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Abstract
At the University of Paderborn, the course BIntroduction into the culture of
mathematics^ is required for all first-year students who enter the study program for
future mathematics teachers at lower secondary level (grade 5–10). In this inquiry-based
transition-to-proof course, we use four different kinds of proofs (the generic proof with
numbers, the generic proof with figurate numbers, the proof with figurate numbers using
geometric variables, and the so-called Bformal proof^) to engage students in exploration,
reasoning, and proving. In this paper, we report findings from an empirical study in
winter term 2014/15 (pre- and posttest) concerning proof validation and acceptance. We
used different kinds of ‘reasoning’ taken from Healy and Hoyles (2000) to assess
students’ proof validation. At the beginning of the course, about a third of the students
judged the purely empirical verifications and wrong algebraic operations as correct
proof. These forms of reasoning being judged as correct proofs decreased greatly in the
posttest. To investigate proof acceptance, the students had to rate different aspects – such
as Bconviction^, Bexplanatory power^, or Bvalidity^ - of the four kinds of proofs. BProof
acceptance scales^ with very high reliabilities (Cronbach’s α> .864) were constructed
using factor analysis. While in the pretest most of the students did not accept the generic
proofs and the proof with geometric variables as general valid verifications, their
acceptance increased during the course. However, in the posttest, the ratings of the
different aspects vary greatly concerning the four kinds of proofs.
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Introduction

Many universities offer transition-to-proof courses in order to address students’ diffi-
culties with mathematical proof. Inquiry-based transition-to-proof courses seem to be
especially promising, discussing proving-techniques while emphasizing the process
aspect of mathematics (Selden et al. 2015; Smith 2006). It is the emphasis on the
process aspect of mathematics (exploration, identification of assumptions, proving, and
considerations of different kinds of explanations) that characterizes an inquiry-based
approach to transition-to-proof (see National Research Council 1996). We developed
an inquiry-based transition-to-proof course for first-year student teachers using four
different kinds of proofs to foster students’ proof competencies: the generic proof with
numbers, the generic proof with figurate numbers, the proof with figurate numbers
using geometric variables (see Kempen and Biehler 2016), and the so-called Bformal
proof^. In this course, we pursued three objectives: (1) To enhance students’ transition
to the mathematical (so-called) formal proof, (2) to promote the mathematical symbolic
language in a meaningful way and (3) to equip students with intellectually-honest1

ways of proving that can also be used in their future teaching at the school level.
The ability to understand and to construct mathematical proof is a key competency

in university mathematics. The understanding of the meaning, significance and function
of the mathematical symbolic language is an undeniable prerequisite for dealing with
higher mathematics. The teaching of appropriate forms of mathematical proof for
school mathematics provides the possibility to include valid forms of reasoning into
the classroom, i.e. to establish a culture of reasoning and proving in an intellectually-
honest and propaedeutic way. The course is evaluated and refined in a design-based
research scenario. Plomp (2010, p. 9) describes this methodology as follows: Design-
based research is Bthe systematic study of designing, developing and evaluating
educational interventions (such as programs, teaching-learning strategies and materials,
products and systems) as solutions for complex problems in educational practice, which
also aims at advancing our knowledge about the characteristics of these interventions
and the processes of designing and developing them^. In this paper, we focus on the
fourth implementation of the course in 2014/15. As in other implementations of the
course, we investigated students’ benefits concerning proof competencies, beliefs and
acceptance in detail. In this paper, we report on our findings concerning proof valida-
tion and proof acceptance, a concept on which we will also elaborate.

In the teaching of mathematical proof, the study of Healy and Hoyles (2000) gave
some important insights about 14- and 15-year old students’ conceptions of different
kinds of reasoning. Here it became clear that learners’mathematical socialization and their
acceptance of forms of reasoning have to be considered in the teaching of proof. While
generic proofs are said to be a pedagogical tool to engage students in reasoning and
proving and to foster proof competencies (see Dreyfus et al. 2012; Leron and Zaslavski
2013; Rowland 1998; compare also the concept of Btransparent pseudo-proofs^ in Malek
and Movshovitz-Hadar 2011) it seems surprising that students’ acceptance of these kinds
of reasoning has not been investigated in detail yet. In this contribution, we want to add

1 The intellectual-honesty principle states that the notion of proof in school mathematics should be concep-
tualized so that it is honest to mathematics as a discipline and honoring students as mathematical learners (see
Kirsch 2000; Stylianides 2007).
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new and current results to the ongoing discussion about pre-service teachers’ conceptions
of proof and their acceptance of different (pedagogically oriented) kinds of proofs.

Theoretical Background

Students’ Proof Validation

Following Selden and Selden (2017, p. 340), proof validation involves the reading of
and the reflection on proof or proof attempts to determine their correctness. In this sense,
proof validation is related to the correctness of a proof, i.e. the arguments used and its
inherent logic. Proof validation has been investigated concerning undergraduate stu-
dents (e.g. Selden and Selden 2003; Sommerhoff et al. 2016), mathematicians (e.g.
Weber 2008), and pupils (e.g., Healy and Hoyles 1998; Healy and Hoyles 2000). Since
we are interested in students’ proof validation and proof conceptions when entering
university, the results of the Healy and Hoyles study appear especially important for us.
In their study of approximately 2500 high-attaining 14- and 15-year old students, Healy
and Hoyles (1998, 2000) found some remarkable results concerning proof conceptions.
In this study, students’ were asked to judge four different kinds of reasoning (a narrative
proof,2 an empirical verification, a wrong algebraic proof and a correct argumentation
with variables) concerning the aspects validity (e.g. Bshows that the statement is always
true^) and explanation (e.g. Bshows you why the statement is true^) (Healy and Hoyles
2000, p. 403). Concerning the two given empirical verifications, more than half of the
students gave correct evaluations (54% and 60%), stating that these arguments only rely
on the subset of cases. Less than one-third of the students expressed that these empirical
arguments had no explanatory power at all.While the correct algebraic proof was judged
correctly concerning its validity by 40% of students, only 11% attested the highest rate
of explanation. In the case of the wrong algebraic proof, only 12% gave correct
judgements concerning its validity and only 3% attested the highest degree of explan-
atory power. The highest validity rating was achieved in the case of the narrative
argument, where 68% of the students gave correct evaluations. The highest percentage
of full explanatory power (42%) was also achieved in the case of the narrative argument.

Another important result of the study touches upon students’ proof conceptions.
These students held two different conceptions of proof: the arguments they considered
would achieve the best mark from their teachers differed from the arguments they would
adopt for their own approach. While the students chose algebraic arguments for
achieving the best mark, the empirical arguments were preferred for their own approach.
These empirical arguments were also found to be more convincing and explanatory.

Reiss et al. (2000) adapted a part of Healy and Hoyles’ study. They chose four
different arguments about a proof problem as to whether or not a given triangle is
isosceles, and gave it to 81 secondary school students (German Gymnasium, the most
academic type of secondary school in Germany). These students were to assess the
explanatory power, correctness and generality of four different arguments: a correct

2 Following Healy and Hoyles (2000, p. 400 f.), a narrative proof is considered as Ban argument that
suggest[ed] underlying reasons and explanations written in a narrative everyday style^.
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formal proof, a correct narrative proof, an empirical argument and a formal circular
solution. Reiss et al. (2000, p. 116) summarized their findings:

We interpret the findings, particularly those on assumed teacher preference, as an
indication that the majority of students consider a correct (noncircular), formally
presented proof to be the mathematically accepted norm. However, they have not
entirely adopted this norm in their own attempts at proof or their understanding of
convincingmathematical arguments. Themajority feel that the correct narrative proof
is the best way of explaining geometrical content to their classmates, while one third
of respondents selected the purely empirical argument as the best explanation.

Students’ Proof Acceptance

Since proof validation can be considered to be an objective question about the
correctness of a proof (see section BStudents’ proof validation^), it is also necessary
to discuss a subjective perception when talking about the acceptance of a proof. This
idea of a subjective category is linked to the concept of relative conviction of Weber
and Mejia-Ramos (2015). As Weber and Mejia-Ramos (2015, p. 16) point out, an
argument can improve the relative conviction3 about the truth of a claim. In this sense, a
person’s proof acceptance is not only affected by the (perceived) correctness of proof,
but also by its representation, the extent of validity, conviction and verification, as we
will point out below. Accordingly, we will elaborate on a concept of Bproof
acceptance^ that is based on different views articulated in several studies. Finally, this
elaboration will lead to a definition of proof acceptance that will also serve as an
operationalization here.

The term Bproof acceptance^ is often used in the literature when students judge
given arguments as Bcorrect proofs^. First, it appears obvious that students ratings of
concrete argumentations as Bcorrect proofs^ depend on their individual conception of
mathematical proof. Following this idea, Reid and Knipping (2010, p. 66) summarize
some findings from the literature concerning factors that may influence persons’
acceptance of arguments as proofs. Their enumeration comprises the form of the
argument and the familiarity with the conjecture, the familiarity of the methods used
and the use of diagrams and concrete examples. Thus, in the so-called acceptance of
different kinds of proofs, the form (i.e. representation) of the argument and the use of
concrete examples or diagrams appear to play a crucial role. Dreyfus (2000) found that
most secondary school teachers in his study (n = 44) easily validated a formal symbolic
mode of representation as proof, but they rarely appreciated other arguments presented
in verbal or visual mode or done with generic examples. These teachers even tended to
perceive narrative proofs as deficient because of the lack of mathematical symbolic
language. Tabach et al. (2010, 2011) investigated the mathematical knowledge of high
school teachers and concluded that some teachers over-value the generality of formal
presented arguments and under-value the generality of verbal ones.

3 BRelative Conviction: An individual has relative conviction in a claim if the subjective Ievel of probability
that one attributes to that claim being true exceeds a certain threshold to provide a warrant for some future
actions.^ (Weber and Mejia-Ramos 2015, p. 16; emphasis in original)
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When a person is rating a mathematical proof, several aspects have to be considered,
which is reflected in different studies. First, a proof must fulfill verification, i.e. the
proof shows that the statement is always true (compare Healy and Hoyles 2000; Weber
2014). Another important aspect when reading a proof is the extent of explanation, i.e.
the proof shows you why the statement is true (compare Healy and Hoyles 2000;
Hanna 2018). Then the subjective category of (relative) conviction must be considered
(see above): is someone completely convinced by this argument? (see Weber 2010;
Weber and Mejia-Ramos 2015). Finally, in the study of Martin and Harel (1989)
students were asked to rate whether each verification of a statement was a valid
mathematical proof. In this sense, proof acceptance is about the label of ‘proof’; i.e.,
if someone would call a verification proof.

It is appropriate for the term Bproof acceptance^ to combine the different
aspects that the reader is to perceive when reading and understanding a proof.
These aspects are related to the various functions of proofs (e.g., de Villiers
1990) as verification, explanatory power, conviction, and also the perceptions or
interpretations of the argument by the reader as a purely empirical check of
examples, the elimination of any doubt about the validity of the statement being
proved and the judgement as Bproof^. In this study ‘proof acceptance’ is
conceptualized as the extent to which an individual perceives verification,
conviction and explanation when reading a mathematical proof combined with
the extent, the reader does consider the reasoning to be a Bcorrect mathematical
proof^. For this investigation, new instruments are needed.

In their study, Healy and Hoyles (see above) use different items to assess the
validity and the explanatory power of different kinds of reasoning. But in
having a closer look at the items, the questions seem to bear more than ‘just’
verification and explanatory power. We interpret the items of Healy and Hoyles
(2000, p. 403) to touch upon the following aspects of mathematical proof: (a)
correctness (Bhas a mistake in it^), (b) verification (Bshows that the statement is
always true^), (c) misunderstanding as a single check of examples (Bonly shows
that the statement is true for some even numbers^), and (d) explanatory power
(Bshows you why the statement is true^). We followed this idea of asking for
different aspects of mathematical proof to meet with our concept of proof
acceptance. We combined the dimension mentioned above with characteristics
of the four types of proofs herein (see below). Finally, we developed the
following dimensions to assess students’ proof acceptance: Bverification^ (the
objective confirmation about the truth of a statement), Binterpretation as purely
empirical verification^, Bpossible existence of counterexamples^, B(relative)
conviction^, Bimportance of variables^, Bexplanation^, Binterpretation as testing
of concrete cases^ and the Bcorrectness^ of a proof.4

The Course BIntroduction into the culture of mathematics^

The course BIntroduction into the culture of mathematics^ was developed by
the second author and was held for the first time in 2011/2012 as a requirement

4 The concrete items to evaluate these dimensions are given in section BResearch Instruments^.
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for first-year secondary pre-service teachers. We used this first implementation
of the course and the following three to refine and to evaluate the course in a
design-based research scenario. Accordingly, the empirical study presented in
this paper is a part of a larger empirical study that forms the core of the Ph.D.
project of the first author.

About 160 pre-service teachers attend this course every year, which com-
prises (per week): 2 h of lecture, 2 h of tutorial in groups (about 30 students
each) and 2 h of Bplenary tutorial^, where didactically- enhanced and reflected
solutions of the weekly homework are presented. During the course, the
students explore mathematical issues (e.g., figurate numbers) and learn to
construct generic proofs and formal proofs. An integral part of the concept of
the course is the usage of four different kinds of proofs (see Kempen and
Biehler 2016). In the following section, we will describe these proof types and
the related aims in detail.

Four Different Kinds of Proofs

In the teaching of mathematics, different kinds of proofs have been suggested and
discussed by mathematics educators and mathematicians (Dreyfus et al. 2012). The
concept of the generic proof has become a prominent didactical tool both for the
secondary and the tertiary level (e.g., Rowland 2002; Stylianides 2010). Dreyfus
et al. (2012, p. 204) describe this kind of proof as follows:

A generic proof aims to exhibit a complete chain of reasoning from
assumptions to conclusion, just as in a general proof; however, […], a
generic proof makes the chain of reasoning accessible to students by
reducing its level of abstraction; it achieves this by examining an example
that makes it possible to exhibit the complete chain of reasoning without
the need to use a symbolism that the student might find incomprehensible.

A crucial point in the concept of the generic proof is the identification of the
generic argument and the understanding (or acceptance) of the general character
of the argumentation. Biehler and Kempen (2013) discuss establishing norms
for the construction of a generic proof at university, to ensure students’
understanding and acceptance of the concept. Following this pedagogical view,
a generic proof consists of generic examples followed by valid narrative
reasoning. Therefore, this concept of a generic proof is due to a pedagogical
context (see also Reid and Vallejo Vargas 2018). There are valid operations
performed on concrete examples that illustrate why the statement is true in
these examples. Afterward, it must be explained why this argument also fits all
possible cases and therefore is a general verification. We communicated this
norm to our students in the course BIntroduction into the culture of
mathematics^. Our students were asked to present concrete (generic) examples
and to explain their inherent argument with the generic character verbally when
constructing a generic proof. We consider this norm as a matter of
sociomathematical norm in the sense of Yackel and Cobb (1996).
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We will now give examples of the four proof types we distinguish in our course. We
start with generic proofs:

Claim: The sum of two even numbers is always even

The generic proof with numbers:

4þ 6 ¼ 2⋅2þ 2⋅3 ¼ 2⋅ 2þ 3ð Þ
8þ 12 ¼ 2⋅4þ 2⋅6 ¼ 2⋅ 4þ 6ð Þ
2þ 14 ¼ 2⋅1þ 2⋅7 ¼ 2⋅ 1þ 7ð Þ

Every even number can bewritten as two times a natural number. By using the distributive
law, the sum of two even numbers equals two times the sum of two natural numbers.
Since two times any natural number is even, the result will always be an even number.

While in this generic proof the concrete examples involve (natural) numbers, it is
also possible to work with figurate numbers. As Mason and Pimm (1984) argue,
diagrams can be helpful to foster the perception of the immanent generality. In addition
to this view, the use of diagrams or geometric representations are said to be useful to
fulfill the transition to algebra, i.e. to convey a meaningful concept of algebraic
variables (e.g., Flores 2002). Following these considerations, we use also the notational
system of figurate numbers to construct generic proofs. An example for the generic
proof with figurate numbers is shown below.

The generic proof with figurate numbers5:

By using figurate numbers, every even number can be represented by two equally long
rows of dots. By adding two equal numbers, one will always obtain two resulting equally
long rows of dots. This means that the result will always be an even number (Fig. 1).

5 (1) In the figure corresponding to the generic proof with figurate numbers, we are using little squares instead
of ‘dots’. In this case, the use of squares makes it easier to grasp the geometric shape mentioned in the text. (2)
In this proof, we explain the fact that every even number can be represented by two equally long rows of dots.
But we do not explicitly mention that every (natural) number represented by two equally long rows of dots is
even. We considered this fact to be clear for the reader of the proof.

Fig. 1 The sum of two even numbers represented by figurate numbers
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In generic proofs, the generality must be conveyed in concrete examples and be
expressed in a narrative reasoning, but the use of variables implies the generality in so-
called Bformal proofs^.

The formal proof:

Let a, b ϵ ℕ, a and b and even. Then a and b can be written as: a = 2n and b = 2m with
n, m ϵ ℕ. We have: a + b = 2n + 2m = 2 ∙ (n +m). Since (n +m) ϵ ℕ, the sum is an even
number. Q.e.d.

In the literature, some proofs with figurate numbers use little dots to represent an
arbitrary number. This is a way of expressing a variable more explicitly in the notational
system. This notational variationmay help to identify the generality of the argument better
than with using Bsimple figurate numbers^ and therefore an additional narrative expla-
nation is not necessary, similar to a formal proof.We learned from earlier implementations
of the course that an explicit distinction of this fourth type of proof is helpful for the
students. We illustrate such a proof below with the same proposition (Fig. 2).

A proof with geometric variables:

In proofs with algebraic or geometrical variables, we do not ask for additional
narrative reasoning, because the variables and their use are meant to express the
generality. This is why the students do not have to write down their argument when
constructing a proof with geometric variables if they find the diagram sufficient. But
when constructing a generic proof with numbers or figurate numbers, the students are
to verbally explain the argument and the immanent generality. In this way, we want to
highlight the use of variables to express generality in the sense of Mason et al. (2005) in
contrast to the use of single (generic) examples, where one would explain the gener-
ality. A single example is a matter of a concrete context, where one might identify a
generic argument. But here, we ask the students to explicate this broader argument
explicitly. In mathematics, variables are meant and used to represent a broader context,
i.e., to express generality (see above). The proofs using figurate numbers and geometric
variables can be considered as to what Nelsen (1993 and 2000) calls a ‘proof without
words’: BGenerally, proofs without words (PWWs) are pictures or diagrams that help
the reader see why a particular mathematical statement may be true, and also to see how
one might begin to go about proving it true^ (Nelsen 2000, p. ix; author’s emphasis).

The Learning Sequence in the Course: Brief Overview

The content of the course is divided into six chapters: (1) Discovery and proof in
arithmetic, (2) figurate numbers, (3) sequences and mathematical induction, (4) prop-
ositional logic and proof types, (5) equations, and (6) functions.

Fig. 2 A proof with Bgeometric variables^ and figurate numbers
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The first chapter broaches the issue of exploration, discovery and proving in
particular. The exploration begins with the question: BSomeone claims: The sum
of three consecutive natural numbers is always divisible by three. Is this
correct?^. Discussing the value of testing and investigating concrete examples,
the concept of the generic proof is presented by the lecturer and discussed by
the whole group. By formalizing the generic argument, one comes closer to the
idea of a formal proof and the algebraic variables are introduced in a mean-
ingful way to express generality (see Mason et al. 2005). In comparison of the
generic proof and the formal proof, it becomes possible to discuss the meaning
of generality when proving a universal statement. During the course, the
question of generality in the case of the generic proof is an important matter
and must be discussed in detail (see Kulpa 2009; Mason and Pimm 1984). We
further try to generalize the initial statement and investigate the following:

(C2) The sum of 2 consecutive natural numbers is always divisible by 2.
(C4) The sum of 4 consecutive natural numbers is always divisible by 4.
(C5) The sum of 5 consecutive natural numbers is always divisible by 5.
(C6) The sum of 6 consecutive natural numbers is always divisible by 6.
…
(Ck) The sum of k ϵ ℕ consecutive natural numbers is always divisible by k.

The refutation of (C2) or (C4) makes it possible to discuss the value of a counterex-
ample in the case of a universal statement. Here, it is not only possible to refute the
statement, but also to prove a general one: BThe sum of 2 consecutive natural numbers
is never divisible by 2^. After comparing all the results concerning the statements, the
final conjecture is formulated and proved: The sum of k ϵ ℕ consecutive natural
numbers is divisible by k if and only if k is an odd number.

In the second chapter, we investigate different figurate numbers (e.g., triangular
numbers, square numbers, and pentagonal numbers). The students are to find
structures and relationships between the different figurate numbers and to prove
these with different kinds of proofs. While in the first chapter, the arithmetic was
the place for conjecturing and proving and figurate numbers were used as an
alternative notational system to prove the statements, in the second chapter it is
vice versa. The figurate numbers are the place for conjecturing and proving and
the students may use concrete examples with numbers or the algebraic symbolic
language to prove the different findings. In this sense, it is also intended that
students may experience the power of symbolic mathematical language and the use
of algebraic variables. In the remaining chapters, the mathematical proof always
plays a central role. We use the four different kinds of proofs throughout the
course. In the homework, we make use of so-called multiple proof tasks (e.g.,
Dreyfus et al. 2012, p. 198; Leikin 2009), where students have to prove a single
statement with all four kinds of proofs.

We consider this course to be inquiry-based, because our students are to investigate
mathematical phenomena (e.g. expressed in concrete examples) and to formulate
conjectures. These conjectures have to be proven or refuted afterward. Accordingly,
the students are to solve new and unfamiliar problems continuously (compare
Rasmussen and Kwon 2007).
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Research Questions

In the transition to higher mathematics, students face different challenges in their first
semesters at university. Here, the new forms of reasoning and the operation on a higher
formal level can be main hurdles in this transition (e.g., Selden 2012; Gueudet 2008). But
in order to accomplish the transition to mathematical proof, it is necessary to investigate
students’ effective concepts of proof when entering university and their acceptance of
different kinds of reasoning recommended in the literature. Also, since proof is a
multidimensional construct, one has to take into account different aspects to investigate
Bproof acceptance^. An important assessment was done by Healy and Hoyles (1998,
2000) when investigating middle school students’ judgement on different kinds of
reasoning (see section BStudents’ proof validation^). Before assessing students’ proof
acceptance, we wanted to apply the assessment done by Healy and Hoyles (students’
judgement of four different kinds of reasoning, see above) to our students to provide a
basis for a discussion of proof acceptance. For an evaluation of our course, the questions
of the proof-validation test in the pretest (at the beginning of the course) were also asked
in the posttest (at the end of the course). In this sense, we investigated a part of pre-service
teachers’ understanding of mathematical proof when entering university and the impact
of our course (compare research question 1). Since the participants of our course
comprise both first-year students and more advanced students, it appears valuable to
examine these two subgroups separately. In this way, wemight obtain a closer look at pre-
service teachers’ conceptions of proof when entering university and possible changes in
their conceptions due to the courses at university they complete.

To investigate students’ proof acceptance and their interpretation of the four different
types of proofs used in the course, students were asked to judge one of each type of
proof concerning the aspects Bverification^, Binterpretation as purely empirical
verification^, Bpossible existence of counterexamples^, Bconviction^, Bimportance of
variables^, Bexplanation^, Binterpretation as testing of concrete cases^ and
Bcorrectness^. These items were asked in the proof questionnaire used in the pre-
and the posttest for evaluating the course’s benefits. The corresponding research
question 2 offers some considerable insights into pre-service teachers’ understanding
of the four different kinds of proofs. Finally, students’ proof acceptance scores were
calculated. Our investigation aims to describe students’ proof acceptance when entering
university (at the beginning of our course) and possible changes in students’ proof
acceptance during our course (see research question 3).

The research questions are:

(1) How do pre-service teachers judge different kinds of reasoning (a narrative proof,
an empirical verification, a wrong algebraic proof and a correct argumentation
with variables) at the beginning and at the end of the course?

a. Are there meaningful differences concerning the students in their first semester
and students in a more advanced semester?

(2) How do pre-service teachers rate the different kinds of proofs (the generic proof
with numbers, the generic proof with figurate numbers, the proof with figurate
numbers using geometric variables and the so-called formal proof) concerning
different aspects (verification, interpretation as purely empirical verification,
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existence of counterexamples, conviction, importance of variables, explanation,
interpretation as testing of concrete cases and correctness) at the beginning and at
the end of the course?

(3) How does students’ proof acceptance of the four kinds of proofs (resulting from
their proof ratings) change during the course?

Methodology

Participants

The participants in our study are the pre-service teachers that attended the
course BIntroduction into the culture of mathematics^ at the University of
Paderborn in winter term 2014/15. The course was framed by a pre- and a
posttest. By using personalized codes, students’ performances and attitudes were
tracked. The sample consisted of N = 74 pre-service teachers who participated in
the pre- and the posttest. We focus our analysis on this subset of our students.

Research Instruments

The pre- and the posttest consisted (inter alia) of (1) a multiple choice proof-
validation test adapted from Healy and Hoyles (2000) and (2) a proof accep-
tance survey, where the students assessed different kinds of proofs.

(1) Proof-validation test

In the multiple-choice test, the students were asked to rate four different kinds of
reasoning taken from Healy and Hoyles (2000, p. 401). We translated the selected
proofs and modified them slightly to emphasize the different immanent aspects (see
Fig. 3). For each proof, students were asked if it is a Bcorrect proof^ or^ no correct
proof^. We consider this investigation of students’ proof validation as an important
basis for our research concerning the broader concept of proof acceptance.

In the senior class, Katja, Leon, Maria und Nisha had to prove the following
conjecture:

(2) The proof acceptance questionnaire

Our questionnaire included asking students to rate different aspects of concrete given
proofs. These aspects included verification, interpretation as purely empirical verifica-
tion, existence of counterexamples, conviction, explanation, testing of concrete cases
and correctness (the concrete items are shown below). We adapted the idea of assessing
different aspects (Healy and Hoyles 2000; Weber 2010) and formulated corresponding
statements (see below). We selected one of each of the four kinds of proofs mentioned
above to be rated by the students. (These concrete proof productions to be rated are
shown below.) We made the decision to choose four proofs of different claims, because
one type of proof should not influence the acceptance of the other ones of the same
claim. Of course, a disadvantage is that the students also judge the concrete proof of
that claim and not only the type of proof in general.
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The students were asked to rate the four concrete given proofs (see below)
concerning the aspects named above on a six-level Likert scale ([1] Btotally
disagree^ … [6] Btotally agree^). The statements to be rated are:

The reasoning…

(i) shows that the statement is true in every possible case. [Btrue^; item concerning
verification]

Fig. 3 The multiple choice proof-validation test adapted from Healy and Hoyles (2000, p. 401)
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(ii) convinces me that the statement holds in every case. [Bconv.^; item concerning
conviction]

(iii) shows that the statement is true for every time and 100%. [B100%^; item
concerning verification]

(iv) explains why the statement is true. [Bexplan.^; item concerning explanation]
(v) is a correct and valid proof. [Bcorr. Proof^; item concerning correctness]
(vi) verifies the statement only for some concrete cases, but not in general.

[Bexample^; item concerning interpretation as a single check of examples]
(vii) is not universally valid, since a counterexample can still exist. [Bcounterex.^;

item concerning existence of a counterexample]
(viii) is just a test of single cases and not a general verification. [Bcases^; item

concerning interpretation as a single check of examples]
(ix) is not a valid verification without the use of variables. [Bvariables^; item

concerning the importance of variables]
(x) has to be represented in a more formal way to totally convince me. [Bmore

formal^; item concerning the demand for a formal representation]

The items (i), (iv), (vi) are adapted and slightly modified from Healy and
Hoyles (2000, p. 403). The items (ii), (iii) and (v) were formulated to include
several functions that proofs may fulfill and the items (vii) and (viii) to
challenge misinterpretations. The items (ix) and (x) broach the issue of a formal
representation that might be desired by a reader of a proof.

The concrete proofs to be rated are the following:

The generic proof with numbers [BgenN^] - claim: The sum of an odd natural
number and its double is always odd.

1þ 2� 1 ¼ 3� 1 ¼ 3; 5þ 2� 5 ¼ 3� 5 ¼ 15; 13þ 2� 13 ¼ 3� 13 ¼ 39

The sum of an odd natural number and its double equals three times the initial
number. Since the initial number is an odd number, one obtains the product of

Fig. 4 The sum of five consecutive numbers represented by figurate numbers

International Journal of Research in Undergraduate Mathematics Education (2019) 5:27–55 39



two odd numbers. Since the product of any two odd numbers is always odd,
the result will always be an odd number.

The generic proof with figurate numbers [BgenFig^]- claim: The sum of five
consecutive natural numbers is always divisible by five.

In the representation of the sum of five consecutive natural numbers by figurate
numbers, one always obtains the same shape of stairs on the right side. By transforming
these stairs (taking the edge at the bottom right and putting it above) one always obtains
five equal rows. So the result will always be divisible by five (Fig. 4).

The formal proof [BFP^]- claim: For all natural numbers a, b, c: If b is a
multiple of a and c is a multiple of a, then (b + c) is a multiple of a.

Let a, b, c be natural numbers. Since b is a multiple of a, there exists a natural number n
with: n a = b. Since c is a multiple of a, there exists a natural number m with: m a = c.
We have: b + c = n a +m a = (n +m). Since (n +m) is a natural number, (b + c) is a
multiple of a. Q.e.d.

The proof with geometric variables [GV] - claim: The square of an even
natural number is always divisible by four (Fig. 5).

Pilot Testing and Refinement of the Research Instruments

The Proof-Validation Test The adaption of the proof item from Healy and Hoyles
(2000) has been used in the context of the project BKLIMAGS^ (e.g. Blum et al.
2015). We refined this instrument by changing the following aspects: We included the
answer of Nisha, modified as mentioned above and took the Healy and Hoyles (2000)
version of Leon’s answer, which had been slightly changed in the BKLIMAGS^ study.
Finally, we changed the categories Bproof/no proof^ from the KLIMAGS study to

Fig. 5 A proof with Bgeometric variables^ and figurate numbers
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Bcorrect proof/no correct proof^ to avoid misunderstandings. This modified version in
the proof-validation test was successfully piloted in winter term 2013/14.

The Proof Acceptance Survey We piloted the statements to be rated (items (i) – (x), see
section BResearch Instruments^) on a six-level Likert scale with six different proofs in
winter term 2013/14. Finally, we discussed the selection of the concrete proofs for the
final questionnaire with several mathematics educators.

We investigated students’ ratings concerning each aspect and used explorative factor
analysis to evaluate our concept of proof acceptance. Finally, by using explorative factor
analysis and considering the item discrimination, it became clear that the items concerning
the different aspects of mathematical proof contribute to one factor, the construct we call
Bproof acceptance^. Accordingly, the score of one proof acceptance scale is the mean of
someone’s ratings of the ten items used. A high scale value represents a high level of
acceptance concerning a given ‘proof’; a low value can be considered as its refusal. Such
an acceptance scale was constructed for each proof being rated. The reliabilities of the
constructed scales out of these eight items were very high (all Cronbach’s alpha > .825).6

Data Collection

The pretest took place in the opening session of the course in winter term 2014/15. The
posttest was conducted during the second to last session. By using personalized codes,
74 students were tracked from the pre- to the posttest. These 74 students constitute our
dataset. When deepening our analysis, we will split this dataset to discuss the students in
their first semester of university (n = 37) and the students in a more advanced semester7

(n = 37) separately. The questionnaire included several questions concerning beliefs and
competencies about argumentation and proof. Due to the length of this paper, we will
only focus on findings about students’ proof validation and proof acceptance.

Results

We will first report findings about students’ proof validation. Then students’ choices of
the argument for achieving the best marks by the teachers and the choice for argument
being similar to their own approach are discussed. Afterward, we will discuss students’
proof acceptance. The results concerning the four different kinds of proofs are consid-
ered separately. In addition, we will compare the different kinds of proofs concerning
the aspects Bconviction^ and Bexplanatory power^, since these dimensions may be
considered main aspects of mathematical proof (e.g., Hersh 1993). The results may
open the discussion about the concept of proofs that explain with regard to the
explanatory power of the mathematical symbolic language. Since we are also interested
in possible existing differences between students in their first semester at university and

6 The ratings to items (vii) – (x) were turned for data analysis (a rating as B1^ became B6^, a rating as B2^
became B5, …). Accordingly a high value in the resulting scales points to a high level of proof acceptance.
7 Even though the course is meant for teaching first-year students, some participants of the course are not in
their first semester of university. Some of these changed their study program, some omitted the course in their
first semester and others were repeating the course.
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more advanced students, we will provide our results for all students who took both the
pre- and the posttest separately for first year students [Bfirst-year students^] and more
advanced students [Bmore advanced^]. The more advanced students may have failed
the first time or are new students in this study program but may have studied in another
program (which may have included some math courses) before, or they have started
this program in the summer term and attend our course in their second semester,
although it is designed for first semester students.

Students’ Proof Validation – Answer to the Research Question 1

The percentages of students validating the different arguments as correct proofs are
shown in Table 1 for the pre- and the posttest (see also Fig. 6).

Of all students in the pretest, 74.3% judged the narrative argument (BKatja^) as a
correct proof. The purely empirical verification (BLeon^) was considered a correct
proof by 17.6% of students and the wrong argumentation (BMaria^) by 27.0% of
students. It is remarkable that about 17% percent of the students judged the checking of
examples as correct proof and that about a third of them accepted the wrong formal
reasoning in the case of Maria. The correct argumentation with variables was judged as
correct proof by 89.2% of students and was the proof with the highest approval.

As shown in the posttest, the rating of the narrative argumentation as Bcorrect proof^
did not change. While the percentage decreased in the case of the purely empirical
verification (p = .012; McNemar-Test) and the wrong argumentation, it increased in the
case of the correct proof with variables.

In the subgroup of the first-year students, the narrative argumentation was rated
nearly the same as the argumentation with variables. But as shown in the posttest, the
percentage of the narrative argument decreased (pretest: 83.8%, posttest: 75.7%), while
it increased in the other case. Both the wrong argument and the purely empirical
examples were considered as proof by about a third of the students in the pretest, and
about 10% still judged these arguments as correct proofs in the posttest. The decrease of
first-year students accepting the empirical argument (BLeon^) is significant (p = .021;
McNemar-Test). Nearly all students in a more advanced semester judged the correct
argumentation with variables as correct proof, but only 64.9% in the case of the
narrative argument. Surprisingly, 27% of these students still accepted the wrong
argument in the pretest, whereas the examples were not judged as correct proof (5.4%).

Table 1 Percentage of students validating the proof production as Bcorrect proof^ (pre- and posttest)

all (N = 74) first year students (n = 37) more advanced (n = 37)

pre post pre post pre post

Katja (narrative) 74.3 73.0 83.8 75.7 64.9 70.3

Leon (examples) 17.6* 5.4* 29.7* 8.1* 5.4 2.7

Maria (false) 27.0 13.5 27.0 13.5 27.0 13.5

Nisha (variables) 89.2 95.9 81.1 91.9 97.3 100

B*^: p < .05 (McNemar-Test)
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The results concerning students’ choices for achieving the best mark and being the
nearest to their own approach are shown in Fig. 7. Nearly all students chose the correct
argument with algebraic variables (BNisha^: 89.9%) as the argument that would
probably achieve the best mark by the teacher. But in the case for their own approach,
students were almost as likely to choose the correct narrative proof (BKatja^: 37.3%) as
the correct proof with variables (BNisha^: 40.4%). In the subgroup of the first-year
students, even more chose the narrative one (BKatja^: 37.5%), but also 21.9% named
the empirical argument (BLeon^) as being the nearest to their own approach. The more
advanced students preferred the argument with variables (BNisha^: 51.6%).

Students’ Proof Acceptance

In this section, we will first discuss the results of the different items concerning each
proof separately. Afterward, we will compare the four proofs among each other with
regard to the aspects^ conviction^ and Bexplanatory power .̂ The results concerning the
constructed proof acceptance scales are presented subsequently.

Students’ Ratings Concerning the Four Kinds of Proofs – Answer to Research Question
2

The results (medians) of the items concerning the four different kinds of proofs in the
pre- and posttest are shown in Table 2 and Figs. 8 and 9.

Generic Proof with Numbers In the pretest, most of the students did not agree that this
reasoning shows that the statement is true (Btrue^: median of 3). On the contrary, the

Fig. 6 Percentage of students validating the arguments as Bcorrect proof^ (pre- and posttest)

Fig. 7 Arguments chosen for achieving the best mark (left) and for students’ own approach (right). Percent-
ages of students’ choices (whole group, first-year students and students in a more advanced semester)
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argumentation was considered as a check of several examples (Bexample^: median of 5
and Bcases^: median of 5) and students agreed that there may still exist a counterex-
ample to the statement (Bcounterexample^: median of 5). Thus, this reasoning was not
considered convincing (Bconv.^: median of 3) and only slightly explanatory (Bexplan.^:
median of 4). Accordingly, students did not agree that due to this reasoning the
statement has to be 100% true (B100%^: median of 2) and the reasoning was not
judged as a Bcorrect proof^ (median: 2.5).

The results of the posttest show that students’ perception of the generic proof with
numbers had changed. Here, the generic proof with numbers was perceived as a

Table 2 Medians of the proof acceptance items concerning the four different kinds of proofs in the pre- and
posttest (ratings on a six-level Likert scale ([1] Btotally disagree^ … [6] Btotally agree^); significance of the
differences of the mean from the pre- to the posttest (Wilcoxon-Test): **: p < .001, *:p < .01, (*):p < .05

generic proof with
numbers

generic proof with figurate
numbers

proof with geometric
variables

formal
proofa

pre post pre post pre post pre post

true 3.0 5.0** 4.5 6.0** 3.0 5.0** 6.0 6.0

conviction 3.0 5.0** 5.0 6.0** 3.0 5.0** 6.0 6.0

100% 2.0 4.0** 2.5 5.0** 2.0 4.0** 5.0 6.0(*)

explanation 4.0 5.0** 5.0 6.0** 3.0 5.0** 6.0 6.0

correct proof 2.5 5.0** 3.0 6.0** 3.0 5.0** 6.0 6.0

example 5.0 2.0** 4.0 2.0** 4.0 2.0** 1.0 1.0

counterexample 5.0 2.0** 3.5 2.0** 4.0 2.0* 1.0 1.0

single cases 5.0 3.0** 4.0 2.0** 4.0 2.0** 1.0 1.0

variable 5.0 2.0** 3.5 2.0** 4.0 2.0** – –

more formal 5.0 4.0** 4.0 2.0** 5.0 3.0** – –

a In the case of the formal proof, the items concerning the missing use of variables (Bvariable^) and the demand
for a more formal representation (Bmore formal^) were omitted, because these items seemed to be superfluous
in this context

Fig. 8 Students’ acceptance of the generic proof with numbers (left) and the generic proof with figurate
numbers (right) - Results of the different items (medians) in the pre- and posttest (n = 74)
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convincing and explanatory argument (both median: 5) and even as a correct proof
(median: 5) by most of the students. It was agreed that it shows that the statement is true
(median: 5) but students still hesitated that the statement has to be 100% true (median: 4).
Now, the generic proof was less considered as a purely empirical verification (Bexample^;
median: 2 and Bcases^; median: 3), but here the results show a high variation.

Generic Proof with Figurate Numbers In the pretest, students’ ratings of the different
items concerning the generic proof with figurate numbers showed a very high variation.
While this reasoning was mostly considered convincing and explanatory (medians of
5), most of the students did not agree that the validity of the statement was proved
100% (median of 2.5). The medians of the items concerning the interpretation as a
simple check of examples and the possibility of the existence of a counterexample are 4
and 3.5, so there was no clear statement expressed by the students. Finally, this
reasoning was not considered as a correct proof (median of 3), but also in this case,
the result shows a high variation.

The results of the posttest showed that students mostly agreed about the different
aspects concerning this reasoning at the end of the course. The variation of the results
decreased and the ratings displayed clear opinions. Now, the generic proof with figurate
numbers was perceived as a general verification (Btrue^: median of 6;
Bcounterexample^: median of 2 and B100%^: median of 5) and the interpretation as
a single check of examples was mainly rejected (Bexample^ and Bcases^: median of 2).
Finally, the reasoning was judged as a Bcorrect proof Bwith a median of 6.

Proof with Geometric Variables The results concerning the proof with geometric
variables are shown in Fig. 9 and Table 2. In the pretest, the high variations of the
results illustrate students’ different opinions about this argument. In summary, this
proof was mainly not rated as a correct proof (Bcorrect proof^: median of 3) and the
students did not agree that due to this reasoning the statement has to be true in general
(Btrue^: median of 3 and B100%^: median of 2). Most of the students did not consider
this argument to be convincing or explanatory (both with a median of 3). But in the
posttest, the students state clear positions. In the posttest the students agreed that the

Fig. 9 Students’ acceptance of the proof with geometric variables (left) and the formal proof (right) - Results
of the different items (medians) in the pre- and posttest (n = 74)
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statement has to be true and that the argument is convincing (both median of 5). The
interpretation as a single check of examples was rejected, and the proof was considered
as explanatory and as a correct proof by the students (both with a median of 5).

Formal Proof In the pretest, the students stated clear positions in the case of the formal
proof (see Fig. 9 and Table 2). The formal proof was perceived as a Bcorrect proof^ that
shows that the statement is true. The interpretation as a purely empirical verification
was rejected and this argument was both considered convincing and explanatory
(medians of 6). In the posttest, all medians achieved the maximum (6) respectively
the minimum (1) of the Likert scales. (As mentioned above, we did not use the items
Bvariable^ and Bmore formal^ in the case of the formal proof, compare Fig. 9 right.)

Comparison of the Four Proofs: Students’ Observed Conviction In this section, we refer
to the results concerning Bconviction^ and Bexplanatory power^ mentioned above to
compare the four different kinds of proofs.

In the pretest, students rated the generic proof with numbers [BgenN^] and the proof
using geometric variables [BGV^] as the proofs that were the least convincing with a
median of 3 (see Table 3 and Fig. 10). The generic proof with figurate numbers
[BgenFig^] had a median of 5. The results of these three proofs show a high variation.
Here, the formal proof [BFP^] (median: 6) is rated the highest. Looking at the posttest,
the high acceptance of the aspect Bconviction^ is remarkable. Both the generic proof
with numbers and the proof using geometric variables have a median of 5 and the
generic proof with figurate numbers and the formal proof have a median of 6. Overall,
students’ observed conviction remained quite high in the formal proof and greatly
increased in the other proofs. At the end of the course, the generic proof with figurate
numbers was rated as convincing as the formal proof.

Comparison of the Four Proofs: Students’ Observed Explanatory Power With regard to
Bexplanatory power^, the generic proof with numbers and the proof with geometric
variables achieved the lowest medians in the pretest (medians of 4 and 3). The generic
proof with figurate numbers had a median of five. Concerning the explanatory power, the

Table 3 Statistical data concerning the item Bconviction^ [BgenN^: generic proof with numbers, BgenFig^:
generic proof with figurate numbers, BGV :̂ proof with geometric variables, BFP^: formal proof]

Students’ observed conviction in the pre- and posttest: Statistical Data

pretest posttest

genN genFig GV FP genN genFig GV FP

n 74 74 68 72 74 74 68 72

mean 3.32 4.38 2.96 5.35 4.66 5.22 4.49 5.51

median 3.00 5.00 3.00 6.00 5.00 6.00 5.00 6.00

SD 1.664 1.411 1.688 1.050 1.581 1.162 1.568 .964

min 1 1 1 2 1 2 1 2

max 6 6 6 6 6 6 6 6

46 International Journal of Research in Undergraduate Mathematics Education (2019) 5:27–55



formal proof was considered the best (see Table 4 and Fig. 10). In the posttest, the generic
proof with numbers and the proof with geometric variables were rated higher than in the
pretest, but the results showed a high variation. With regard to Bexplanatory power^, the
generic proof with figurate numbers and the formal proof were rated the highest.

The Proof Acceptance Scales – Answer to Research Question 2

By using exploratory factor analysis and considering the item discrimination, we
constructed scales concerning Bproof acceptance^ (see section BPilot testing and
refinement of the research instruments^). The statistical data concerning the proof
acceptance scales for the four kinds of proofs (in the pre- and posttest) are shown in
Table 5.

Students’ proof acceptance score concerning the generic proof with numbers (mean
of 2.79) was quite low at the beginning of the course (see Fig. 11). The acceptance of
the proof with geometric variables was nearly the same. The generic proof with figurate

Fig. 10 Boxplots concerning the results of the items Bconviction^ (left) and Bexplanatory power^ (right) for
all four kinds of proofs in the pre- and the posttest [BgenN^: generic proof with numbers, BgenFig^: generic
proof with figurate numbers, BGV :̂ proof with geometric variables, BFP^: formal proof]

Table 4 Statistical data concerning the item Bexplanatory power^

Students’ observed explanatory power in the pre- and posttest: Statistical Data

pretest posttest

genN genFig GV FP genN genFig GV FP

n 74 74 68 72 74 74 69 73

mean 3.82 4.50 2.85 5.15 4.85 5.41 4.19 5.58

median 4.00 5.00 3.00 6.00 5.00 6.00 5.00 6.00

SD 1.511 1.274 1.730 1.206 1.382 .905 1.743 .832

min 1 1 1 2 1 2 1 2

max 6 6 6 6 6 6 6 6
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numbers was more accepted (mean: 3.67) and the formal proof was the proof with the
highest acceptance score (mean: 5.15). All differences between the means in the pretest
are highly statistically significant (p < .001; t-test), except for the difference between the
generic proof with numbers and the proof with geometric variables.

Compared to the pretest, all acceptance scores increased. The generic proof with
numbers and the proof with geometric variables achieved the mean 4.27 and 4.34
respectively, which can be considered a positive acceptance. The generic proof with
figurate numbers had an even higher score in the posttest (mean: 4.85) and the formal
proof still had the highest mean (5.50). In the posttest, all differences between the
means are highly statistically significant (p < .001; t-test), except for the difference
between the generic proof with numbers and the proof with geometric variables. The

Table 5 Statistical data concerning proof acceptance scales

Proof-Acceptance-Scale

pretest Posttest

acc_genN acc_gen Fig acc_GV acc_FP acc_genN acc_gen Fig acc_GV acc_FP

n 74 74 67 72 74 74 67 72

mean 2.79 3.67 2.96 5.15 4.27 4.85 4.34 5.50

median 2.50 3.50 2.88 5.63 4.50 5.29 4.63 6.00

SD 1.18 1.27 1.27 1.02 1.45 1.27 1.36 .80

skew .82 .28 .72 −1.05 −.51 −1.24 −.66 −1.78
kurtosis .415 −.826 .336 −.192 −.890 .740 −.356 2.511

min 1.00 1.00 1.00 2.63 1.00 1.00 1.00 2.63

max 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

Cronbach‘s alpha .886 .912 .896 .939 .938 .928 .930 .951

Fig. 11 Students’ proof acceptance in the pre- and posttest (arithmetic mean) [BgenN^: generic proof with
numbers, BgenFig^: generic proof with figurate numbers, BGV :̂ proof with geometric variables, BFP^: formal
proof]
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changes of the arithmetic means from the pre- to the posttest are highly statistically
significant (p < .001; t-test) for all kinds of proofs, except for the increase of the formal
proof (pre-Test: 5.16; post-test: 5.50) with p = .003 (see Table 6).

Since the analysis of the arithmetic means showed only a general increase in proof
acceptance, it appeared necessary to also examine the individual development of the
scores. By subtracting the acceptance score of the pre- and the posttest for every
student, an individual change score was calculated (Bchange_acc_prooftype^). The
resulting scales run (theoretically) from −6 to +6, where a positive score implies an
increase concerning proof acceptance from the pre- to the posttest. These individual
change scores are shown in Figs. 12 and 13.

With regard to the generic proof with numbers, 71.2% of the individual
acceptance scores increased. The mean of 1.47 and the maximum of 5 also
illustrate students’ increased acceptance. In the case of the generic proof with
figurate numbers, 72.6% of individual scores increased. The mean of the scale
is 1.19 and its maximum of 4.38 illustrates the change in students’ proof
acceptance. Regarding the proof with geometric variables, 72.1% of the accep-
tance scores increased (mean: 1.37 and maximum: 4.88). The results concerning
the formal proof are also remarkable: The score increased for 49.3% of the
students and stayed constant for 34.2% of them. This result is due to students’
maximum acceptance of the formal proof (see above). The high variation in
students’ change score shows the heterogeneity of their individual benefits from
the course. While some students’ proof acceptance (nearly) increased by five
points, the proof acceptance of others decreased slightly.

Table 6 Students’ proof acceptance in the pre- and posttest (arithmetic mean); significance of the differences
between the pre- and posttest (t-test) and effectsize (Cohen’s d)

n pre post p value Cohen’s d

Acc_GenN 74 2.79 4.27 <.001 1.13

Acc_GenFig 74 3.67 4.85 <.001 .94

Acc_GV 67 2.96 4.34 <.001 1.06

Acc_FP 72 5.15 5.50 .003 .37

Fig. 12 Boxplots and statistical data of the individual change in proof acceptance
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Summary and Discussion

In this study, we investigated pre-service teachers’ proof validation and proof acceptance
and how they benefited from attending an inquiry-based transition to proof course.

In the beginning of the course, 17.6% of the students rated the testing of several
examples as Bcorrect proof^. But after attending the course, this percentage decreased
significantly to 5.4%. For the subset of the students in their first semester, the
percentage is even more remarkable, decreasing from 29.7% in the pretest to 8.1% in
the posttest. The presented argument containing an algebraic error was rated by 27% of
the students as correct proof in the beginning of the course. Here it is not possible to
explain their choice, as it can be due to several factors (e.g., they did not notice the
error, they did not understand the algebraic formulation at all or they may have
overestimated the value of the algebraic symbols). But at the end of course, the
percentage decreased to 13.5%. One has to note that this rate still appears quite high
for university students. Comparing the validations of the two correct reasonings, the
one with the use of algebraic variables achieved more approval as correct proof, both in
the pre- and the posttest. These results give insights into students’ understanding of the
concept of proof when entering university. About a third of the students starting their
university studies hold inadequate conceptions of mathematical proof; these students
consider a single check of several examples to be a valid proof. Also, the wrong
algebraic proof was judged as correct by about a third of the students. It appears as if
their mathematics courses prior to university did not provide the students with sufficient
concept knowledge about mathematical proof. The question arises, what features of our
course may have had the desirable effects? First, we want to emphasize our use of
examples. The students of the course were to explore several claims and we wanted
them to test the claims on concrete examples first. Thus, the investigation of concrete
examples became part of the proving process (in the sense of Boero 1999). On the basis
of these investigations, a generic proof might have been constructed. Accordingly, we
used the concept of generic proofs to emphasize continuously the difference between a
check of examples and a valid general proof. Throughout the course, the students were
to construct generic proofs and formal proofs. When constructing a generic proof and a
formal proof to one claim, the several benefits of the mathematical symbolic language
become obvious: While in a generic proof the students ought to explicitly write the

Fig. 13 Students’ individual change acceptance score, summarized in the categories Bdecrease^, Bconstant^
and Bincrease^
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generic argument and to explain its validity, the use of variables expresses the gener-
ality of the argument in the formal proof. The perception that formal proofs might be
easier to write might lead to the effect that the reasoning with algebraic variables
achieved more approval as correct proof at the end of the course.

With regard to proof acceptance, students were asked to rate four given kinds of proofs
concerning the following aspects: verification, interpretation as purely empirical verifica-
tion, existence of counterexamples, conviction, explanation, testing of concrete cases and
correctness. In the beginning of the course, the generic proof with numbers and the one
with figurate numbers were mostly considered as a single check of examples. Many
students did not see the general argument that becomes apparent in the generic examples
and that is formulated in the narrative reasoning following these examples. Accordingly,
students did not value its explanatory power. But after attending the course, students did
value the general verification given by the two generic proofs and rejected the interpretation
as a mere check of some examples. In the case of the proof with geometric variables, the
students did not state clear positions at the beginning of the course and many of them did
not consider this kind of reasoning as explanatory. In the posttest, most of the students
agreed that the statement has to be true due to the proof and that the argument is convincing.
The interpretation as amere check of exampleswas rejected. But in the posttest, this kind of
proof was not considered as explanatory by the students. The formal proof was considered
the most convincing and explanatory argument, both in the pre- and the posttest.

Here, one can detect students’ understanding of the different kinds of proofs. It appears
as if students are not used to understand (i.e. to read and validate) proofs expressed in
concrete examples. This result is somewhat surprising, because these kinds of generic
proofs are recommended ways to perform reasoning and proving at school (e.g. Leiß and
Blum 2006). However, our students do not appear to be used to such proofs. Students also
struggled with proofs making use of figurate numbers. It may seem obvious to conclude
that students struggle with the use of this kind of notation system. Figurate numbers are
used in elementary school, for example, to discuss mathematical phenomena as even and
odd numbers. Even in middle school, figurate numbers are used in the context of algebra,
variables and sequences. But here, the students starting their university studies do not
appear to be used to these symbols. We interpret these findings as suggesting that the use
of any notational system has to be learned and practiced (compare Dörfler 2008; Jahnke
1984). In reference to the course, one might again emphasize the use of the four kinds of
proofs. The students were asked to construct and to compare the four kinds of proofs
nearly the entire semester so they could get used to each notational system.When proving
one claimwith all four kinds of proofs, the advantages of each kind of proof and also one’s
individual preferences can be experienced. Here, the results concerning the explanatory
power of the four kinds of proofs are worth discussing. Generic proofs are said to be
proofs that explain (compare Hemmi 2006, p. 44) andHealy andHoyles (2000) found that
the students in their study found narrative proofs more explanatory than formal ones. First,
it seems as if our students were not used to the concept of generic proof in the beginning of
the course. Therefore, they might have not grasped the inner validity and the explanatory
power of the generic argument. But in the posttest, students gave higher ratings to the
formal proof concerning explanatory power. One might consider several explanations for
this fact. The students in our study were older, so age might have influenced the results.
The math classes in school may promote the use of variables continuously in higher
grades, so our first-year students had more time to become familiar with this notational
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system then the 14 and 15 year old students in the study of Healy and Hoyles. But one
might also consider the length of the proofs. While a generic proof contains a narrative
reasoning to be read and understood, the formal proof is quite shorter and deals with fewer
characters. Accordingly, the shorter proof might be considered the more explanatory one,
because there are fewer steps to follow in the proof.

For measuring an overall proof acceptance, a proof acceptance scale was constructed
for all four kinds of proof. Using this scale, it is possible to compare students’ proof
acceptance of the four different kinds of proofs and tomeasure the changes from the pre-
to the posttest. While all acceptance scores increased during the semester, the formal
proof always gained the highest acceptance by the students, followed by the generic
proof with figurate numbers. To gain more insight, students’ individual change (of proof
acceptance) scores were also calculated. In these individual results, the proof acceptance
scores for three types of proof (the two generic proofs and the proof with geometric
variables) of about 70% of the students increased. On the other hand, the scores
decreased in about 20% of the students. A possible explanation for this result may be
the effect that an increased proof acceptance concerning one kind of proof may lead to a
decrease concerning another kind. This interesting observation requires more research.
However, we want to emphasize that the proof acceptance scale appears to be a valuable
research instrument.With the help of our questionnaire, it became possible to investigate
a broader concept of proof understanding, which we call proof acceptance. As shown in
our pretest results, students did not accept the generic proofs when starting our course,
but the formal proof achieved very high acceptance values. It appears as if the formal
proof represents the paradigm of a mathematical proof. Also, the formal proof was also
considered the most convincing and explanatory argument. During the course, all
acceptance scores increased. But at the end of the course, the formal proof still achieved
the highest scores. Accordingly, our course succeeded in broadening students’ under-
standing of mathematical proof. The promotion of the investigation of examples as a
natural part of the proving process and the use of generic proofs seem to have worked
against the misconception that a simple check of examples does constitute a proof.

A limitation of our study is that students’ proof ratings do not only rely on the general
kind of proof (generic proof, formal proof, etc.) but are also related to the concrete proof.
As we explained earlier, the topics of the presented proofs were different because we
wanted to avoid interactions between the judgements of the different types. Therefore, it
would be imprudent to overestimate or to generalize these findings in an inappropriate
way. These findings may open further discussion about several aspects in the learning and
teaching of mathematical proof. We would like to add some questions and research
challenges. The phenomenon mentioned in the literature that learners do accept examples
as mathematical proof (compare Reid and Knipping 2010, p. 59 ff.) is partly confirmed in
this study. However, 17.6% percent of the pre-service teachers rate the mere use of
examples as correct proof in the beginning of our course. Future research questions based
on this result include: Do the students consider this empirical verification as a correct
proof because they do not recognize the general claim inherent in the statement? Or are the
students personally convinced by the examples and therefore mark Bcorrect proof^? Do
they have a misconception of mathematical proof that leads them to their rating or do they
identify a general pattern in the examples that makes them recognize a generic proof in
some sense? These questions, also raised by Reid and Knipping (2010, p. 59 ff.) and
Weber and Mejia-Ramos (2015), should be addressed in future research.
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The use of generic proofs and the use of figurate numbers are listed in the literature
in the context of appropriate forms of reasoning for school mathematics. As we have
shown above, the pre-service teachers did not perceive the generality quality of the
arguments and they seemed to have trouble with the use and meaning of figurate
numbers. This creates a potential discussion regarding if and how students at school
reason with these kinds of proofs that are not formulated in a formal way.

Finally, we want to touch on the concept of Bproofs that explain^. In the literature, the
concept of proofs that explain is often illustrated by proofs making use of geometric
representations (e.g., Hanna 1990, p. 11). But in our study, the students valued the
explanatory power of these kinds of proofs less than we expected on the basis of the
literature. But they did value the explanatory power of the formal proof. As Jahnke (1984)
argues, representations are neither self-evident nor self-explanatory. From a semiotic point
of view, working in a notational system like figurate numbers has to be learned (as
proposed in the context of diagram literacy in Diezmann and English (2001)). This view
highlights the fact that proofs cannot be considered to be explanatory by themselves.
Students have to learn to deal with any notational system. Accordingly, the question of
explanatory power or conviction of a proof cannot be judged in a general way, but has to
be answered individually regarding someone’s prior experiences. However, based on our
findings, it appears appropriate to consider the explanatory power of the mathematic
symbolic language, to rethink the concept of proofs that prove and proofs that explain.
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