five minutes to read them and prepare arguments for the
collective discussion. The goal of the collective discussion would be to decide whether
or not either one of them should be accepted as definition of Btending to +∞^. The
definition should accommodate sequences g and j, but rule out e and h; it should imply
uniqueness of the limit.

In what follows, our goal is first to provide an overview of the pathway which led to
the formulation of two mathematically correct definitions of the infinite limit. Since
phases 2 and 3 took 55 min in total, it is possible to give a fairly comprehensive account
of the exchange of arguments, so as to back up our claim as to the actual engagement of
the students in the defining process, and provide a fine-grained description of the level
and nature of teacher guidance. However, the description below has been streamlined
and edited. In particular, we left out 5 min of the collective dialogue which bore on the
nature and meaning of the dependence between the threshold value M and the index
nM; this issue will be discussed later. We also left out a short episode with students who

Table 1 Candidate-definitions selected for collective discussion in 2016–1

CD1. For a sequence to tend to +∞, we need to have ∀ n ∈ℕ, un + 1 > un.
CD2. The sequence (un) tends to +∞ if and only if for all natural numbers n, (un) is increasing and not bounded

above.
∀ n ∈ℕ un + 1 > un and (un) not bounded above
CD3. The sequence (un) tends to +∞ when it is not bounded above.
CD4. The sequence (un) tends to +∞: the sequence increases while getting ever closer to +∞ but without ever

reaching it.
CD5. A sequence (un) which tends to +∞ is a sequence whose terms increase so that we cannot determine the

last term of this sequence.
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remained unsure as to why sequences such as en = (−1)n × n or hn = ((−1)n + 1) × n
ought be considered non-examples in spite of the fact that they clearly tend to +∞
(among other limits). Even so, we did not select only those episodes which were
mathematically correct and efficiently advanced the defining process. Indeed, dead-
ends, move-backs, and incorrect or loosely-worded statements are central to the
analysis of the pathway, both to document the role of the teacher, and to test our global
hypotheses as the pivotal roles of a concept (Bnot bounded above^) and a semiotic
register (that of predicate logic, with its formal and mixed variants).

In the boxes below, the italicized texts on the left-hand side are transcriptions from
the audio-recordings. For lack of space, summaries occasionally replace transcription
extracts. On the right-hand side, the analysis of the successive moves of the actors rests
on the adaptation of Ouvrier-Buffet’s tools described above: C stands for Bcontrol^ (i.e.
assessment of the current state of the milieu – usually after its alteration by the use of
some operator – with regard to the target problem), O stands for Boperator^ (action on
the milieu). In order to distinguish between the cases when the controls and operators
were actually carried out, and those when they were only referred to or hinted at, we use
HC and HO to code for the latter. To distinguish between types of agents (students or
teacher), teacher interventions are underscored. The analysis on the right-hand side
does not aim to capture all that can be seen as didactically relevant in the session, but
that which can be captured within this specific framework.

Teach.: So, let’s go; try to concentrate. So, Angèle
[raising her hand], what do you think of the first
suggestion: BFor a sequence to tend to +∞, we
need to have ∀ n ∈ℕ, un + 1 > un^?

Angèle: I think it’s incorrect, since a sequence can be
decreasing then increasing.

C: Spot that a condition is too strong / not necessary.
This student came up with a similar argument in phase

1, then used the operator Bweaken the condition^
by suggesting that Bincreasing^ should be replaced
by Bincreasing in its last part^.

Teach.: (…) Are there others among you with
arguments … Mattias.

Mattias: If we consider fn, we can see that it’s
increasing, yet it tends to 10,000.

Teach.: Yes. So the sequences in our collection
can be used as … as what?

Mattias: examples.
Teach.: counter-examples.

C: Spot a non-example from the list of sequences which is
compatible with CD1..

This student makes relevant use of the list of sequences from
phase 1; however, he does not express the type of control
he exerted in the framework of logic (Bincreasing^ not
sufficient).

O: Reject CD1

Victor: In #2 it’s written that it is increasing and not
bounded above, and we said that increasing is not
a factor, so …

C: Spot that a condition is too strong / not necessary.
Victor is referring to Angèle’s argument. Again, the

wording in terms of Bfactors^ remains pre-logical.
As far as operators are concerned, rather than rejecting

CD2 right away students suggested it be Bqualified^
(in French: Bnuançons^) with a mention of the
behavior Btowards the end^.

Teach.: (…) What’s the difference between these two
sentences, between the first one and the second
one? What difference in terms of form, so to speak?

HC: Compare the logical forms of the CD1 and CD2.

C: A condition of the form BA and B^ is stronger than
BA^.
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Student: The first one is a little more vague.
Teach.: No, it’s not vague; everyone understood it

right away. Maxime.
Maxime: In the second one something is added. Well

… for instance in the first one we can say that the
fact that un + 1 is greater than or equal to un, well it
can still be bounded above, hence not tend to +∞,
whereas in the second one, it is said it’s not
bounded above, so, well…

Teach.: So what? … Angèle.
Angèle: The first one is a necessary condition.

C (likely): Adding Band bounded above^ is efficient
in so far as it does rule out sequence f.

C: Analysis of the logical connection between the
properties mentioned in CD1 and CD2 in terms of
necessary/sufficient condition. Angèle is wrong,
however, since Bincreasing^ is not a necessary
condition.

C: In CD2, Bif and only if^ expresses a necessary and
sufficient condition.

O: Split the Bif and only if^ statement into two
converse implications.

HC: Assess the validity of the two statements
independently.

C: Several students acknowledge the validity of BIf a
sequence is increasing and not bounded above,
then it tends to +∞^. No one dissents.

Teach.: OK, so what about #3, what do you make of it.
#3 is BThe sequence (un) tends to +∞ when it is not
bounded above.^ Rémi.

Rémi: It looks good to me because … it’s a necessary
and sufficient condition.

Teach.: So, first, is it the case that this sentence states
a necessary and sufficient condition? … it’s not
very clear to me. This Bwhen^, in maths … who
wrote this sentence?… it’s you Rémi! What did you
mean by Bwhen^?

Rémi: I meant to say Bif^.
Teach.: So let’s write down what you meant to say: BIf

(un) is not bounded above, then it tends to +∞^.
Now that’s written in such a way that we can
understand what is the sufficient condition. So
what do you think? … Isabelle.

Isabelle: We saw that in the case of a sequence which
does this [oscillating gesture], on the one hand it
tends to infinity, and on the other hand also to
negative infinity.

Teach.: That was en in the list.
Isabelle: It wasn’t bounded above but it didn’t have to

tend to +∞, because it wasn’t bounded below
either.

Teach.: So you think it needs to be bounded below to
tend to +∞.

Isabelle: I think so, yes.

C: Consider the logical form of the definition. Check
that – as it should – it states a necessary and
sufficient condition.

C: Spot a vague wording.
HO: Ask for a more precise rewording.

O: Select an explicit logical connector.

C: Spot that CD3 accommodates non-examples.

C: Spot a property (Bnot bounded below^) of the
non-example being discussed.

O: Complement the CD with the negation of Bnot
bounded below^ to rule out the non-example.

The data do not allow us to distinguish between two
possible motives for Isabelle’s move: it could be a
case of monster-barring (to rule out sequence (en)),
specifically). It could also be the case that Isabelle
holds it to be the case (as part of her
concept-image) that sequences that tend to +∞ are
bounded below, hence this requirement can be
added to the CD.

In the three other experiments, this specific operator
was used by students as a monster-barring move.

Rochelle: Couldn’t we put it in the necessary
position?

O: Generate a new statement by considering the converse of an
implication.

C: Statement considered valid by the whole class.

Teach.: Let’s take a quick look at #4 Bthe sequence
increases while getting ever closer to +∞ but without
ever reaching it.^ What do you make of that? (…)
Bincreasing^, what did we say earlier? That it’s not a
condition we would consider any more. So this one

C: Spot a condition that has already been
acknowledged to be neither necessary nor
sufficient.

C: Spot undefined terms in the CD.
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doesn’t look … should be keep it? [hubhub] It’s not
really a definition, Bit comes ever closer ,̂ what can it
mean?

Student: the ordinate.
[The teacher then asked those who wrote CD4 to

reformulate]
Emmanuel: It means the sequence is increasing and

hmmm… well, I could’ve replaced by un + 1 ≥ un.
Teach.: Sure, but Bincreasing^ and un + 1 ≥ un that’s the

same, agreed? So: Bincreases and comes ever closer
to +∞^ …

Emmanuel: It means it cannot go down again.
Teach.: [to the class] Does that sound relevant to you:

Bcannot go down again^?
Student: well, actually, it can go down a little.
Teach.: Bgo down a little^? …
Student: well … before going over.

HO: Ask for clarification.

O: Reformulate.

HO: Reformulate.

O: Rephrase in the formal register.

C: Ill-defined term still here.

O: Rephrase ill-defined term.

C: Spot that the condition is too strong (possibly
with example (gn) in mind).

After a quick and consensual rejection of CD5, a pair of students suggested a new CD:

Teach.: So, another pair of students has a new definition to suggest, let’s
call it definition 6. Let’s see what’s on your worksheet: [copying onto
the blackboard]

∀M ∈ℝ ∃ n ∈ℕ un >M
[The teacher rephrased as Bnot bounded above^]
Teach.: So, is the idea of not being bounded above an important one in

order to capture Btending to +∞^? Shall we keep it?…We said earlier
that, if it’s not a sufficient condition, it means we have to… to what?…
We need another one, we need to add an extra condition, agreed? So,
what would you suggest?

[A student suggested adding Band bounded below ,̂ explicitly targeting
non-example (en)]

O: Suggest a new CD.
O: Change semiotic registers

formal → rhetorical.

C: Spot a necessary but not
sufficient condition.

HO: Strengthen the condition.

O: Add an extra condition.
Monster-barring.

The teacher reformulated Bnot bounded above^ by stressing that, for any
M, it only warrants the existence of one index n such that un >M.

She drew a scatter-plot with two horizontal lines at heights denoted byM
and M’ to show that even if the sequence becomes greater than anyM
for some index, the condition says nothing as to its Bfuture^ behavior.

Again, she asked for ways to strengthen Bnot bounded above^ and
capture the loosely-stated Bremain greater than M^.

The students went round in circles: some suggested Bincreasing^; some
remarked that even after becoming greater thanM, the sequence could
Bgo down a little^ and still tend to +∞.

O: Change semiotic registers.
Generate an example.

HO: Strengthen. Reformulate.

O: Strengthen.

C: Condition too strong.

Maxime: un + 1 >M [oral emphasis on B+1^]
Teach.: I need a complete sentence here. [being

dictated to, the teacher wrote on the blackboard]
∀M ∈ℝ ∃ n ∈ℕ
We’ll call it nM to say that is depends on M, because

every time I pick an M, it doesn’t have to be the
same, right? So…

∀M∈ℝ ∃nM∈ℕ s:t:unM > M
and unMþ1 > M

O: Add a condition.

O: Use the affordances of the formal register to make
relationships between variables more explicit.

HO: Ask for clarification.
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Teach.: [to the class] So, what do you think… you can
draw if it helps … [to Maxime] you wanted to
prevent it from going down, is that it?

Maxime: Yes, but it means that afterward, un + 1
becomes un, and the next un + 1 will still be greater
…

O: Switch to the rhetorical register to express the
intended meaning of the formal proposition. A
similar attempt to formally capture the Bfor all
terms after un^ – reminiscent of the
proof-by-induction scheme – was also observed in
(Martin et al. 2014, 138).

Teach.: So, you agree that this will not do because
here there’s only one … [to the class] Do you guys
see what Maxime is trying to do?

C: Condition too weak.
O: Focus on the part of the formal proposition which

fails to capture the intended meaning.

Maxime: un + x O: Use the affordances of the formal register to
introduce a new indeterminate in order to
additively express Bas from rank n^ or Bfor ranks
greater than n^.

A student had a hard time making sense of this x.
Teach.: That’s a good question; indeed, this sentence isn’t

precise enough. [to Maxime] Did you mean to say
Bthere is a un + x for which is remains greater^?

Maxime: Whichever
Teach.: So, would Bfor all x in ℕ^ suit you?

C: Variable x not quantified.
HO: Quantify.
O: Quantify.
O: Reformulate in the formal register (possibly

overinterpreting Maxime’s informal answer).

Teach.: Paul, you wanted to bring an improvement.
What do you suggest?

Paul: [inaudible]
Teach.: Give me a complete sentence please. [being

dictated to, the teacher wrote on the blackboard]
∀M∈ℝ ∃nM∈ℕ s:t:unMþx > unM > M

Indeed, right after Maxime introduced variable x, Paul
suggested the CD could be improved.

C – O: Spot that the conditions can be rephrased more
economically. Of course this formulation is incorrect
for x = 0. The student also forgot the quantification
on x.

Teach.: OK, that’s an improvement … can’t we do
even better? Go ahead, I’m sure you can find it. I
am. Don’t you find this a little too complicated?
Maxime, this BunMþx^ … can’t you think of a much
simpler way to say this? Maxendre …

[being didacted to, the teacher wrote on the
blackboard]

∀M ∈ℝ ∃ nM ∈ℕ s. t. ∀ n > nM un >M

HO: Simplify.

O: Replace the additive formulation of Bgreater than^
(Bgreater than nM^ being captured by BnM +
something^, Bsomething^ being assumed to be
positive) by a direct formulation.

Comparison with the Other Experiments

A Robust Pathway

The global pathway described above is structurally similar to those observed in the
three other experiments. The list of operators and controls exerted by students (without
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explicit prompts) show an active engagement in the defining process, mostly through a
(usually) relevant use of the list of examples and non-examples provided by the first
phase: spotting that a condition is too strong (since it rules out examples) or too weak
(since it accommodates non examples); strengthening a condition to bar a Bmonster^
(e.g. Bnot bounded above^→ Bnot bounded above and bounded below^); weakening a
condition that is too strong (e.g. Bincreasing^ → Bincreasing from a certain rank^,
Bglobally increasing^). Other operators and controls were usually exerted by students
when asked by the teacher, in particular when it came to making logical aspects
explicit: replacing rhetorical formulations such as Bwhen^ by implications;
distinguishing between ⇒, ⇐, and ⇔; specifying whether newly introduced variables
were to be quantified universally or existentially; spotting undefined terms and asking
for reformulation and clarification.

The teacher plays a key role at the transition between phases 2 and 3: asking the
class to focus on Bnot bounded above^; asking the class to suggest ways to strengthen
this condition; underlining the fact that the existential quantifier in B∃nM ∈ℕ^ puts no
constraints on the Bfuture^ behavior of the sequence. These moves are clearly of a
didactic nature. Nevertheless, our analysis is that they are not completely on the
didactic side: firstly, the teachers focused students’ attention on elements which were
already in the milieu, without introducing any new elements. Secondly, all the moves,
even when hinted at by the teacher, were carried out by students. Thirdly, all the types
of moves carried out in phase 3 had been carried out earlier (strengthen a condition, use
the formal logical register etc.).

It should be mentioned that in the 2017–1 experiment, on one occasion, the teacher
acted in a way which could not be regarded by the students as part of a shared response
– from the collective formed by the students and the teacher – to the challenges of the
milieu with respect to the problem. At some point during phase 2, a student attempted
to distinguish between the behaviors of ((−1)n + 1) × n and ((−1)n + 2) × n by suggesting
that Bbounded below and not bounded above^ was to be considered separately for the
subsequence of even indices and that of odd indices. This interesting operator is
somewhat specific to definitions of properties of sequences: replace Bcondition X on
(un)^ by Bcondition X on (u2n) and on (u2n + 1)^; it can serve as a template for a whole
range of new operators seeking to apply some condition to some/all subsequences. On
this occasion, the teacher deemed this to be a rather sterile and time-consuming path
and cut short, arguing that she could generate at will new examples and non-examples
by weaving together not two but three or more simple patterns.

In the a priori analysis we claimed that – at least for phase 3 – it was more likely that
a correct definition would be formulated if work took place at least partly in the formal
register. The a posteriori analysis provides elements to refine this claim. This also gives
us the opportunity to give an overview of phase 3 in the three other experiments, thus
grounding our claim of robustness of the engineering.

As far as purely logical aspects are concerned, nothing in the four experiments
suggests that the rhetorical Bfor all^ and Bthere exist^ cannot be used as easily and
efficiently as the corresponding symbols which serve as a mere shorthand. What is
decisive is the explicit introduction of variables (from a mathematical viewpoint)
denoted by letters (from a semiotic viewpoint) in order to express properties such as
B(not) bounded above/below ,̂ or B(strictly) increasing (from a certain rank)^. As
hypothesized in the a priori analysis, working only with these rhetorical formulations
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proved adequate when it came to rejecting candidate-definitions, but led to an
apparent dead-end, with a long list of ruled-out combinations of these properties,
and no clue as to how to get out of this predicament. The introduction of variables
to express these properties has at least two benefits. Firstly, it provides opportu-
nities to express the fact that some variables depend on others. Of course, in
B∀M∈ℝ ∃nM∈ℕ s:t:unM > M^ it is not necessary, from a logical viewpoint, to
write nM rather than n. For students with almost no experience of nested quanti-
fiers, however, it is probably helpful. Secondly – and more importantly – the
introduction of variables to denote sequences allows for a clear distinction be-
tween the values of the sequences and the ranks (i.e. the Bu^s and the Bn^s), and
gives students the opportunity to exert controls and carry out operators on either
one of them. In the 2016–1 experiment, the path from Bun^ to Bun + 1^, then Bun + x^,
and eventually Bup (with p ≥ n)^ led to the standard definition. Variants of this path
were observed in the other experiments.

In phase 3 of the 2016–2 experiment, the teacher gave students 5 min to work in
pairs and try to write down new candidate-definitions by strengthening Bnot bounded
above^. He spotted that a pair of students introduced Bun + i^, and asked them to write
their candidate-definition on the blackboard. They wrote

∀M ;∃n and i such that un > M and unþi > M

When asked to explain their idea to the class, the students said Bfor all i un + i >
M^. The teacher pinpointed the discrepancy between the written expression – in
which variable i is existentially quantified – and the oral explanation. When
asked to choose between ∃ and ∀, the students made the relevant choice by
selecting the universal quantification. This episode possibly illustrates a fact
observed on several occasions: when students introduced new variables, they
usually did not quantify, thus introducing free variables (i.e. indeterminates). It
can be hypothesized that they regarded this as capturing the same intended
meaning as a universal quantifier. However, our data is too scarce for us to
investigate this hypothesis.

Avery similar chain of formulas was observed in the 2017–1 experiment. In phase 2,
students had introduced in the milieu the additive notation Bun + 2^ in their attempt to
split a sequence into its subsequences of even and odd indices (respectively). In phase
3, a student used this template to introduce Bun +m^ (with an unquantified m). When the
teacher asked the class if they thought this move was relevant, another student ventured
Bun + infinity .̂ The teacher rejected this notation, and students readily suggested that
variable m should be universally quantified.

Only in the 2017–2 experiment did students suggest Bfor all m > n^ without first
toying with the additive form Bun +…^.

These results suggest that working with sequences rather than functions (defined on
domains including intervals of the [a, +∞) type) provided specific opportunities for
students to reach a correct definition. Of course, the additive Bf(x + y) for all y ∈ℝ+^ is
equivalent to Bf(y) for all y ≥ x^. However, it is less likely that the additive notations
would have been introduced in the non-discrete context, since in the discrete context
students used them either to echo the proof-by-induction scheme or to denote sub-
sequences.
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A Window of Opportunity for the BAlmost all^ Definition in the 2017–1 Experiment

In the 2017–1 experiment, the teacher decided to curtail an exchange of arguments
which was heading toward the standard definition of the infinite limit, and which might
have branched out onto a path to the Balmost all^ definition.

During phase 2, the teacher had taken the opportunity offered by the assessment of
the candidate-definition BA sequence tends to +∞ iff it’s bounded below and not
bounded above^, to get the formal definitions of these two properties written formally
on the blackboard. By the end of phase 2, students were trying to find ways to capture
the notion of global behavior of a sequences, toying with expressions such as Bon
average^, Bas a whole^, Ball in all^. They also mentioned that the Bfirst^ values do not
really Bmatter^, since only what happens Bas n tends to infinity^ was to be taken into
account.

Antoine: [inaudible]
Teach.: Bthe mean line should be increasing^ … we said Bincreasing^ could not
play any part, but I understand what you mean. You mean to say that globally it
should increase [in the background, several students approve] … we agreed that
Bnot bounded above^ is a necessary condition. If it’s not a sufficient condition, it
means we need to add a little something [several students approve]. So, if it’s not
bounded above, it means that, if I consider a number, there is a value which is
greater. If we want the sequence to tend to +∞, what should we add?
Victor: We could say that there is an infinity of ranks for which all the values
which are above … are above.
[Silence in the class. Some giggles]
Teach.: I see what you mean, but I’m not a hundred percent sure. Let us write
down what you said. It went like: (un) tends to +∞ … [to the rest of the class] I
assure you it’s meaningful, you just need to see in written form. Victor, come
again please.
Victor [dictating to the teacher]: … if there is an infinity of ranks … for which
…
Teach.: Try to avoid using Babove^ twice! Bfor which^ …
Victor: for which, all the following ranks are greater than this one
Teach.: Than this one?
Victor: Than the value for this rank
[In the background, some students complain they don’t understand what Brank^
means. Others offer support: Bgo Victor^]

In his attempt to capture the idea of global behavior, Victor introduced into the milieu
an expression which had not been used earlier, neither by the teacher nor by another
student: Ban infinity of ranks^. It is the only instance in the four experiments when a
student suggested a formulation which could possibly have led to what we termed the
Balmost all^ definition. In the literature, Roh and Lee’s experiment (2017) targeted this
definition of convergence (at least as a provisional but correct one) by asking students
to assess and compare two candidate-definitions (provided by the lecturer): some
property holds for infinitely many values of the sequence vs there are only finitely
many values for which it does not hold.
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This excerpt also illustrates how difficult it is to work purely in the rhetorical register:
it is quite likely that the two Babove^ in Victor’s first proposal referred either to the ranks
(for the first one: for all n > nM) or to the values (for the second one: un > unM ).
Similarly, in his Ball the following ranks are greater than this one^, he probably meant
to Bgreater than the corresponding value^ (and not the rank), as he partially made
explicit when asked for clarification. We can also notice that Victor’s proposal also
introduced into the milieu the notion of behavior Bfrom a certain rank^, which is a key
element of the correct definition; which is not the case for Ban infinity of ranks^.

Victor: Maybe with letters …
Teach.: Maybe it would be easier with letters? Didn’t I just write it down with
letters?
Victor: Yes, but with …
Teach.: Quantifiers?
Victor: Yes
Teach.: Well, yes, if you can do it the quantified way, maybe it’ll be easier. Indeed,
we can feel that the French language isn’t helping here. Antoine, you wanted to
try?
Antoine: That’s just the definition of an increasing sequence.
Teach.:… no, I don’t think so. At any rate, I don’t think it’s what he means to say.
Victor?
Victor: There’s an infinity of ns for which it’s greater than un.
Teach.: But I can’t write this
Victor: Well … such that for all n greater than n

Our data does not allow us to determine whether Victor regarded Ban infinity of ranks^
and Bfor all ranks after a given one^ as two distinct notions to be articulated, or just
conflated them. However, when the teacher rejected Ban infinity of n^ as a legitimate
mathematical expression, he directly rephrased as Bfor all … greater than …^.

Teach.: Bn greater than n^, really?
Victor: m
Teach.: Oh, I didn’t hear the difference.
Victor: Or p
Teach.: Let’s say p rather than m! [In the background, some students ask Bwhat is
p?^] p greater than n …
Victor: up greater than un; greater than or equal to.
Teach.: We don’t need to go into that for now. … So Bthere exists p^
Victor: No, there exists n
Student1 [in the background]: No, it’s the other way round.
Student2 [in the background]: exists infinity n.

In this episode, Victor’s reworking of the formal definition of Bnot bounded above^ led
to the correct:

∀M∈ℝ ∃n∈ℕ ∀p > n up≥un > M
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However, the teacher chose to cut short, maybe sensing that the rest of the class was not
keeping track.

The Cost of Instantiation and the Impact of the Graphic Register

In the design of the engineering, students were to work either in the formal register –
with sequences given by formulas, and properties expressed in a school-version of
predicate logic – and the rhetorical register – either orally or in written form. An
occasional use of the numerical register was considered, for instance to provide B0 -1 2
-3 4 -5 6 …^ as an alternative to B(−1)n × n^. In the experiments, working in these
semiotic registers provided enough affordances for students to go through phases 1 and
2 as planned. In particular, our account of phase 2 and the list of candidate definitions in
the appendix show that, in spite of the fact that students had first worked with a short
list of sequences, they did not engage in the task of painstakingly explaining why each
one of them tends to +∞ (or doesn’t); rather, they engaged in the expected task, that of
defining Btending to +∞^ in general, and used the examples and non-examples to put
candidate-definitions to the test.

However, in the four experiments, the teachers eventually resorted to the graphic
register as well. They did so at the beginning of phase 3, usually in order illustrate on a
scatter plot the respective roles of M and nM in the formal definition of Bbounded
above^ and the insufficiency of this property to capture the notion of asymptotic
behavior. In the experiments, on the whole, this move did not hinder the emergence
of correct definitions. However, the teachers did not stop the collective work as soon as
he/she deemed that a correct definition had been put forth by one student; rather, they
went on asking the class for their assessment of the new candidate-definition. The use
of scatter-plots to assess a candidate-definition had two main adverse consequences.

Students’ difficulties with the universal quantifier have been noted on many occa-
sions, even without the added complexity of a sequence of nested quantifiers. In the
context of finite limits, Larsen and Swinyard (2012) stressed that the first universal
quantifier can be interpreted in several ways which are not equivalent from a cognitive
viewpoint: when it comes to verifying that a limit candidate is the limit, the first
universal quantifier can be used to refer to an iterative process or procedure, thus
capturing the idea of Binfinitely close^; rhetorical reformulations such as Bfor any
chosen ε^ capture a more static idea of Barbitrary closeness^. Martin et al. (2014)
mentioned a third viewpoint captured by standard rhetorical formulations such as
Bsufficiently close^. He also showed that these formulations were not transparent to
many 1rst-year calculus students, who did not associate with them any of the correct
viewpoints but rather with a pre-mathematical idea of Bvery very small^. In our
engineering, the initial universal quantifier emerged as a part of the formal definition
of Bnot bounded above^, a definition which was usually reached in three steps: start
from the formal definition of Bbounded above^, negate it (students usually suggested
Bthere is no M such that for all n, un ≤M^) then reformulate with a universally
quantified M. When shifting to the graphic register, however, the threshold value M
was typically instantiated by a tick on the (unmarked) y-axis, possibly with a horizontal
line at height M. The teachers meant this instantiation to be generic (as opposed to
specific instantiations, as in: Bfor example, let’s say M = 10^) but it is likely that many
students read off the tick or the line as denoting a given M (as opposed to the generic
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Bany givenM^). This may account for what happened in the 2017–2 experiment, when
a student rejected a correct definition:

Student: Here, we didn’t say the sequence was increasing, am I right?
Teach.: Indeed
Student: So, what if it goes overM, then decreases and sticks toM without going
below …?

For finite limits, a similar shift towards an existential reading of the first variable in the
graphic register was also documented in the experiment of Martin et al. (2014). Even
though the graphic register probably fosters this shift in interpretation, the blurring of
the meaning of the universal quantifier through instantiation can also take place in the
rhetorical register. For instance, in the 2017–2 experiment, students discussed for quite
some time whether or not BFor any real number M^ and BLet M be a real number^
(generic instantiation) were correct and equivalent interpretations of B∀M ∈ℝ^.

The use of scatter-plots can have a second adverse consequence. From a logical
viewpoint, it goes without saying that the following (equivalent) implications are true:

lim
n→þ∞

un ¼ þ∞⇒ unð Þ is not bounded above ∀M∈ℝ∃n∈ℕ∀p≥n up≥M ⇒ ∀M∈ℝ∃n∈ℕ un≥M :

In this engineering, however, the heuristic process flows in the opposite direction, since
students are to tinker with the definition of Bnot bounded above^ and strengthen it into
a definition of the infinite limit. To support students’ work in the experiments, the
teachers drew scatter plots either to illustrate examples such as (−1)n + n, or non-
examples such as(−1)n × n. These instantiations might actually hinder the emergence
of a correct definition, and did so on one occasion. Indeed, for a given sequence (un)
with infinite limit, and a given real number M, the fact that some natural number n is
such that un ≥M, does not imply that this number n is such that ∀p ≥ n up ≥ un ≥M. In
other words, for any given M the set {n ∈ℕ such that un ≥M } can be strictly larger
than {n ∈ℕ such that ∀ p ≥ n up ≥M}; the equality of both sets for all Ms would
imply that the sequence is increasing. Even if the students never expressed it this way,
some were troubled by the fact that, even though they agreed that the goal was to
precisely formulate the hitherto vague idea of Bnot going down below M^, it remained
that for any given nM such that unM ≥M , the definition had to allow the sequence to
Bsink below M^ for some n greater than nM. This happened in the 2016–2 experiment,
when student Angèle questioned the validity of Maxime’s candidate-definition:
∀M∈ℝ ∃nM∈ℕ s:t:unM > M and∀x∈ℕ unMþx > M .

Teach.: (…) who wants to keep this definition ? … Angèle doesn’t agree… panic
in the classroom! [Her classmates know Angèle to be excellent in maths]
Angèle: Well yes, but it what if unMþ1 is not greater than M ?
Teach.: What do you mean? What’s your sentence, because if you all give me just
bits it’s not going to work. Well?
Angèle: It’s every un greater than M, and un + 1 …
Teach.: Should I leave the first part of the sentence unchanged?
Angèle: I don’t know.
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The final line shows that Angèle was focusing on the final part of the definition while
paying little attention to the string of nested quantifiers. In this experiment, the teacher
did not have to cross the thin line between scaffolding and lecturing since Angèle
herself managed to identify and express the fact that, for a given sequence and a given
threshold value M, an nM which works for Bnot bounded above^ does not necessarily
work the infinite limit:

Angèle: It’s not necessarily the first [oral emphasis] n which goes above, … not
the first term.
Teach.: No, not the smallest. We did not write Bthe smallest^, we wrote Bthe
exists^. On the graph, as I said, I had to make a choice and, here, indeed, it’s the
first; but any one after that one would work just as well.

Our data does not allow us to determine whether this convinced Angèle, or if she
stopped voicing dissent because she felt the teacher wanted the class to validate the
candidate definition.

Discussion and Perspectives

As we highlight some key features of this case study, from the practical and the
theoretical viewpoints, we will endeavor to point to some of its blind spots so as to
identify further research perspectives, in connection with several fields of research on
AMT.

As far as instructional design is concerned, the results of this experiment confirm the
positive results reported by Roh and Lee (2017) in the case of finite limits. Although
the improvement of teaching is not the only goal of research in mathematics education,
it is rewarding to see that the collective effort of the community of researchers has
produced a coherent body of knowledge allowing for fine-grained and efficient task
design. In the preliminary analysis of the engineering, we laid emphasis on the results
of research literature bearing either on the specific mathematical content (limits), or on
general frameworks for the introduction and definition of advanced mathematical
concepts. This case-study complements – since it deals with infinite limits – but also
strengthens the positive results of Roh and Lee (2017), in two respects. First, it took
place in more constrained conditions, namely with standard classes of high school
seniors: students with very little knowledge and experience of logic (beyond the
distinction between ⇒ and ⇐, and occasional encounters with quantifiers); students
whose experience of mathematical analysis was – until then – entirely of the calculus
type, and for whom this session on the definition of the infinite limit was the first
encounter with the radically different framework of analysis. Second, we designed a
milieu which we thought could lead students to word and acknowledge a definition of
the infinite limit, whereas in the task designs implemented in classroom conditions, the
definition (whether in its standard form or not) is usually given as an element of the
milieu, for students to either assess, acknowledge, exemplify or rephrase (possibly a
combination of these).

These constrained conditions of this experiment have an impact on the effects that
could be expected and on the tools to objectify them. From an epistemological
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viewpoint, testing whether or not students can demonstrate some understanding and
command of the definition in the context of a proof-task is probably what makes the
most sense, since the main raison d’être of definitions of advanced concepts lies in their
ability to contribute to the establishment of the network of deductibly derived mathe-
matical facts which make up a mathematical theory. This was not an option in the
ordinary high school context of this experiment.

In 2016, we attempted to assess the ability of students to recognize the formal
definition and display conceptual understanding of the differences between Btends to
+∞^ and Bnot bounded above^, several months after the session. The results, discussed
in (Chorlay 2018), are rather positive, even though the various levels of command of
formal logic hindered direct comparison among groups (two of which being groups of
1st-year university students).

Another possible way to objectify the impact on students is to study their engage-
ment in closely related situations of definition construction. In particular, students could
be asked to compare and assess other definitions of the infinite limit (Ouvrier-Buffet
2006). They could also be asked to suggest definitions for finite limits. Since the latter
definition is also required to be studied in the current French curriculum, the latter task
was also entrusted to students in 2016 and 2017, in sessions designed by teachers 1 and
2. Since these sessions were not designed in a research context, their analysis could
shed light not only on students’ ability to use their fresh experience of defining in a
neighboring context, but also on teachers’ practices.

In this paper, we opted for the standard form of validation in the framework of
didactic engineering, namely the comparison between the actual implementation and
the hypothesized behaviors described in the a priori analysis. In particular, our data do
not provide insight into individual student learning, or the variety of cognitive styles
(Pinto and Tall 2002).

As far as expected educational effects are concerned, the specific conditions of this
experiment suggest another potential line of investigation. Indeed, beyond the defini-
tion of limits itself, this teaching session provided an isolated occasion for senior high
school students to experience a piece of mathematics which is typical of higher-
education, with an emphasis on properties rather than on formulas, on argumentation
rather than on calculation, and on perfecting analysis as a coherent deductive theory
rather than as a toolbox for modeling discrete or continuous phenomena. As has often
been stressed, these differences create a twofold challenge for students going through
the secondary-tertiary transition: not only are many tasks new and difficult to carry out,
but they often do not even make sense for students who cannot identify them as
legitimate forms of mathematical activity (see (Artigue et al. 2007) and (Schneider
2008) for global analyses; see (Jablonka et al. 2017) for a recent case-study). Whether
or not early but very limited exposition to analysis can have a long term impact on
students’ image of mathematics and help smooth out the secondary-tertiary transition is
probably well-worth investigating; all the more, since in several countries (among
which Spain and France), the assumption that it could seems to be at play in the
official high school curricula.

From a more theoretical perspective, we would like to stress that the two parts of this
paper, far from being two independent contributions – one bearing on the role of
conceptual differentiation in the history and didactics of advanced mathematics, and
one on the role of the teacher in a classroom mathematical discussion – should be
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regarded as two sides of the same coin. Indeed, the way we analyzed classroom
interactions and teacher intervention was shaped by the elements gathered in the
preliminary and a priori analyses.

Clearly, the forms of teacher intervention observed in this experiment match those
documented in other studies on classroom discussion. For instance, from the perspec-
tive of semiotic mediation, Bartolini-Bussi and Mariotti stressed the role of the teacher
in Bfocalizing^, in Bsynthesizing^, and highlighted the fact that Bthe teacher is respon-
sible on how far the evolution is to be stretched or stopped.^ (Bartolini Bussi and
Mariotti 2008, p.778) From the same perspective, Fischbein and Mariotti (1997) also
documented the fact that it is usually the role of the teacher to clarify the logical
connections between properties mentioned by students; to point to consequences of a
choice of definition that had escaped students’ attention; and to highlight logical
inconsistencies so as to prevent that students reach a consensual but mathematically
unsatisfactory solution. From a different theoretical perspective, Yackel also underlined
the importance of moves which played a part in our experiment, such as Binitiate a shift
in the discourse so that what was previously done in action can become an explicit
object of conversation^ (Yackel 2002, p.242), or B(use) their argumentative support to
compare and contrast two reasonable interpretations (without indicating) that either or
both were correct or incorrect.^ (Yackel 2002, p.430).

Several theoretical frameworks allow can help us specify observables for the
analysis of teacher intervention. In this paper, we did not use the framework presented
in (Stephan and Rasmussen 2002), on the basis of (Cobb and Yackel 1996), for several
reasons: our theoretical background was TDS and not RME; we did not use Toulmin’s
model of argumentation, but deemed that, for a defining session which involved neither
modeling nor proving, Balacheff’s notion of decision was more relevant; moreover, the
time-scale of this study did not enable us to study the gradual emergence of classroom
practices, or the stabilization of work-routines demonstrating the internalization of new
argumentative norms and conceptual contents.5 Rather, we aimed at demonstrating that
some well-identified high-level educational goals could also be reached in constrained
conditions. To this effect, we designed a teaching path in which the role of the teacher
was to be – in a sense –minimal, in order to maximize the interactions among peers and
with the mathematical milieu; a milieu which we had designed so that the formulation
of target-definition was a likely adaptative response. In particular, the preliminary and a
priori analyses sought to justify and clearly delineate the admissible range of didactic
teacher intervention: imposing uniqueness at the end of phase 1; at the beginning of
phase 3, focusing students’ attention on Bnot bounded above^ and requiring a shift
from the rhetorical register – in which properties are referred to by their names – to a
formal or partly formal register in which properties are defined. Thus, a posteriori
analysis documents the range of teacher interventions insofar as they were – or were not
– responses to the challenge of mediation between the students and the milieu. Since
the defining activity was rooted in a classification problem, and not in the study of a
conjecture or the making of a proof, we could only use part of the theoretical tools

5 This list of dissimilarities should not be seen as making a case of incompatibility, but as paving the way for
systematic comparison and articulation. For instance, our analysis of the relationships between the students
and the mathematical milieu in terms of agency parallels the analysis of collective learning in terms of Bshared
knowledge^ (Stephan and Rasmussen 2002).
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provided by Ouvrier-Buffet. In particular, we did not retain the notion of zero-
definition; nor did we provide an a priori analysis of the range of candidate-
definitions which students were likely to suggest at the beginning of phase2.
However, the elements we retained provided tools to study the cognitive trajectory of
students in phases 2 and 3, and to ground the claim that they actually engaged in a defining
activity. As far as teacher intervention is concerned, the extension of Ouvrier-Buffet’s
framework with the distinction between Os and Cs on the one hand, and HOs and HCs on
the other hand, helped us assess the level of adidacticity in the codidactic situation.
Although this approach is close to that of Bartolini Bussi (2009) and Bartolini Bussi
and Mariotti (2008), the emphasis on adidacticy distances our approach from theirs, since
they occasionally value didactic teacher intervention and imitation by the students.

Finally, this experiment raises questions as to its transferability to other teaching
contexts. The fact that, on all four occasions, in constrained conditions, and with little
direct didactic teacher intervention, the experiments led to the expected result, testifies
to the robustness of the design. However, although robustness is probably a necessary
condition of transferability, it does not warrant it. In particular, our a posteriori analysis
showed that the mathematical, epistemological and didactical elements synthesized in
the a priori analysis form a necessary background for principled teacher guidance. This
fully parallels Yackel’s conclusion: Bthe analyses demonstrate that teachers need to
have both an in-depth understanding of students’ mathematical conceptual develop-
ment and a sophisticated understanding of the mathematical concepts that underlie the
instructional activities being used.^ (Yackel 2002, p.423).

Appendix. Candidate-definitions written by students – or pairs
of students – at the beginning of phase 2 in the 2016 experiments

The candidate-definitions are numbered for the sake of clarity. We stayed as close as we
could to the original French wording and to the layout of the original texts. The
candidate-definitions selected for the collective discussion are in bold print.

2016–1.

1. For a sequence to tend to +∞, we need to have ∀ n ∈ℕ, un + 1 > un.
2. The sequence (un) tends to +∞ if and only if for all natural numbers n, (un) is

increasing and not bounded above.
∀ n ∈ℕ un + 1 > un and (un) not bounded above

3. The sequence (un) tends to +∞ when it is not bounded above.
4. The sequence (un) tends to +∞: the sequence increases while getting ever

closer to +∞ but without ever reaching it.
5. A sequence (un)which tends to +∞ is a sequence whose terms increase so that

we cannot determine the last term of this sequence.
6. ∀M ∈ℝ ∃ n ∈ℕ un >M, moreover, the sequence (un) has to be bounded

below.
7. To say that a sequence tends to +∞ means that there is no upper limit to the

sequence.
8. A limit is a real number, unreachable for a given sequence.
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9. A sequence (un) tends to +∞ if it is constant in +∞, or increasing without being
bounded above.
Sometimes some sequences tend to both +∞ and -∞

10. lim
n→∞

¼ þ∞

In a sequence (un), there exists a n such that un = +∞
11. A sequence is said to Btend to +∞^ when it is either constant at +∞, or constantly

increasing. Exception: a sequence can also tend to +∞ and -∞, then it tends to +∞.
12. You never reach the limit, you can just come closer to it. By taking the greatest

value of n that you please, you come really closer to the limit but you never go
beyond it.

13. A sequence (un) which tends to +∞ is a sequence that is increasing and not
bounded above by one of its terms.

14. The limit of a sequence is the value beyond which it cannot go any further
15. A sequence which tends to +∞ is a sequence which increases more than it

decreases.
16. This sequence has no end. It is increasing. This increasing is endless, it is infinite.

You always find an ordinate greater than the preceding one.
un + 1 > un holds all in all for sequences in general, but, for instance, for (−1)n ×

n it does not, it becomes un + 2 > un.

2016–2

1. A sequence has limit +∞ when it’s bounded below by a real number m.
2. Let (un) be any sequence. Then the sequence tends to +∞ when (un) is strictly

increasing
3. One can say that a sequence has limit +∞ if all the terms of the sequence

belong to (a number known or unknown, n) or (n, a number known…), this
number of terms must not be finite.

4. The greatest value to which the sequence tends, whether it’s increasing or
decreasing, is its limit.

5. A sequence has limit +∞ ⇔ it’s increasing and not bounded above
6. A sequence (un) has limit +∞ if and only if when n tends to +∞, (un) tends to

a unique number close to +∞. If (un) is bounded above, the limit of (un) is the
upper bound.

7. A limit is a value that a given sequence will never go beyond, whatever the
value of its unknown.

A sequence with limit +∞ is an increasing sequence which has no limit.
8. A sequence has limit +∞ when ∀n, un + 2 > un and the sequence is bounded above

by no real number.
9. There exists a unique limit to a sequence such that the values of that sequence are

not greater than or equal to +∞
10. The limit of a sequence is a maximal value towards which the sequence tends.
11. A sequence (un) has limit k if and only if un tends towards k.
12. A sequence (un) has limit +∞ if and only if ∀n ∈ℕ, (un) is not bounded and strictly

increasing.
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13. A sequence has limit +∞ if and only if it is strictly increasing and not bounded
above and un can increase up to infinity

14. A sequence (un) has limit +∞ if and only if ∀n ∈ℕ, the sequence (un) is increasing
and not bounded above.
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