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Abstract We investigate the challenges students face in the transition from calculus
courses, focusing on methods related to the analysis of real valued functions given in
closed form, to more advanced courses on analysis where focus is on theoretical
structure, including proof. We do so based on task design aiming for a number of
generic potentials for student learning, developed from and within the theory of didactic
situations: adidactic potential, linkage potential, deepening potential and research
potential. The context of investigation is a first year course on analysis in which the
tasks thus constructed were considered relevant to solve a number of operational
problems. The experimental method involves careful a priori analysis of each task in
terms of the potentials, specifically related to the knowledge at stake; this analysis in
confronted with a posteriori analyses of observations of student work before and in
class sessions. Two cases are analyzed in detail. While some of the potentials were
partly realized, we also identified clear limitations resulting from a variety of factors,
including teaching assistants’ management of the class sessions and students’ percep-
tion of the importance, difficulty and meaning of the tasks.
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Introduction

In this paper, we report on work with a transition problem that is likely to occur in
any university level study programme on pure mathematics, more specifically
within the teaching of mathematical analysis, and usually at the undergraduate
level. This problem can roughly be described as a transition from calculus
courses, in which students are mainly acquiring technical knowledge that allows
them to solve a wide variety of problems with functions given in closed form, to
(real) analysis courses, where a main focus is on students acquiring theoretical
knowledge in the sense of rigorous definitions, theorems and proofs. A more
precise formulation of this specific aspect of the transition has been given by
Winsløw (2008) and Winsløw et al. (2014), based on the anthropological theory of
the didactic, and it constitutes the first major focus of the paper. Another important
aspect of the transition comes from the ambition (particularly in research intensive
universities) that students should progressively engage in “research like activi-
ties”. By this, we mean mathematical activities which approach those of mathe-
matics researchers (cf. Madsen and Winsløw 2009). This aspect of the transition is
the second main focus in the paper.

More concretely, we present

– A methodological approach to designing exercises for students that could facilitate
the transition;

– A theoretical analysis of two selected cases, which illustrate different theoretical
and observed “potentials” (defined in the next section)

– An analysis of the outcome of students’ work with these two exercises (in written
forms as well as during class time), focusing on the topics of differentiability and
integrability of functions of several variables.

As exercises can be considered “cores” of situations of learning, we have
developed a theoretical framework of design and analysis of such situations which
is sensitive to the transitional phenomena outlined above. This framework is a
main point of the paper. We should also stress that the cases presented here were
not selected to showcase unconditional successes (in fact, we will observe several
shortcomings); instead they illustrate how the framework permits both a control of
the design process (focusing on very specific didactic potentials), and the corre-
sponding critical analysis of observations.

We now proceed to present this framework in detail.

Theoretical Framework and Research Questions

The main theoretical basis of this paper comes from the Theory of Didactical
Situations (Brousseau 1997), shortened to TDS in the sequel. An overview of
earlier adaptations of TDS to the university context is given by González-Martín
et al. (2014). We will in particular consider the following types of situation related
to different settings of work on a given exercise, as discussed in more detail by
Joubert (2013):
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– The situation of devolution is the students’ encounter with the formulation of the
exercise, together with any further instructions given on what students should do
with it - unlike devolution in a classroom situation, teachers and students do not
have the possibility to interact further before the students accept (or not) to engage
with the problem;

– Adidactic situations of action and formulation occur whenever students (individ-
ually or in groups) work with solving the exercise - at home, or in a classroom
where the teacher does not instruct the students on the solution;

– Adidactic situations of validation occur when students verify (or attempt to verify)
the quality of their solution, without being instructed about this by the teacher or
the exercise text;

– Didactic situations of action, formulation and validation occur when student
solutions are presented and verified in an interaction between students and
teachers;

– Situations of institutionalization occur when exercise solutions are endorsed by the
institution, as correct, for instance when the teacher presents a solution in a
classroom setting or in writing (“standard solutions”), usually in continuation of
one or more of the previous situation.

These rough definitions should be understood in the light of the more abstract notion
of Situation, which is an ideal or observed “system of relationships between students, a
teacher, and a milieu (…) [where the milieu is] the set of material objects, knowledge
available, and interactions with others, if any, that the learner has in the course of said
activity” (González-Martín et al. 2014). In general, the milieu evolves in time and may
be modified by students and teachers alike. The problem is handed over to the students
in the situation of devolution, and it is a central focus point for the students’ interaction
with the milieu in all of the above situations. In the situations we study, the problem is
stated formally as an exercise.

A central and difficult notion of TDS is that of adidacticity. In classic situations of
TDS it refers to phases of classroom work where the teacher does not instruct, but
where the students are supposed to learn by adapting their knowledge to a milieu,
devolved and regulated by the teacher. In the adaptation outlined above, adidactic
situations include also student work with exercises at times when they cannot interact
directly with the teacher and where, in particular, the teacher cannot modify the milieu;
to compensate for this, exercises are sometimes supplied with “hints” the students are
assumed to need, or divided into small and supposedly manageable parts. The adidactic
situations related to exercises are usually considered important parts of students’ work
and learning in a university course. It is therefore crucial to maximize the adidactic
potential (Hersant and Perrin-Glorian 2005) of the situation, i.e. the potential for
students to develop new knowledge on their own as they work with the exercise,
drawing on other features of the milieu like established knowledge and shared expe-
rience, interaction with peers, and resources which are assumed to be available, such as
course textbooks, Internet etc. As this possibility depends crucially on the exercise
itself, we shall refer to it as the adidactic potential of the exercise.

On the other hand, the organization of didactic situations of formulation and
validation is in part based on an assumption that not all students will be able to
complete formulation and validation of solutions by themselves - or, at least, that a
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shared work on formulation and validation is needed before the crucial situation of
institutionalization. Institutionalization refers here to the establishment of knowledge
developed in the situation as not only valid within the group, but also as consistent
with the aims of the course and, more generally, of the institution in which the
situation takes place. The knowledge then becomes available as a resource for future
situations along with other parts of established knowledge as found, for instance, in
textbooks.

Three more specialized features of the exercises to be designed will also be pursued
in this paper:

– Linkage potential, i.e. the potential of the exercise to establish links between
students’ “old knowledge” (mainly from calculus) and new knowledge, which is
closely related to the transition problem outlined in the introduction; we notice that
this is also crucial to the adidactic potential, to the extent it enables students to
invest old knowledge rather than knowledge in development (Hersant and Perrin-
Glorian 2005). In many cases (and in both cases studied in the sequel) this is
realized more specifically by including familiar objects from calculus in milieus for
new, more abstract problems from analysis.

– Research potential, i.e. the potential of the exercise to let students engage in
activities which are similar in kind to the scholarly activity of research mathema-
ticians, as investigated empirically by several authors such as Burton (2004),
Misfeldt (2006), Madsen and Winsløw (2009) and Ouvrier-Buffet (2011). We
aimed to design exercises that could engage students in the following ten types
of research-like activity (inspired by the previous references as well as our own
experience with mathematical research):

A1. Investigate given special cases, in view of answering an abstract or general
question

A2. Construct or identify special cases that would be relevant to A1
A3. Read and reconstruct a proof or part of it, in view of answering some

question
A4. Reformulate a theorem, e.g. for a special case or condition
A5. Formulate new proof by “mimicking” a known one (e.g. for an analogous

case; related to A3)
A6. Employ a non-formal “heuristic” representation of a mathematical object, to

investigate it
A7. Formulate hypotheses for a given question
A8. Search for, and evaluate, relevant knowledge for an inquiry (among col-

leagues, online, …)
A9. Develop and formalize relations between two or more results.
A10. Produce or validate definitions, usually in connection with one of the other

activity types.

The above is our current research hypothesis on what activities could be most
relevant to strive for in a first course on analysis; we can only illustrate some of them
in this paper. In the conclusion, we return briefly to broader aspects of our experience
with their use.
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– Deepening potential, i.e. the potential of the exercise to let students elaborate their
knowledge of notions (mainly established by formal definitions), results (mostly
theorems) and methods (as found in proofs) which are central to the learning goals
of the course (“knowledge in progress”, in the sense of Hersant and Perrin-Glorian
(2005)). For instance this may occur as students construct new inferences between
results or definitions, or as they reformulate, generalize, or instantiate them. We
note that the research literature holds less relevance to this potential, which is
nevertheless crucial for our context (cf. section “Context and Methods”).

Each of the four potentials of an exercise has, in principle, two kinds of value:
theoretical and observed values, which are to be analyzed, respectively: a priori (from
the formulation of the exercise itself, and what is known about the context), and a
posteriori (from observations of actual student work).

Our research questions can now be formulated as follows:

RQ1. How do the potentials described above function as design guidelines to produce
exercises that could improve students’ experience and learning in the context of
a first course on analysis, focusing on the foundations of calculus in one and
several variables?

RQ2. What realizations of the four potentials are observed in practice?
RQ3. What main explanations can be given for any differences among theoretical and

observed values?

We notice here that RQ1 can only be answered with respect to methods actually
imagined and carried out, so the answer will be highly partial in the sense that it relies on
the strategy adopted in our study and described below (“Context and Methods”); while
the main discussion of designs will be done for two specific cases (exercises), we also
discuss broader observations of the outcomes of the design process and its effects
(“Perspectives”). Similar methodical constraints apply to RQ2 and RQ3, but our empir-
ical data will provide more direct, even if partial answers to these questions.

Context and Methods

The concrete context which led us to develop the generic aims for exercise design laid out in
the previous sections is a course, Analysis 0, given in the second semester of the bachelor
programme in (pure) mathematics at the University of Copenhagen. During their first
semester, the students have courses on calculus (one and several variables, vector analysis,
differential equations) and linear algebra. These courses are also taken by students of a
number of other science programmes and the main focus is on technical skills with concrete
functions, matrices and so on, and very little on mathematical theory. The contents of
Analysis 0 can be considered a review of the topics from the calculus part of the first
semester, but now treated from a much more theoretical angle which also necessitates an in-
depth work with the topology of ℝn (neighborhoods, open and closed sets, completeness,
limits and continuity, etc.).

Themore theoretical focus also appears in the final evaluation of students’ learning:while
the first semester courses are assessed based on written solutions to standard exercises, the
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examination in Analysis 0 is oral. The examination is based on a list of 12 “questions”
known in advance. Each question consists of a few keywords (e.g. “The Riemann integral”
or “Green’s theorem”) which, in essence, require the students to state and prove one or more
theorems from the textbook. At the beginning of the examination, the individual students
draw one question from the list; the students then have 30min preparation time, followed by
25 min examination where they present the proof(s), often in interaction with the examiner.
The grade is given based on this performance alone. A condition for examination admittance
is that one hands in three sets of written exercises during the course, but there is no effective
control that all of these solutions are individually produced.

The course comprises 4 h of lecture and 5 h of class teaching per week for 7 weeks. The
lectures cover the selected parts of the syllabus, extracted from the textbook (Eilers et al.
2015). The class sessions focus on presentation of exercises and on rehearsal by
volunteering students of the “questions” for the oral exam. The lectures are given by a
senior faculty member, while the class sessions are run by graduate students of mathemat-
ics. The course has about 300 students, organized in 10 classes for the work with exercises.

A recognized weakness of the course in later years - consistently reported by
teaching assistants - is that a few weeks into the course, almost all students come to
the class sessions without having done or even attempted to do the exercises to be
treated. The main explanation given is the difficulty of the exercises, which are mainly
taken from the textbook. Another factor is, presumably, that students focus on prepar-
ing for the oral exam, and do not see how the solution of somewhat advanced tasks can
support that preparation. Moreover, students are reported to find the course as a whole
“much more difficult” and even “a big jump” in relation to the first semester courses;
time constraints is a major factor mentioned by students in their evaluations of the
course. Thus, there is both a problem of alignment of examination and exercise
sessions, and of adapting the exercises to the capacity of the students. As regards the
last problem, one could, of course, imagine that time would be allotted within the class
sessions to provide guidance to the students’ personal work, should they not have been
able to solve the exercises before; but at present, this has not been considered feasible
within the course time allotted. Other constraints include an impossibility to change the
examination format significantly, or to make other drastic changes in the course beyond
modifying the exercise inventory. These impossibilities are related to more global
constraints in the study programme and within the institution and will not be examined
more closely in the present paper.

The outcome is that students need exercises which are aligned with the examination
and which they can conceivably solve by themselves, at least in part. This motivates the
construction of new exercises with higher adidactic potential and linking potential, and
with a deepening potential explicitly related to the theorems and proofs implied in the
examination questions. The additional strive for research potential is related to a
development project of the university, aiming to give undergraduate students authentic
experiences of research or research-like work in their field, an ambition which is also
evident in the overall directions of the bachelor programme in mathematics.

Exercise Design Methodology

As noted by Joubert (2013), exercise design should be based on an explicit epistemo-
logical analysis of learning potential. At the same time, our design was supposed to
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address the broader problem of transition from calculus courses to a first course in
analysis. Thus, our design could not only be guided by a priori investigation of specific
target knowledge and the conditions under which a given milieu could suffice for
students to attain it. The guidelines should also relate to more generic features of
learning potentials that would go beyond the individual exercise. The four potentials,
introduced above, emerged early in our initial discussions of the course. They were
initially formulated more informally but the theoretical framework proved useful to
isolate the various shortcomings of students’ previous experience with exercises in the
course. Then, it was important to realize that all exercises needed to have adidactic
potential to be both worthwhile and feasible, and our design methodology explicitly
addresses this point (we return later to needs for redesign with this in mind). It was
equally important to decide that the other three potentials were not necessary in all
exercises.

Our design methodology is naturally shaped by the constraints of the context - in
particular the need to align the exercises with the examination by linking each of them
explicitly to one of the 12 questions.

This led to the following design principles which concretize the way the four
potentials were pursued:

& The adidactic potential was considered in the light of the earlier experiences
mentioned above (too “difficult” exercises leading to passive students), and it was
a high priority to ensure that all exercises offered appropriate milieus for the tasks
proposed, so that students could find at least initial or partial answers prior to the
class sessions;

& The deepening potentialwas pursued through formulating exercises that would lead
students to reflect on specific details and overall structure of proofs to be presented
at the oral exam;

& The linking potential would be achieved if the milieu proposed by exercises enables
students to relate a theorem, definition or proof from the course to specific
mathematics from the first semester calculus course or high school analysis;

& The research potential was mainly identified with “open questions” (i.e. with no
given answer - as opposed to most classical exercises, beginning “Prove that…”).
They were designed purposefully to lead students into one or more of the activity
types A1-A10.

At a more practical level, a structured procedure for the design of exercises was set
up in order to invest the different competences available in the team, consisting of:
course leader Søren Eilers (analysis researcher), Anna Ebbesen (experienced teaching
assistant in An0), Carl Winsløw and Niels Grønbæk (researchers in didactics of
mathematics and analysis), and Katrine Gravesen (master student in mathematics,
specializing in didactics of mathematics). The procedure was set up as follows:

Step 1. first versions of exercises were produced by Anna Ebbesen and Niels
Grønbæk, based on a reading of the corresponding sections of the textbook
and the above design principles;

Step 2. the first versions of the exercises were solved by Katrine Gravesen, to gauge the
adidactic potential with a student who had the course some years ago;
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Step 3. the exercises were then revised by Katrine Gravesen and Carl Winsløw in
collaboration, focusing specifically on achieving the four design principles
explained above; at the same time, additional exercises were formulated to
complement the set.

Step 4. finally, the exercises were reviewed by Søren Eilers, who also made final
changes and adaptations, and shared the result with the rest of the team (this
part of the procedure focused on aligning the exercises with other decisions
made on the course).

This “four step production line” ran for 10 weeks (with about two new sets
being launched each week and each step lasting about 1 week). The result
was a collection of 57 exercises, which we refer to as “R-exercises” to
distinguish them from other exercises treated in the class sessions; the R
indicates the ambition of inducing research like situations, as a central but not
exclusive aim of the design.

Research Methodology

The a priori analysis (Hersant and Perrin-Glorian 2005) of the R-exercises began during
the above design process, especially in step 1 and 3. At this point, the adidactic
potential was evaluated mainly in terms of (1) the experienced difficulty of the exercise
(step 2 of the design process) and (2) the potential of the exercise to make a milieu
available, partially based on knowledge from the previous courses, which would be
sufficient to produce a complete solution. All four potentials were explicitly assessed in
step 3, in the concrete terms of the design principles.

More complete a priori analyses have then been carried out with a smaller selection
of the final R-exercises (i.e. after step 4 of the design process). Such an analysis is
always done in terms of an explicit presentation of the wider mathematical context of
the exercise, and involves a close examination of the specific target knowledge and
milieu offered by the exercise, in relation to students’ prerequisite knowledge; the goal
is to obtain a finer analysis of the potentials that could be realized and the different
obstacles which could be foreseen (Brousseau 1997). These analyses are presented in
the first authors’master thesis under the supervision of the last author (Gravesen 2015),
which also contains detailed analyses of data from the students’work with the exercises
(as explained below). In this paper, we present a synthesis of the a priori and a
posteriori analyses of two R-exercises in this paper; these two were selected in order
to present both obstacles and realizations for each of the four potentials.

The a posteriori analyses of the didactic situations induced by the R-exercises form
the core of the master thesis of Gravesen (2015); the present paper draws substantially
on that work. In particular we make use of the data collected in view of answering RQ2
on students’ work with the exercises:

– collection of written homework by seven focus group students, done on the R-exercises
prior to the class sessions

– video recordings of all class sessions in one specific class, focusing on capturing
the blackboard development of solutions and the corresponding voices of students
and teaching assistant;
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The video recordings were transcribed and divided into realized situations (treatments of
exercise questions) and episodes (corresponding to shifts in the distribution of responsibility
among teaching assistant and students, i.e. to different didactic contracts), as explained by
Hersant and Perrin-Glorian (2005). Confronting the students’ contributions (in homework
and during the class situation) with the a priori analysis, we discuss the ways and extent to
which the targeted potentials were realized.

The teaching assistant did all of the blackboard writing during almost all exercise
sessions, while inviting the students to contribute orally at central points. This means that
the student productions made prior to the sessions constitute the most important material to
gauge what students could actually achieve by themselves. When asked, the teaching
assistant invoked time pressure as a reason for this way to conduct the sessions. While that
reason is questionable, a change to this pattern would require explicit interventions. In fact,
all teaching assistants observed used a similar approach.

As a complement to these primary sources of information on students’ work, various
other data sources were available, but will only marginally be drawn on here. The first
author conducted two interviews with the focus group students, to validate and clarify
observations made from the above. She also observed a large number of oral examina-
tions, in order to examine implicit or explicit effects of the R-exercises in this setting.
Finally, we had access to all data from students’ evaluation of the course, and to the
results from the final evaluation (oral exam) of the students.

The two cases (exercises) analysed in this paper were selected carefully to present a
certain variety of potentials and obstacles identified in the study, in order to enable a
substantiated discussion of the more generic research questions formulated above. In
particular, they illustrate a variety of the activity typeswhichwere used to realize the research
potential. The two cases also illustrate two typical and different needs for redesign of the
exercises concerned (Case1 : enrichment of the milieu for technical questions; Case 2: alter
devolution of abstract problems, evenwhen a calculusmilieu for them has been established).

Case 1: Differentiability in ℝk

The students worked with the following exercise during the fifth week of the course;
the theorem mentioned in question b) is cited below.

a) Decide whether the following functions f :ℝ2→ℝ are differentiable:

f x; yð Þ ¼
xy

x2 þ y2
; if x; yð Þ≠ 0; 0ð Þ

0 ; if x; yð Þ ¼ 0; 0ð Þ

(
ð1Þ

f x; yð Þ ¼ xyð Þ13 ð2Þ

f x; yð Þ ¼ x2 þ y2
� �

⋅sin
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

 !
; if x; yð Þ≠ 0; 0ð Þ

0 ; if x; yð Þ ¼ 0; 0ð Þ

8><
>: ð3Þ

f x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ð4Þ
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b) Use your results to comment on the assumptions in Theorem 6.11 and its result.
c) Make your own “recipe” to decide whether a given function of two variables is

differentiable.

It is to be understood here that “differentiable”means throughoutℝ2, in particular at (0,0).

Mathematical Context

Students will naturally refer to sec. 6.2 of (Eilers et al. 2015), entitled
“Differentiability in several variables”. The most relevant elements here are
(everything concerns functions f :ℝk→ℝ, defined on some open Ω ⊆ℝk, and
the below are outlines, rather than exact translations from the textbook):

& Definition 6.5: f is said to be differentiable at a ∈Ω if there is c ∈ℝk so that
f xð Þ− f að Þ−c⋅ x−að Þ

‖x−a‖ →0 as x→ a; in this case c is called the derivative vector of f at a.
& Theorem 6.6: If f is differentiable at a ∈Ω then f is continuous at a.
& Theorem 6.7: If f is differentiable at a ∈Ω with derivative vector c, then f has

directional derivatives D vf (a) at a, in all directions v. In fact Dvf(a) = c ⋅ v.
& Theorem 6.11: If f has partial derivatives D1f,…, Dkf in every point of Ω, and if

these are all continuous at a, then f is differentiable at a.

We notice here that one of the oral examination questions is Differentiability in ℝk,
with Theorem 6.11 being the recommended part to prove; but of course, students
drawing that question should ideally know all of the above in a coherent way. In the
book, several examples are given to illustrate the theorems individually and in
particular that the converses to Theorem 6.7 and 6.11 are not true. We notice here
that while the Definition and Theorem 6.6 resemble “old knowledge” for the case k = 1,
Theorems 6.7 and 6.11 do not have counterparts in that case and must be considered
entirely “new knowledge”. At the same time, these theorems provide crucial links
between old and new knowledge, if one realizes that they provide a necessary resp.
sufficient condition for differentiability in several variables, and that these conditions
concern differentiability of certain one variable functions (besides continuity in several
variables, in the case of 6.11). The textbook does not state explicitly how the different
elements above may serve to prove or disprove differentiability.

A Priori Analysis of the Situation

The target knowledge of the situation is, in a narrow sense, practical techniques to
determine whether a function in several variables is differentiable, and explicit knowl-
edge of necessary and sufficient criteria that can be extracted from the relevant elements
from the textbook. In a broader sense, students should get a better situated knowledge of
differentiability of functions of several variables by overcoming certain obstacles in
concrete situations: first, the didactic obstacle (established in high school) that “differ-
entiability of f” means that “you can differentiate f” in the sense that some algorithm
applies to do this in all cases encountered; and the epistemological obstacle that since
(D1f(a),…,Dnf(a)) is in fact the derivative of f at awhen it exists, differentiability means
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that the partial derivatives can be computed. A similar didactic obstacle, related to
Theorem 6.11, is the belief that differentiability simply means existence and continuity
of the partial derivatives.

The students can be expected to be familiar with ordinary differentiation and
computation of partial derivatives; they can be trusted to affirm the differentiabil-

ity of functions in closed form and to know the simplest exceptions, such as
ffiffiffiffiffi
x2

p
at 0. However, they may not realize immediately what the four elements from the
textbook can be used for. In particular, to solve the exercise, one needs to realize
that only the definition gives (as it should) necessary and sufficient conditions, but
they are often hard to apply directly; Theorem 6.11 gives sufficient conditions,
while the remaining two theorems give necessary conditions. Part a) provides four
concrete episodes of actions which allow the students to work with these criteria,
while part b) and c) require formulations at a more abstract level.

In outline, one can handle question a) as follows (the details are left to the reader,
while some appear in the a posteriori analysis): (1) Non-differentiable (by 6.6), (2)
Non-differentiable (by 6.7), (3) Differentiable (by 6.5), (4) Non-differentiable (by 6.7).
For question b), the students should use example 3. from a) to show that the conditions
given in that theorem are not necessary for differentiability and conclude that the
converse result is false; this is not shown from examples in the textbook and is thus
new knowledge even in relation to the course. As for c), the word “recipe” should lead
to some order in which to do the investigation of a function, such as plotting it on the
computer to see if the graph looks smooth or not, and then some instructions on the use
of the two relevant elements in either case, based on the experiences from a).

We notice in passing that Theorem 6.11 does not apply to any of the examples
in a), except of course at the trivial points away from (0,0). This largely negative
point may surprise the students, given that the textbook introduces this theorem as
“salutary” when it comes to decide on differentiability.

The exercise has adidactic potential as students should be able to do some first relevant
steps in a), such as computing partial derivatives or doing a plot of the functions; these may
help towards forming a hypothesis and then finding a relevant strategy to produce a formal
argument. To solve a) completely requires formal reasoning about unfamiliar, given func-
tions, while drawing on knowledge (at best) in progress for the students. It is evident that
successful completion of a) provides useful input to b) and c), but less with b), that would
seem to require that the students have tried very hard to use Theorem 6.11 in a). The
textbook’s emphasis of that theorem could, however, make this plausible.

The linkage potential is evident from the need in a) to reinvest computational skills
from first semester calculus, to find concrete partial derivatives from algorithms as well
as from the definition. The deepening potential concerns mainly definition 6.5 and the
meaning of the three theorems cited above; at least the students should become more
familiar with the definition and the fact that one direction implications in each of the
three theorems. We note that the proof of Theorem 6.11 is normally considered the
main focus of the oral examination question, and the proof is only marginally supported
by the exercise; however, Definition 6.5 is central to that proof (together with the
ordinary mean value theorem which is not touched upon here). The exercise finally has
research potential to engage the students in activities of type A6 and A7 in a), A1 and
A7 in b), and A9 in c).
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A Posteriori Analysis of the Situation

Five of the seven focus group students had done some written homework related to this
exercise prior to the session where it was on the agenda, but none of them have done all
three questions. In fact, four of the five students mainly get to compute partial
derivatives of the first two or three functions in a), and even for the first function, only
two of them get to the correct answer (non-continuity and hence non-differentiability
by Theorem 6.6 - only one of the two states the theorem explicitly to support the
conclusion). Two unproductive strategies otherwise dominate the work accomplished:
vain attempts to use Theorem 6.11, and attempts to compare mixed second order
derivatives (this was covered in the preceding week, but is evidently irrelevant for
the present problem). This confirms at least two elements of the a priori analysis: the
adidactic potential resulting from the familiarity of the students with partial derivatives
as a way to “differentiate” functions of two variables, given in closed form; and the
didactic obstacle of the perceived strength of Theorem 6.11, which in fact is important
in many cases, but cannot be used for the cases in a). Only one of the students gets as
far as question c); not surprisingly, this student is also the one who did most of a)
correctly. This student proposes the following “recipe” (translated from Danish):

If you can show that all partial derivatives are continuous, you are done, but the
theorem does not say anything about the case when the partial derivatives are not
continuous. If you want to show that a function is not differentiable, it can be
useful to look at the directional derivatives, and if one of them does not exist, it
[the function, authors] is not differentiable. If one can show from the beginning
that the function is not continuous, then it [the function, authors] cannot be
differentiable.

It is remarkable that even this student puts the methods based on Theorem 6.11 first,
even if it has not worked for any of the four functions despite eager attempts to use it.
Otherwise, the methods which this student actually succeeded to use are mentioned in a
somewhat unmotivated order.

Based on these observations, it appears likely that few (if any) students have solved
the whole exercise beforehand, while those who have tried have at least computed
some partial derivatives in attempts to use Theorem 6.11. The observed adidactic
potential of the exercise thus consists mainly in the availability of some initial strate-
gies, while the main parts of the new knowledge were not reached by the students prior
to the didactic situation in class. Regarding research potential, the computation of
partial derivatives are the only (mostly unsuccessful) activities of type A7 which the
students engage in for a); thus, none did a plot of the four functions (away from the
origin) as a way to form a hypothesis.

In class, a total of 50 min is used on this exercise; the teaching assistant does, as
usual, all board writing, while involving individual students through questions which
become successively less open as the presentation progresses. The teaching assistant is
clearly aware of the time constraints and the total list of exercises to be covered in the
session.

For each of the four functions in a), the teaching assistant (TA) initially asks the
students for ideas, which are more or less in the direction of using Theorem 6.11;
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certainly they all involve computing partial derivatives, occasionally at (0,0). She
develops the computation far enough to suggest that the strategy is not productive, in
particular (in (3)) that although the partial derivatives are not continuous at (0,0),
nothing can be inferred from that. It turns out to be more difficult for her to elicit
student generated hypotheses that actually work. We sometimes observe outright
Topaze effects (Brousseau 1997), as in the discussion of the function in (1) (following
a lengthy discussion of partial derivatives):

TA: Let’s go back and look at our function [points to the expression of f in a),
(1)]. What is needed for this one to be differentiable? The easiest criterion for
something to be differentiable?

Student 1: The C1-criterion or what?

TA: Yes almost, or you have got the right part. Can something be differentiable if
it is not continuous?

Student 2: No.

Nothing in the milieu - and certainly not the defining expression of f which
is being pointed at - suggests the approach which the teaching assistant tries to
get a student to suggest. So, she gives it away, and thus reduces the task
dramatically to that of showing non-continuity of f at (0,0). However, she still
tries to include the students in generating ideas for solving this task. Pointing
again to the expression xy

x2þy2 of f away from the origin, a collective phase of

questions and answers lead to the insight that approaching the origin along the
axis does not help to show non-continuity. Then she continues:

TA: So that’s the big trouble. How do I find where it goes wrong?

Student 1: If you let x = y, you get in trouble.

TA: It shall be no secret that that’s my choice, but how do I find out that that’s my
choice?

The teaching assistant is not satisfied with having a”good” choice of direc-
tion from one student, and as no student answers the last question, the teaching
assistant mentions the possibility of looking at the graph of f. But no graph is
drawn or shown, so neither the exercise nor the intervention by the teacher
succeeds in creating a milieu with adidactic potential related to the use of
graphs, which could also be crucial to realize the research potential linked to
the heuristic investigation (A6). Instead, the teaching assistant proceeds to the
algebraic verification that lim x→0 f x; xð Þ≠ f 0; 0ð Þ:

The remaining three cases in a) are treated similarly with an acceleration of time that
reflects the teaching assistant’s management of time: at first, she takes time for more
student contributions and even errors; then she accelerates, as the contract seems to
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dictate that all questions be answered on the blackboard (at least summarily). Following
this pace, the answer to b) is institutionalized by the teacher, pointing out that although
Theorem 6.11 is important, it does not give a necessary condition for differentiability,
and in fact was not useful in a).

Given this relative dominance of the teaching assistant inmost of the treatment of a)
and b), it is remarkable that several of the potentials appear again in the students’
contributions to c): the teaching assistant assumes the posture of a secretarywho notes
the contributions of the students to the “to-do-list” for deciding if a given function is
differentiable (while, as we shall see, she does more):

TA:…so now let’s at least write up some things which can make your life easier.
What’s the first we do?

Student 1: Check it’s continuous.

TA: Check it’s continuous. I think that this is a really good idea. And what’s our
favorite way to check if something is continuous?

Student 2: Check (0,0) and see what it does there.

TA: Check all directions towards, I call it, a bad point. Most often (0,0) but not
always. (…) Now I just write, ‘cause I insist and hope some of you will do it,
[writes:] Draw! It’s a really really good idea. Just to get an idea where you are
going (…) and ifyouuseoneof these, so to say,“trickways”, so say,boom, it’snot
differentiable.

Here, student 2 does not manage to abstract from the four examples in a),
and the teaching assistant validates (“not always”) and adds precision (“check
all directions”). She then returns to the idea of using the graph, alluded to
above. We note here that no graph is ever shown in the situation, so the
usefulness of the idea remains a claim. By “trick ways”, the teaching assistant
may also allude to the strategy based on Theorem 6.7, which she returns to
later. As the dialogue continues, the strategy based on Theorem 6.11 is also
explained and clarified. Then “the absolutely most cumbersome method” (to
quote a student) is formulated, namely that based directly on Definition 6.5:

TA: So we have found the partial derivatives at these places where we can’t find
out [about continuity of the partial derivatives, authors].

Student 3: Then you use your definition from before and look at the difference
between, that is you guess your vector and look at the difference between Δf and
that vector times Δx.

TA [writing]: “Guess a c and use the definition”.

The whole episode focused on c) lasts about 7 min and consists in individual and
collective production (Hersant and Perrin-Glorian 2005) that involves a total of 8
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students, with the teaching assistant validating (more or less explicitly) and at the same
time institutionalizing the “list” as she rephrases the students’ suggestions on the
blackboard. A full analysis of the episode would lead us too far here and involve
also the identification of didactic obstacles which were not visible in other parts of the
situation, such as a mistaken idea that the computation of second order partial
derivatives could somehow help to decide on differentiability.

The main point here is that both the research potential (A9) and the
deepening potential are realized in this episode, even if large parts of the
preceding episodes on a) and b) had limited student contributions. The focus
group students who did most of this exercise (including c) before class, as
mentioned earlier, were not present at the class session. However, even students
who had done no written preparation for this exercise contributed with essen-
tially correct general strategies for c), based on the work presented for the four
examples in a). These observations contribute to the interest of situations of
collective production like the above generated by question c), especially for
students who do not succeed or engage with the tasks before the didactic
situations in class.

Case 2: Curve Integrals

The second case concerns the following exercise, worked in the seventh course
week (an explanation of the context, which is necessary to understand the
enunciation, follows):

a) According to the textbook, one can convince oneself of the uniqueness of the curve
integral in Definition 7.20. Use Definition 7.20 to show that there does not exist
two different I1 and I2 with the desired property.

b) Compare with R-exercise 10.3.
c) Read the comment after Definition 7.20 and explain why the curve integral is a

geometric object.

Here, R-exercise 10.3 asks the students to show that the expression ∫
b

a
V r tð Þð Þ ⋅r0

tð Þdt
is invariant under smooth, direction preserving reparametrization of r, then explain that
the curve integral is independent of the choice of a C1-parametrization; the last part
would invoke Theorem 7.22 below.

Mathematical Context

The above R-exercise is clearly linked to the examination question “The curve
integral” and hence to section 7.4 in (Eilers et al. 2015), with the same title. It
concerns essentially the basic definition (p. 230). The detailed formulation is
sufficiently important for the sequel that we give a full translation, while we do
assume that the notation and terminology is familiar to the reader:
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Definition 7.20. Let Ω ⊆ℝk be given. Let V :Ω→ℝk be a vector field in Ω, and
let γ be a continuous curve in Ω, with parametrization r : [a, b]→ℝk.We say that
the curve integral ofValong γ exists, if there is a number I ∈ℝ with the following
property: for all ε > 0 there is a δ > 0 such that for every partition D of [a, b] with
fineness < δ and for every choice of intermediate points, the corresponding
middle sum satisfies jI−∑n

i¼1
V r τ ið Þð Þ ⋅rij < ε. In this case, I is called the curve

integral of V along γ, and is written ∫
γ
V⋅dr.

The remark following this definition, alluded to in b) and c) of the above exercise,
reads as follows:

One can easily convince oneself that there can at most be one number I with the
desired property. It is also easy to see that the curve integral is a geometric
object, in the sense that it does not depend on the parametrization of γ.

The section includes otherwise two main results. First, an existence theorem which
is not relevant here. Then, Theorem 7.22 which states (under the condition that V is

continuous and r : [a, b]→ℝk is a C1 -parametrization of γ) the useful formula ∫
γ
V⋅dr

¼ ∫
b

a
V r tð Þð Þ ⋅r0

tð Þdt; reducing the computation of curve integrals to “an ordinary

Riemann integral” (p. 232). The proof of this theorem is the main point of the oral
examination question but it relies, of course, heavily on Definition 7.20.

A Priori Analysis of the Situation

The target knowledge of the situation is the meaning and implications of
Definition 7.20, including the fact that at most one number I can satisfy the
condition, and the fact that such a number depends only on V and γ, despite the
presence of the parametrization r in the definition. As in case 1, a strong didactic
obstacle lies in the students’ experience of derivatives and integrals as something
to be computed according to explicit rule. Specifically, in students’ experience,
integrals are found by applying computational rules, so that “integrability” appears
implicitly as the feasibility of a computation based on rules. The formula in
Theorem 7.22 is often used to define curve integrals in calculus courses, and
may in fact reinforce this obstacle.

We omit the solution of a); some details will appear in the a posteriori
analysis. It is a standard argument based solely on Definition 7.20. For b), the
comparison goes as follows: R-exercise 10.3 means that the curve integral is
indeed a definite number, depending solely on V and γ; but the proof given
there is only valid for the more restricted case of C1-curves, while the direct
argument, to be given in response to question a) of the present exercise, is both
simpler and more general. In c), the students should note that γ and V (an
oriented curve and a field of vectors for each point on the curve) are indeed

“geometric” objects. Thus ∫
γ
V⋅dr, as a well-defined “function” of γ and V, is
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also essentially geometric, unlike a parametrization which is a somewhat arbi-
trary algebraic description of γ.

The adidactic potential of the exercise is likely to be enhanced by reminding the
students of the common strategy for proving “uniqueness” (the allusion to I1 and I2 in
a)). Concretely, students should be capable of drawing the similar proof of the
uniqueness of the Riemann integral, given in the textbook by Eilers et al. (2015), p.
126, while adapting it to the particular properties given in Definition 7.2. This also
means that a) has research potential, to engage students in the research like activity of
type A5 (mimicking a known proof) and A10 (validating a definition). The adidactic
potential in b) and c) depends on the milieus of R-exercise 10.3 and a), and the
openness of the questions could be both an obstacle (students will be in doubt on
“what do to”) and a facility (at least “you can say something”). These questions are
otherwise designed in view of their deepening potential, to reflect on the relations and
differences between the abstract and general definition 7.20, and the concrete and more
constrained algebraic approach provided by Theorem 7.22. It should be noted that the

notation ∫
γ
V⋅dr could in itself be an obstacle to the points in b) and c), as the symbol “r”

appears in the notation - this might in fact suggest that ∫
γ
V⋅dr also depends on a specific

parametrization r.

A Posteriori Analysis of the Situation

Three of the seven focus group students have provided more or less correct solutions to
a) (cf. Fig. 1), while they offer at most short and vague remarks to b) and c), such as
“The curve integral depends only on the curve and not on the parametrization” (for b)),
or “It would be a terrible contradiction if the curve integral depended on γ “for c). None
of the students note the analogy of a) with the proof of the uniqueness of the ordinary
Riemann integral. We can thus affirm that the predicted adidactic and research poten-
tials of a) were realized for these students. On the other hand, the deepening potential
associated with b) and c) seems to require a didactic situation of validation and
institutionalization, even for these students. The other four students did not produce
any written solution prior to class.

The class session has initial phases of collective production, as the teaching assistant
asks for ideas:

TA: So we must show that there can be no different I1 and I2 satisfying this
definition. (…) How do we do that?

Student 1: Assume there are two and show the difference is less than ε.

TA: Exact. Quite classical uniqueness thing.

The teaching assistant reminds the class about the analogous proof for the ordinary
Riemann integral, and does most of the technical realization of the above idea in oral
interaction with other students who, apparently, also solved a) at home:
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Student 2: Yes but one of the δ’s must be the smallest. So we just choose δ to be
the smallest of the two.

TA: Mmm, and then what do we do?

Student 2: But then we see that a middle sum with a fineness as our new, a
fineness smaller than our new δ must be, eh, can we chose it so it lies ε/2 from
both middle sums.

TA: Exactly. (…)

We recall that this teaching assistant consistently chose to write do all blackboard
writing by herself, presumably to manage time usage and maintain “correctness” of
what is written. In more technical moments of work, as with subtle ε-δ arguments as
above, it becomes more difficult to involve the students, as she does above.

We thus see that the adidactic potential of the first part of the exercise (the
more “technical” part) was actually realized for several students. We do not
know to what extent this can be ascribed to the relation with old knowledge
(further suggested by the notation I1 and I2) and emphasized by the teaching
assistant (“Quite classical uniqueness thing”), but at least in the didactic
situation it becomes explicit that an old proof technique is used to validate a
definition (research like activities A5 and A10).

The deepening potential of questions b) and c) is largely missed. The teaching
assistant breaks with the rather permanent principle she has to write solutions to all
questions on the blackboard, and simply treats the two questions orally before passing
on to the next exercise:

TA: Any questions to this? Everything OK? Perfect. And that’s great, ‘cause what
we have shown here is that if that I exists, that what was I wrote here [points to I],
then the I is equal to… [writes ∫

γ
V⋅dr] …to our curve integral. It fits really well

what we proved in the exercise before [R-exercise 10.3], that no matter what
parametrization you make, there is only one curve integral. That’s exactly the
same we prove here. There is exactly one every time we have some curve.

The teaching assistant’s remark does not go much further than the one line
phrases of the students. Clearly, the deepening potential is not realized, as the

Fig. 1 Student homework (left) and blackboard presentation of question a)
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teaching assistant fails to facilitate a discussion of the links between the
(general and abstract) definition 7.20 and the (somewhat conditioned)
Theorem 7.22 which provides a concrete methods of computation and which
is, as already mentioned, the main point of one of the 12 examination ques-
tions. While the work with a) has provided a strengthening of knowledge in
progress, concerning the technical features of definition 7.20 and its links to
older knowledge, the targeted deepening potential concerning the definition and
Theorem 7.22 seems to be largely unrealized. One can speculate that the
openness of the question is in fact as much of an obstacle as a facility, since
both the students and the teaching assistant pass it rather superficially, as if it
was trivial. This speculation is strengthened by similar experiences with ques-
tions in other exercises that could seem to call for a qualitative judgement,
while in fact they pertain to a fundamental point of a theoretical construction -
in this case, why the theory does not begin with the formula in Theorem 7.22
as a definition, to then just prove the rather simple result of R-exercise 10.3 (as
a kind of “uniqueness”).

Perspectives

We have presented two selected cases of exercise design, together with an outline of
our analysis of the corresponding didactic situations. On this basis we can now turn to a
substantiated discussion of the research questions as well as of more general perspec-
tives of our design methodology.

Theoretical Potentials of Exercises as Design Guideline (RQ1)

The most fundamental of the four potentials defined in our theoretical framework is the
adidactic potential, which is closely related to the milieu that is supposed to resource
the students’ work with the questions proposed, both in homework and in the didactic
situation in class. All exercise construction will, in fact, involve at least implicit
assumptions on how those milieus are constituted, and on students’ available knowl-
edge (Robert 1998).

Our design methodology, involving a “test solver” (the first author), in fact allowed
us to be more explicit in our discussion of these two items, even if the test solver was
clearly more advanced in her studies than the prospective students’. As regards the
milieu, our discussion of the exercises in Step 3 (after solution of a first version) often
led to considerable reformulations that would typically strengthen the “concrete en-
trance” of the exercise - for instance, it was only in Step 3 that the exercise in case 1
was supplied with the four examples in a). Here, the added adidactic potential is also
closely related to the linkage potential, as the consideration of concrete functions could
help students establish links between new knowledge (the notion of differentiability in
k variables) and old knowledge (partial derivation of functions given in closed form).

In both cases 1 and 2, the exercise begins with a more concrete (“calculus-like”)
question, incidentally, named a) in both exercises; then follow two more abstract
questions, for which the first question and its solution should serve as (part of) the
milieu. This way to structure exercises is a natural strategy to pursue adidactic potential,
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in order to build up a richer didactic milieu for a more abstract (“analysis”) point. In the
exercise case 2, a more recent experience with uniqueness proofs based on the triangle
inequality can be “mimicked” to solve the first part; as pointed out in the a priori
analysis, the adidactic potential is here associated with the potential of a research like
activity (A5). In fact, in all 57 exercises, the adidactic potential is closely linked either
to a linkage potential (“old knowledge” should be drawn on) or to a research like
activity (often of type A1, A3, or A5).

The research potential was often pursued in relation to a specific point in the
textbook (Eilers et al. 2015) - as illustrated by Case 2, which focuses on a definition.
Other R-exercises concern a delicate step in a proof. The in-depth study of a specific
point in the textbook is of course a quite limited interpretation of “research activity”,
but given the goals and assessment of the course, it is also a quite important one for our
exercise design. In our experience, the differentiated and explicit categories (A1-A10)
are very useful guidelines for designing such exercises, focused on “inquiry into a
(difficult) mathematical text”.

Almost all exercises were designed to have linkage potential or deepening potential
(or both), thus enabling the students either to draw on old knowledge from calculus or
to elaborate on knowledge in progress (recently or currently studied in the course). We
wish to stress the importance to distinguish between these two potentials. They have
very different functions in the transition to analysis, as the exercises presented in Case 1
and Case 2 demonstrate: exercises with linkage potential can link (new) theory to (old)
practice (Case 1), while exercises with deepening potential aim directly to develop and
refine knowledge in progress (Case 2).

To sum up our current answers to RQ1, adidactic potential is an important and
necessary notion for all exercise design. With the three other potentials as comple-
ments, it was possible to devise a design methodology which resulted in 57 exercises.
These exercises provided innovative opportunities for students work with new, theo-
retical knowledge, while respecting the rather stringent constraints from the institution.
We notice that the latter constraints excluded some opportunities such as significant use
of computer algebra systems (Gyöngyösi et al. 2011) or exercises delving into impor-
tant links with other disciplines such as mechanics. We return to other effects of these
constraints later in this section.

Realizations of Potentials and the Possibility of Redesign (RQ2)

The two cases illustrate rather well that the potentials could not be observed from the
classroom situations alone, given the choice of the teaching assistant to do all the
blackboard presentation, with occasional prompts for input from the students. But
students’ main work with exercises was to be completed before then, and we have
other data to shed some light on that as well.

In case 1, we saw that the adidactic potential was actually too weak for most
students; in homework, no students succeeded completely with the four examples in
question a), let alone the two follow-up questions. On the other hand, most of them
were able to at least make some first experiments with the four functions and in the
classroom situation, even those who did not solve a) beforehand were able to draw on
the milieu of the solutions to a) - given in class - to contribute to the solution of b) and
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c). To redesign the first part of the task one should focus on creating a richer milieu for
the students, resulting in better adidactic potential. This could be done by inserting a
new question before a): use an appropriate tool to draw the graphs of the functions and
use it to make a guess on whether they are differentiable. This, of course, amounts to an
adaptation of the exercise to the observed lack of spontaneous engagement of the
students in a heuristic investigation (A6), in order to strengthen the research potential of
the exercise.

On the other hand, case 2 shows a somewhat opposite outcome: the adidactic potential
of a) seems to have sufficed for a good number of students to develop a reasonable answer
to that question, but the students do not respond well to b) and c) as they are formulated,
and even the teaching assistant does not really institutionalize the main points. The teaching
assistant could of course have managed the didactic situation differently, to draw more on
the work actually done by the students, as a milieu for these crucial theoretical questions. To
achieve a higher adidactic potential of the questions, one could again consider
reformulations of them that were less open and more explicit in their demands related to
the deepening potential, like “Here is an alternative definition of the curve integral that
would save us most of the work…what could be the reasons the authors did not choose it?
What do they achieve by not doing it?”

Both cases illustrate a tendency (in redesign or even in actual teaching) of reduction of
tasks which is both well known, difficult to avoid and certainly important to control: to
enhance or even enforce the chances of students achieving a target knowledge in a
situation, one is tempted to reduce the task left to the student, thereby in fact reducing
the adidactic potential. In ordinary teaching, if the students fail to adapt to the proposed
milieu in a didactic situation, we naturally modify the milieu, while trying to preserve
some adidactic potential. For an exercise, the appropriate resistance of the milieu has, in
principle, to be gauged beforehand. In the setting of a course, however, one could also
consider to split the exercise in two, with only some parts left as homework. This would
defy the constraints at hand (only change exercises), as it would require a more controlled
design of the didactic situation in class to optimize the adidactic potential there. In our
context, the way class sessions were taught was left entirely to the teaching assistants.

Moving now to more global observations than what can be based on the two cases
alone, we would like to mention the following facts (which, clearly, are more loosely
connected to RQ2):

– Among the seven focus group students, whose preparation was followed through-
out the course, it was on average 4.5 who brought notes for the exercises of a given
section, mostly partial solutions, as the ones considered in the two cases; two of the
seven students only prepared notes ahead of one out of 11 sessions, so it was
almost always the same students who met with written preparations.

– From the anonymous, written course evaluation, answered by 82 out of 295
students, it appears that less than half of the students worked on the exercises
before the class sessions, that they tend to find the exercises difficult, and that few
were able to solve all of them (see Table 1 for exact figures).

– At the oral exams, of which 32 were observed by the first author, it appeared that R-
exercises were mostly referred to by high performing students, and also that some of
the exercises (linked to specific questions) were more often referred to than others;
in particular, explicit use of exercises with research potentials linked to A3 and A5
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appear quite often, which is natural given the focus on textbook proofs at the exam.
This is also confirmed by focus group interviews with students after the exam.

– Also at the oral exam, low performing students often got stuck with formulating
and explaining basic definitions; exercises focusing on A10 could, for this and
other reasons, be interesting to prioritize in future designs.

Reasons for Discrepancies Between a Priori and a Posteriori Analysis (RQ3)

There is nothing surprising or problematic in the general observation that
expected potentials for student work with the R-exercises were only partially
realized. As we have seen, even adidactic potential need not be realized in
students’ private work in order for this and other potentials to be, at least to
some extent, realized in class sessions. As we have already mentioned, redesign
with respect to clearer boundaries between work to be done before class, and
complements to be achieved in the didactic situation of the class, might be
helpful if institutionally feasible. At the same time, redesign for higher
adidactic potential of exercises is an important endeavor that should also
improve the realization of the other, more specific potentials - which all depend
on the first one.

But no matter how well adapted exercises are to students’ prerequisites and the
learning goals of the institution, the actual engagement of students in the work is indeed
a necessary condition for the realization of any potential. It is an eye-catching tendency,
visible in Table 1, and also from the detailed presentation of the two cases, that only -
often less than - half of the students seem to find the time to even try to solve the
exercises by themselves. This, naturally, cannot be explained by the exercises alone -
although Table 1 also indicates that roughly half of the students found the exercises
“difficult” to get started with, and thus could suggest an insufficient adidactic potential
of many of them (this is also confirmed by other sources).

Besides these two major general reasons - students’ insufficient investment of time in
homework, and insufficient adidactic potential of (some) exercises - we should also point to
a third major reason for unrealized theoretical potentials, which is well illustrated by case 2:
the class session themselves often take the form of “lecture style” presentation of exercise
solution by the teaching assistant, a phenomenon which is not limited to this class and
teaching assistants who were observed systematically throughout the course. Naturally, the
choice of the institution to confer this part of the course to experienced students, rather than
faculty, is common in other similar contexts, and has several rationales (financial,

Table 1 Students’ evaluation of R-exercises (number of students, with a total of 82 respondents)

Please mark the extent to which you agree with the following: 1 2 3 4 5

I normally try to solve the R-exercises before the class sessions 8 15 25 28 6

The R-exercises are normally easy to get started with 10 20 25 26 1

I have been able to solve almost all R-exercises before class 17 33 19 11 2

The R-exercises appear to be relevant for the oral exam 0 4 15 41 22

1 = Disagree completely 2 = Disagree 3 = Neither agree or disagree 4 = Agree 5 = Agree completely
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experienced students as role models, academic profit for them to teach younger students
etc.). Moreover, the time constraints - visible throughout our observations of the specific
class - would not disappear with more mature class teachers; indeed, the adoption of
alternative priorities and modes of instruction (such as not presenting all details of solutions
on the blackboard) would depend on deliberate, institutionally backed decisions, regardless
of the class teachers. And as even some of the teaching assistants claim to have “never
solved an exercise before class”when they themselves took the course, it seems clear that the
problem of non-engagement of many students is more linked to institutional norms than to
the character of the exercises or even the capacities of the teaching assistants. Still, it seems
obvious to us that implementing major changes in the norms and teaching modes of the
institution, particularly when it comes to exercise sessions, would require a deliberate effort
by leading faculty members and the institution management.

Conclusions

The TDS-based notions of adidactic potential, linkage potential, deepening potential
and research potential were introduced as tools to design exercises for a first course in
analysis, within a specific context that reflect more common transition phenomena at
the interchange between calculus and analysis. In particular, we have presented a
detailed framework for research potential, formulated as concrete activities which
exercises could be constructed to engage students in, and this seems to us to furnish
firm and helpful guidelines for the framing of student work in such a course. The
framework of the four potentials, in particular the notion of research potential, is a main
contribution of the paper which can be invested (and further developed) in new studies
in our or similar contexts. In this paper, we have not been able to present and analyse
more than two different cases, but the two cases illustrate the use of all four potentials,
including a wide range of the research like activities.

In this paper, the notions were deployed to analyze the outcomes within a very
specific context, where students’ homework and observation of class sessions are the
most important sources of information about the extent to which the potentials of an
exercise were realized. We wish to conclude by some perspectives arising from our
observations in this context. It should be stressed that there is no surprise in finding
unrealized potentials. As in any design process, such findings could serve as a basis for
further development of the specific exercise design. In particular, in Case 1 (question
a)) we have noticed the need to enrich the milieu with more explicit indications on the
use of graphical representations, and the delicacy of devolving and managing the more
abstract questions (b), c)) considered in Case 2.

The limits of what can be controlled by exercise design are also apparent in the two
cases and in the more general observations made in the previous section. While an
institutional analysis of the constraints encountered by this project is out of the scope of
the present paper, we wish to point out a few which are likely to find counterparts in
other institutions, and which may in fact be changed at a local level.

It appears from the cases presented, as from other observations we made, that the
didactic situations in the classrooms did not fully exploit the potential of students’ work
both before and during the classes. This can to a large extent be ascribed to the customs
and capacities of the teaching assistants who direct those classes. They are successful
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“older” students who took the course some years ago, and simply repeat the pattern of
“teacher presentation of solutions” they met there. This may in fact be found to reduce
the adidactic potential of exercises as germs of situations in real time teaching. It is an
obvious and manageable idea to introduce them to alternative modes of classroom
management, and also to at least some of the rationale behind the R-exercises (as
presented here).

Similarly, students’ expectations as to what work is important and worthwhile to
prioritize within a course may be surprisingly immune to explicit statements about the
alignment of exercises to course requirements (here, the oral exam). Some of the
solution may lie in the redesign of exercises, in particular to increase the adidactic
potential further. But as the beliefs of students are often influenced by “older” students,
it may take two or three editions of a course before students adapt to changes in the
contents of the teaching and examination, even if they are carefully aligned.

The institutional constraints on students’ and teachers’ work are certainly important
factors to explain the observed distances between realized and theoretical potentials. In
this paper we have focused on the more local ones and, admittedly, taking them more or
less as boundary conditions which we were not able to change. Clearly constraints such
as time frames, examination rules and syllabi cannot be ignored and it may sometimes
be both necessary and possible to change them. At the same time, we are convinced
that “local” interventions based on task design (exercises together with an explicit a
priori analysis), using the categories and methods presented here, can contribute the
solving real problems in a wide range of mathematics programmes that are struggling
with similar transition problems between calculus and analysis.
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