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Abstract This study is concerned with the reasoning that undergraduates apply
when deciding whether a prompt is an example or non-example of the subspace
concept. A qualitative analysis of written responses of 438 students revealed
five unconventional tacit models that govern their reasoning. The models
account for whether a prompt is a subset of a vector space, whether the zero
vector is included, the structure of vectors, their number in the formula for the
general solution to the system of linear equations, and the corresponding
coefficient matrix. Furthermore, a conception was identified in students’ re-
sponses, according to which the algebraic structure of a vector space passes
from a ‘parent’ space to its subset, turning automatically it into a subspace. For
many students this conception of an inheriting structure was instrumental for
identifying and reasoning around subspaces. Polysemy of the prefix ‘sub’ and
students’ prior experiences in identifying concept examples are used for offer-
ing explanations for the emergence of the conception.

Keywords Identification reasoning . Polysemy. Subspace . Tacit models . University
mathematics

Introduction

Let us consider some of the tasks that Sarfaty and Patkin (2013), Vinner and Dreyfus
(1989), and Wawro et al. (2011) offered to the participants of their studies:
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& Sarfaty and Patkin (2013) presented Bstanding^ and Blying^ solids to second-
graders and asked them to identify cylinders, cones and pyramids. The students
were also asked to explain their answers.

& Vinner and Dreyfus (1989) provided first-year college students with graphs of three
curves: one contained a Bloop^, one was discontinuous and another turned from a
straight line into a curve. The question was whether there exist functions with such
graphs.

& Wawro et al. (2011) worked with first-year university students who were asked,
BConsider the vectors <1,2,3,5>, <2,5,-3,1>, and < 2,4,5,-7>. Do these vectors form
a subspace?1^.

On the one hand, the presented tasks engage students with different mathematical
concepts having little in common. On the other hand, Vinner and Dreyfus (1989) refer
to their questions as Bidentification tasks^, which puts the spotlight on the act of
identification rather than on the identified concept. Building on Vinner and Dreyfus’s
approach, I propose that identification tasks call for identification reasoning, which is
providing argumentative judgments for whether a prompt is an example or non-
example of a particular concept.

Clearly, at different points in their mathematics education landscape, students apply
qualitatively different models of identification reasoning. For example, Sarfaty and
Patkin (2013) report that many young students reasoned their judgments with attributes
of real-life objects that were conceived as prototypes for solids. Undergraduates’
reasoning in Wawro et al. (2011) was shown to be a mixture of personal concept
images and attributes of a formal definition of a subspace. Despite these differences,
some characteristics can be considered canonical to identification reasoning. For
instance, confirmation of examples requires identification of all critical attributes of a
concept in the prompt, whereas the lack of a single attribute is sufficient for refuting
non-examples (Bruner et al. 1956). Thereby, identification reasoning can be viewed as
a cross-mathematical activity, some characteristics of which evolve together with
students’ progression through the curriculum, when other characteristics remain fixed
(Kontorovich 2018a).

The studies mentioned above illustrate the value of identification reasoning, for
instance when developing understanding of particular concepts and making sense of the
role of definitions in mathematics. Furthermore, identification reasoning may constitute
a necessary and crucial step in other mathematical practices, such as problem solving.
Indeed, in their qualitative analysis of 820 scripts of matriculation exams, Movshovitz-
Hadar et al. (1986) classified approximately a third of students’ mistakes as Btheorems
and distortions^. The category accounted for situations where students misidentified
concept examples in the assigned problems and pursued their solutions with theorems
in which the concepts were involved. In this way, significant parts of what the students
considered as Bsolutions^ turned out to be irrelevant to the assigned problems.

The study reported in this paper is concerned with undergraduates’ identification
reasoning about subspaces; a fundamental concept in linear algebra, the understanding
of which has been rarely explored. The described cross-curricular perspective is used in

1 The imprecise formulation of the question was intentional.
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the study for offering plausible explanations for the reasoning models that students use
when their previous experiences with identification reasoning serve as a baseline.

Background

In this section, I briefly review some aspects of complicated relations between concepts
and examples (Relations between Concepts and Examples section) and present findings
on students’ understanding of subspaces (Students’ Understanding of Subspaces
section).

Relations between Concepts and Examples

The role of concept examples and non-examples has been widely acknowledged in the
mathematics education community. For instance, Sinclair et al. (2011), Watson and
Mason (2005) and others suggest that the space of concept examples that one can
generate provides insights about her or his understanding of the concept. Indeed,
richness of a personal example space can be associated with a rich concept image
(Tall and Vinner 1981). Alongside this view, a classical body of research is concerned
with the prototype effect – students’ tendency to associate concepts with a limited
number of examples (e.g., Hershkowitz 1989; Schwarz and Hershkowitz 1999). For
instance, quadratic and non-constant linear functions were often found to be prototypes
of the function concept (e.g., Tall and Bakar 1992; Schwarz and Hershkowitz 1999).
Furthermore, students tend to extract common features from their examples and treat
them as critical attributes of the concept. Indeed, in the study of Tall and Bakar (1992),
many students suggested that functions should be continuous, non-constant and repre-
sentable with a single formula. These findings resonate with Sinclair et al. (2011), who
propose accounting not just for scarcity and density of one’s example spaces but also
for their structures in terms of generativity, connectedness and generality.

From the cross-curricular perspective, the tension between particularity of examples
and generality of concepts is ingrained in the teaching and learning of mathematics. For
instance, the concept of number is introduced through natural numbers and gradually
expanded to rational, integer, real and complex numbers. Research shows that each one
of these transitions entails significant difficulties to the students as it requires a radical
conceptual change (e.g., Kontorovich 2018b, 2018c; Vamvakoussi and Vosniadou
2004). Compatible difficulties were identified in the case of other concepts, such as
tangent lines (e.g., Biza and Zachariades 2010), exponents (Pitta-Pantazi et al. 2007)
and equivalence (e.g., McNeil 2007).

In the context of university mathematics, the relations between concepts and
examples were often explored with a special attention to students’ usage of formal
definitions. A considerable body of knowledge pertains to the concepts of limits and
derivatives (e.g., Cornu 1991; Giraldo et al. 2008; Jones and Watson 2017; Monaghan
1991; Roh and Lee 2017; Tall and Vinner 1981). An overall finding emerging from
these studies suggests that students rarely operate with formal definitions and tend to
rely on alternative mental models, which are shaped by accessible examples and non-
examples (e.g., Dorier et al. 2000). In regard to the limit concept, Cornu (1991) notices
that the majority of students do not master this idea even at the advanced stages of their
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studies, which does not necessarily prevent them from succeeding in problem solving
and course examinations. The situation echoes with a famous phrase of George Box
proposing that all models are wrong but some are useful (Box and Draper 1987).
Accordingly, the study at hand was targeted at identifying models that students find
useful for operating with the concept of subspace.

Students’ Understanding of Subspaces

While the students’ understanding of vector spaces has drawn the attention of the
research community (e.g., Maracci 2008; Parraguez and Oktaç 2010), the findings on
subspaces come from a handful of studies. Harel and Kaput (1991) assigned students
the question: BLet V be a subspace of a vector space U, and let β be a vector in U but
not in V. Is the set V+β={v+β| v is a vector in V} a vector space?^. The researchers
reported that students’ responses were clearly divided between those who engaged in
checking the whole list of vector-space axioms and those who considered V +β as a
shift of a vector space V. The researchers clearly prioritized the latter approach due to its
effectiveness in the assigned question requiring refutation of V +β. Indeed, the shift
corrupts the fulfillment of some axioms, such as the inclusion of the zero vector and
closure. Furthermore, V +β fulfills many of the vector-space axioms Bby default^
simply because of it being a subset of a vector space U. Accordingly, the adherents
of the former approach could have concentrated on validating selected axioms of a
vector space rather than checking all of them.

Students’ imageries of subspaces were the focus of the study of Wawro et al. (2011).
Based on individual interviews with eight students, researchers distinguished between
three imageries of the concept: a geometric object – when a subspace was associated
with familiar geometrical figures, such as a plane or a line; an algebraic object – when a
subspace was described through algebraic terminology of vectors, dimensions and
matrices; and a part of a whole – when a subspace was related to some larger Bparent
space^. The students were persistent with their imageries when engaging with a formal
definition and related concepts, such as closure under addition and scalar
multiplication.

Another interesting finding of Wawro et al. (2011) is the nested subspace conception
– a view, in which the spaces ℝn are conceived as nested, for instance ℝ2 is a subspace
of ℝ3, which is a subspace of ℝ4, and so forth. Notably, the researchers chose to view
the conception as an early image of isomorphism rather than a misconception. The
researchers reported that they were unable to identify any obvious source for all the
participants to exhibit some variation of the conception. The conception of nested
subspaces is leveraged in the findings of this study in BFindings section^ and some
ideas on its genesis are offered in BOn the Meanings of ‘sub’ and Identified Tacit
Models section^.

Conceptual Framework

The conceptual framework of the study contains constructs of a tacit model and
polysemy. The constructs are traditionally associated with distinct schools of thought:
cognitivism and linguistics. However, Prediger et al. (2008) propose that combining the
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constructs that are rooted in fundamentally different theories is possible if the resulting
framework is used for analysing a concrete empirical situation rather than for con-
structing a coherent complete theory. In their words, B[c]ombining theoretical ap-
proaches does not necessitate the complementary or even the complete coherence of
the theoretical approaches in view^ (p. 173). To clarify, the concrete empirical situation
that was in the focus of this study was undergraduates’ identification reasoning in the
case of the subspace concept.

Tacit Models

Fischbein (1989) argues that mathematical concepts are abstract and formal constructs
formed by axiomatic constraints. However, B[t]he main psychological problem is that
we are not naturally equipped to manipulate concepts and operations, the consistency
of which is not supported by some empirical evidence^ (p. 9, italic in the origin). He
suggests that we often resolve the problem by producing tacit models that turn original
abstract concepts into more concrete and accessible structures.

According to Fischbein’s definitions, a system B can be considered a model of a
system A if there is a certain isomorphism between them. The adjective ‘tacit’ indicates
that an individual can be not aware of the influence of the model B or the extent of it in
situations in which A is involved. For example, Fischbein et al. (1985) asked middle-
school students to choose an operation for each one of the following problems without
performing the computation:

1. From 1 quintal of wheat, you get 0.75 quintal of flour. How much flour do you get
from 15 quintal of wheat?

2. 1 k of a detergent is used in making 15 k of soap. How much soap can be made
from 0.75 k of detergent?

Both problems require multiplication 15⨯0.75 (System A). However, nearly 80 % of
the students responded correctly to the first problem; and only 25 % of the students
were correct in the second problem. Fischbein et al. (1985) explain the difference with
the tacit model in which multiplication is conceived as repeated addition (System B):
multiplication is a commutative operation but the model distinguishes between the
operator and the operand. Then, the model is effective as long as the operator is a whole
number, like in the first problem (i.e. fifteen times 0.75). The operator is a decimal in the
second problem (i.e. 0.75 times fifteen), which is indigestible for the model.

Research proposes that tacit models can develop at initial stages of the learning
process and can influence learner’s interpretations and reasoning Bbehind the scenes^
even at advanced stages (e.g., Fischbein 2001; Stavy and Tirosh 2000). Fischbein
(1989) maintains that Ba main task of the psychologist interested in mathematics
education is to identify such models and to suggest the means by which the student
may become able to control their influence^ (p. 9). Accordingly, the goal of this study
was to detect tacit models that govern students’ identification reasoning in the context
of the subspace concept.

From a theoretical perspective, tacit models are developed by learners but identified
by researchers. Accordingly, it is worth considering the conditions under which a
model can be labeled as identified (see Simon 2017 for a compatible discussion).
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Fischbein (1989) proposes a list of six common characteristics of the models: (i) a
model is a structural entity that provides a meaningful interpretation that explains
clusters of misconceptions exhibited by a substantial number of learners; (ii) it has
concrete, practical, behavioral nature that enables learners to operate with an abstract
concept; (iii) it has a simple and even trivial character; (iv) it imposes a number of
constraints that prescribe under which circumstances the model can be applied; (v) if
the circumstances are met, the model becomes autonomous and its behavior does not
depend on external constraints; and (vi) it is robust to tensions with formal knowledge
acquired by an individual. I apply these characteristics in BSummary and Discussion
section^ for evaluating the models in BFindings section^ that were identified in this
study.

Polysemy

Durkin and Shire (1991) used the constructs of homonymy and polysemy for
explaining some of the challenges in mathematics teaching and learning. They use
homonymy to capture a property of words having distinct and unrelated meanings; for
example, Bthe bank was located two stations away from the bank of the river .̂
Polysemy is used to refer to words the meanings of which are different but related;
for example, Bshe enjoyed reading the newspaper that the Pravda newspaper
published^. The words ‘bank’ and ‘newspaper’ were used twice but the context
induced an appropriate meaning for each appearance.

In mathematics education, the role of polysemy cannot be overstressed as it can be
found in many mathematical terms (e.g., Presmeg 1992; Zazkis 1998; Kontorovich
2018a) and symbols (e.g., Kontorovich 2016, 2018b, 2018c; Mamolo 2010). Two types
of mathematical polysemy can be distinguished. The first type is relevant to terms and
symbols with a specialized use in a mathematics register, a use which does not align
perfectly with everyday language (cf. Pimm 1991). Allow me to illustrate this type of
polysemy with a problem:

Three girls each had a cup of coffee. Each girl put an odd number of lumps of
sugar in her coffee – twelve in total. How many lumps of sugar could each girl
take?

Some might maintain that the problem is unsolvable because the even number 12
cannot be accumulated from three odd numbers. However, 1, 1 and 10 is a solution
because 10 is an odd number of lumps of sugar to put in a coffee.

This is the place to explicate that this study grows from the assumption that the
categorization of a mathematical term as polysemous or homonemous is a prerogative
of the categorizer rather than a matter of Btruth^ (Kontorovich 2018a). In the above
problem, the two meanings of ‘odd’ were probably not related for the believers in its
insolvability, when for me, this mathematical joke is the one to bond between the
meanings. From the research perspective, learners’ recognition of connections between
meanings in different registers can be leveraged by a researcher for arguing for the
learners’ polysemous view of the word; the lack of evidence of recognition might be
not sufficient for building the case for learners’ homonemous view. This approach has
been extensively used for making sense of students’ approaches to mathematical limits
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that are often viewed as Bconstraints that are not reached^, just as speed limits in the
everyday register (e.g., Cornu 1991; Monaghan 1991).

The second type of polysemy occurs within the mathematics register itself (Zazkis
1998). For instance, Zazkis (1998) focused on polysemy of ‘quotient’ and ‘divisor’ in
the context of whole and rational numbers. At the request to determine the quotient in
the division of 12 by 5, some of her pre-service teachers argued for 2, when others
suggested 2.4. The reasoning of the former group can be explained with applying the
term’s meaning in the context of whole numbers, where a quotient is a number x such
that 12 = 5x + r for 0 ≤ r < 5. The reasoning of the latter group is valid in the context of
rational numbers, where a quotient is associated by a result of dividing 12 by 5.

Confusions with polysemy of the first type were found in the context of young
students. For instance, Durkin and Shire (1991) asked 4- and 5-year-olds to write high
and low numbers. The researchers reported that typical responses included lengthy and
shrinked numbers, respectively. Evidence of students’ struggles with polysemy of the
second type have been indicated in the context of university mathematics. Kontorovich
(2016) found that undergraduates can get confused with the symbol ‘f−1’, which
pertains to reciprocal and inverse functions. Specifically, his analysis of students’
written responses revealed misidentifications of the intended concept and even
occurrences in which both concepts were used interchangeably.

According to some theoretical frameworks, terms and symbols are tools for
meaning-making (c.f. Sfard 2008). Then, the described approaches of children and
undergraduates to polysemous terms can be encapsulated with an act of borrowing
meanings from one context and applying them to another context. Polysemy of the
prefix ‘sub’ is used in BOn the Meanings of ‘sub’ and Identified Tacit Models section^
for reviewing the tacit models of subspaces identified in this study in BFindings
section^.

Method

In light of the scarcity of research on students’ understanding of the subspace concept, I
decided to collect data from a large number of students. It became possible through
integrating the research prompt (see Fig. 1) in the final exam of a large mathematics
course. The course was given at a New Zealand university and it was intended for
undergraduates majoring in computer science, economics, statistics and finance.

For students participating in the course, it was the second encounter with university
mathematics with a focus on two variable calculus and topics in linear algebra. In linear
algebra, the students were introduced to the concept of vector spaces, which was
connected to matrices and linear equations from their first course. Specifically, the
course lecturer introduced a formal definition of a vector space and presented several
examples and non-examples. In the following lecture, a subspace was first defined as a
subset of a vector space that is a vector space on its own. Then, a discussion was made
about the vector-space axioms that are necessary and sufficient for concluding that a
subset is a subspace. This lecture ended with the standard conclusion that non-
emptiness and closure under addition and scalar multiplication are necessary and
sufficient for identifying subspaces. In the following lectures, the lecturer proved that
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a general solution to a system of linear equations Am�nxn!¼ bm
�!

is a subspace of ℝn if

and only if bm
�!

is the zero vector (the Subspace Theorem in the rest of the paper).
Accordingly, the lecturer expected the students to reference the Subspace Theorem in
their solutions to the problem in Fig. 1. During the course, students had multiple
occasions to engage with subspaces and the Subspace Theorem through at least ten
problems that appeared in tutorials, homework assignments, and online quizzes.
Furthermore, tutorials, assignments and quizzes were used for communicating the
importance of argumentation and justification when working on mathematical
problems.

The prompting problem in Fig. 1 was developed in collaboration with the course
lecturer and its design was shaped by three considerations. First, the problem was
intended for solution by hundreds of students as part of their final exam, the results of
which counted for 60% of their course grade. Therefore, the course lecturer was
interested in relatively standard problems that evaluate students’ understanding of the
course material. Second, the problem should have engaged the students with a formal
definition of the subspace concept. Accordingly, we chose to contextualize the problem
in ℝ5 for preventing students from applying geometrical reasoning. Indeed, in ℝ2 and
ℝ3 subspaces can be effectively associated with lines and planes passing through the
origin. Three, Questions (i) and (ii) were designed for accessing students’ confirming
reasoning and refutation. The explicit request for reasoning appeared in the written
guidelines for the exam that stated, BYou must give full working and reasons for your
answers to obtain full marks^ (bold in the origin).

The data for the study came from four hundred thirty-eight students who worked on
the prompting problem. The findings emerged from an iterative inductive process
(Denzin and Lincoln 2011): At the first stage, all written responses were reviewed
and their mathematical correctness was evaluated. Then, the responses were classified
according to the identification reasoning that students demonstrated. This stage was
focused on the distillation of attributes that students conceptualized as critical for
identification of subspaces. The attributes were structured in four preliminary models:
subset of a vector space, subset of a vector space containing the zero vector, number of

Fig. 1 Prompting problem
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vectors in the formula for general solution, and coefficient matrix. The models were
reapplied to the whole data corpus.

For enhancing the clarity of the developed categories, a graduate student at the final
stages of her studies in mathematics education was involved. The preliminary models
were discussed with her and reapplied on the random sample of about 5% of responses.
Then, the student categorized another random sample of about 25% of the data by
herself. We independently agreed on 92% of responses. The remaining responses were
discussed, which led to refinements in the developed categories. Specifically, the
category Bn-dimensional vectors^ was distinguished from the Bsubset of a vector
space^. The resulting five categories are presented in the next section with illustrations
and commentary.

Findings

I start with a general overview of students’ responses and continue with the five
reasoning models that emerged from data analysis. Table 1 summarizes the evaluations
of students’ responses to Questions (i) and (ii). The table shows that the vast majority of
students were successful with determining general solutions to the assigned systems of
linear equations. The evaluations of identification reasoning were less favorable: while
more than 90% of the students correctly identified their general solutions in Question (i)
as a subspace, the identification of approximately 10% was correct in Question (ii). A
significant portion of students did not provide any reasoning for their identification in
both questions. The reasoners (n = 338 in Question (i) and n = 141 in Question (ii)), in
their turn, were more successful with refuting non-examples (22.7%) rather than with
confirming examples (4.4%).

Overall, it is worth mentioning that no one of almost four and a half hundred
students applied the subspace Theorem that was recurrently highlighted in course
instruction. Moreover, the identification reasoning of only two students involved all
the three critical attributes of subspaces: non-emptiness, closure under addition and
multiplication by a scalar. Fifteen students referenced the two latter attributes in their
responses but misidentified them in their general solutions in Question (ii) (see Fig. 2a
and b for examples). This may suggest that the reasoning of these students was rote-
driven.

Table 1 Evaluations of students’ responses

Evaluation question Correct Incorrect No response

Question (i) Determination of a general solution 416 21 1

Identification of a subspace 405 4 28

Reasoning for identification 15 323 99

Question (ii) Determination of a general solution 362 21 54

Identification of a subspace 43 236 104

Reasoning for identification 32 109 168
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The evaluations presented in Table 1 support Fischbein and Dorier’s perspectives on
the challenges that formally defined concepts can entail. Table 2 contains the distribu-
tion of models that were identified in students’ responses, models that served students
as alternatives to formal definitions and theorems. While students’ responses to the two
parts of the problem in Fig. 1 were analysed independently, it turned out for each
student that her or his reasoning in Question (i) and Question (ii) was characterized
with the same model. In the cases when a student explained her or his answer in a
single question (Question (i) mostly), her or his identification in the second question
aligned with the model that was constructed based on the reasoning from the first
question.

Subset of a Vector Space

In their responses, the vast majority of the students correctly computed general
solutions to the assigned systems of linear equations and obtained sets of five-
coordinate vectors. Approximately one third of the students identified the sets as
subspaces and reasoned that the solutions Bare in^, Bbelong to^ or Bare a part of^ ℝ5.
Figure 3a and b illustrate that for many students the critical attribute for identification
was the number of rows that the vectors in the computed solutions had. This reasoning
can be associated with a model in which a subspace is conceptualized as a subset of a
vector space. Indeed, any vector in the general solution with five entries belongs to the

(a)

(b)

Fig. 2 a – Example of a response to Question (i). b – Example of a response to Question (ii)

402 Int. J. Res. Undergrad. Math. Ed. (2018) 4:393–414



vector space ℝ5 and together the vectors form a subset. Conventionally, the attribute of
being a subset of a vector space is critical for the subspace concept. For the adherents of
this model, the attribute is necessary and sufficient.

Subset of a Vector Space Containing the Zero Vector

The general solutions of a smaller group of students also consisted of vectors with five
coordinates, however, the inclusion of the zero vector was a critical attribute in their
reasoning. Figure 4a and b provide an illustration of such reasoning: as a response to
Question (i), a student highlighted that the solution is a subspace because the zero
vector can be obtained by setting c1 and c2 to zero. As a response to Question (ii), s/he
wrote that the solution is not a subspace of ℝ5 because Bit does not pass through the
origin/does not contain a 0 vector .̂ The student did not elaborate on how s/he arrived to
this conclusion, which illustrates a typical level of elaboration that the students
exhibited in their responses. Possibly, the student assumed that it is obvious that any
variation of c1 and c2 will not nullify the bottom coordinate in the general solution in
Question (ii).

Overall, the reasoning that the students in this category demonstrated can be framed
with a model in which a subset of a vector space containing the zero vector is
considered as a subspace. Accordingly, the solutions’ inclusion or exclusion of the
zero vector determined students’ identification of an example and non-example of the
subspace concept. In terms of evaluation marks, adhering to this model was rewarding
for the students because their identification of concept examples was correct in
Questions (i) and (ii), and their refutations deserved full marks in Question (ii). The

Table 2 Distribution of identified models in students’ responses

Identified models Distribution in the
responses to question
(i)

Distribution in the
responses to question
(ii)

Subset of a vector space
A set of vectors from a vector space is considered as a

subspace.

121 50

Subset of a vector space containing the zero vector
A set of vectors from a vector space containing the zero

vector is considered as a subspace.

30 11

n-dimensional vectors
Vectors with n coordinates are considered as a subspace of

ℝn. The terms of dimension and basis appear in the
reasoning.

41 17

Number of vectors in the formula for general solution
The general solution to the system of linear equations is

considered as a subset of ℝk, when k is the number of
vectors appearing in the solution formula.

92 38

Coefficient matrix
A general solution to the system of linear equations is

considered as a subset of ℝ3, when 3 is the number of
rows in the coefficient matrix.

54 25
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(a)

(b)

Fig. 3 a – Response to Question (i) from the Subset of a Vector Space category. b – Response to Question (ii)
from the Subset of a Vector Space category

(a)

(b)

Fig. 4 a – Response to Question (i) from the Subset of a Vector Space Containing the Zero Vector category. b –
Response to Question (ii) from the Subset of ℝ5 Containing the Zero Vector category
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confirming reasoning in Question (i) was partial as a closure under addition and scalar
multiplication were also expected to be addressed.

n-Dimensional Vectors

The model in the focus of this section can be considered as a variation of the model in
BSubset of a Vector Space section^ with the difference that BDim(5)^ and the notion of
basis appeared in students’ reasoning. For instance, in her/his responses presented in
Fig. 5a, a student wrote that the determined general solution is a subspace of ℝ5

Bbecause the basis is
2
2
1
0
0

2
66664

3
77775;

−3
−2
0
1
0

2
66664

3
77775

8>>>><
>>>>:

9>>>>=
>>>>;
giving us Dim(5)^. The student also used BDim(5)^

in Question (ii) for confirming that the general solution is a subspace (see Fig. 5b). In
this way, it seems reasonable to propose that BDim(5)^ is associated with the number of

(a)

(b)

Fig. 5 a – Response to Question (i) from the n-Dimensional Vectors category. b – Response to Question (ii)
from the n-Dimensional Vectors category
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rows had by the vectors in the general solution. Then, similarly to the subset of a vector
space model, the students identified their solutions as subspaces of ℝ5.

I distinguish the current model from the one presented in BSubset of a Vector Space
section^ due to polysemy of the terms ‘basis’ and ‘dimension’ that the students in this
category used. Colloquially speaking, ‘basis’ is often associated with a source that
generates something else. Linear Algebra accounts for this meaning by considering the
vectors in the basis as a source that generates a vector space through spanning.
However, additional attributes appear in the formal definition of the term, for instance
linear independence of the vectors. The student in Fig. 5a is reticent about it, which
may signal borrowing the everyday meaning of a ‘basis’ for Linear Algebra (see
BPolysemy section^ for polysemy of the first type). On the other hand, it is also
possible that the student assumed that the independence of the two vectors is obvious
in this case.

Polysemy within the mathematics register (see BPolysemy section^ for details) can
offer an explanation for students’ adherence to BDim(5)^. Overall, the usage of
‘dimension’ was three-fold in the course: (1) the number of linearly independent
vectors in the basis of a non-trivial vector space; (2) a property of geometrical objects,
for instance Bone-dimensional line^, Btwo-dimensional plane^ and Bn-dimensional
ℝn^, and (3) the number of vector coordinates in ℝn, for example Btwo-dimensional
vectors^. While in the two former usages ‘dimension’ indicates that the spanned object
is a vector space, in the later usage it describes a structure of vectors in ℝn. Clearly,
when ℝn is under discussion, it can be described as Bn-dimensional^ from the three
perspectives. The responses of all the students in this category, however, contained
‘dimension’ or ‘Dim’ in conjunction with the number 5, which allows proposing a
general model: the students acknowledge an n-dimensional structure of vectors in ℝn

and interpret it as sufficient for the vectors to form a subspace. Thereby, the meaning-
borrowing mechanism can be discerned in this model.

Number of Vectors in the Formula for General Solution

In their responses, approximately a quarter of students associated the general solutions
that they determined to the systems of linear equations in Question (i) and Question (ii)
withℝ2 and ℝ3, respectively. Figures 6 and 7 provide examples of such responses from
two students: in Fig. 6a, the association with ℝ2 can be explained either by the number
of vectors or with the number of free variables appearing in the formula for the general
solution. In Fig. 6b, the general solution in Question (ii) was represented with three
vectors and two free variables but the solution was considered by both students as being
‘in’ ℝ3. Based on the similarity of all students’ responses in this category, it seems
plausible to propose that their association was driven by the number of vectors
appearing in the formula for the general solution.

In terms of an eventual identification of subspaces, the reasoning of the students in
this category can be clearly divided between two sub-models: in the first model,ℝ2 and
ℝ3 are considered as parts of ℝ5, which yields the decision that the determined
solutions are examples of subspaces (38%, e.g., Fig. 6). In the second model, ℝ2 and
ℝ3 are conceptualized as not included inℝ5, and then both solutions are identified as its
non-example (62%, e.g., Fig. 7). In this way, the first model accepts the conception of
nested subspaces (Wawro et al. 2011), when the second model rejects it. Furthermore,
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the confirming reasoning of the adherents of the first model proposes that a general
solution could be any part of ℝ2 and ℝ3 without additional constraints. The data was
not sufficient for inferring whether non-emptiness and closure were important for the
adherents of the second model as their refutations were based on the mismatch between
ℝ5 and ℝ2 or ℝ3.

Coefficient Matrix

In the previous subsection, the students reasoned their identification of examples and
non-examples of subspaces with attributes of general solutions x! that they determined

to the assigned system of linear equations A x!¼ b
!
. The identification reasoning of the

students in the current category was based on the number of rows of the coefficient
matrix A, which was three in the case of the prompting problem. Figures 8 and 9
illustrate some typical responses in which students claimed that the matrix is ‘in’ ℝ3

and BA ∈ℝ3^. The eventual identification of examples and non-examples of subspaces
may be explained with students’ rejection or acceptance of the conception of nested
subspaces (Wawro et al. 2011). Indeed, ℝ3 in Fig. 8b seems to be viewed by a student
as not a part of ℝ5, which led to the conclusion that the obtained solution is not a
subspace of ℝ5. Notably, the student referred to her or his general solution in Fig. 8a as

(b)

(a)

Fig. 6 a – Response to Question (i) from the Number of Vectors in the Formula for General Solution
category. b – Response to Question (ii) from the Number of Vectors in the Formula for General Solution
category

Fig. 7 – Response to Question (ii) from the Number of Vectors in the Formula for General Solution category
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BNull space^ and explicated that it is a subspace of ℝ3. Another student in Fig. 9,
identified the general solution as a subspace of ℝ5 since Bthe matrix is in ℝ3^.

It is worth noticing that the described model is not totally invalid. In alignment with

the Subspace Theorem, an identification of a general solution to Am�nxn!¼ bm
�!

as a

subspace of ℝn is predetermined by the vector bm
�!

and could be reasoned without
detecting the solution itself. Unfortunately, the responses of the students in this category
suggested that the coefficient matrix A is the one that predetermines whether the
solution is a subspace or not.

(a) 

(b)

Fig. 8 a – Response to Question (i) from the Coefficient Matrix category. b – Response to Question (ii) from
the Coefficient Matrix category
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Summary and Discussion

This large-scale study was aimed at contributing to the empirical body of knowledge on
students’ grasp of the subspace concept – a fundamental algebraic structure, students’
understanding of which has been rarely explored. Specifically, the study focused on an
identification reasoning that undergraduates apply for judging whether a prompt is an
example or non-example of a subspace. The data showed that only 15 students out of
438 referred to non-emptiness and closure of subspaces in their reasoning. This finding
aligns with a well-documented phenomenon of students avoiding formalism and
resorting to more accessible approaches (e.g., Dorier et al. 2000; Fischbein 1989;
Vinner 1991). Accordingly, the data analysis concentrated on alternative models that
students developed for coping with the abstract concept.

Identification reasoning that the undergraduates demonstrated in this study was
captured with five models: subset of a vector space, subset of a vector space containing
the zero vector, n-dimensional vectors, number of vectors in the formula for general
solution, and coefficient matrix. The names of the models highlight the attributes that
the students considered critical for identification and reasoning about subspaces; the
models themselves are summarized in Table 2. Four (out of six) general characteristics
of implicit models (Fischbein 1989) are particularly notable in the identified models:
First, they emerged from the analysis of a large pool of responses to questions that
invited confirming reasoning and refutation. Accordingly, the models can be viewed as
structural entities that relate and explain clusters of misconceptions. Second, the models
equipped students with concrete and practical approaches to identification and reason-
ing about an abstract concept. Third, for many participants the same model was found
to be suitable for describing her or his reasoning in both questions appearing in the
prompting problem. In this way, confirming reasoning and refutation of many under-
graduates were captured with the same model. Others seem to use the same model for
confirming their identification of subspaces in two problem situations. Accordingly, it
may be proposed that the identified models are autonomous as they emerged from
situations with different external constraints. Fourth, the models were identified
through analysing students’ responses in a final course exam. Then, the models can
be considered as robust and sustainable to conventional approaches that were promoted
through course instruction and students’ extensive engagement with subspaces.

The fifth and sixth characteristics of implicit models (simplistic nature and circum-
stances for application) are more arguable in the current study. The first model, subset

Fig. 9 – Response to Question (i) from the Coefficient Matrix category
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of a vector space, is rather simplistic as it proposes that vectors’ inclusion in a ‘parent’
vector space is sufficient for vectors to constitute a subspace. The remaining four
models required students to carry out multiple-step processes for confirming examples
and refuting non-examples. The second model, for instance, required noticing that the
obtained general solution encompasses vectors that belong to a vector space and
determining whether the zero vector is included. Thereby, these models cannot be
considered simplistic in the sense of enabling an immediate identification of concept
examples and non-examples. The simplicity, however, may be viewed in the fact that
even when the students went through a multiple-step process, the reasoning that they
provided accounted for a single attribute only. For instance, in their responses, the
adherents of the second model concentrated on the ex- or inclusion of the zero vector
and they were reticent about the general solution being a subset of a vector space.
Generally speaking, a reasoning based on a single attribute reduced the level of
complexity that a conventional identification reasoning entails by eliminating the
conceptual difference between confirming concept examples and refuting non-
examples (cf. Bruner et al. 1956).

In regard to the sixth characteristic, the constraints of the identified models could not
be fully addressed due to the methodology of the study. Indeed, the findings emerged
from the analysis of students’ written responses to single questions that were assigned
under exam conditions. Thereby, additional and methodologically diverse research is
needed for constructing an empirically-driven body of knowledge on students’ reason-
ing about subspaces. Hopefully, the models identified in this study will provide a useful
foundation for the forthcoming construction. In the meanwhile, traces of the identified
models can be recognized in the findings of Wawro et al. (2011). Indeed, their findings
on students’ imageries of a subspace as part-of-a-whole resonate with the subset of a
vector spacemodel. In the imagery of a subspace as an algebraic object, the participants
of Wawro et al. operated with vectors and matrices that were expected to satisfy some
conditions in relation to the dimension of their ‘parent’ vector space ℝ6. These
approaches are compatible with the reasoning of many participants in n-dimensional
vectors model, who focused on the coefficient matrix and expected general solutions to
relate to 5. Lastly, the nested subspace conception was constitutional in the number of
vectors in the formula for general solution and the coefficient matrix models.
Similarities between findings that emerged from the studies conducted in different
countries and with different methodologies may suggest that the proposed models are
more widespread than initially assumed.

Fischbein’s perspective grows from the gap between formally defined concepts and
implicit models that learners develop. A complementary view may highlight pedagog-
ically desired similarities between the two. In this view, the subset of a vector space and
subset of a vector space including the zero vectormodels can be considered as students’
internalization of fundamental attributes of a formal concept definition; n-dimensional
vectors that generate solutions can be viewed as an emerging understanding of a
spanning set; rejection of the nested subspaces conception in the number of vectors
in the formula for general solution can be assigned to students’ recognition of a
vector’s structure in ℝn; the coefficient matrix model may be associated with
students’ understanding that some properties of a general solution are predetermined
by the linear system of equations. Hopefully, in their further studies the students will
put these models’ characteristics in use for developing fluency with conventional
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approaches to the subspace concept. The concluding section of the paper contains some
ideas on why this hopeful development has not occurred yet and how it can be further
promoted.

On the Meanings of ‘Sub’ and Identified Tacit Models

The evaluations of students’ identification reasoning presented in Table 1 might be
interpreted as a call for reformation of course instruction in the topic of subspaces.
However, what reformations are beneficial, at least potentially? In my perspective,
before pedagogical strategies are considered, the particular concepts that give students
difficulty need to be analysed epistemologically. Accordingly, this section contains a
polysemous analysis of the subspace concept and offers an explanation for the genesis
of a conception that can be discerned in all identified models.

Merriam-Webster’s (online) dictionary proposes several meanings for the prefix
‘sub’, including: under, beneath, below; secondary, next lower than; subordinate
portion of. The meanings are exemplified with such words as ‘subspecies’ and ‘sub-
committee’: focusing on some part of the map of species results in subspecies; when
some members of the committee leave the room, a subcommittee stays. The examples
illustrate a fundamental property that holds for many everyday ‘subs’: a ‘sub’ consti-
tutes a part of some ‘parent’ category and inherits its structure. Indeed, subspecies are
species on their own right and a subcommittee often functions as a committee that is
focused on particular issue. These examples support the inherited structure conception
– one’s assumption that properties of a ‘parent’ category pass on to its ‘subs’.

The inherited structure conception can be recognized in the models identified in this
study. In the models presented in BSubset of a vector space section^ and Bn-Dimen-
sional Vectors section^ the students noticed that their general solutions constitute a
‘sub’ of the ‘parent’ vector space ℝ5, which was sufficient for concluding that the ‘sub’
is a subspace, in the sense of a part of a (vector) space. The students in BSubset of a
Vector Space Containing the Zero Vector section^ assumed that ‘subs’ with the zero
vector inherit the structure of a vector space. By claiming in BNumber of Vectors in the
Formula for General Solution section^ and BCoefficient Matrix section^ that their
general solutions are subspaces of ℝ2 or ℝ3, the students accepted the inherited
structure conception as well. In this way, the participants’ reasoning echoes with
participants’ of Durkin and Shire (1991) who borrowed meanings for polysemous
terms from the everyday register and used it in mathematics.

Durkin and Shire (1991) explored polysemy among preschoolers. Then, it may seem
naïve for undergraduates to apply everyday meanings in the mathematics register.
Indeed, how can it be that university students with more than a decade of experience
in mathematics did not developed a shield to this type of polysemy? At this point, I rely
on students’ previous experiences with identification reasoning to argue that the
inherited structure conception is valid for many concepts in school curriculum. For
instance, if f is a function on the domain I1 and I2 is a subset of I1, then f is a function on
the domain I2; squares, rhombi and rectangles are subcategories of parallelograms and
they possess all the properties of the parallelograms. The validity of the conception
stems from the structure of these concepts, a structure which is determined solely by the
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properties of elements in the ‘parent’ category rather than by the relations between the
elements.

A vector space is probably the first instance of an algebraic structure that students
encounter, and then, it is hardly surprising that they embark on it with conceptions and
models that worked for previously studied structures. Further research can explore
whether spotlighting the differences between algebraic and non-algebraic structures has
an impact on students’ understanding. Specifically, the differences can be spotlighted
with concepts in school mathematics for which the inheriting structure conception does
not hold. For instance, odd and even functions can be used to illustrate that not all
reduction of functions’ domains preserves oddness and evenness; also, not all subsets
of an interval are intervals.

Some instructional reformations are easier to implement than the others. For exam-
ple, it might be useful to make students aware of tacit models and conceptions that can
develop (cf. Fischbein’s 1989, 2001). Such a preventive pedagogy at first glance can
have proactive consequences: Poole (2011), a popular Linear Algebra textbook that
was used in the scrutinized course, introduces subspaces in the following way:

BWe have seen that, in ℝn, it is possible for one vector space to sit inside another
one, giving rise to the notion of a subspace. For example, a plane through the
origin is a subspace of ℝ3. We now extend this concept to general vector spaces.

Definition: A subsetWof a vector space V is called a subspace of V ifW is itself a
vector space with the same scalars, addition, and scalar multiplication as V^ (pp.
451-452, bold in the origin).

The introduction preluding the definition highlights the inherited structure concep-
tion and the inclusion of the zero vector, which resonances with the tacit model
presented in BSubset of a Vector Space Containing the Zero Vector section^. In light
of the findings of the study, it can be asked whether Poole’s attempt to make the
concept more accessible can have a side effect of empowering some tacit models. With
this concern in mind, lecturers may decide to review their course materials and teaching
approaches in a search for possible sources of unconventional tacit models.
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