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Abstract
Here we report on the development process of the Inquiry Oriented Instructional
Measure (IOIM), an instrument for scoring a lesson along seven inquiry-oriented
instructional practices. The development of the IOIM was a multi-phase, iterative
process that included reviewing K-16 research literature, analyzing videos of classroom
instruction, and pilot testing. This process resulted in the identification of instructional
practices that support the successful implementation of inquiry-oriented instruction
(IOI) at the undergraduate level. These practices, which comprise the IOIM, provide
an empirically grounded description of IOI. In addition, the IOIM provides a rubric for
evaluating the degree to which an instructor’s classroom instruction is reflective of
these practices. As a proof of concept for the IOIM, we present the results of a pilot test
– in which data from a large professional development program designed to support
undergraduate mathematics instructors in implementing inquiry-oriented instruction
was scored using the IOIM.
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Student-centered forms of instruction have been shown to support positive outcomes
for undergraduate mathematics students (see Freeman et al.’s 2014 meta-analysis for a
synthesis of this research). Additionally, empirical studies demonstrate that Inquiry
Based Learning (IBL) is a more equitable form of instruction and leads to greater
affective and cognitive gains when compared to non-IBL teaching methods (Laursen
et al. 2014; Kogan and Laursen 2014). These outcomes directly align with the calls for
improving undergraduate Science, Technology, Engineering, and Mathematics (STEM)
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education. Ferrini-Mundy and Güçler (2009) noted all of the calls for reform in STEM
education focused on increasing student understanding of concepts, providing equitable
access to students, and transitioning away from traditional teaching approaches to those
that are student-centered and involve strategies that encourage active learning. With the
push to increase the quality of STEM education, helping instructors understand,
conceptualize, and implement such forms of instruction is an important step.

Instructional measures are tools that can be used by various groups within the education
community to support the successful reform of undergraduate education. In particular,
measures provide a shared vernacular and specific descriptions of instructional practices
that can promote instructional change. Additionally, researchers can utilize measures to
assess the impact of instructional interventions, and practitioners can use measures to guide
their reflection and focus on improving specific aspects of their instruction.

Our work on a National Science Foundation funded project,1 Teaching Inquiry-
oriented Instruction: Establishing Supports (TIMES), necessitated and supported the
development of such an instructional measure - one that could be used to to character-
ize, communicate, and evaluate instruction. TIMES was a research and development
project with the goal of designing, investigating, and evaluating a system of supports
for mathematicians interested in instructional change. Specifically, this system of
supports was aimed at exploring what is needed to aid interested instructors in learning
how to successfully implement inquiry-oriented instruction (IOI) with existing inquiry-
oriented curricula materials. As we developed materials and protocols for our instruc-
tional support model, communicated with our participant instructors about the intended
implementation of IOI materials, and evaluated our participants’ instruction (and the
efficacy of our instructional support model) it became paramount to be able to clearly
articulate, communicate, and measure IOI.

There are two purposes of this article: (1) to report on the development process of
the inquiry-oriented instructional measure (IOIM), a measure for evaluating the degree
to which a lesson consists of practices that reflect IOI, and (2) to explicate the role of
empirical research in the development of the IOIM. Before discussing the development
of the measure, we start by situating and characterizing IOI.

Situating and Characterizing IOI

As mentioned, the IOIM was borne out of necessity as we worked to characterize,
communicate, and evaluate instruction as part of the TIMES project. There were three
curricula at the center of the TIMES project: Inquiry-Oriented Abstract Algebra (IOAA)
(Larsen et al. 2013), Inquiry-Oriented Differential Equations (IODE) (Rasmussen et al.
2017), and Inquiry-Oriented Linear Algebra (IOLA) (Wawro et al. 2017). All three of
these curricula were developed in accordance with the same instructional design theory:
Realistic Mathematics Education (Freudenthal 1973). As a result of this shared theoretical
grounding, the IOI materials share similarities in regard to instructional goals and intended
implementation. It is this shared theoretical grounding, instructional goals, and implemen-
tation intentions that are the foundation of what we refer to in this paper as IOI. In this

1 This project is supported through a collaborative grant from the National Science Foundation (NFS Awards:
#1431595, #1431641, #1431393).
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section we broadly discuss the influence of the instructional design heuristics of RME on
IOI and situate IOI in reference to IBL. We conclude with a characterization of the
principles and practices of IOI that emerged as part of our development of the IOIM.

Realistic Mathematics Education (RME) conceives of mathematics as a human
activity (Freudenthal 1973) and argues that instruction should be guided by a
Bhypothetical learning trajectory along which students can reinvent formal
mathematics^ (Gravemeijer and Doorman 1999, p. 126). These hypothetical learning
trajectories, often presented as task sequences in the IOI curricula materials, are designed
to use students’ informal and intuitive ways of reasoning as starting points fromwhich to
build more sophisticated and formal mathematical understandings. While the RME
design heuristics provided a theoretical basis for the development of these learning
trajectories, the IOI instructional materials are also well grounded in empirical research.

The task sequences have been developed, tested, and refined through classroom
teaching experiments (Cobb 2000). These teaching experiments entail extensive col-
lection and analysis of data to document student reasoning in the form of classroom
videos, artifacts of student work, and individual problem-solving interviews with
students (Cobb 2000). Thus, the inquiry-oriented task sequences are built on research,
in which refinements are informed by the nature of students’ mathematical reasoning
about the tasks, with the goal of maximizing students’ opportunities to engage mean-
ingfully in reinventing important mathematical ideas. The cycles of inquiry and
formalization that comprise the hypothetical learning trajectories, supported by the task
sequence and guided by the instructor, are usually carried out with students working in
collaborative small-groups and whole-class discussions.

The decision to prioritize student engagement in authentic mathematical activity speaks
to some of the ways in which IOI is similar to other forms of Bactive learning^, such as
inquiry-based learning (IBL). The characterizations of the students’ participation within
IOI and IBL classrooms are largely the same: both forms of instruction usually entail
students working in groups on purposefully constructed task sequences, participating in
whole-class discussions where they communicate and refine their ideas with other students
through argumentation (explaining, justifying, etc.), and developing their own internalized
understandings of important mathematical ideas by engaging in authentic mathematical
activity (Laursen and Rasmussen 2019). In addition, progression through the curriculum
for both forms of instruction is largely driven by student generated ideas and reasoning
(Laursen et al. 2014; Speer and Wagner 2009; Wawro 2015).

While the nature of what students do in IOI and IBL classrooms are markedly similar,
the role of an IOI instructor is muchmore specifically characterized in the literature. IBL
instructors are responsible for Bguiding, managing, coaching and monitoring student
inquiry^ (Laursen and Rasmussen 2019). In contrast IOI requires that, as students
inquire into the mathematics, instructors inquire into students’ thinking about the
mathematics and draw on student work in specific ways to move forward the mathe-
matical agenda of the class (Rasmussen and Kwon 2007). Starting with research-based
tasks designed to promote rich mathematical thinking and reasoning, IO-instructors
elicit student generated contributions, and through inquiry interpret them, decide which
are useful, and then determine how to use them to move the classroom toward devel-
oping the lesson’s intended mathematical idea (Speer and Wagner 2009). Thus within
IOI, the notion of inquiry is as crucial an activity for the instructors as it is for the
students, and makes up much of an instructor’s in the moment work in the classroom.
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We argue that this is one key instructional aspect that distinguishes IOI from other forms
of inquiry instruction. Furthermore, the RME notion of reinvention – in which students’
informal reasoning is elicited and leveraged in order to develop the formal mathematics
– is a defining characteristic of IOI that may or may not be present in IBL.

Starting with the three IOI curricula (Inquiry-Oriented Abstract Algebra, Inquiry-
Oriented Differential Equations, and Inquiry-Oriented Linear Algebra) allowed us
anchor our work of developing the IOIM within the RME literature and a robust
research base on the implemention of the IOI materials. Additionally, by considering
the similarities between IOI and other instructional approaches (such as IBL) we were
able to reflect on which aspects of IOI were critically necessary to capture on our
instructional measure. However, we were only able to glean broad strokes by situating
IOI in relation to RME and IBL. It was not until we finalized development of the IOIM
that we were able to characterize IOI as a set of four instructional principles, which are
supported by seven instructional practices. In the following sub-section we present this
characterization. Then, in the methods, we detail the IOIM development process.

Inquiry-Oriented Instruction: Principles and Practices

Broadly speaking the research literature describes the role played by an IOI teacher as:
inquiring into student mathematics, with regard to both individual student thinking and
the overall learning trajectory (Rasmussen and Kwon 2007; Johnson and Larsen 2012);
being an active participant in the development of the classroom’s mathematics, both in
terms of the mathematics of the moment and the mathematical trajectory intended by
the curricular materials (Johnson 2013; Johnson and Larsen 2012); and bridging the
gap between where the students are and the mathematical goals of the lesson (Wagner
et al. 2007; Speer and Wagner 2009). Taking this research as our base, our work
developing the IOIM resulted in the identifcation of four key instructional principles
underpinning the successful implementation of IOI: generating student ways of rea-
soning, building on student contributions, developing a shared understanding, and
connecting to standard mathematical language and notation (Kuster et al. 2017).

Generating student ways of reasoning includes engaging students in mathematical tasks
so their thinking is explored and their ideas made public. Building on student contributions
consists of engaging students in each others’ ideas and using them (in potentially unforeseen
ways) to direct class toward a mathematical goal. Developing a shared understanding
highlights the importance of supporting each individual in developing commensurate ways
of thinking, reasoning, and notating specific ideas. Connecting to standard mathematical
language and notation involves transitioning students from the idiosyncratic mathematical
notation and terms used in class to standard definitions and notation, such as Bgroups^ or
Bphase planes.^ The four instructional principles are supported through the enactment of
seven instructional practices. Additionally, these instructional practices provide detail about
how teachers inquire into and leverage student thinking and reasoning to progress the
mathematical agenda. A description of each of these practices follows.

Practice One

Teachers facilitate student engagement in meaningful tasks and mathematical activity
related to an important mathematical point. This practice includes engaging students in
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cognitively demanding tasks that promote authentic mathematical activity such as
conjecturing, justifying, and defining (Jackson et al. 2013; Speer and Wagner 2009). It
is important to note that while the mathematical topics the students are engaged in are
important, the quality of the mathematical activity in which the teacher engages the
students is the focus of this practice. To clarify, practice one is not intended to assess the
quality of tasks themselves but rather to assess the quality of the mathematical activity
(e.g., conjecturing, defining, arguing, etc.) promoted by the teacher. Engaging students in
discipline specific practices is an essential aspect of inquiry; Laursen and Rasmussen
(2019) note that engaging students in authentic mathematical activity is a key principle
across all characterizations of inquiry.

In IOI, engaging students in meaningful tasks provides a context for the intended
mathematical ideas to develop. Specifically, the tasks and mathematical activity provide a
medium through which the teacher can elicit rich student thinking and reasoning, assess
student thinking and reasoning, and subsequently create a path for the continued
development of important mathematical ideas. Smith and Stein (2011) note that tasks
requiring a high-level of cognitive demand – procedures with connections and doing
mathematics – will elicit rich student thinking and reasoning. Thus, it is important for
teachers to promote student engagement at these levels with appropriate questions and
tasks. In this case we are using the notion of cognitive demand to characterize the quality
of the mathematics the instructor is promoting. Therefore, facilitating student engagement
in meaningful tasks and mathematical activity supports eliciting student contributions.

Practice Two

Teachers elicit student thinking and contributions. Before one can build on student contri-
butions, one must first have student thinking and reasoning to build with. Therefore, once
student ideas are generated they must enter a public space so the teacher can analyze their
utility and, subsequently, support other students in engaging in ideas that will likely further
the development of important mathematical ideas.With this inmind, IOI teachers encourage
students to explain their thinking and reasoning in ways that Buncover the mathematical
thinking behind the answers^ (Hufferd-Ackles et al. 2004, p. 92). By seeking mathemati-
cally rich contributions from their students, teachers promote continued and deeper engage-
ment in the tasks, which supports generating student ways of reasoning. In addition, once
these contributions enter a public space, they provide opportunities for students to make
sense of each other’s thinking as well as opportunities for the teacher to build on student
thinking (Hufferd-Ackles et al. 2004; Leatham et al. 2015). Therefore, eliciting student
thinking and contributions also supports building on student contributions.

Practice Three

Teachers actively inquire into student thinking. Successful IOI teachers purposely and
intently inquire into student thinking to promote student engagement in mathematics and
to identify and better understand students’ thinking and reasoning. By asking students to
explain their reasoning, following up with clarification-type questions, rephrasing, etc.,
students are prompted to reflect on their thinking (Borko 2004; Hiebert andWearne 1993).
Thus, inquiring into student thinking supports generating student ways of reasoning. At
the same time, teachers use various forms of inquiry to generate models of student
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thinking and learning (Rasmussen and Kwon 2007); that is to understand how their
students are making sense of the mathematics at hand. IOI teachers ask questions and
engage in conversations in ways that indicate they are trying to figure out what ideas
students are using, how they think about those ideas, and how they piece them together. In
other words, they participate in conversations that indicate they are engaging in what
Davis (1997) calls interpretative listening – listening to students with the desire of
Bmaking sense of the sense they are making^ (p. 365). This stands in contrast to engaging
in discussion to evaluate the correctness of student thinking and reasoning. The models of
student thinking and reasoning built through this inquiry process aid the instructor in
figuring out plausible ways the intended mathematics may develop.

Practice Four

Teachers are responsive to student thinking and use student contributions to inform the
lesson. IOI teachers listen to students’ contributions (e.g., reasoning, methods, and
justifications) and, when appropriate, use these contributions as a springboard for follow
up questions and further exploration by the students. Once contributions have been
made, teachers must determine which student ideas are productive, which ones to utilize,
and how to utilize them to reach the mathematical goals of the lesson (Speer andWagner
2009). These determinations are aided by models of student thinking and learning
formed through the inquiry process and, importantly, may require reconsidering the
development of the mathematics (Rasmussen and Kwon 2007). Responsive teachers
generate instructional space in the form of tasks or questions directly related to students’
existing ways of reasoning that aid students to further progress toward the intended
mathematics of the lesson (Johnson and Larsen 2012; Johnson 2013; Rasmussen and
Kwon 2007). The formulation of such new questions and tasks that stem directly from
student generated ideas supports building on student contributions. Further, in response
to a particular student’s contribution - which the teacher determines contains a key idea
necessary for continuing the development of the mathematics - a teacher may pose a new
question or task to the entire class so they can build a commensurate understanding of
that contribution. In such a case, being responsive to student thinking and using student
contributions to inform the lesson creates instructional space and can also support
developing a shared understanding.

Practice Five

Teachers engage students in one another’s reasoning. IOI teachers regularly engage
students in each other’s ideas, thinking and reasoning (see Larsen and Zandieh (2008)
or Johnson and Larsen (2012) for examples of this) by asking students to make sense
of, to analyze, and to sometimes utilize the contributions of other students; this goes
much beyond assessing for correctness. When students engage in each other’s reason-
ing, it can prompt them to evaluate and revise their own ways of thinking and reasoning
(Brendehur and Frykholm 2000; Engle and Conant 2002). In addition, when students
wrestle with the ideas and ways of thinking and reasoning that originated with other
students, normative ways of thinking within the classroom can develop (Tabach et al.
2014). In this way, when teachers engage students in one another’s reasoning they
support developing a shared understanding.
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Practice Six

Teachers guide and manage the development of the mathematical agenda. The instruc-
tional units that make up the various IOI curricula were all developed to reach specific
instructional goals, though the actual path one takes to reach those goals is somewhat
flexible (see Lockwood et al. 2013 for more information about how such flexibility is
built into the IOAA instructional materials). Given the mathematics develops from the
students, this often means the teacher must guide student exploration and discussion in
ways that promote their development of the lesson’s intended mathematical ideas.
Since the mathematics is being co-constructed in the classroom (Yackel et al. 2003),
the teacher must figure out or recognize which ideas will be useful and then produc-
tively focus student activity around them. That is to say, the instructor must ensure that
student activity is leading them to the discovery of the intended mathematical ideas.
Teachers can use this practice to support building on student contributions through the
use of pedagogical content tools (Rasmussen and Marrongelle 2006); (re)focusing
explorations on particular student contributions; or assigning new tasks that build
toward a mathematical goal. In addition, once an important idea or way of reasoning
has been developed, teachers can focus the class’s activity on making sense of that idea,
which supports the development of a shared understanding.

Practice Seven

Teachers support formalizing of student ideas and contributions, and introduce
formal language and notation when appropriate. The intent behind IOI is to
build formal and standard mathematics, which includes not only skills and
concepts but mathematical practices as well, from (informal) student-generated
ideas and ways of reasoning. This means helping students develop their own
mathematics by notating, refining, and generalizing their own ideas and activity,
and then helping connect their mathematics to that of the broader mathematics
community. Teachers can support the development of the class’s (more formal)
mathematics by marking (e.g. writing an idea on the board, naming an idea,
saying Bthat is important^, etc.) key student contributions as important and
prompting their utilization or subsequent refinement in future problem-solving
activities. This can be achieved through the use of transformational records and
generative alternatives (Rasmussen and Marrongelle 2006) or by introducing
language and notation in reference to student-generated ideas. These actions help
formalize student ideas and support developing a shared understanding of those
ideas within the classroom. In addition, by prompting students to use their now-
developed ideas to figure out formal Btextbook^ mathematics – introducing
formal mathematics after students have developed a commensurate understanding
and prompting them to make sense of it – teachers can support connecting to
standard mathematical language and notation.

Summary

A summary of how each of the practices is related to the four instructional principles is
provided in Table 1. Note that practices may support more than one principle.
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Method for the Development of the Inquiry-Oriented Instructional
Measure

The IOIM was developed in five phases using a combination of research literature,
videos of classroom instruction from both expert and novice IOI instructors, expert
validity checks, and notes and memos from pilot training sessions. Broadly consistent
with thematic analysis (Braun and Clarke 2006), the overall process began with codes
and categories that were developed from data and iteratively refined in a process
resulting in a descriptive framework of IOI. In each iteration, new data was purposefully
sought to address specific questions and hypotheses that arose in previous iterations of
data analysis and to further analyze and refine the emerging characterization of IOI. This
process shares characteristics with Charmaz’s (2006) description of theoretical sam-
pling, a research practice aimed at identifying gaps in the existing categories and codes
that require further exploration and elaboration. Other research methods were evident in
each of the phases as well, such as aspects of Lesh and Lehrer’s (2000) iterative video
analysis. In the following sections we outline the work completed in each phase and how
it influenced the development of the IOIM. The five phases of development can be
grouped into two main categories: creating the prototype and pilot testing.

Creating the Prototype

Logistically speaking our first goal in the development process was to create a reasonable
prototype that we could then subject to validity and reliability testing. This required
identifying the salient aspects of IOI, determining which aspects needed to (and could) be
reasonably measured, and then creating a meaningful measurement scale along which these
aspects could be communicated and assessed. The process throughwhich this prototypewas
developed occurred in three phases, which are discussed in the following paragraphs.

Table 1 Principles and Practices of IOI

Principles Practices Supporting Principle

Generating student ways of reasoning 1) Teachers facilitate student engagement in meaningful tasks and
mathematical activity related to an important mathematical point.

2) Teachers elicit student reasoning and contributions.
3) Teachers actively inquire into student thinking.

Building on student contributions 2) Teachers elicit student reasoning and contributions.
3) Teachers actively inquire into student thinking.
4) Teachers are responsive to student contributions, using student

contributions to inform the lesson.
6) Teachers guide and manage the mathematical agenda.

Developing a shared understanding 4) Teachers are responsive to student contributions, using student
contributions to inform the lesson.

5) Teachers engage students in one another’s reasoning
7) Teachers support formalizing of student ideas and contributions

and introduce formal language and notation when appropriate

Connecting to standard mathematical
language and notation

7) Teachers support formalizing of student ideas and contributions
and introduce formal language and notation when appropriate
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Phase 1: Defining the task - what is IOI and how do we measure it?

This phase resulted in a general understanding and vocabulary for characterizing IOI and
information on how to measure teaching in general. In this phase, we searched through IOI
research literature related to the development and implementation for the focal curricular
materials (e.g., Johnson 2013; Johnson and Larsen 2012; Rasmussen andBlumenfeld 2007;
Rasmussen and Marrongelle 2006; Stephan and Rasmussen 2002; Wagner et al. 2007;
Wawro 2015) in order to identify the defining characteristics of IOI. After reading though
the literature we created the following very general, framing of IOI: BIn inquiry-oriented
teaching, the students, task sequence, and the teacher each have an important and interactive
role for advancing the mathematical agenda.^ With this framing we then returned to the
research literature and coded for Bteacher^, Bstudents^, and Btasks.^ We then analyzed the
data within each code, which resulted in a starter list of instructional practices of IOI.
Further, we illustrated each practice with justifications and examples from the literature.

We then turned our attention to existing instructional measures to determine: 1) if they
adequately captured our emerging characterization of IOI, and 2) what aspects of instruc-
tion were included in other measures. Generally, evaluation tools used for research and
practice are designed to serve specific purposes and to work within certain constraints, and
the purposes and constraints align with the goals and limitations of the research being
performed. For the TIMES project, our goal was to focus on the instructional practices in
which the teacher engaged while in the classroom and we needed to be able to do this with
video recordings of lessons. In addition, it was necessary for the IOIM to have the flexibility
to be utilized across an array of undergraduate mathematics courses. Not only does the
content differ across the undergraduate mathematics curriculum but the mathematical goals
are often vastly different. For instance, an introductory differential equations course is often
intended to develop an understanding of a set of solution methods, whereas introductory
abstract algebra is often utilized to develop notions of formalmathematical proof. Instead of
being overlooked, this difference in goals needed to be flexibly built into the measure.

After encountering numerous assessment tools, we focused our attention on three
common observation protocols and instructional measures, as they seemed to best fit with
our working definition of IOI: the instructional quality assessment (IQA), the mathemat-
ical quality of instruction (MQI), and the reformed teaching observation protocol (RTOP).
In the following paragraphs we explain why we determined these tools and others like
them did not fit with the specific needs of the TIMES project.

The IQA was developed with a focus on Bopportunities for students to engage in
cognitively challenging mathematical work and thinking^ (Boston et al. 2015, p. 160).
The IQA revolves around assessment of cognitive demand (Boston 2014) and, in general
terms, it assesses the quality of instruction based largely on what students are doing and
saying during the lesson. In practice this requires observing classrooms and analyzing
assigned tasks and students’ completed work. We determined the IQAwas not a good fit
as its focus on students’ cognitive challenge and classroom discussion was not fine-grained
enough for the purpose of TIMES.

The MQI was developed to aid in drawing connections between teacher knowledge
and classroom instruction (Hill et al. 2008) and focuses on evaluating the quality of the
mathematics available to students during instruction. The MQI was promising, as its
development was informed by an awareness of Binteractions among teachers, students,
and content^ (Boston et al. 2015, p. 161), an aspect that directly aligned with our
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working definition of IOI. However, the MQI is pedagogically-neutral in the sense that
it focuses on what mathematics the lesson consists of as opposed to how the lesson is
conducted. Along these lines, the measure is very much tied to mathematical content.
We determined the MQI was not suited for our needs because of its focus on the
mathematical content instead of the instructor’s actions. The combination of being
content focused and pedagogically-neutral was the polar opposite of the needs of the
TIMES project; we needed to be able to use a single rubric to measure lessons in
different courses that had disjoint mathematical goals while also being sensitive to
pedagogically-focused practices.

The RTOP was designed to measure the degree to which a mathematics or science
lesson is reform-oriented (Sawada et al. 2002). The main goal of the RTOP was to serve
as a tool for professional development aimed at improving instruction. Of the three
assessment tools, the RTOP was most aligned with the goals of the TIMES project and
was composed of various sub-scales consistent with the practices supporting IOI. For
this reason we piloted the protocol with lessons from IOI instructors but found that the
protocol, much like the IQA, focused on what students were doing as opposed to what
the instructor did to promote those activities. In addition we found some aspects of IOI,
such as guiding the students to a specific mathematical goal or inquiring into student
thinking, were not evident in the RTOP. Thusly we decided the RTOP would not
adequately capture IOI in its entirety and was not suited for our purposes.

Though it was ultimately determined existing measures were not applicable in their
entirety, they did influence the refinement of practices and provided useful information
that guided the underlying structure of the measure. For instance, the IQA influenced
our descriptions for the various scores regarding eliciting student contributions, and the
RTOP provided language describing what it means to be responsive to students. In
addition, we determined that a rubric which delineated each of the practices across
various levels of implementation quality over an entire lesson was appropriate. Because
the role of the teacher changes depending on where the students are in the process of re-
inventing a mathematical idea, we determined that a holistic score generated by
considering the instructional practices over an entire instructional unit was most
suitable. Thus, for our purposes, the unit of analysis for a lesson was typically a
multi-day sequence of class meetings extending from the beginning of an instructional
unit to the end.

Phase 2: Examining data - Addressing measure limitations

Although the analysis of the research literature in Phase 1 led to the identification of
numerous practices specific to IOI, from a practical standpoint, the utilization of a
measure required being able to observe these practices. In this phase, we cycled
between analyzing videos and checking existing literature to verify that the practices
identified from the literature in Phase 1 were also evident and observable in classroom
instruction. In the first pass through the video data, we watched two expert teachers (IO
curriculum developers) and three novices. The variation in experience level was
purposeful. We felt the difference between experience levels would accentuate key
aspects of instruction while also allowing us to capture their developmental range,
which would be useful when later delineating implementation quality. While watching
these videos, we documented the classroom events with content logs, coded for

192 International Journal of Research in Undergraduate Mathematics Education (2019) 5:183–204



practices, and wrote narratives for each of the practices based on what was observable
in the videos. We then used the narratives to inform the descriptions of the practices.
We repeated this process using new and previously watched videos (as a check that our
descriptions were growing as opposed to shifting) until the narratives we were writing
no longer provided new language for the descriptions. Thus, the characterizations of the
practices are grounded in both supporting literature and video data.

Once the practices were defined and descriptions of their enactment were created,
we set out to delineate each practice across five levels of implementation quality (i.e.,
high, medium-high, medium, medium-low and low). Using the video data, we created a
rubric for scoring the quality of the implementation of each practice by ranking each of
the various teachers’ implementations of each practice. Watching videos of experts and
novices, and writing narratives for their implementations of the practices made this
process much smoother. Specifically, by comparing each narrative within each practice
to the general description of that practice, we were able to rank the narratives in terms
of which best matched the description. We then used the highest ranked narratives as
the high scores, the next highest as the medium high, and so on. To make the rubric
more cohesive, we then identified themes within the various levels of quality by
comparing across the practices within each of the scores. Two important factors
emerged: the quality of the mathematical activity and who was engaged in that activity
(i.e., the teacher or the students). For example, a lesson in which a teacher consistently
explores student-generated ideas while the class is watching will be scored lower than a
lesson in which a teacher prompts students to explore another student’s idea. Similarly,
a lesson in which a teacher who regularly draws connections between student ideas and
standard mathematical language and notation will be scored lower than a lesson in
which a teacher engages the students in completing this activity themselves.

The process of characterizing the instructional practices evident in the videos from
low to high raised important questions regarding how these practices connected to each
other and how they fit within the broader role of the teacher. During this phase we
began positing categories, what we called instructional principles, under which these
practices could be placed. Understanding how the practices related to each of the
principles impacted the instructional support we provided to instructors, helped inform
descriptions of the principles and practices, and also guided some of our actions in
Phases 3 and 4.

Phase 3: Refinement using outside sources

In this phase, we began seeking resources from beyond IOI research literature
and feedback from mathematics education researchers not directly involved in
the development of the measure or familiar with IOI. Our intentions here were to
uncover key aspects of IOI that we did not notice because of our familiarity with
it and to gauge if the descriptions we created communicated our ideas as
intended, even to those not familiar with IOI. First, we asked a mathematics
education researcher not familiar with IOI to code two videos with the drafted
rubric. We then met with them, discussed areas of confusion, and worked out
discrepancies between scores. This resulted in a list of practices and qualitative
descriptions that needed further elaboration or refinement. To help with the
refinement process we began searching through K-12 research literature looking
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for aspects of K-12 instruction that were commensurate with the practices we
identified in IOI. We then used the language and descriptions from the K-12
literature to refine and elaborate our descriptions as needed. This also led to a
better understanding of the four instructional principles and their supporting
practices.

For instance, one area of confusion - how much say the teacher has over the
direction of the developing mathematics - was clarified by the notion that teachers
must not just have class discussions, but that these discussions must be used by the
teacher to advance the mathematical agenda (Jackson et al. 2013). This played a key
role in quality descriptions of guiding and managing the development of the mathe-
matical agenda; one’s instruction should indicate the existence of a clear mathematical
goal, as opposed to leaving the direction completely in the hands of the students. As
another example, Practice 1, engaging students in meaningful tasks and mathematical
activity, borrows heavily from Stein et al. (2008) notion of doing mathematics - the
extent to which students engaged in cognitively demanding tasks and used mathemat-
ical argumentation to support or refute any claims. Specifically, lessons were scored
higher when teachers typically asked questions eliciting justifications or explanations
from their students as opposed to eliciting responses focused on the correct answer or
memorization.

At the end of Phase 3 we felt confident that we had identified the instructional
practices necessary for successfully implementing IOI and that our rubric communi-
cated an accurate characterization of the practices as well as the various degrees at
which they could be enacted. As such we moved on to validity testing.

Pilot Testing for Validity and Reliability

Though we were confident the characterizations provided in the rubric accurately
reflected the teaching practices we identified through the analysis of literature and video
data, we still needed to verify the measure contained (and was not missing) salient
practices of IO-instructors. Additionally, we needed to confirm the measurement scales
were accurately capturing meaningful differences in the implementation quality of each
of the practices. Once this step was complete we could then move on to pilot testing.

Phase 4: Sharing to clarify (validity testing)

In this phase, our intent was to pilot the use of the rubric with IOI experts and novices,
and this piloting was completed in two steps. Our goals were to validate the measure
with experts, clarify connections between the principles and practices, and understand
how to effectively communicate our interpretation of them. We first asked four experts
in undergraduate mathematics education who were already familiar with IOI but not
familiar with the measure to use the rubric to score the same lesson. In addition, we
asked them to provide separate scores indicating how well they felt each of the four
instructional principles were reflected in the lesson. This step led to another iteration of
refinement of the elements in the rubric (e.g., we better delineated between character-
izations of implementation quality based on expert feedback), and had two immensely
important outcomes. Most importantly, despite no training, the scores across all six
researchers (the four experts and two rubric developers) were all within one point.
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Thus, the descriptions in the rubric were generally meaningful to researchers familiar
with IOI. Secondly, having scores at the level of both the principles and practices
allowed for better determining which practices supported which principles. Specifical-
ly, we looked for instances in which principles were scored high but (proposed)
supporting practices were not or vice versa. Cases of mismatched scores between
principles and practices alerted us to potential instances in which we had incorrectly
attributed a certain practice to supporting a certain principle.

We then engaged in a pilot training process where we trained two relatively
novice mathematics education graduate students, each having no background in
IOI on how to use the rubric. During this process we asked the scorers to take
careful notes of issues that arose for them as they utilized the rubric. We also
recorded the meetings when we met to discuss the scores they assigned. From
this process we concluded that two of the initially developed practices (teachers
introduce language and notation when appropriate and teachers support formal-
izing of student ideas and/or contributions) were, in practice, capturing the
same aspects of instruction. Therefore, we condensed them into a single prac-
tice, captured by practice seven, Teachers support formalizing of student ideas
and contributions, and introduce formal language and notation when appropri-
ate. We also created resources within the rubric for scorers, including guiding
questions, Bevidenced by^ descriptions for each practice, and we boldfaced
certain words in the rubric for emphasis.

Phase 5: Sharing to use (pilot testing)

In this phase, our goal was to train and utilize multiple scorers to consistently
score 42 TIMES videos. To this end, we created resources supplimentary to the
rubric, including: a frequently asked questions document, a document listing
tips to remember while watching and while scoring videos, a definitions page
where frequently used rubric terms like Binstructional space^ could be explained
in detail, and examples of justifications and scores given to the videos used in
training.

Additionally, based on discussions during training, a few small changes were made
to the rubric to clarify possible times for scores to be given: (1) in practice 5, additional
text and boldfacing were added to scores low through medium-high to highlight
distinctions from one score to the next, and (2) in the medium score for Practice 7,
the format of the description was changed from two implicit cases to three explicit cases
in which the score would be given. In what follows, we describe the IOIM and present
the pilot testing.

Description of the Inquiry-Oriented Instructional Measure The IOIM consists of a
rubric (see supplementary materials and http://times.math.vt.edu) that measures the
degree to which a lesson is inquiry-oriented by examining the quality of the enactment
of each of the seven practices. Within the rubric, each of the practices is scored on a 5
point Likert-scale from low to high which is done holistically over the lesson. These
Blessons^ can range from just one class session to an entire instructional unit, (e.g., 2.5
h of instructional time spread across multiple class sessions). For each of the practices,
the quality of the activity promoted by the instructor distinguishes a low score (1) from

International Journal of Research in Undergraduate Mathematics Education (2019) 5:183–204 195

http://times.math.vt.edu


a high score (5) on the rubric. Take for example Practice Two: teachers elicit student
thinking and reasoning. If an instructor evokes solely procedural contributions from
students, the lesson would score much lower, medium-low (2), than if they routinely
have students share their thinking, reasoning, and justifications, which would earn a
score of 5. In the following paragraph we outline the key attribute(s) being captured
within the rubric for each practice.

For Practice One the rubric captures the extent to which the teacher engages students in
Bdoing mathematics,^ or the extent to which students are engaged in cognitively demand-
ing tasks and mathematical activity, such as arguing, conjecturing and justifying (Stein
et al. 2008). The key factor for delineating Practice Two concerns the degree to which the
teacher elicits rich mathematical reasoning and explanations from students, as opposed to
eliciting memorized facts. When measuring Practice Three, the scores are separated by the
level at which the teacher seems to probe students’ statements and reasoning in order to
improve their own understanding of the students’ mathematics. Being responsive to
student thinking (Practice Four) is measured based on howmuch the teacher uses students’
questions and ideas as the building blocks for the developing mathematics. Scores for
Practice Five are broken up based on the extent to which the teacher prompts and allows
students to make sense of each others’ reasoning without acting as a filter that interprets
ideas for the students. The scores for Practice Six exhibit the level to which the teacher
guides and manages a lesson that reaches a clear mathematical goal using student
reasoning and contributions. Lastly, the rubric for Practice Seven gauges the degree to
which the teacher transitions from students’ (perhaps task specific) language and notation
to standard mathematical language and notation.

Pilot Testing the IOIM As mentioned above, our final phase of measure refinement
involved training scorers to consistently score 42 lessons from the TIMES project. In
what follows, we first describe the TIMES study participants and the resulting data that
we analyzed using the IOIM; then we describe the training process; and, finally, we
address the results from the coding of videos. We present this use of the TIMES data, in
part, as a proof of concept for the instructional measure. The IOIM was designed to
capture and assess the instructional approach promoted by TIMES instructional sup-
ports. Thus, scoring the TIMES fellows allowed us to see if there was consistency
between the instruction and the instructional measure – allowing us to see if the
measure was capturing the intended instructional approach and if the supports were
having the intended outcome.

TIMES instructional support model and participants As part of the TIMES project, 42
mathematics instructors (13 Abstract Algebra, 13 Linear Algebra, and 16 Differential
Equations instructors) participated as fellows. The 42 fellows were from various
locations throughout the United States, from a variety of institution types, and a wide
range in classroom contexts. These fellows received three forms of professional
development support: curricular support materials, summer workshops, and online
working groups. The curriculum materials are formatted as task sequences that include
rationales, examples of student work, and implementation suggestions. (See Lockwood
et al. (2013) as an example.) In addition to the IO instructional materials, TIMES
fellows were also supported through a summer workshop and online working groups.
These summer workshops spanned three days and were designed to help instructors

196 International Journal of Research in Undergraduate Mathematics Education (2019) 5:183–204



develop an understanding of IOI and their role as the teacher; develop a shared vision
of instruction and student learning goals; and develop a familiarity with the curriculum
materials, task sequences, and online resources. The format of these workshops cycled
between cross-content sessions with broader discussion about IOI and content specific
break-out sessions where the focus was on the curricular materials.

Then, during the semester of implementation, instructors participated in weekly
online working groups facilitated by project personnel. These meetings had 3–5
participants and each meeting had two main components. Roughly twenty minutes of
each meeting were dedicated to providing Bjust in time^ support for the instructors.
This included discussions around managing small-group work, sharing homework and
assignment ideas, and debriefing about how the instructors were progressing through
the materials. The other forty minutes of the meeting were structured to be a lesson
study (Lewis et al. 2006). Each online working group selected two instructional units as
their focus. For each of the two focal instructional units, the working group would first
discuss the mathematics of the lesson, followed by a discussion of student learning
goals and implementation considerations. After instructors taught the unit, they would
share clips of their instruction for group reflection and discussion. A common thread
throughout each of these sessions was attending to the principles of IOI – generating
student ways of reasoning, building on student contributions, developing a shared
understanding, and connecting to standard mathematical language and notation.

Data Video classroom data of the implementation of the second focal unit was scored
using the IOIM. This video data was collected from a single iPad generally located at
the back of the room and focused on the instructor. Thus, there are some limitations
with the data; we were not able to capture small group discussions and during whole
class discussion it was not always possible to identify or clearly hear the students as
they made contributions. As a result, the training documents directed scorers to take
whole class discussion as the primary source of evidence when scoring the lesson.

Here, the instructor enacted lesson is the unit of analysis. The length of these lessons
varied from one to four and three-quarter hours, and often spanned multiple class
meetings. All 13 IOAA fellows recorded the same unit, as did all 13 IOLA fellows.
Each IODE online working group was provided the opportunity to select the focal units
that best met the needs of that particular group of instructors (e.g., a unit every fellow
was planning on implementing or one that the participants felt would be particularly
difficult to implement). As a result, the lessons collected and scored from the 16 IODE
fellows were not all from the same instructional unit.

As we only scored one lesson from each instructor, we acknowledge that we cannot
make claims about an instructor’s Btypical teaching practice^, nor are we trying to
document change that may have occurred through the participation in the TIMES program.
Instead we scored these videos to provide a Bsnapshot^ of the TIMES fellow’s instruction.

Training and scoring We implemented the full-scale training of five graduate students from
various mathematics education backgrounds (including undergraduate, K-12, and pre-
service teacher education). Training started with having the scorers watch sample video
clips from instructors using the IOAA, IOLA, and IODE curricular materials that exempli-
fied the different levels of IOI for each of the practices. As training progressed, scorers were
given more opportunities to watch longer segments of classroom video with a partner or on
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their own each evening and to justify their own scores using the rubric. In group meetings,
scorers engaged in facilitated debates of their scores, which allowed misunderstandings of
terms andweaknesses in justifications to be resolved. The scorers were also asked towrite in
their own words what each practice would look like at high, medium, and low levels as
another check of their understanding of the rubric and synthesis of group discussions. At the
end of aweek of training, scorerswere given a test video to determine their readiness to code
independently. All trainees gave scores within 1 level of the trainer’s scores, which allowed
them to be released to independently score videos gathered from TIMES instructors.

Following the training period, the six scorers (five newly trained scorers and the trainer)
each scored eight to twenty-one new videos from the sample of 42. All videos were scored
by at least two scorers, and scoring responsibilities were distributed across courses.
Scorers were allowed to choose their own pace for scoring videos. In order to maintain
continued reliability, the trainer double-coded each scorer after every fifth video to make
sure all scores remained within 1 of the trainer’s scores. When comparing other scorers’
scores with trainer scores, they were within 1 point 87.4% of the time and in exact
agreement 42.8% of the time. In cases where the scorer was off by two levels, they were
asked to rewatch and rescore the video in light of the discussion with the trainer before
being allowed to continue scoring videos. Because all videos were double-coded, we were
also able to assess inter-rater reliability by comparing the two sets of scores for each video.
This comparison resulted in slightly higher inter-rater reliability: 95.2% agreement within
1, 57.1% exact agreement, average kappa of .357, and average Spearman rho of .753.
According, to Landis and Koch (1977), this average kappa falls near the top of the Bfair^
agreement range and Gwet (2010) suggests that kappa scores are often negatively skewed
when the actual scores are not well distributed across the potential scoring range. We list
all of these indicators of inter-rater reliability to provide a more robust picture of the inter-
rater reliability (Wilhelm et al. 2018). One set of scores (i.e., one score for each of the
seven practices) was created for each lesson by averaging scores between the two scorers.

Analysis Scores for the TIMES video data were analyzed descriptively overall and by
course assignment. First, consistency was assessed using correlations. Then, summary
statistics and a number of visual representations were used to describe the data. Finally,
Wilcoxon Rank-Sum and Wilcoxon Signed-Rank Tests were used to describe the
statistical significance of qualitative differences between courses or practices.

Results of pilot testing First, with respect to consistency, we found that scores for the seven
practices were highly correlated (Rupnow et al. 2018). Correlations ranged from .683
(Practice Five and Practice Seven) to .935 (Practice One and Practice Three), with a mean
of .840. Further, with respect to the trends in the scores, we found that, across all 7 practices,
the median score for TIMES fellows’ lessons was between medium (3) and medium-high
(4). (See Fig. 1.)

Comparing the practices, lessons scored lowest on Practice Three, BTeachers actively
inquire into student thinking.^ In fact, Wilcoxon Signed-Rank Tests revealed that
Practice Three scores were statistically significantly lower than any of the other practices
(see Table 2). In contrast, lessons received their highest scores on Practice Six, BTeachers
guide and manage the development of the mathematical agenda.^ Again, Wilcoxon
Signed-Rank Tests revealed that Practice Six scores were statistically significantly
higher than all of the other practices.
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When comparing scores across courses there were some interesting contrasts.
Figure 2 displays the score distributions for the seven practices across the three different
courses. Immediately, scores for IOLA stand out as higher than IODE and IOAA.
Recall that the number of instructors in each of these samples was relatively small.
When comparing the scores for the seven practices across the different courses,
Wilcoxon Rank Sum tests revealed few statistically significant differences. The only
two even marginally statistically significant results are in comparing Practices Four and
Five between IOLA and IOAA. Scores for IOLA lessons were significantly higher than
scores for IOAA lessons on both Practice Four (p < .05) and Practice Five (p < .10). We
discuss these findings in greater detail below.

Fig. 1 Box plot of seven practices across all 3 courses

Table 2 Summary of findings from wilcoxon signed-rank tests in comparing scores for practices

1 2 3 4 5 6 7

1 +** +*** +*** +** -* +*

2 +*** = = -*** =

3 -** -** -*** -**

4 = -*** =

5 -*** =

6 +*

Row compared with column (e.g, B+^ in 1,2 indicates scores on practice 1 significantly greater than scores on
practice 2) (*p < .05, **p < .001, ***p < .0001)
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Discussion of pilot testing As a proof of concept, we see the successful application of
the IOIM to the TIMES data as very promising for several reasons. First, the training
protocol resulted in a reasonable inter-rater reliability (within 1 point). Suggesting that
the IOIM can reliably be used to score enacted instructional lessons holistically.
Second, the lesson scores were highly correlated, which offers some construct validity
given that all the lessons scored came from instructors participating in the same IO
instructional supports. Third, the IOIM was sensitive enough to capture differences
between practices (i.e., Practice Three scores were statistically significantly lower than
any of the other practices) and differences between content areas (i.e., scores for IOLA
stand out as higher than IODE and IOAA). This sensitivity is notable given that all
instructors were taking part in the same professional development program. As we were
able to capture vairiance within this very narrow context, we are hopeful that this
measure may also be able to capture differences between commensurate forms of
instruction, such as IBL and IOI.

In and of themselves, these results offer several points worthy of discussion -
particularly in regard to the differences found between the practices and between the
content areas. The fact that Practice Three scores were statistically significantly lower
than any of the other practices while Practice Six scores were statistically significantly
higher than all of the other practices raises questions about IOI and the IOIM. For
instance, without more lessons that represent a wider range of instructional approaches,
it is impossible to know if these differences are present because Practice Three is more
difficult to enact or because it is more difficult to find evidence for it when scoring
lessons. In terms of the differences between the content areas, more research needs to
be done to understand if these differences can be understood in terms of the written

Fig. 2 Box plot of seven practices by courses
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lessons (e.g., did some lessons have a greater potential for high-level IOI?), in terms of
the instructors in each content area (e.g., familiarity with content or prior experience
with IOI), in terms of the scorers (e.g., familiarity with the content), or in terms of the
instructional supports (e.g., differences in implementation of the online working
groups). These additional avenues for research offer additoanl opprotunities to refine
the IOIM and the training documents.

Discussion

In this paper, we outlined the development of a rubric for measuring IOI, and showed
the role empirical research played in this development process. For TIMES, the specific
research project that motivated this instructional measure, the IOIM was needed to
characterize, communicate, and evaluate the specific type of instruction we were trying
to support. More generally however, the development of the IOIM represents an effort
to operationalize inquiry-oriented instruction. With the publication of some very
prominent and visible studies showing the benefits of active learning (e.g., Freeman
et al. 2014; Laursen et al. 2014), there is a growing consensus that active learning
Bworks^. While these results of student success and learning are certainly compelling,
questions remain regarding how different groups of students may be benefiting (or not)
in different ways from more active forms of instruction.

For instance, Laursen et al. (2014) found that, Bin non-IBL courses, women
reported gaining less mastery than did men, but these differences vanished in
IBL courses^ (p. 415). However, Johnson et al. (in press) found a gender
performance gap in IOI courses, with men outperforming women, that was
not present in non-inquiry oriented courses. This pair of studies is illustrative
of Eddy and Hogan’s (2014) argument that any classroom intervention will
impact different groups of students in different ways. Furthermore, the disparate
results emerging from two very similar instructional approaches (IBL and IOI)
bolster Singer and colleagues’ (Singer et al. 2012) call for the identification of
critical instructional features in order to explore the ways in which particular
instructional approaches may impact various groups of students. Without instru-
ments that allow us to distinguish between what teachers are actually doing in
their classroom, the field is unable to theorize, document, or understand how
aspects of that instruction supports student learning. Thus, the IOIM represents
our attempts to characterize instruction – with the idea that this characterization
will allow for further research into the relationships between instructional
practice and student learning.

Creating a measure for IOI at the undergraduate level presented non-trivial
and unique challenges. First, it was necessary for the IOIM to have the
flexibility to be utilized across an array of undergraduate mathematics courses.
This was challenging due to the content differences and the differing mathe-
matical goals. For instance, in our focal courses, mathematical goals range from
developing an understanding of solution methods to developing notions of
formal mathematical proof and definitions of abstract concepts. Instead of being
overlooked, this difference in goals needed to be flexibly built into the measure
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and was captured by including language such as Bformalizing student ideas^
and Bstudents were engaged in generalizing their thinking.^ Such language is
true to the tenets of IOI while not prescribing the sophistication of the students’
mathematical work or the exact content that work needed to consist of. The
extent that the IOIM can be used in other disciplines with commensurate
instructional approaches, such as physics, warrants investigation.

Second, the IOIM needed to incorporate a wide variety of instructional
strategies. From a theoretical standpoint, in IOI the teacher navigates along
the continuum of pure telling and pure student exploration (Rasmussen and
Marrongelle 2006). From a practical standpoint, flexibility across the range of
IOI was necessary because of the nature of the TIMES project: supporting
instructional change. Thus, the measure needed to provide information regard-
ing how the participating instructors were incorporating aspects of IOI into their
instruction and to what degree they were doing so. Based on the scores of the
TIMES fellows’ lessons, the IOIM appears to be sensitive enough to discrim-
inate between inquiry-oriented instructors. More work needs to be done to
verify that the IOIM can be used for different forms of instruction (such as
interactive lecture and IBL), that the IOIM can discriminate between other
forms of instruction, and that the IOIM can be used to assess change over time.

Another line of future work will include looking at the IOIM scores of the
TIMES fellows’ lessons as both a dependent variable, allowing us to investigate
the influence of TIMES instructional supports, and as an independent variable,
allowing us to investigate the impact of IOI instruction on student learning
outcomes. This will provide the field with much needed information about
supporting instructional change and the relationship between instructional prac-
tice and student learning.
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