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Abstract In this paper we investigate task design in an unusual professional develop-
ment course for elementary school teachers, conceived and taught by research mathe-
maticians. Prior analysis singled out relevance for teaching as a critical design issue for
engaging teachers in effective learning. The aim of the current research is to uncover
how relevance for teaching was achieved without compromising mathematical rigor
and depth. Findings are based on an analysis of three representative cases of task
designing in which the authors where involved – one as instructor and task designer, the
other as participant observer. Our analysis reveals a designing model that first addresses
purely mathematical concerns and then refines tasks, taking into consideration a series
of constraints imposed by the requirement of relevance for teaching. Using
Schoenfeld’s Resources-Orientations-Goals framework for decision-making, we show
how the mathematicians drew on their special knowledge of mathematical content to
achieve such relevance in ingenious ways. We find that tasks were best aligned with
Knowles’s principles of Adult Learning in cases where the designers appropriated the
teachers’ point of view, no longer seeing the need for relevance as a constraining
imposition, but rather as an opportunity to combine and merge knowledge specific for
teaching and purely mathematical knowledge.
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Introduction

Designing professional development (herein referred to as PD) for in-service teachers
can be a challenging endeavor. Teachers expect PD to be relevant for their teaching
practices. However, curriculum for PD is often guided by what experts believe teachers
need to know, and its practical relevance may not always be obvious. If teachers do not
see how the PD activities will contribute to their teaching, they are unlikely to engage in
effective learning. This raises a general question that is central to this paper – what is
required for PD tasks to be perceived as relevant by the participating teachers?

The current research addresses this question in a particularly challenging setting.
The PD under investigation was the initiative of a mathematics professor at a leading
research university in Israel, and was taught by mathematics Ph.D. students. The
overarching goal of the PD was to broaden and deepen elementary school teachers’
knowledge and understanding of the mathematics they teach. Such a goal might not
appear relevant to the teachers. After all, the mathematical content of elementary
school, especially in the lower grades, is perceived as quite straightforward. Teachers
may well wonder what there is to learn about counting and about the four basic
operations that they do not already know. It is more common for elementary school
PD programs to focus on didactical issues such as how to best teach the content and
what difficulties the students are likely to encounter, the relevance of which is more
obvious.

And indeed, the goal of focusing on content, combined with the choice of teacher
educators - young Ph.D. students of mathematics with no experience in elementary
school teaching - caused some discontent on the part of the teachers. They were
particularly dissatisfied when the mathematicians touched on content that went beyond
the scope of elementary school mathematics, which appeared to be particularly irrele-
vant for their teaching practice. This discontent threatened to derail the whole PD.

Fortunately, there was a large degree of flexibility in the curriculum and there was no
prepared material for the PD, a fact that positioned the young mathematicians not only
as teacher educators but also as task designers. They were preoccupied with motiva-
tional issues - addressing the mathematical content in their tasks in ways the teachers
would deem relevant for their teaching. The mathematicians were in a position to Blearn
on the job^, and did eventually find ways to reconcile the teachers’ demand for
relevance with their own goals of addressing mathematical content in a deep and
meaningful manner. The PD was eventually considered successful, by the instructors,
the participating teachers, and by officials from the Ministry of Education. The careful
crafting and designing of tasks was found to be central in bridging the differences in
expectations.

The special nature of the learning that took place in this unusual PD is discussed by
Cooper elsewhere (2014, 2015a, b). The focus of this paper is the task design in the PD.
For us, task design refers to both the designing process and the resulting tasks. We
believe that the full significance of a designed product emerges only when we know
something about the intentions and goals of the designer, which for their part evolve
during the designing process. We will present a model of the task designing process,
and analyze some of the tasks that emerged from this process in terms of the ways in
which they addressed the mathematical content and the ways in which they achieved
relevance for teachers.
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We present three cases of task design. The third case is presented only after the first
two cases are analyzed and discussed. The reason for this is that we consider the third
case to be more mature - achieving a deeper sense of relevance - but this can only be
appreciated after the other cases have been explored.

Literature Review and Research Questions

The research described in this paper is problem-driven in the sense used by Arcavi
(2000). The situation under investigation - a professional development course for
primary school teachers run by mathematicians - occurred spontaneously; it was not
driven by research. Relevance for teaching emerged as a central issue, as described in
the introduction, and this paper describes the designers’ pursuit of relevance through
task designing and the nature of relevance-for-teaching they achieved in their tasks.
Accordingly, the main goal of our literature review is to situate the notion of relevance
with respect to existing research literature on mathematics teacher education and task
design. We review the mathematical knowledge that is considered relevant for teaching,
and its implications for task design1 for teacher education. This review considers the
perspectives of three communities: research mathematicians, mathematics education
researchers, and teachers.

Research mathematicians are gradually becoming more involved in school mathe-
matics education (Bass 2005). Bass himself is a research mathematician who has been
extensively involved in teacher education, and Goldenberg (1999) stressed the impor-
tance of including university mathematicians on teams that develop curriculum, such as
BConnected Geometry .̂ The topic of ICMI study 22 (Margolinas 2013) was Task
Design in Mathematics Education, and the study dedicated one of its five themes to
task design within and across communities, acknowledging in the introduction to the
theme that Bvarious design communities, such as those consisting of researchers,
teachers, professional developers and teacher trainers, or textbook writers, have differ-
ent aims and agendas for task design^ (p.420). We found it curious that the community
of research mathematicians was not explicitly mentioned in this introduction, nor was it
addressed in any of the papers in the study proceedings. This may be due, in part, to the
deep and profound difference between mathematics as practiced by mathematicians and
school mathematics (Watson 2008), which suggests that the mathematical knowledge
of research mathematicians might not be relevant for school mathematics education.
Bass rejects this assertion, arguing that B[T]he knowledge, practices, and habits of mind
of research mathematicians are not only relevant to school mathematics education,
but… this mathematical sensibility and perspective is essential for maintaining the
mathematical balance and integrity of the educational process^ (Bass 2005, p. 418).
However, Bass also warns that research mathematicians often lack mathematical
knowledge that is specific for teaching, which may be essential for engaging produc-
tively and meaningfully in school mathematics education.

The term Bmathematical habits of mind^, as used by Bass, was coined by Cuoco
et al. (1996) in an attempt to describe modes of thought that transcend content

1 We use the term Btask^ to refer to any material intended to promote complex mathematical activity in the PD,
and in particular planned discussions to be led by the instructor.
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knowledge, and are taken for granted by mathematicians. Some of these habits are
described as guiding principles for the design of tasks and curriculum. One such
guiding principle is a focus on Bcore ideas^ or Bbig ideas^ (Goldenberg 1999). The
importance of Bbig ideas^ in teacher education was also stressed by Hsu et al. (2007).
They believe that focusing teachers on big ideas that explain a number of procedures
may help change teachers’ common classroom pattern of stressing procedures for
getting correct answers. Schoenfeld, another mathematician who turned to mathematics
education, writing with Kilpatrick on proficiency in teaching mathematics (Schoenfeld
and Kilpatrick 2008), stressed the importance of breadth and depth of teachers’
mathematical knowledge, which allows them to organize content so that students are
introduced to big ideas. Chazan (1999) described how a particular approach to algebra,
organized around the big idea of functions, served him as a teacher in two ways:
helping students understand the goal of problems and the characteristics of desired
solutions, and shifting the locus of authority in the classroom away from the teacher as
a judge and towards the teacher and students as inquirers.

Wu, another research mathematician involved in school education, explicates his
attitudes toward mathematics through five fundamental principles (Wu 2011): 1. Every
concept is precisely defined, and definitions furnish the basis for logical deductions; 2.
Mathematical statements are precise. At any moment, it is clear what is known and
what is not known; 3. Every assertion can be backed by logical reasoning; 4.
Mathematics is coherent; it is a tapestry in which all the concepts and skills are logically
interwoven to form a single piece; 5. Mathematics is goal-oriented, and every concept
or skill in the standard curriculum is there for a purpose. Wu believes that the
mathematics of the school curriculum must be presented in a way that is consistent
with these fundamental principles.

If we accept the importance of breadth and depth of teachers’ mathematical knowl-
edge, and of Bbig ideas^ as an organizing principle, mathematicians’ involvement in
task and curriculum design seems relevant, and indeed is called for by mathematicians
(e.g. Bass 2005; Ralston 2004; Wu 2011) and mathematics educators (e.g. Goldenberg
1999) alike. Furthermore, Zaslavsky (2007), in summarizing the Journal of
Mathematics Teacher Education’s special issue on task design, singles out some
desirable characteristics of teacher educators revealed in the issue’s papers: Ba deep
interest and ongoing involvement in mathematics^ (Zaslavsky 2007, p. 433) and
Bdisposition to do mathematics, awareness and appreciation of mathematical structures
and connections within and across domains^ (p. 435), characteristics which are likely to
be abundant in mathematicians.

We now turn to the perspective of mathematics education researchers, and to a
particular aspect of teacher education - task design. Zaslavsky notes that Bmostly [in the
JMTE special issue] there is no specific curriculum for mathematics teacher education
that needs to be Bcovered^^ (2007, p. 436), a fact that positions teacher educators as
task designers. Various researchers have discussed and analyzed the nature of tasks that
are particularly suitable for developing the kind of mathematical knowledge that is
particularly relevant for teaching. Many of them draw on Shulman’s work on peda-
gogical content knowledge – PCK (1986) – and more recently, the works of Ball and
her associates who developed a more comprehensive framework of mathematical
knowledge for teaching – MKT (Ball et al. 2008). Suzuka et al. (2009) list some
design principles for what they call BMKT tasks^. Tasks well suited for developing
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MKT should: create opportunities to develop a flexible understanding of central
mathematical ideas, provoke a Bstumble^, open opportunities to build connections
among mathematical ideas, support multiple representations and solution methods,
and provide opportunities to engage in mathematical practices that are central to
teaching. The last item on this list is likely to be beyond the expertise of research
mathematicians, who have little knowledge of practices that are central to school
teaching. Stylianides and Stylianides (2010) differentiate between two types of tasks
for teacher education: typical mathematics tasks and pedagogy related (P-R) mathe-
matics tasks. Typical mathematics tasks have a primary mathematics object (e.g.
generation/validation of conjecture, comparison of solution methods, etc.), and focus
on important elements of mathematical knowledge for teaching, including ideas that are
fundamental and hard to learn. P-R tasks have all the features of typical mathematics
tasks with the additional feature of having a secondary yet substantial pedagogical
object (e.g. how would you respond if a student made the following claim), situated in a
particular pedagogical context (assumptions regarding grade level, institution, etc.).

The concepts of MKT tasks and P-R mathematical tasks do not completely overlap,
yet they both highlight the affordances and the limitations of the resources that research
mathematicians may bring to task designing for teacher education. Mathematicians
may well recognize and focus on ideas that are central in the curriculum, encourage and
develop connections among mathematical ideas, and encourage a multiplicity of
representations and solution methods, since these are fundamental principles in univer-
sity mathematics as well. However, Stylianides & Stylianides comment that BThe
pedagogical demands implicated by the design, implementation, and solution of P-R
mathematics tasks [require] not only good knowledge of mathematics but also some
pedagogical knowledge. … it may be hard to require or expect that [research mathe-
matician] instructors …have knowledge of pedagogy^ (Stylianides and Stylianides
2010, p. 170). Goldenberg’s solution is design teams that include members with varied
expertise, including mathematicians and professional teacher educators. Bass sees
mathematics for teaching as a field of applied mathematics, and argues that Bthe first
task of the mathematician who wishes to contribute in this area [of school mathematics
education] is to understand sensitively the domain of application, the nature of its
mathematical problems, and the forms of mathematical knowledge that are useful and
usable in this domain^ (Bass 2005, p. 418). However, these strategies may not always
be practicable, and may end up driving away mathematicians who wish to contribute to
school mathematics education.

We now turn to the perspective of mathematics teachers. Prospective teachers, and to
a greater extent in-service teachers, may have strong opinions regarding what they need
to learn for their professional development. Furthermore, these strongly held ideas may
not coincide with researchers’ ideas about what teachers need to know. Particularly in
the lower primary grades, where the content is often considered straightforward (e.g.
counting, addition and subtraction of whole numbers), teachers may not see the point in
dwelling on the depth and breadth and big ideas of the mathematical content they teach.
Stylianides & Stylianides touch on the issue of teacher motivation when they suggest
that P-R tasks may have the potential to motivate prospective teachers’ engagement B…
by helping them see and appreciate why the mathematical ideas… might be important
for their future work as teachers of mathematics^ (p. 165). This hypothesis gains weight
in light of the seminal work of Knowles (1990) on Adult Learners, who found that
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adults typically need to know the reason or reasons for learning something. Knowles
also found that adults tend to have a problem-solving orientation to learning - they are
more likely to engage in learning if it promises to solve real-life problems. This is
consistent with Watson and Mason (2007), who note that teachers in professional
development are forever on the lookout for something they can use in their classrooms,
perhaps immediately. Classroom-ready tasks can be seen as addressing teachers’ real-
life problem of what to teach tomorrow morning. They add that teachers may reject
tasks as Bnot relevant to my teaching^ if they are not classroom-ready. And indeed,
centering at least a part of a professional development course on such tasks is arguably
the most obvious way of achieving relevance for teachers and motivating them,
however it is not the only one.

We now come to the process of designing tasks. Zaslavsky (2007) lists two
components of this process, as they emerged in the JMTE special issue: 1. An initial
choice or design of tasks by a teacher educator, inspired by personal knowledge,
professional literature or textbooks, a knowledge of relevant theory, or familiarity with
teacher practice. 2. An iterative process of design and modification, including a
predictive analysis, trial, reflective analysis based on teachers’ work, and adjustments.
Literature on task design tends to focus more on the conscious and explicit iterative
process, which is often explored in the context of design experiments or design-based
research, and less on the more tacit aspects of the process: the inspiration for the initial
development of an idea, and the process by which it evolves into a task.

The literature we have reviewed has shown that mathematicians’ orientations toward
mathematics (mathematical habits of mind, a focus on big ideas) may be relevant for
teacher education. Their mathematical knowledge is broad and deep, yet it is not
necessarily Mathematics for Teaching. If they engage in professional development
for in-service teachers and design their own tasks, they will need to reconcile their
orientations with the teachers’ conception of relevance. This leads us to the following
research questions:

1. What nature of relevance-for-teaching did the mathematicians achieve in their tasks
for the PD?

2. What was the designing process by which relevance-for-teaching was achieved?

Theoretical Frameworks

In this paper we will examine both task designing – the process of creating tasks, and
the tasks that emerged. For this purpose we adopt two theoretical perspectives. We
consider task designing to be a case of Bgoal-oriented activity ,̂ and adopt Schoenfeld’s
ROG (resources, orientations, goals) model of decision making (Schoenfeld 2010) as a
theoretical framework for describing, analyzing, and explaining the designers’ deci-
sions at crucial stages of the design process. We also draw on Andragogy - the theory of
Adult Learning (Knowles 1990) - as a theoretical framework for exploring relevance-
for-teaching by analyzing how tasks in the PD met, or failed to meet, the needs and
expectations of the teachers.

ROG is a model of goal-oriented activity that was developed by Schoenfeld
(2010) as a tool for explaining how and why teachers make the instructional
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decisions they make as they teach. Out of the multitudinous factors influencing
instructional decisions, Schoenfeld identified three categories that he found to be
most significant, in the sense that understanding them is both necessary and
sufficient for explaining decisions. These categories are the knowledge and other
resources available for the teacher, his/her orientations (e.g. beliefs, views and
attitudes) and goals - the conscious or unconscious aims the teacher is trying to
achieve. The relationships between resources, orientations and goals for the
decision-making process are that orientations B…shape the prioritization of the
goals that are established for dealing with those situations and the prioritization
of the knowledge that is used in the service of those goals^ (Schoenfeld 2010, p.
29).

While ROG is most commonly used to analyze teachers’ in-the-moment teaching
decisions in the classroom, (e.g. by Paterson et al. 2011; Thomas and Yoon 2013;
Törner et al. 2010), it has also been used for analyzing the design decisions made by
teachers prior to their lessons (e.g. Pinto 2013, 2015; Thomas and Yoon 2013). In the
most common application of the framework, pre-designed tasks, along with the
teacher’s lesson image (Schoenfeld 2000, p. 250), are taken as the point of departure
from which in-the-moment teaching decisions are made. Yet, Schoenfeld does consider
ROG general enough to account for a much broader range of activities, as he exem-
plifies in his book (Schoenfeld 2010).

Phrased in terms of Schoenfeld’s framework, the PD instructors brought a set of
ROG that is not commonly seen in the teaching of elementary school PD.
Regarding resources, their education and experience provided them with extensive
subject matter knowledge, but with little pedagogical content knowledge (PCK).
The orientations and goals that they brought were also not typical of elementary
school PD. Their orientations toward mathematics and learning reflected those of
the community of research mathematicians, and their overarching goals were to
focus mainly on mathematical content, much less on issues of how to teach it in
school.

Much of the task designing in the PD was conducted as a group effort. While each of
the instructors brought his own individual set of ROG to the designing process, the
decisions we examine in this paper were made in group discussions, and were shaped
and determined by orientations and goals shared by the mathematics students involved
in the PD. Accordingly, in the analyses of the designing processes, we often refer to the
ROG of the group as a whole. In our attempt to phrase the mathematical orientations
that shaped the designing process, we take inspiration from the works of Cuoco et al.
(1996); Bass (2005); Schoenfeld (1992) and Wu (2011), and refer to certain orienta-
tions as if they are common to the whole community of mathematics graduate students,
or even to research mathematicians in general.

We use Knowles’s theory of adult learning (1990) for analyzing the tasks designed
in the PD. This theory is based on some principles or assumptions regarding adults’
motivation to learn. We list all six principles, though we only found principles 1–4 to be
relevant for our analysis:

1. Adults need to know the reason or reasons for learning something, a principle
herein referred to as need to know. Unlike school children, they cannot be expected
to learn something just because their teacher told them they must.
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2. One of the most obvious reasons to learn something is that it promises to
solve life-problems related to the learner’s work. Adults tend to have a
problem-solving orientation to learning, a principle herein referred to as life-
problem orientation.

3. Adults need to be ready to learn something new, a principle herein referred to as
readiness. This principle emphasizes that motivation to learn may be related not
only to what is being learned, but also when it is learned. In our context this will
usually have to do with having pre-requisite knowledge to understand and appre-
ciate new knowledge.

4. Adults’ identity is shaped by experience, and as a result adults may be motivated in
situations where their experience (professional and personal) is used as a resource
in learning, a principle herein referred to as experience. Furthermore, adults’
identity may be so strongly linked to their experience that ignoring their profes-
sional experience in learning situations may be perceived by the learners as
rejecting them as individuals.

5. Adults have a psychological need to be perceived as being capable of self-
direction.

6. Adults’ motivation to learn is primarily internal. Attempts to apply extrinsic
motivation are likely to backfire. Most adults are naturally motivated to grow,
but this natural motivation may be blocked due to a negative self-conception as a
student, lack of resources necessary for learning, or if the learning environment
violates any of the Andragogy principles listed above.

We chose the theory of adult learning as a framework for analyzing tasks in the PD
not only because its principles are widely accepted in the field of adult education, but
also because the teachers’ feedback, both formal (expectation and feedback question-
naires) and informal (discussions, complaints, compliments), clearly showed that these
principles apply to the present context and thus are central to understanding their
motivation to learn. Two illustrative examples are tasks that I can use in my classroom
(from an expectations questionnaire), and it made me think about what multiplication
is, how to teach it for deep understanding, and possible student errors (from a feedback
questionnaire following a PD activity). See (Cooper and Touitou 2014) for a detailed
analysis of teacher feedback.

We stress that by using the theory of adult learning we do not imply that the
designers had any knowledge of this theory. However they did have two implicit
models of adult learning from which to take inspiration – their own experience as
adult graduate students, and their experience as teaching assistants in courses for
undergraduate mathematics students, who are also (young) adult learners. The
instructors’ natural tendency was to model their PD teaching and task designing
after their own university teaching. This model is quite well aligned with
Knowles’s principles of adult learning for the target population of undergraduate
mathematics students, but we will show that it violates some of these principles
when applied to in-service teachers, and can be expected to create some serious
motivational issues. In order to address the teachers’ expectations (both explicit
and implicit), the instructors eventually adjusted their teaching and designing in
ways that are more aligned with Knowles’s principles, as they pertain to elemen-
tary school teachers.

318 Int. J. Res. Undergrad. Math. Ed. (2017) 3:311–337



Setting and Methods

The PD under investigation was first initiated and taught in 2009 by a mathematics
professor at a leading research university in Israel. The program was quite popular, and
in following years he recruited a team of approximately 10 mathematics Ph.D. students
to manage the growing demand. Since then about 90 in-service elementary school
teachers participate every year in ten 3-hours sessions taught in parallel in 4–6 tracks
for various grades. The program was endorsed by the Ministry of Education, and is
recognized for professional development credit. In this paper we discuss three cases of
task design, expanding on a short account previously given by Cooper and Arcavi
(2013). The tasks described in Cases 1 and 2 were designed and taught during the 2012
academic year by students newly recruited to the PD program - Case 1 in the second
session and Case 2 in the sixth. The tasks in Case 3 were designed and taught at the
beginning of the 2011 academic year by students in their second year of involvement in
the PD. This represents a very small portion of the tasks designed in the PD over the
years. Thus, a few words on our selection of these tasks are in order. Our selection of
cases was by and large subjective. We selected tasks that intrigued us in their use of
mathematical, meta-mathematical, or didactical ideas that were new or surprising for
us. We were guided by an aesthetical sense, and we hope readers will share our feeling
that these examples have some beauty. However, in terms of representativeness, this
selection is also valid; the three cases relate to the work of a variety of instructors,
working with three different grade level teachers, and exemplify a designing scheme
that was common to many of the tasks designed for the PD. The quest for relevance,
while remaining faithful to the mathematics, was a major design issue throughout the
PD, as reflected in numerous discussions and email exchanges between the designers
during the PD. Indeed, this quest for relevance is a central theme in works that analyze
other aspects of the PD, (e.g. Cooper 2015a, b, 2016). The cases that we analyze here
typify different ways in which relevance was achieved (or not).

The authors of this paper were both intimately involved in the PD. Pinto was an
instructor - at the time a mathematics Ph.D. student, now a mathematics-education
researcher. The description of Case 3 is his first-hand account of the group designing
process in which he was involved, and at the same time a reflective observation of his
own actions and those of his colleagues. Cooper, who holds an M.Sc. in mathematics,
was investigating the PD as part of his doctoral research in Mathematics Education. He
was a participant observer of the task design process, sitting in on many of the
designers’ meetings, was included in their email discussions, and was occasionally
asked for advice regarding specific ideas.

Sources of data for this study were:

& The authors’ notes taken while observing or participating in design meetings
& Detailed lesson plans which were the outcome of task designing
& Email exchanges between instructors, voicing their ideas, concerns and opinions
& Observations, audio recordings and field notes from the PD sessions
& Teacher expectation and feedback questionnaires

The description of Case 3 is more detailed than Cases 1 and 2. This is due to the
nature of the design process, which in Case 3 was a more collective process than in
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Cases 1 and 2, and thus left more traces (emails, design documents, notes from
meetings).

We describe task designing as a two-phase process, where the product of the first
phase is what we call a naive task, since it is based only on the mathematicians’ ROG
and disregards many constraints of the teaching situation in which it was to be used.
The second phase takes into consideration constraints of the teaching situation. This is
inspired by the fact that many of the tasks we observed, or were involved in the
designing thereof, were in fact redesigns of tasks that were found to be problematic in
previous years. We suggest this two-phase process as a model of the task designing, and
use this model even when there was no actual naive version of the task. The designers
often had an imaginary naive task in mind, against which they measured potential tasks.
Contrasting an actual task with such an imaginary task is useful for showing how the
environment (elementary school PD) constrained the process, and how the designers
addressed these constraints, thus revealing the role of their resources, orientations and
goals in the designing process. These goals and orientations were in some cases made
explicit by the designers in design meetings or in correspondences. When this was not
the case, we inferred goals and orientations through an analysis of the tasks. These
interpretations were later checked and confirmed by the designers.

Cases

In this section we present two cases that exemplify the mathematics Ph.D. students’
task designing. A third case is presented after the discussion of the first two cases. All
three cases are described in terms of our two interpretive frameworks – ROG and Adult
Learning – and their unfolding follows a recurring structure:

& How overarching goals, together with the designers’ orientations and resources,
shaped specific learning goals for the tasks

& A naive task satisfying these goals, but disregarding the constraints imposed by the
learners’ expectations (mainly of relevance for teaching)

& An analysis of the naive task from the point of view of adult learning
& Redesigning the task, taking into account the constraints of the learning situation
& An analysis of the new task or tasks from the point of view of adult learning

Case 1: a Spotlight on One-to-One Correspondence (Grade 1–2 Teachers)

Many children master the skill of rote counting (reciting 1, 2, 3…), yet have difficulty
counting how many objects there are in a set (Mathematics Learning Study Committee
2001). How can this be? What are the similarities and the differences between counting
numbers and counting objects? This cognitive question has mathematical underpin-
nings - how is the skill of counting the objects of a set connected to rote counting?
Unraveling this presents a teaching opportunity – a topic of the utmost relevance for
early grade teachers, where the mathematicians may bring some fresh insight.

In unpacking the mathematical content of counting the objects of a set, the principle
of 1–1 correspondence is central (ibid.). Children need to set up such a correspondence
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between the objects of the set and the sequence of natural numbers by synchronizing
rote counting with some gesture related to the objects (e.g. pointing). Any flaw in
setting up the correspondence will lead to an error. However, 1–1 correspondence, and
its foundational role in counting, is not mentioned in any of the Ministry of Education’s
curricular documents for elementary school (Pedagogical secretariat of the ministry of
education in Israel 2009).

The designer of the following task decided to address the topic of counting. He
realized how foundational the concept of 1–1 correspondence is for this basic skill, and
decided that illuminating it would be a worthy teaching goal for the PD, and one for
which he had the necessary resources - a deep understanding of 1–1 correspondence,
and the ability to unpack how it features in developing the skill of counting objects.
Furthermore, this goal also addressed an important meta-mathematical goal. For this
designer it was important to present the correspondence as more fundamental than
counting. According to his orientations, mathematics has a hierarchical structure, and
revealing a part of this structure was a teaching goal shaped by his orientations.

How might one go about showing that 1–1 correspondence is more fundamental
than counting? The problem of comparing cardinalities of sets was recognized as a
suitable setting. Although a natural strategy is to count the number of objects in each
set, this is not necessary. Instead one can try to set up a 1–1 correspondence between
the members of the sets, and see if the objects of one set are exhausted before the
objects of the other. Comparing cardinalities without counting would clearly reveal the
1–1 correspondence as fundamental.

For mathematicians, a natural context for this problem is comparing cardinalities of
infinite sets, where the existence of a 1–1 correspondence between the members of two
sets is taken to be the definition of equal cardinalities. A Bnaive^ task that follows this
approach was actually tried out in the PD in previous years, rather unsuccessfully. The
theory of adult learning can help us understand why - such an approach violates some
of the theory’s principles. To begin with, the cardinality of infinite sets is a difficult
topic, for which elementary school teachers are not ready - they may not have the
necessary background for tackling such an abstract topic. Furthermore, the topic is far
removed from the teachers’ world of content, and many teachers complained that it was
not relevant for their teaching, since learning it would not address any actual teaching
situations they were likely to encounter in their work (violating the principle of life-
problem orientation). Lacking any practical reason to learn this particular piece of
mathematics, this task does not address the teachers’ need to know - what reason could
there possibly be for them to need this knowledge? The designer found himself with a
teaching opportunity, guided by worthwhile mathematical and meta-mathematical
goals, yet constrained by the teaching context. The design challenge was to find a task
that invites comparing the cardinality of sets by means of a 1–1 correspondence, yet
will still be relevant for the PD teachers. What is it about comparing infinite sets that
makes such a compelling case for 1–1 correspondence? Obviously counting is not
possible in this context! Thus the designer realized that what he needed was a task
requiring the comparison of finite sets that somehow rules out the counting strategy. He
came up with idea to use objects in motion. He designed an applet2 where players need

2 An English translation of the original applet can be found at http://stwww.weizmann.ac.il/g-math/cooper_
project/english/index.html. Use Google Chrome or Firefox (MSIE is not supported).
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to determine whether there are more blue discs or red discs on the computer screen. All
the discs constantly move around randomly, so counting is not a realistic strategy. On
the other hand, players may stretch a line between a red disc and a blue disc (setting up
a correspondence between them). When this is done, the two discs drop off the screen.
If repeated enough times, at least one of the colors will be exhausted.

We now use the theory of adult learning as a framework for highlighting to what
extent this task (along with some ideas about how to implement it in the PD) addresses
adult learning principles. Need to know: If teachers do not understand the underpin-
nings of counting, they will not be effective in their efforts to help children who are
Bnot getting it^. This point may have provided the necessary motivation for learning
this mathematical content, but it was not made explicit in teaching, suggesting that it
was not the designer’s reason for teaching this piece of content. According to his
orientations towards mathematics, the real reason for learning this content is Bin the
mathematics^. Teachers are more than ready for this insight - they have all the
prerequisite knowledge. A life-problem orientation is satisfied on two counts - the
applet may be used in class, and even if it is not, the alternate strategy for comparing
cardinalities without counting may provide a useful teaching resource.

Case 2: Making Sense of Multiplication Properties (Grade 3–4 Teachers)

According to the Ministry of Education’s curriculum (Pedagogical secretariat of the
ministry of education in Israel 2009), students should begin to make computational use
of the commutative and the associative properties of addition and multiplication in
grade 2. The ministry’s documents do not suggest how these properties should be
explained to students, or what sense they should make of them. From a computational
perspective, the two rules taken together tell us that in calculations involving a
sequence of multiplications, we may change the sequence in any way we wish. This
encourages students to start by seeking out pairs of numbers that they can multiply
mentally. For example, in calculating 25� 17� 4 it makes sense to calculate
25� 4ð Þ � 17. In this context it is not at all clear why these two rules should not be
replaced by a simpler multiply in any sequence rule. This section recreates the selection
of this piece of content for the PD, and the designing process leading to a task that aims
to explain why the two rules should be taught as distinct.

We note that this content can be seen as meta-mathematical, as it relates to the
structure of the mathematical body of knowledge. How did the goal to teach this
particular content come about? Once the designer had decided on the general mathe-
matical content (multiplication properties), he asked himself what added value he could
bring to such a seemingly straightforward topic, and recognized this subtle point as
opportunity to take advantage of his resources - his deep understanding of the under-
pinnings of multiplication properties. This goal was also shaped by the designer’s
orientations toward mathematics; focusing on these properties and on their origins may
serve meta-mathematical goals, such as highlighting that they are not arbitrarily
imposed rules, but rather direct consequences of the definition of multiplication.

Having decided on this piece of content and its meta-mathematical entailments as
the teaching goal, the instructor considered various approaches. From the perspective of
university mathematics, a natural way to justify two distinct properties would be to
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show an algebraic structure similar to whole number multiplication, in which one of the
two properties (associativity, commutativity) holds and the other does not, for example,
a non-commutative group. Such groups can be found even within school mathematics,
for example the group of congruency-preserving planar transformations (translations,
reflections, rotations and their compositions). It is simple enough to design a task that
will show that associativity holds and commutativity does not (e.g. clockwise rotation
followed by a horizontal reflection does not yield the same result as a horizontal
reflection followed by a clockwise rotation).

Had he adopted this approach, the designer would have been true to his orientations
regarding mathematics. However, there are some severe constraints that make the
relevance of such a naive task questionable in the context of elementary school PD.
Ignoring these constraints would have violated some of the principles of adult learning.
It would be very difficult to convince the teachers that the topic of non-commutative
groups is something they need to know about. It is also questionable whether the
teachers have the readiness, i.e. if their mathematical background is such that they can
appreciate the similarities between the two multiplicative groups - integers and trans-
formations. Perhaps most significantly, such an approach is not aligned with adults’
life-problem orientation to learning. Investigating these properties in a domain where
the objects are transformations (not numbers) and the operation on these objects is
composition of transformations is quite a stretch. Not only does the example require
some mathematical work, it is also not clear how a conclusion reached in this context
applies to multiplication of numbers. How could such an understanding of multiplica-
tion properties be relevant for elementary school teaching?

The constraint of relevance led the instructor to search for an approach that would
faithfully address the meta-mathematical goal, but in a context that would be compre-
hensible and relevant for teachers. The designer realized that the bare context of pure
calculation could not show the distinction between the two properties as intended, but
there is another context in which teachers deal with these properties - they need to
demonstrate and explain them. An important meta-mathematical principle is that every
mathematical fact can be justified. Perhaps the distinction between the two properties
can be explained on the basis of this need for justification. The designer decided to
focus on the associative property, drawing on the abundant Bdesign resource^ of word
problems. Word problems are used in instruction to model and apply calculations to
real world situations, which may be meaningful for learners. The designer sought a
problem that would demonstrate the associative rule but would not demonstrate the
commutative rule or the compound rule - multiply in any sequence. He came up with
the following: Five buses left on a school tree-planting activity. Each bus carried 40
students, and each student took two tree-saplings. How many tree-saplings were there
in total? Explain how you calculated your answer.

The designer intended to discuss three different calculation procedures, one begin-
ning with 5� 40, one beginning with 40� 2, and one beginning with 5� 2. The
instructor mapped these three options into the following expressions:

A. 5� 40ð Þ � 2;
B. 5� 40� 2ð Þ;
C. 5� 2ð Þ �40
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At this point the teachers would be requested to explain their calculation in terms of
the word problem, referring to buses, children and saplings.

Calculations A and B can easily be grounded in the situation – start by finding the
total number of students (5� 40Þ, or start by finding the number of saplings per bus
40� 2ð Þ, but expression C is different. It is difficult to say what 5� 2 represents in the
context of the problem. Viewed as mathematical expressions, the equivalence of A and
B is implied by the associative property, but their equivalence to C is not. To show this
last equivalence we need the commutative property as well. Although it is natural and
perfectly legitimate to begin the calculation with the easy multiplication fact 5� 2
(based on the multiply in any sequence rule), this calculation removes us from the
context of the problem. Thus, this task presents a situation that explains only part of the
multiply in any sequence rule - the associative property. The designer saw the fact that
commutativity and associativity have distinct explanations as a possible indication that
these two properties should indeed be viewed as distinct.

Comparing the naive task and the final task, we see that the teaching goals did not
change. The designer remained true to his goal of justifying why the two multiplication
properties should be taught as distinct. However, the nature of the justification did
change. The designer found quite an ingenious way (relating operations to a meaningful
context) to make his point in a manner that is relevant for the teachers, even though it
may not be mathematically rigorous.

Here again we make use of the theory of adult learning to understand the advantages
of the final task over the naive task. Most notably, the final task addresses the teachers’
readiness to know. Unlike the naive approach (non-commutative group) the task
eventually chosen is grounded in elementary school mathematics. The teachers have
declarative knowledge of commutativity (a� b ¼ b� a) and of the associative prop-
erty, which provides all the background necessary for a deeper understanding. The fact
that the task was based on a realistic word problem was bound to contribute to the
teachers’ internal motivation to participate in this activity and to learn from it. The word
problem was one that teachers could take to their own classroom, helping them to apply
their new understanding to their life-problems of teaching (life-problem orientation).
Furthermore, this problem addresses teachers’ life-problem of needing to feel comfort-
able and confident with the mathematics in order to teach it well. However, the need to
know principle was not addressed explicitly in this task. Teachers may not be aware of a
need to understand this delicate mathematical point, and from their perspective the task
did not provide any real incentive to go beyond the basic procedural aspects of the
multiplication properties.

Before we proceed, we would like to discuss how, if at all, the naive task and the
final task managed to show the sense in having two distinct multiplication properties.
Since the justifications the designer considered were meta-mathematical and pedagog-
ical in nature, they could not be achieved by means of a mathematical proof. Each of
the tasks shows the distinction between the properties as productive, but in very
different senses. The naive task addresses a mathematician’s point of view – multipli-
cation of numbers is not an isolated mathematical idea, it is an instance of a more
general notion, namely multiplication in groups, and as such it inherits a set of terms
and properties. Making up new language just for multiplication of numbers is unpro-
ductive. For teachers, productiveness needs to be judged according to their life-
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problems, in this case, explaining and demonstrating mathematics. The setting in the
task demonstrates and explains the associative property, but provides no insight into the
commutative property. Other situations may demonstrate and explain the commutative
property (e.g. grid model of multiplication). However, neither of these situations
demonstrates or explains the unified property (multiply in any sequence). While,
strictly speaking, this kind of argument does not formally justify the distinction
between the properties, it does provide some sense of why this distinction may be
productive in the context of teaching.

Discussion - The Designing Process BUnpacked^

We have described two cases of mathematicians designing tasks for professional
development. Our description of the cases followed a common scheme, which we will
elaborate and reflect on in this section: (1) Local teaching goals for the task are shaped
and prioritized by overarching PD goals and the designers’ ROG; (2) the designers’
knowledge, particularly mathematical content knowledge, is activated and inspires an
initial naive task consistent with these goals; (3) an inner conflict emerges in the
designers between their beliefs and goals and their perception of relevance for the
teachers; (4) the designers unpack and refine their orientations and goals in an attempt
to resolve this conflict; and finally (5) they redesign the task, which we analyze using
the framework of adult learning. We now take a closer look at this process.

ROG Shaping Local Goals

The local goals for each of the tasks were shaped by a number of factors: They were all
consistent with the overarching goals of the PD - to deepen and broaden the teachers’
understanding of the mathematical content they teach. They were also closely aligned
with the mathematicians’ orientations towards mathematics and its big ideas. This is
evident in goals such as disentangling the commutative and the associative properties of
multiplication, which derives from the orientation BEvery assertion can be backed by
logical reasoning… every concept or skill in the standard curriculum is there for a
purpose^ (Wu 2011, p. 379) and focusing on the big idea of 1–1 correspondence and its
fundamental nature, which is related to Bmathematics is coherent; it is a tapestry in
which all the concepts and skills are logically interwoven^ (ibid.). We also see how the
mathematicians’ knowledge resources constrained their choice of goals - none of the
described tasks aimed to address or develop Pedagogical Content Knowledge
(Shulman 1986), a type of knowledge outside the designers’ expertise. However in
the two cases we described, the designers’ resources did not only constrain their choice
of goals. The designers were not required to cover any pre-defined content. A question
they often voiced was what can I teach these teachers that they don’t already know? To
answer this question the designers actively sought out teaching goals where their
university conception of mathematics would provide significant added-value, for
example their axiomatic approach to multiplication properties or their hierarchical
understanding of counting competencies. In this we see evidence of a designing goal
- to capitalize on the designers’ resource of deep mathematical understanding. This
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presents an unusual relationship between resources, orientations and goals. In the ROG
literature, goals are typically shaped by orientations, and possibly constrained by
limited resources. As far as we know, this role of resources in inspiring goals has not
been reported.

Faced with the constraints imposed by the teaching situations, the designers added a
new overarching goal - to make sure the tasks would be perceived by the teachers as
relevant. This overarching goal often forced them to modify their initial teaching goals.
In this process they needed to be explicit about their orientations in order to prioritize
their goals for the task, and decide which of the goals were critical, and which could be
Bsacrificed^ in the interest of greater relevance for the teachers. For example –
addressing multiplication properties in the concrete context of a word problem was
found to be more important than the orientation to be true to an axiomatic approach to
mathematics. Resolving the conflict between critical teaching goals and the goal of
relevance called for some ingenuity, drawing on the designers’ mathematical and meta-
mathematical resources - their ability to chart a broad space of approaches to making a
mathematical point, and choose one that takes the constraints into consideration. This is
particularly evident in the applet that prevents the counting of a finite set of objects,
forcing the player to find an alternate strategy.

Relevance, Teaching Models, and the Theory of Adult Learning

Based on expectation and feedback questionnaires, there are a number of different
modes of relevance that are pertinent for the teachers. They are mostly concerned with
mathematics pedagogy - tasks that can be taken as-is to the teachers’ classrooms,
activities from which teachers gain new insight into student difficulties or innovative
ways to teach particular topics. Along with this pedagogical mode of relevance, there is
a less prominent yet significant strand in the feedback questionnaires that indicates, at
least for some teachers, the relevance of tasks and activities from which they can gain
new insight into the mathematical content.

The instructors had different notions of relevance, grounded in their university
teaching. What can we expect the theory of adult learning to contribute to our
understanding of relevance in the PD? We will use it as a means to unpack the notion
of relevance, first to show how tasks that appear relevant for mathematicians may not
appear relevant for teachers, and then to gauge how well the redesigned tasks actually
address the issue of relevance for teachers.

What are university mathematics students’ needs to know and orientations to
learning? A strong mathematical orientation is that Bevery assertion can be backed
by logical reasoning^ (Wu 2011, p. 379). University instructors do not discuss explic-
itly with their students why they need to know the proofs underlying mathematical facts
and procedures. The orientation to learning mathematics at university is shaped by
mathematicians’ life-problems – proving theorems as part of mathematical research. On
the other hand, elementary school teachers’ needs to know are related to their life-
problems of teaching. Teaching mathematical procedures entails a set of life-problems
that is completely different from those of mathematicians. Of course, an important part
of teaching procedures should be understanding and explaining why these procedures
work the way they do, which is actually quite closely related to proving. However,
teachers’ life-problem orientation to learning proofs derives from questions related to
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teaching, such as: is this an explanation I can use in my classroom? Do my students
need to understand why this procedure works? Are my students ready to understand
why this procedure works? It is interesting to note that these pedagogical questions of
relevance for the classroom mirror the principles of adult learning - students’ need to
know and their readiness to learn. If the answer to any of these questions is Bno^, the
teachers’ need to know may not be satisfied. As for understanding mathematics, Ma
(1999) has shown the importance of a profound understanding of fundamental math-
ematics (PUFM) for teaching in elementary school, and teachers obviously strive to
understand the content they teach. However, as Ma demonstrated, teachers may not
always be aware of the mathematical depth of elementary topics, or how such depth
relates to their teaching. Thus, tasks that focus on a deep understanding of the content
may not always appear to the teachers as addressing their life-problems.

An important factor in readiness to learn is the difficulty of a task – one may not be
ready if the task or the target knowledge is too difficult for the learner. We have seen
cases where the naive task was more difficult for the teachers than the mathematicians
may have anticipated. For example, the notion that there are different types of infinities
and that some infinities are considered larger than others, is counter-intuitive and
difficult to comprehend.

Need to know is one source of motivation to learn. What else may motivate learning?
An appreciation of the aesthetics of mathematics is a central orientation of mathema-
ticians, whereby showing the beauty of some piece of mathematics provides intrinsic
motivation to learn. It is not clear to what extent the teachers and the mathematicians
share the same sense for aesthetics of mathematics.

The discussion above shows why the naive stage of tasks was not likely to address
the constraint of relevance. We now discuss how the redesigned tasks addressed this
issue in spite of the differences in the parties’ orientations. In both presented cases, a
feature of the redesigned task is that it confines itself to elementary school mathematics.
The tasks do not assume familiarity with topics that the teachers may not feel
comfortable with, thus addressing the teachers’ readiness to learn. Furthermore, the
first task (1–1 correspondence applet) can be seen as an attempt to address the teachers’
life-problem orientation, by offering an activity that can be used in the classroom.
However, we are left with the feeling that the call for relevance was addressed in these
tasks in a somewhat superficial manner. Even when the mathematical content was
arguably relevant for teaching, this relevance was not made explicit, and the need-to-
know principle was not addressed. The ROG analysis of the designing process in these
cases suggests that the designers retained their original goals and orientations, and
regarded the need for relevance as an external constraint imposed on their work. This
will be even more evident when these tasks are contrasted with the following tasks
(Case 3), described in the next section, where we will argue that the designers
appropriated the teachers’ point of view, and integrated the teachers’ needs into their
own orientations and goals.

Case 3: New Modes of Relevance (Grade 3–6 Teachers)

We now describe the designing process of a sequence of tasks that focus on a
conceptual understanding of the arithmetic mean and alternative strategies for comput-
ing it. The initial designing stages are similar to the cases presented earlier, where the
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need for relevance is perceived as a constraint. However, as the designing proceeded,
the designers’ pursuit for relevance took on a different nature. The need for relevance
was no longer a constraint that hindered the designers’ teaching goals, but rather
something that generated new authentic teaching goals.

The arithmetic mean (herein referred to as mean) is first encountered in Israeli
mathematics classes in grade 5. The Ministry of Education’s curriculum presents it
both conceptually - as an intermediate value of some data (no greater than the largest
and no smaller than the least) - and procedurally - Bthe mean of a list of numbers is their
sum divided by the length of the list^ (Pedagogical secretariat of the ministry of
education in Israel 2009, p. 109). Research shows that whereas many students know
how to compute the mean, they are often unable to handle its conceptual aspects and
fail to define or even describe the mean without relying on the standard algorithm (e.g.
Russell and Mokros 1996; Watson and Moritz 2000). In particular, many students fail
to develop high-level conceptions of the mean such as: mean as point of balance, mean
as typical value, mean as fair-share and mean as midpoint. The mean appealed to the
designers since there was a substantial gap between how they perceived it - as
mathematically deep, conceptually rich and beautiful - and how they perceived that it
is taught in school. They believed that defining the mean algorithmically draws
attention to how to calculate the mean, and detracts attention from the meaning of
the mean and how the mean may represent a numerical data set. Furthermore, seeing
definitions as a foundation on which conceptual understanding may be built, the
designers strongly believed it is vital that teachers and students be familiar with a
variety of definitions and understand the connections among them.

For these reasons, the designers saw in this topic an opportunity to capitalize on their
mathematical knowledge in the pursuit of a worthy teaching goal, while keeping the
mathematical content in the forefront. They sought to design tasks based on various
conceptualizations of the mean, which would engage the teachers in producing and
investigating a variety of alternative definitions. This plan opened a host of mathemat-
ical and meta-mathematical teaching goals in line with the designers’ orientations. On
the mathematical level it opened an opportunity to deepen the teachers’ understanding
of the standard algorithmic definition and to enrich their conceptual understanding of
the mean when new conceptions are compared to old ones. Alternative definitions
support a variety of alternative methods to compute the mean, providing opportunities
for the teachers to seek alternative solutions for problems, an activity highly valued by
the designers. On the meta-mathematical level, weighing the advantages and disadvan-
tages of alternative definitions provides opportunities to reflect on the nature of
definitions in general and to draw attention to questions like: What is the role of
definitions in mathematics? What do we expect of definitions? What constitutes a good
definition?

Having decided on these teaching goals, the designers gathered their resources and
used their skills and familiarity with different uses of the mean in real life situations as
inspiration for the production of a variety of precise definitions of the mean. The tasks
described in this case focused on the following definition: The mean is the point about
which the sum of (signed) deviations is zero. This perspective on the mean is not
explicitly stated in the curriculum but it suited the designers’ goals and orientations: it is
concise, elegant, stated in precise yet elementary mathematical terms, it highlights an
important property of the mean and it generalizes and makes precise the notion of the
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mean as the mid-value of a numerical data set, providing a bridge between the standard
algorithmic definition and the conception of the mean as a measure of a typical value of
a data set.

However, designing a task that would guide the teachers towards rediscovering this
definition turned out to be a serious challenge. Establishing that the proposed property
indeed qualifies as a definition requires proof. Namely, given a list of numbers - must
there exist a number such that the sum of deviations from it is zero? If so, why is this
number unique? How do we know this unique number is indeed the same as the one
obtained by applying the standard algorithm? The mathematician-designers felt com-
pelled to raise and resolve these issues, which are at the core of mathematical expertise.
It is feasible to design a Bnaive^ task that will guide the solver through the stages of
some formal proof showing that the new definition is equivalent to the standard one.
This approach was appealing to the designers, but at the same time it raised concerns
that the teachers would reject it as being irrelevant for their teaching practices. Indeed,
considering this task in the context of the principles of adult learning supports these
concerns. It is not clear why the teachers need to know a precise proof of equivalence,
particularly when the proven claim is not part of the curriculum. The readiness of the
teachers to learn or to produce a formal proof is also questionable. The algebraic and
logical aspects of this proof are beyond the scope of elementary school mathematics
and may not make sense to the teachers. In order to state and apply the property of
deviations in their classrooms, the teachers need only know that it is so and not why it is
so. Thus it is not clear how learning a proof of the equivalence solves life-problems, i.e.
problems related to teaching. An alternative solution that seemed likely to be more
relevant for the teachers was to Bprove by example^ that the sum of deviations from the
mean is zero. However such a path would violate the designers’ strong commitment to
mathematical validity.

Thus the challenge the designers faced was to design a task that would lead the
teachers towards the alternative definition while satisfying the seemingly incompatible
requirements of a) being mathematically valid and b) maintaining relevance for ele-
mentary school teachers. Looking for a mathematically valid and simple explanation
why the sum of deviations from the mean is zero, the designers took tacit inspiration
from a well-known problem solving heuristic: BIf you cannot solve the proposed
problem … try to solve first some related problem … Could you imagine a more
accessible related problem? You should now invent a related problem…^ (Pólya 1973,
p. 114). The simpler related problem was obtained by restricting the discussion to the
mean of two numbers. In this case the alternative definition takes on an intuitive
meaning - the sum of deviations is zero at the midpoint on the number line, and only
there. Thus, uniqueness and existence of the alternative definition are immediate, and
proving the equivalence of the two definitions is reduced to acknowledging that the
mean of two numbers, taking either definition, is represented by their midpoint on the
number line. The designers considered the goal of showing this equivalence both
worthy and feasible.

Letting go of the general case and restricting the discussion to the mean of two
numbers did not come easily to the designers. Their orientation to state and prove
mathematical facts in the most general setting possible was not satisfied. However
many of the orientations that shaped the original goals for the task were still satisfied in
the context of the mean of two numbers. The alternative definition is still elegant and
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mathematically precise, and it leads to a simple alternative algorithm for calculating the
mean: find the difference between the two numbers, and add half the difference to the
smaller of the two (or subtract it from the larger). Furthermore, restricting to the case of
two numbers allowed the designers to rely on visual geometric intuition, making the
midpoint definition more natural, and a mathematically valid proof of the equivalence
of the definitions more accessible. Faced with the dilemma between generality on one
hand and precision and clarity on the other, the mathematicians-designers chose
precision and clarity. Thus the first stage of the designing process led to the following
task:

Task 3.A: For each of the following pairs of numbers mark the two numbers and their
mean on the number line. What do you notice about the mean of two numbers?

{6, 8}, {15, 19}, {48, 54}, {96, 106}, {163,177}

Note that the task directs the teachers’ attention to the number line while leaving
room for the teachers to realize the geometric meaning of the mean on their own,
making the revelation more powerful. The pairs of numbers in the task were chosen so
that finding their midpoint would be a more appealing strategy than adding them and
dividing by two. The designers’ intention was to follow the task with a discussion of the
shared solutions and encourage the proposal of alternative ways to define and find the
mean of two numbers, with the implicit message that alternatives can be rewarding both
conceptually and practically. They did not intend to prove the equivalence of these
alternatives; rather, they believed that discovering the alternative definition on their
own would afford the teachers an intrinsic conviction of the equivalence, which might
stand in lieu of a formal algebraic proof.

Had the designers stopped here, this example would be similar to the two examples
considered earlier in this paper - task designing under the constraints of a need for
relevance. However, at this point a second shift occurred in the designing process, as
the designers’ quest for relevance took the form of a genuine wish that the teachers
should make some use of the task in their classrooms. The designing of the following
sub-tasks can be seen as an attempt to fathom just what it would take to make the tasks
useful for the teachers.

Prior experience indicated that the teachers would be reluctant to make use of such a
task in their classrooms, even if they agreed in principle with its didactical value. The
teachers professed on several occasions strong beliefs that alternative definitions and
solution methods are confusing for their students. Such an argument cannot be over-
come by mere mathematical justifications, or by explicitly conveying the designers’
own beliefs. The designers realized that only the teachers could convince themselves,
and decided to make this issue an explicit goal for a follow-up task.

Task 3.B: Suppose we decide that before introducing the mean in class we want to
start by first teaching the mean of two numbers as a separate topic. What definition
would you use in your own classroom? Would you teach one of the definitions or
more? What would your considerations be?

The task was meant to inspire a discussion that in its essence is not mathematical
but pedagogical. Its point of departure was that the mean of two numbers should be
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taught, avoiding the possible objection that this topic is not part of the curriculum.
The focus is on the alternative definition: Should it be taught? Why? The designers
hoped that the answers would entail mathematical ideas, and aimed to lead this
discussion to what they saw as the desired conclusion, but they did not know what
kinds of arguments were likely to be raised. They naturally asked themselves what
reasons the teachers might come up with to teach the alternative definition. One
answer they came up with was so compelling that they decided to address it with
yet another follow-up task, this time returning to the mean of many numbers.

Task 3.C: Ilana, one of your top students, challenged herself to find the mean of the
numbers 138, 140, 149, 151 and 152. Eventually, after a long struggle (the use of
calculator is forbidden in her class) she found the mean to be 144. However Rachel, her
close friend, did her own calculations and found the mean to be 146.

a) Ilana double-checked her calculations and found no mistake. She concluded
that the mean is indeed 144. How would you respond?

b) How would you advise Ilana to check her answer? How would you check
Ilana’s answer?

Rachel is right, the mean is indeed 146. How can Ilana find her error? Since the
mean is the outcome of her calculation, all she can do is repeat it, in all likelihood
repeating her error. How can the teacher advise Ilana in this situation? An independent
correctness check is called for. If the context had been the mean of two numbers, then
finding the midpoint on the number line could be such a check. For the mean of five
numbers finding the sum of deviations provides such a check. The sum of deviations
from 144 is 10, not zero, which indicates that Ilana was wrong.

Discussion of Case 3

We have described a sequence of four sub-tasks. We outlined a naive task that was
meant to lead the teachers to rediscover an alternative definition and suggest a formal
and general proof of equivalence. In Task 3.A the discussion was restricted to the mean
of two numbers, to simplify the precise handling of the alternative definition. Task 3.B
encouraged the teachers to discuss possible motivation for teaching the notion of the
mean of two numbers as their midpoint on the number line. Task 3.C provided
motivation for the teachers to learn, and perhaps also teach, the alternative definition
of the mean in its general form. Taken together, the tasks suggest both a practical need
for an alternative definition of the mean, and an intuition as to where to start looking for
such a definition.

Compared to the naive task, Task 3.A is better aligned with the principals of adult
learning. Most notably, this is a task that the teachers can take to their classrooms
(addressing life-problem orientation), and if not the task itself, then certainly the
concept of the mean as a midpoint, and the alternative algorithm for computing the
mean of two numbers that it entails. In the examples given in the task the alternative
algorithm proves to be more efficient than the standard algorithm, making it a worth-
while piece of knowledge for the teachers themselves, even if they choose not to teach
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it (addressing need to know). An explanation that the mean of two numbers is
represented by their midpoint on the number line can be based on intuitive visual or
geometric considerations, making it natural and accessible to the teachers (addressing
readiness). Tasks 3.B and 3.C take one step further. Set in a hypothetical fictitious
classroom situation, they appeal to the teachers’ experience. Both tasks serve to
increase intrinsic motivation by making explicit why the teachers need to know, each
one addressing a different type of life-problem. Task 3.B touches on the issue of
planning a teaching sequence, and Task 3.C is set in an imaginary life-problem.

Compared to Case 1 (one-one correspondence) and Case 2 (multiplication proper-
ties), Case 3 is seen to be better aligned with the principles of adult learning, suggesting
that it achieves a higher degree of relevance for the teachers. This relevance was not
achieved simply by adhering to these principles (of which the designers were not
explicitly aware), but rather, we see a shift in the designers’ attitude to the teachers’ call
for relevance. The ROG analysis of the designing processes helps explain how this shift
came about. At the most basic level (Tasks 1, 2, and 3.A), relevance for teaching
functioned in the designing process as a constraint that needed to be satisfied. The
designers considered relevance as a goal, but did not unpack pedagogical implications
of the mathematical ideas they wished to convey. Consequently, the goal of relevance
was operationalized as a conflict that needed to be resolved, and was achieved by
avoiding content that teachers may perceive as not relevant. At the next level (Task
3.B), the designers set themselves a new goal - to convince the teachers to take the
content taught in the PD to their classrooms. This moved them away from their comfort
zone - the mathematics. Still perceiving themselves as lacking adequate resources for
making pedagogical claims, they invited the teachers to discuss practical implications
of taking the task to their classrooms. At the highest level (Task 3.C), we see the
designers attempting to understand the concept of relevance for teachers, and coming
up with insights of their own. We note that the resources the designers turned to in
search of relevance for teaching were mathematical – in the case of Task 3.C the
designers’ insight stemmed from their knowledge of different roles of mathematical
definitions. This Bmathematical^ nature of relevance for teaching is likely to be
different from the teachers’, yet when we consider the kind of questions the designers
were asking themselves about the mathematics they were trying to convey, we see in
Case 3 an indication that they had started to appropriate the teachers’ orientations, and
were integrating them into their own ROG. Their own orientation towards relevance
changed as new teaching goals emerged. The resources that they utilized were no
longer strictly mathematical – they developed some pedagogical insight (how a teacher
might use the alternate definition of mean) and made use of it in their designing
process.

Recall that the designers’ initial goal in Case 3 was to engage the teachers as math-
doers - exploring alternate definitions of the arithmetic mean, comparing definitions,
and in the process reflecting on the nature of mathematical definitions - leaving it up to
the teachers to work out the pedagogical implications of the tasks and to transfer the
content to their classrooms. The teachers’ call for relevance led to the emergence of
new goals that took into account the nature of teachers’ mathematical needs. The three
tasks that emerged in Case 3, taken as a whole, provide not only the motivation for an
alternate definition (addressing need to know), but also an intuition as to where to look
for such a definition (addressing readiness). This suggests that the pursuit of relevance
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can generate new mathematical and meta-mathematical design goals, if such relevance
is genuinely integrated in the designers’ ROG.

Coda: were the Tasks MKT Tasks? Were they Pedagogy-Related?

Our first research question asked about the nature of relevance-for-teaching that was
achieved in the designed tasks. In this paper we have taken the teachers’ perspective on
relevance, which directed and constrained the task designing. We now reconsider the
tasks from two other perspectives discussed in the literature review: BMKT tasks^
(Suzuka et al. 2009) and BPedagogy-Related^ (P-R) tasks (Stylianides and Stylianides
2010).

The tasks described in Cases 1 and 2, as well as Task 3.A, are typical mathematical
tasks in the sense used by Stylianides and Stylianides (2010). The primary mathemat-
ical objects in each task - strategies for comparing quantities, illustrating why the
associative property of whole number multiplication is separate from the commutative
property, and representing the mean of two numbers as their midpoint on the number
line - all constitute important mathematical knowledge for teaching. Furthermore, the
three tasks satisfy many of the features of MKT tasks in the sense used by Suzuka et al.
(2009): the task in Case 1 creates an opportunity to develop a more flexible under-
standing of the central idea of comparison and connects this idea to 1–1 correspon-
dence; it provokes and builds upon a stumble (the initial tendency to count objects
fails); it directly addresses the idea of multiple solution methods. The task in Case 2
creates an opportunity to develop a more flexible understanding of multiplication
properties, which underlie the central topic of algebraic manipulations; it provokes a
stumble - a tempting calculation strategy that is difficult to justify; it opens an
opportunity to build sophisticated connections between word problems and formal
algebra; and, it supports multiple representations (algebraic and verbal). Task 3.A
creates an opportunity to develop a flexible understanding of a central mathematical
idea by introducing a new conception of the mean; it provokes a stumble - the tempting
familiar approach of calculating the mean is more tedious than finding the midpoint; it
supports multiple representations of the mean and suggests multiple solution methods;
it provides opportunities to engage in mathematical practices that are central to
teaching, by inviting the teachers to discover the alternative definition on their own.
Both Tasks 2 and 3.A address this last feature of MKT tasks in providing teachers the
opportunity to engage in the pedagogical practice of explaining. However, neither of
these tasks is pedagogy-related (P-R), lacking well defined pedagogical object and
pedagogical space.

Tasks 3.B and 3.C are quite a different story. At first sight, Task 3.B is not
mathematical, as it seemingly calls for a discussion related to teaching approaches
and methods. In this sense, Task 3.B is different from the typical examples of MKT and
P-R tasks. However, we note that one of main purposes of Task 3.B was to follow-up
and explicate mathematical and meta-mathematical ideas touched on in Task 3.A, such
as the affordances of multiple representations and solutions methods - an important
element of mathematical knowledge for teaching. Thus, Task 3.B complements Task
3.A, and the two taken together can be seen as a P-R task. Task 3.C was designed to
unpack and explicate these mathematical ideas even further. It is aligned with the
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principles of P-R tasks. It is situated in a pedagogical context but requires a mathe-
matical resolution – coming up with an alternative method for finding or expressing the
mean. It builds on various conceptions of the mean, and by guiding teachers to an
alternative definition it also underlines the importance of having alternative represen-
tations and explanations - valuable mathematical knowledge for teaching. Task 3.C is
also well aligned with the features of MKT tasks. It creates a stumble - the teachers are
‘stuck’ if they do not come up with an alternative method for finding the mean; it
creates opportunities for teachers to engage in mathematical practices (e.g. conjecture,
generalize and reason); it calls for multiple solution methods and highlights the virtue
of such variety; and, it continues the line of the first two tasks in opening opportunities
for teachers to develop a more flexible understanding of mean.

Discussing P-R tasks, Stylianides & Stylianides note the importance of a pedagog-
ical space in addition to a pedagogical object, to help engage (prospective) teachers in
mathematical activity from the perspective of an adult who is preparing to become a
(better) teacher of mathematics. Task 3.C appears to have such a pedagogical space in
the contextual details it provides: Ilana is a top student, and calculators are forbidden.
However, we are not certain that this is what Stylianides and Stylianides had in mind. It
seems that calculators are forbidden for mathematical reasons - in order to direct the
solution towards a mental calculation. We speculate that Ilana was presented as a strong
student in order to preempt the teachers’ common objection that such a calculation
Bisn’t in the curriculum^. We wonder if the idea of pedagogical space might delineate a
limitation of research mathematicians’ knowledge for task design. Perhaps the design
of authentic pedagogical spaces requires a familiarity with classrooms that can only be
achieved through experience.

Summary

In this paper we have analyzed three tasks that were designed for a PD for in-service
elementary school teachers, focusing our analysis on the designers’ pursuit of relevance
throughout the designing process, and its impact on the tasks that emerged. Issues of
relevance underlie the surface of many PD programs, where experienced teachers are
often required to take courses for credit, and may feel that they are unlikely to learn
anything that will have an impact on their practice. The issue of relevance was
particularly acute in this PD, where the teacher educators - mathematics Ph.D. students
- had an overarching goal to focus on broadening and deepening the teachers’ math-
ematical understanding. Relevance could not be achieved simply by adopting the
teachers’ conception of relevant tasks (for example tasks they could use Bas is^ in
their own classrooms), since the instructors were strongly committed both to their
conception of what it means to understand mathematics, and to addressing elementary
mathematics in a deep and meaningful manner in the PD.

This unusual setting proved to be a valuable research opportunity for what
Streefland has called vertical didactising - Bthe activity of developing new tools and
principles for instructional design^ (Yackel et al. 2003). Bridging the gap between the
content experts and the teachers, which was crucial for designing tasks that would be
perceived as relevant by both parties, can be seen as a general design challenge for any
PD that aims to address mathematical content without renouncing pedagogical
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relevance. Bridging this gap was not straightforward, and required some ingenuity on
the part of the designers. Tackling this challenge as a two-phase problem appears to
have been a useful strategy.

Using the ROG framework, we have shown that at the very least, the designers
needed to adopt the goal of satisfying the demand for relevance as a constraint that kept
them within the realm of elementary mathematics (e.g. Cases 1 and 2); however in
some tasks (e.g. Case 3) we found that the pursuit of relevance did not constrain the
designers, but rather inspired the growth of new knowledge and the formation of new
teaching goals that addressed both the mathematics and teaching practices. We consider
this evolution of the designers’ ROG to be evidence of a higher level of appropriation
of the teachers’ conception of relevance.

We used the theory of Adult Learning as an interpretive framework for analyzing
modes of relevance in various tasks, both prospective tasks and tasks that were actually
designed and used. We feel that this framework proved to be well suited for analyzing
relevance, and suggest that it may be useful in future research for articulating some
design principles for PD tasks. This framework also helps highlight the motivational
virtues of P-R and MKT tasks. Need to know may be achieved by provoking a stumble
(you need to know this because your students may also stumble here); the pedagogical
object of P-R tasks and the opportunities to engage in mathematical practices central to
teaching both address adults’ life-problem orientation, but additionally may appeal to
teachers’ experience, if the pedagogical object is of the nature Bhow would you respond
to the following teaching situation^.

Our main focus in this paper has been on relevance-for-teaching as perceived by the
teachers, due to its strong influence on the designing process. We find it interesting that
this mode of relevance seems to have converged with relevance as perceived by
mathematics education researchers, in the sense that the tasks that were better aligned
with the principles of adult learning were also better aligned with the concepts of MKT
tasks and P-R tasks. This suggests that mathematics educators, who tend to focus on
mathematical and pedagogical aspects of task design, might benefit from a greater
awareness of research that attends to motivational aspects, such as the theory of Adult
Learning.

Throughout this paper we have not directly addressed the mathematical knowledge
for teaching that was taught and learned in the PD. Indeed, the designers were not
overly concerned with the nature of the mathematics that the teachers were expected to
learn from engaging in the tasks. Yet we feel that both the teachers and the instructors
enhanced their knowledge of mathematics for teaching. The mathematicians, through
their encounter with elementary school mathematics and teachers, gained insight into
questions that were initially outside their field of expertise. The act of designing tasks
(rather than making use of tasks designed by others) appears to have contributed to their
learning. The teachers, through engaging with these tasks and discussing them with
each other and with the mathematicians, had opportunities to develop both mathemat-
ical and pedagogical aspects of their knowledge for teaching. Exactly how new
knowledge for teaching emerged as a result of this encounter, through the pursuit of
relevance, has been the focus of separate analyses of this PD conducted by Cooper
(2014, 2015a, b, 2016).

As a final note, we would like to comment on how gratifying it was to observe the
mathematics students and the teachers cooperating, with genuine mutual respect for
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each other’s expertise. Such cooperation is not common, and we hope it will provide
inspiration for future initiatives that bring together the communities of mathematicians
and mathematics teachers. For example, we think it would be interesting to have
mathematicians and teachers work together on task design. We do not know if the
productive pursuit of relevance that we described in this paper would transfer to such a
setting; we speculate that it would.
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