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Abstract A rich understanding of key ideas in linear algebra is fundamental to student
success in undergraduate mathematics. Many of these fundamental concepts are con-
nected through the notion of equivalence in the Invertible Matrix Theorem (IMT). The
focus of this paper is the ways in which one student, Abraham, reasoned about
solutions to Ax=0 and Ax=b to draw connections between other concept statements
within the IMT. Data sources were video and transcripts from whole class discussion,
small group work, and individual interviews. The overarching analytical structure was
influenced by a framework of genetic analysis (Saxe, Journal of the Learning Sciences,
11, 275-300, 2002), and Toulmin’s Model of Argumentation (1969) was employed to
analyze the structure of arguments both in isolation (microgenesis) and over time
(ontogenesis). This case study, rather than focusing on student difficulties in under-
graduate mathematics, serves as a compelling example of the productive and powerful
reasoning that is possible as students make sense of complex mathematics. The results
present an ontogenetic analysis of Abraham’s use of solutions to reason about how span
and linear independence of a set of vectors are related, as well microgenetic analyses of
various examples of reasoning about solutions to justify connections between other
concepts within the IMT.

Keywords Linear algebra - Solutions - Student reasoning - Genetic analysis

Consider the equations Ax=b and Ax=0, where 4 is an m X n matrix, x is a vector in
R”, b is a vector in R™, and 0 is the zero vector in R™. How might a student think about
these equations? How might a student reason about how solutions to these two matrix
equations are related or affect each other? How might knowledge about the existence or
uniqueness of solutions to these equations provide insight into other desired
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information in linear algebra, such as the span or linear independence of the column
vectors of 4? The fundamental concepts these questions address, for the case in which
A is an n x n matrix, are among the very ones connected through the notion of
equivalence in what is known as the Invertible Matrix Theorem (IMT). The focus of
this paper is the ways in which one student, Abraham, reasoned about solutions to 4Ax=
0 and Ax=b to draw connections between other concept statements within the IMT.

The IMT (see Fig. 1) is a core theorem in linear algebra that connects many
fundamental concepts through the notion of equivalence. For the introductory linear
algebra classroom community that was the focus of this study, what became known as
the IMT developed in an emergent fashion. That is, the various equivalencies took form
and developed meaning over time as students came to reason about the ways in which
key ideas involved were connected. As the semester progressed, the class investigated
the individual concepts within the IMT and related them to one another; the resulting
set of relations was the list of 16 equivalent statements (when A4 is n x n) listed in Fig. 1.
Because the IMT weaves together many of the central ideas in an introductory course in
linear algebra, no one single class session could encompass all the equivalencies that
constitute the IMT. Rather, new equivalencies were added to the theorem as the
semester progressed. Thus, students’ understanding of the theorem changed in two
dimensions over the semester: (a) knowledge of the theorem changed as aspects
of it were developed and layered on over the course of the semester, and (b) under-
standing of previously known aspects of the theorem (presumably) changed as the
semester progressed.

This paper draws from a larger study that documented the development of mathe-
matical meaning related to the IMT for both a classroom community and an individual
student, Abraham, over time (Wawro 2011). The focus of this paper is Abraham’s ways
of reasoning regarding a portion of the IMT. In particular, it documents the ways in
which Abraham reasoned about solutions to Ax=0 and Ax=b to draw connections
between concept statements within the IMT. Abraham’s reliance on reasoning about the

The Invertible Matrix Theorem

Let A be an n X n matrix. The following are equivalent:

The columns of 4 span R”".

The matrix 4 has n pivots.

For every b in R", there is a solution x to Ax =b.

For every b in R, there is a way to write b as a linear

combination of the columns of 4.

A is row equivalent to the n X n identity matrix.

The columns of 4 form a linearly independent set.

The only solution to Ax = 0 is the trivial solution.

A is invertible.

9. There exists an 7 x n matrix C such that CA = I.

10. There exists an n x n matrix D such that AD = I.

11. The transformation x > Ax is one-to-one.

12. The transformation x = Ax maps R" onto R".

13. Col4=R"

14. Nul 4 = {0}.

15. Det A #0.

16. The matrix 4 does not have the number zero as an
eigenvalue.

S

Fig. 1 The invertible matrix theorem

@ Springer



Int. J. Res. Undergrad. Math. Ed. (2015) 1:315-338 317

existence and uniqueness of solutions to Ax=0 and Ax=b was prominent throughout
the semester. He challenged himself to understand connections between these two
matrix equations and their solutions, and this served a key role in helping him develop
a way of reasoning about the equivalence of “the columns of 4 span R"” and “the
columns of 4 are linearly independent” for an n x n matrix 4. Furthermore, Abraham
used the notion of solutions to reason about connections between nearly all of
the other statements in the IMT. These aspects of his argumentation are in
contrast to the argumentation patterns with the whole class discussion at the
collective level, within which reasoning about solutions did not surface as central. It is
because of these reasons that this paper focuses on Abraham’s powerful reasoning about
solutions to Ax=0 and Ax=b to draw connections between other concept statements
within the IMT.

Investigating the ways of reasoning of one individual student provides a solid
foundation for understanding the possible conceptual milestones, blocking points,
and potentially helpful and inhibitive ways of reasoning about the concept statements
(and their equivalence) within the IMT of other linear algebra students. In other words,
what is learned about Abraham’s ways of reasoning—the concept statements that were
most central to his reasoning, the structure of his argumentation, specific interpretations
of concept statements that were particularly salient for him, and the like—serve a
conjectural role regarding what may be true for other individuals’ ways of reasoning.
This case study, rather than focusing on student difficulties in undergraduate mathe-
matics, serves as a compelling example of the productive and powerful reasoning that is
possible as students make sense of complex mathematics.

Literature and Significance

Linear algebra is one of the most useful fields of mathematical study because of its
unifying power in the discipline as well as its applicability to areas outside of pure
mathematics (Dorier 1995; Strang 1988). According to Harel (1989), linear algebra is
an important subject matter at the college level in that it can (a) be applied to many
different content areas, such as engineering and statistics, because of its power to model
various situations; and (b) be studied in its own right as “a mathematical abstraction
which rests upon the pivotal ideas of the postulational approach and proof” (p. 139).
Thus, when considering the mathematical development of undergraduate students, a
first course in linear algebra plays an important, transitional role. In many universities, a
first course in linear algebra follows immediately after a calculus series and often prior
to an introduction to proof course. According to Carlson (1993), the majority of
students’ mathematical experiences up to that point in their education may have been
primarily computational in nature. The content of linear algebra, however, can be
highly abstract and formal, and this shift in the nature of the mathematical content
can be rather difficult for students to handle smoothly. Carlson (1993) posits that
concepts are often taught without substantial connection to students’ previously learned
mathematical ideas, as well as without examples or applications. Thus, students
struggle with connecting familiar concepts to prematurely formalized, unfamiliar ones.
Indeed, Robert and Robinet (1989) showed that prevalent student criticisms of linear
algebra relate to its “use of formalism, the overwhelming amount of new definitions
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and the lack of connection with what they already know in mathematics” (as cited in
Dorier et al. 2000, p. 86).

As the quote indicates, the mathematical activities central to linear algebra frequent-
ly involve mathematical ideas with which students may have little experience, such as
span or linear transformation. How do students understand these ideas and reason about
how they are related? Within mathematics education research, there is considerable
precedence in characterizing student understanding, in part, as connections between
concepts (e.g., NCTM 2000). For example, within linear algebra, Harel (1997) names
“the ability to connect ideas” as an indicator of understanding a concept (p. 109).
Because this paper focuses on how one student reasoned about solutions to Ax=0 or
Ax=b to draw connections between other concept statements in the IMT, the remainder
of this section highlights two veins of existing research: student reasoning regarding
how the concepts in the IMT are related, and the notion of “solution”.

Concepts Within the Invertible Matrix Theorem

The Linear Algebra Curriculum Study Group (Carlson et al. 1993) named a number of
topics as necessary to be included in any syllabus for a first course in undergraduate
linear algebra, such as matrix addition and multiplication, systems of linear equations,
properties of R”, and eigenvectors and eigenvalues. These concepts and others are the
very ones linked together in the IMT. Furthermore, the IMT marries mathematical
concepts from a variety of contexts; some concept statements in the IMT are vector-
oriented (such as span and linear independence), whereas others relate to linear
transformations (such as one-to-one and onto). Equivalence and the importance of 4
being an » x n matrix are also contributing factors as students develop ways of
reasoning about connections among the various concept statements.

Although many studies address more than one of the key concepts, few explicitly
investigate how students build relationships between the ideas as a main object of
inquiry; a handful of studies address students’ connections explicitly. For instance,
Stewart and Thomas (2008) studied the understandings of linear independence and
span that students need to construct an understanding of basis. The study participants
were asked to create concept maps linking the notions of span, linear combination,
basis, linear independence, and subspace. Some created concept maps that connected
basis with span and linear independence, and some were missing one or both of these
links. By comparing these concepts maps to a genetic decomposition of basis, the
authors were able to posit potential pedagogical changes, such as an increased focus on
the notion of linear combination or development of a more “embodied view” of basis.

Bogomolny (2007) investigated how example-generation tasks can elucidate student
understanding of linear algebra. Bogomolny asked students to generate an example of a
3x3 matrix 4 with nonzero entries such that the column vectors of 4 formed a linearly
dependent set. She found that many students utilized the connections “linear depen-
dence <« free variables / pivot positions / zero row in echelon form, and linear
independence <> no free variables / vectors not multiples of each other” (p. 271) to
construct their examples. She hypothesized that the connections students relied upon
were indicators as to whether they had an action view of linear dependence (e.g., a
matrix should be row-reduced and then examined for a zero row) or an object view of
linear dependence (e.g., the vectors have the property that they are linear combinations
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of each other). Thus, Bogomolny contended that example-generations tasks have the
potential to be effective assessment tools for instructors but also helpful learning tools
for students.

The Concept of Solutions in Linear Algebra

The concept of “solution” is ubiquitous in mathematics, from grade school and
continuing through university. What typifies a solution, however, varies across content
areas. For instance, in high school algebra, determining a solution to a system of
equations consists of determining what values satisfy the equations within the system.
In differential equations, however, finding a solution to a system of differential
equations may entail determining what functions satisfy the system of differential
equation. Furthermore, in many cases such as modeling physical problems, solutions
to differential equations cannot be expressed in closed form and must be solved
numerically (Habre 2000). In linear algebra, a common difficulty for students is the
change in symbolism (Harel 2000), which in turn complicates the notion of solution.
From high school courses or single-variable calculus, students are accustomed to
equations such as cx=d, where all three variables take their values from the real
numbers. However, in the matrix equation Rx=0, R is a matrix and both x and 0 are
multi-component columns vectors. Finding the solution (if one exists) entails deter-
mining the values for each component of x such that the associated system of linear
equations has solutions. Thus, even commonly used symbolism in linear algebra entails
a new level of complexity for students.

Particular to the equation Ax=b, Parker (2010) found that student weaknesses in
understanding the concept of span may stem from an imprecise understanding of how
to interpret the matrix equation Ax=b. She found students thought of the b as the
solution to the matrix equation, rather than the x, and she posited that this interpretation
“could follow from an everyday understanding of ‘solution’ as the conclusion or end
result of something. Using this idea, the solution would appear at the end of an
equation. . .rather than in the middle” (p. 249).

Based on research in student thinking, Larson and Zandieh (2013) lay out a
framework of three prominent interpretations of the equation Ax=b, highlighting
the role of the vector x in each interpretation. The linear combination interpre-
tation is when b is a linear combination of the column vectors of the matrix A,
and x is the set of weights on the column vectors of A. The systems interpre-
tation is when x is interpreted as the set of values that satisfy the system of
equations corresponding to Ax=b, and the transformation interpretation of Ax=b
corresponds to a view in which an input vector x is transformed into the output vector
b via multiplication by the matrix 4 The utility of this framework is that it offers an
analytic lens through which to make sense of student thinking via the variety of both
correct and incorrect ways students blend and coordinate ideas. I return to this frame-
work in the conclusion section.

In summary, the concept of solutions plays a central and important role throughout
mathematics. In higher-level mathematics, student struggles include understanding
what constitutes a solution, the complexity of utilizing and interpreting the
symbolism involved, and navigating multiple interpretations for a solution of a given
equation. This case study provides a compelling example of the productive and
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powerful ways of reasoning about solutions that are possible in introductory
linear algebra.

Analytical Framework

Approaching genetic analysis through a foundation in anthropological research, Saxe
(2002) and his colleagues (Saxe et al. 2009) analyze human development over time
from three different strands as a way to account for some of the complex factors of
development. The authors define microgenesis as the short-term process by which
individuals construct meaningful representations in activity, ontogenesis as the shifts in
patterns of thinking, and sociogenesis as the reproduction and alteration of representa-
tional forms that enable communication among participants in a community (Saxe et al.
2009). In this study, I utilized the strands of microgenetic and ontogenetic analysis,
paired with Toulmin’s Model of Argumentation (1969) to frame my investigation into
Abraham’s ways of reasoning about the IMT in isolation (microgenesis) and over time
(ontogenesis).

The Toulmin model of argumentation (Toulmin 1969) is based upon a distinction
between logical and substantial arguments. Toulmin claimed that arguments presented
in discourse in some socio-historical context for a particular purpose (what he called
substantial arguments), such as a justification for an already established claim in the
court of law, often are structurally distinct from the formal, deductive structure of logical
arguments thought to be inherent and absolute. In other words, some aspects of socially
presented arguments are context dependent yet still function as acceptable justifications
for particular claims. Toulmin described six main components of a substantial argument:
claim, data, warrant, backing, qualifier, and rebuttal (see Fig. 2). The first three of
these—claim, data, and warrant—are seen as the core of an argument. According to this
scheme, the claim is the conclusion that is being justified, whereas the data is the
evidence that demonstrates that claim’s truth. The warrant is seen as the explanation
of how the given data supports the claim, and the backing, if provided, demonstrates
why the warrant has authority to support the data-claim pair.

This work has been adapted by many in the fields of mathematics and science
education research (Krummheuer 1995; Rasmussen and Stephan 2008; Yackel 2001) as
a tool to assess the quality or structure of a specific mathematical or scientific argument
and to analyze students’ evolving conceptions by documenting their argumentation

Fig. 2 Toulmin’s model of
argumentation QUALIFIER

DATA: |y | CLAIM:
Evidence | A |Conclusion

WARRANT: Explains
how the data leads
to the claim

the argument

e ? _‘,.—""i'he core of

REBUTTAL

BACKING: Explains
why the warrant has
authority

@ Springer



Int. J. Res. Undergrad. Math. Ed. (2015) 1:315-338 321

(Erduran et al. 2004; Inglis et al. 2007; Weber et al. 2008). In this paper, I use Toulmin’s
model to illuminate Abraham’s argumentation as he reasoned about solutions to Ax=0
and Ax=b. My use of “argumentation” is consistent with Krummheuer (1995) in that it
relates to interactions that involve an intentional explication of the reasoning leading to
a solution during or after its elaboration; argumentation is considered to be a
“specific feature of social interaction” (p. 226). In this study, I analyzed
Abraham’s argumentation within whole class discussions, small group interactions,
and individual interviews; each of these is considered a “social interaction”. This is
compatible with Aberdein’s (2009) definition of argument as “an act of communication
intended to lend support to a claim” (p. 1).

Methods

Data for this study came from the third iteration of a semester-long classroom teaching
experiment (Cobb 2000) in an inquiry-oriented introductory linear algebra course. This
work draws on the instructional design theory of Realistic Mathematics Education
(RME) (Freudenthal 1991), which begins with the tenet that mathematics is a human
activity. The intention was to create a linear algebra course that built on student
concepts and reasoning as the starting point from which more complex and formal
reasoning developed (details about the design research behind the course creation can
be found in Wawro et al. 2013). The class analyzed comprised 30 students, including
Abraham, and students enrolled had generally completed three semesters of calculus (at
least two semesters were required). Approximately half had also completed a discrete
mathematics course, most were in their second or third year of university, and student
majors included computer engineering, computer science, mathematics, statistics, or
another science or business field. Abraham was a junior statistics major who had
completed three semesters of calculus and the discrete mathematics course. The class
engaged in various RME-inspired instructional sequences focused on developing a
deep understanding of key concepts such as span and linear independence (Wawro
et al. 2012b), linear transformations (Wawro et al. 2012a), Eigen theory, and change of
basis. These instructional sequences often involved engaging in a guided reinvention of
key definitions or procedures. The textbook Linear Algebra and its Applications (Lay
2003) was used as a supplemental resource.

My rationale for choosing Abraham as the subject of my case study was two-fold.
First, he was a member of a high-functioning small group in the linear algebra
classroom. That is, Abraham and the members of his small group (a) with each other
by pushing one another to explain their thinking and expecting participation from each
member of the group; and (b) with the mathematics by staying on task, working
through the given problems together, and displaying a genuine interest in exploring
and understanding the content at hand. Second, Abraham was a high-functioning
individual in the classroom community and his small group. That is, Abraham (a)
was academically prepared in that he had successfully completed the requisite courses
that positioned him for success in linear algebra; (b) was personally engaged and
interested in the mathematics; and (c) was a key informant (Tremblay 1989) in that
he possessed a unique ability to articulate his thinking and was willing to do so in
whole class, small group, and interview settings.
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The data set for this study draws from the following four sources: video and
transcripts of whole class discussion, video and transcripts of small group work, video
and transcripts from individual interviews, and various written work. The whole-class
and small group data came from the ten (out of 31) class sessions that were deemed
most instrumental to the development of the IMT. To determine this, a day or portion of
a day was deemed relevant for analysis if the classroom discourse either
implicitly or explicitly involved the class members actively engaging in devel-
oping ways of reasoning about two or more concepts from the IMT in con-
junction with each other. For each of those 10 days, I watched the video from
Abraham’s small group (which also captured work in whole class) and created
a chronological summary of that class day’s events. This included time-stamped
information about the topic of discussion, the tasks or problems being investi-
gated, and instances of small group work for that day. These descriptions indicated
which sections of the video data were relevant for the research topics regarding the IMT,
and thus became the small group work data for this study.

Abraham participated in two semi-structured individual interviews (Bernard 1988):
one in the middle of the semester and one the week after final exams. The first
interview was conducted before the IMT was fully developed in an explicit manner.
Thus, this interview was composed mostly of questions that asked him to relate the
ideas to which he had already been introduced (such as span and linear independence,
but not determinants), to solve a given problem, or to generate examples or non-
examples. The post-semester interview explicitly asked him to reason about concept
statements that comprise the IMT and how he saw them as equivalent. Finally, written
work in the form of in-class worksheets, exams, reflections, homework, and portfolios,
as well as Abraham’s written work from the interviews, served as secondary data
sources. The video for each of the 7 days of whole class discussion and small group
work, and the video for both of Abraham’s interviews, was transcribed completely by a
professional transcriber; the relevant sections of the transcript were checked for accu-
racy and completeness.

To use Toulmin’s Model as an analytical tool, I created an argumentation scheme for
each of the claims found in the transcript. My determination of what in the transcript
served as claim, data, warrant, backing followed the recommendation of Rasmussen
and Stephan (2008) for documenting the structure and function of argumentation:
claims “consist of either an answer to a problem or a mathematical statement for which
the student may need to provide further clarification,” data “usually involve the method
or mathematical relationships that lead to the conclusion,” warrants “are elaborations
that connect or show the implications of the data to the conclusion,” and backing serves
to give validity to the core of the argument (p. 198). The authors comment that the
function that a various utterance plays within an argument is critical to validly identify
the various elements of the argument. That is, one utterance may serve as a claim that
needs justified in one argument (e.g., the claim “any set of vectors containing the zero
vector is linearly dependent”) but serve as data in a different argument (e.g., the claim

“the set { [;] , {8} }” is supported with data “any set of vectors containing the zero

vector is a linearly dependent set™).
For reliability purposes, at least one research colleague also constructed Toulmin

schemes for a sample of arguments. As Rasmussen and Stephan (2008) state, this
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process is used to verify and/or refute each argument. Finally, each Toulmin scheme
was given a unique label based on the day and order in which it occurred (e.g.,
Argument 20.1, Argument 20.2, Interview 2 Q6a Argument 4, etc.). The compilation
of these created an argumentation log that identified each claim and supporting
justification given. This process is consistent with Phase 1 of the methodology
developed by Rasmussen and Stephan (2008) for documenting collective activity.
Ontogenetic analysis concerns shifts in patterns of thinking over time, and these shifts
are documented by analyzing a learner’s microgenetic processes at various stages of
development. In this study, each individual Toulmin scheme is analogous to a
microgenetic analysis regarding an explanation offered to serve the function of justifying
a connection or solving a novel problem. The compilation and comparison over time of
these Toulmin schemes is an ontogenetic analysis of Abraham’s ways of reasoning about
the IMT, revealing aspects such as what ideas in the IMT were used frequently and how
the structure of his arguments changed over time. Thus, claims made about these
arguments occur at two different levels. First, microgenetic analysis considers the struc-
tural layout as well as the mathematical content of each distinct argument that occurred at
different moments throughout the semester. Ontogenetic analysis, by considering the
collection of arguments and their relationship to one another, considers mathematical
development, thus addressing how Abraham reasoned about the IMT over time.

Results

After coding Abraham’s argumentation with Toulmin’s Model, I noticed that
reasoning about solutions to either Ax=0 or Ax=b was prominent in his
argumentation about the IMT throughout the semester. Indeed, a search through
the compilation of all Toulmin schemes of his argumentation revealed that the
word “solution” appeared 103 times within the Toulmin schemes. From a
search of ten key words within the coded transcripts (such as span,
indepeden(t/ce), dependen(t/ce), reduce, vector, etc.), the word “solution” had a relative
frequency of 21.2 %. This is in contrast to a relative frequency of 6.5 % for “solution” in
a search for the same ten keywords within whole class discussion transcripts.
Furthermore, the occurrences of “solution” in Abraham’s argumentation were distrib-
uted across the claim, data, warrant, and backing of the different Toulmin schemes in
which it appeared.

There are two statements in the IMT developed in Abraham’s class that
explicitly use the word “solution” in their phrasing: “The only solution to Ax=0
is the trivial solution” and “For every b in R”, there exists a solution x to Ax=
b”. The results section highlights two themes in which Abraham used reasoning
about solutions to either Ax=0 or Ax=b to justify connections between the
other concept statements in the IMT. The first section is dedicated to an
ontogenetic analysis of Abraham’s justification of the equivalence of “The
columns of 4 form a linearly independent set” and “The columns of 4 span R".”
Additionally, Abraham reasoned about the notion of solution to make claims about
nearly every other concept captured within the IMT: one-to-one and onto transforma-
tions, invertibility, determinants, null space, and eigenvalues. The second section of
analysis addresses this way of reasoning with solutions.
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Reasoning About Solutions to Form Connections Between Span and Linear
Independence

The two statements in the IMT developed in Abraham’s class that explicitly use the
word “solution” in their phrasing are: “The only solution to Ax=0 is the trivial solution”
(listed as statement #7 in the IMT, see Fig. 1), and “For every b in R”, there exists a
solution x to Ax=b" (listed as statement #3 in the IMT, see Fig. 1). The definition of
linear independence developed in class was: “A set of vectors {v;,v,,...,v,} in R" is a
linearly independent set when the only solution to the equation ¢yv;+cv,+...+¢,v,=0
is if all ¢y,cs,...,c, are zero”. Once matrix equations were introduced, the class
established that 4 could be seen as an array of column vectors, and a matrix times a
vector as the linear combination where the entries of x are the weights for the respective
columns of A. Thus, by definition, statement #7 in the IMT is equivalent to “The
columns of 4 form a linearly independent set” (statement #6 in the IMT, see Fig. 1).
Further note this equivalence holds true for any m x n matrix. Regarding the other
statement in the IMT that uses the word “solution” (statement #3), the class had
developed early in the semester a theorem (which had served as a foundation for the
IMT) stating the equivalence of the first four statements in Fig. 1 for any m x n matrix
A. Thus, the equivalence between “The columns of 4 span R™ (statement #1) and “For
every b in R”, there exists a solution x to Ax=>b" (statement #3) was established in the
classroom community.

When 4 is an n x n matrix, as is the case in the IMT, not only do the two
aforementioned equivalencies hold true (between #3 and #7, and between #6 and
#1), all four of the statements become equivalent. Of interest in this section is analyzing
how Abraham reasoned about the equivalence of span and linear independence.
Specifically, I use Toulmin’s scheme to perform multiple microgenetic analyses of

Interview 1, Q6a, Argument 1

|QUaIifier: This is hard to explain |

Data: The column vectors of A would | Claim: If the columns of a 3 x 3 matrix A
have to be linearly independent span R3, then it is FALSE that the columns
vectors of A are linearly dependent.

Warrant: The only solution is the trivial solution.

|
Backing: And so if that holds for zero then that means
that it should hold for, um, every point. So that every,
um, every point would have a unique solution. .

Interview 1, Q6a, Argument 2

Qualifier: It's so weird, it’s like sometimes something makes like sense to you, and
then you just know it's right, but sometimes you don’t know how to really, like expl
—you know what | mean? Like really explain, explain why, why it is true though
Data: / know it’s linearly independe I Claim: If the columns of a 3 x 3 matrix A
span R?, then it is FALSE that the columns
vectors of A are linearly dependent.

Warrant: like automatically my mind just jumps to, 'they're
linearly independent, they can, they span everywhere.”

Fig. 3 Abraham reasons that if the columns of a 3% 3 matrix 4 span R>, then it is FALSE that the columns
vectors of A are linearly dependent
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Abraham’s reasoning about linear independence and span, as well as to facilitate an
ontogenetic analysis of the shifts in Abraham’s reasoning over time. The arguments |
analyzed here were chosen because of the central role reasoning about solutions (to
either Ax=0, Ax=b, or both) held in Abraham’s discourse.

During both of the individual interviews (one conducted midway and one conducted
at the end of the semester), Abraham was asked to respond to the following prompt:
“True or False: If the columns of a 3x3 matrix span R>, then the column vectors are
linearly dependent.” During both interviews, Abraham immediately responded
correctly with “false”. The following transcript provides Abraham’s initial
explanation of why he stated false (“A” stands for

Abraham, and “Int” stands for the interviewer) during Interview 1:

1 A: The column vectors of 4, this is hard to explain, but the column vectors of 4 would have to be

2 linearly independent. Um...and that means, what does that mean exactly? I mean that means that the
3 only solution is the, uh, trivial solution. I mean, well—

4 Int: What means that the only solution is the trivial solution?

5 A: That’s interesting, I don’t know if I thought about it like that, because usually the, that’s the, trivial
6 solution is for zero only, so how does that apply to any point? Oh! That would apply, usually in

7 linearly independent definition, you know, then you have the only solution to, you know, the ¢;x;
8 plus, you know, equals zero is ¢;=c,=c3=0. [Int: Ok.] And so if that holds for zero, then that means
9 that it should hold for, um, every point. So that every, um, every point would have a unique solution.
10 [Int: Ok.] And um, like, uh, every point has a unique solution and it’s linearly independent. I guess
11 that just relates linear independence to not just zero but to all points, is a unique solution.

12

13

14 A: [Reads from the question prompt] And to ‘explain your answer.” ... It’s so weird, it’s like sometimes
15 something makes like sense to you, and then you just know it’s right, but sometimes you don’t know
16 how to really, like expl—you know what I mean? Like really explain, explain, you know, why, why
17 it is true though. I know it’s linearly independent.

18

19 Int: Ok. You know that what’s linearly independent?

20 A: Well I know that these 3 column vectors are linearly independent. But that like automatically my
21 mind just jumps to, ‘they’re linearly independent, they can, they span everywhere’.

22

23 Int: Ok. Why does, why in your mind does ‘they’re linearly independent” mean that they span

[}
=

everywhere? And when you say ‘everywhere,” what do you mean ‘everywhere?’

N
W

A: Tshould be more specific. They, ok, they span all of R?.

o
[=}

Int: Ok. And you’re talking again about the column vectors span all of R*? [4: Yes.]

This response is decomposed into two Toulmin schemes (see Fig. 3; Italics in
Toulmin schemes indicate exact quotes throughout the manuscript). In this response,
Abraham immediately claimed the statement was false and qualified his argument,
stating it was “hard to explain” (line 1). The data he provided in an attempt to justify the
claim was that “the column vectors of 4 would have to be linearly independent” (lines
1-2), and his warrant was the definition of linear dependence (line 3). The interviewer
asked for clarification of his justification, so Abraham supplied a backing that if Ax=0
had only the trivial solution, then there would be a unique solution to Ax=b for every b
(lines 5-10). In this justification, Abraham seems confident the given implication is
false, but he struggles to explain why. Mathematically, the explanation he provided
argued that if the columns of a 3x3 matrix 4 were linearly independent, then the
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column vectors of 4 spanned R?; this is more closely aligned with the converse of the
implication he was asked to verify or refute, rather than the implication itself. When
Abraham explained his answer further, he reflected that sometimes you might know
something is true but not know how to explain why (lines 14—18). Lines 20-26 then
confirm that he was thinking in the direction “linear independence implies span”.

Lines 1-26 and Fig. 3 provide the transcript and analysis of Abraham’s initial
response to the interview question; a deeper look into his response in Interview 1
reveals a pivotal moment in Abraham’s reasoning. The remainder of his conversation
with the interviewer, whose follow-up questions resulted in Abraham explaining why
having a unique solution to Ax=0 would imply there is a unique solution for every b to
Ax=b, is given in lines 27-49.

27 [17 s pause] I started to think about this, like when you have [writes Ax=0], this is Ax=0, that a lot of the
28 characteristics apply to Ax= some vector b [writes Ax=b] ... But because, like, I have all these points here
29 [draws dots in an augmented matrix], ... and the 0’s [writes zeroes in the rightmost column of the

30 matrix]... And then let’s say I was, um, I had some other points [draws an empty augmented matrix with
31 last column <1, 2, 3>]. Ah, this, whatever I do over here with row reducing this [points to his original
32 augmented matrix], it’s really only going to affect this [points to the coefficient matrix portion]. So

33 [repeats gesture on newer augmented matrix] if I row reduce both of these, no matter what they are [fills in
34 the dots on the new augmented matrix], like this side [taps paper repeatedly on the coefficient matrix side
35 of both augmented matrices] ends up being the same, you know, this part of it.

36

37

38 ... Ifthere’s a unique solution, ¢;=0, c,=0 and ¢3=0 for zero [points to the <0,0,0> in the first augmented
39 matrix] then whatever, since, I mean, this [points back and forth between the two coefficient matrices]
40 when you row reduce it, it ends up being like the same thing on this side, then most of the time, there
41 should be a unique solution for any b over here [points to the <1,2,3> in the second augmented matrix]. If,
42 if it like, I think of it translating, but there are cases where it doesn’t, and I remember thinking of one,
43 where it doesn't work like that.

44

45 ... But there are cases where it doesn’t, and I remember thinking of one, where it doesn’t work like that.
46 And it’s actually when the bottom row ends up being like that [writes “0 0 0 | 1”’]. That’s when there’s [no
47 solution].

After clarifying remarks with the interviewer (lines 23-26), Abraham spontaneously
stated, “I started to think about this, like when you have, this is Ax=0, that a lot of the
characteristics apply to Ax= some vector b” (lines 27-28). He then spent 5 min
exploring, in what seemed to be a way new to him, how a relationship between
solutions of these two equations would imply relationships between the concepts of
span and linear independence (lines 29-47). This argument, whose Toulmin scheme is
given in Fig. 4, was the first time Abraham clearly articulated that he was thinking
about a relationship between solutions to Ax=0 and Ax=b.

Although the claim “when you have, this is Ax=0, that a lot of the characteristics
apply to Ax= some vector b” (lines 27-28) is somewhat vague, his data and warrant
serve to provide support for this claim by arguing that one characteristic that “applies”
is that of unique solutions. Within his data, Abraham stated that when both systems are
converted to augmented matrices, the coefficient matrix is identical in both. Thus, if
you follow the same row-reducing steps, the final row-reduced echelon form of 4 in
Ax=b will be the same as that in Ax=0 (lines 28-34). In his warrant, he stated a unique
solution to Ax=0 would imply that “most of the time, there should be a unique solution

@ Springer



Int. J. Res. Undergrad. Math. Ed. (2015) 1:315-338 327

for any b” in his Ax=b system (lines 38—42). The only elaboration provided for that
somewhat unclear warrant was his qualifier, wherein he stated he remembered that if
the bottom row of a row-reduced augmented matrix looks like [0 0 O | 1], that there
would be no solution to Ax=b (lines 45-47). It could be that Abraham was recalling a
situation related to a non-square matrix 4 (namely, if 4 is an » X m matrix with
n < m, then it is possible to have a unique solution to Ax=0 but no solution to
Ax=b for some beR™); however, [0 0 0 | 1] could not occur when there exists
a unique solution to Ax=0 for an n x n (square) matrix 4, and Abraham failed
to recognize that.

The previous example of Abraham reasoning about Ax=0 and Ax=b together
stemmed from a question which asked him to reason about whether or not three vectors
spanning R? implied the vectors were linearly dependent. Although he knew that this
implication was false (see Fig. 3), how to reason about that implication by reasoning
about solutions (or unique solutions) was a developing idea for him. Furthermore, he
reasoned about what the zero vector being the only solution to Ax=0 implied when
reasoning about the solutions to Ax=b for all possible b. Given that this line of inquiry
was not one that surfaced cleanly during whole class discussion, its originality with
Abraham is worth noting.

The next argument under consideration occurred during whole class discussion on
Day 31, when Abraham mentioned unique solutions in conjunction with both span and
linear independence. The class was presenting work about which concept statements
from the IMT were “most obviously equivalent” for their small group, and Justin, a
member of Abraham’s small group, had just presented an explanation for why his
group thought the following three statements are most readily seen as equivalent: (a)
“The columns of A span R, (b) “The column space of 4 is all of R, and (c) “For
every b in R” there is a way to write b as a linear combination of the columns of 4.”
Abraham was preparing to explain why a fourth statement, “For every b in R” there
exists a solution x to Ax=b,” could join that category when Justin tried to add in a fifth,
“the only solution to Ax=0 is the trivial solution.” Abraham, however, was quick to
respond that, for him, that fifth statement did not automatically belong in the category
with the other four. The Toulmin scheme for his response is given in Fig. 5.

Abraham claimed that, for him, the fifth statement only belonged in the category if he
were to add the word “unique” to the statement, “For every b in R” there exists a solution
x to Ax=b". His data was that adding the word “unique,” so that the statement read, “For
every b in R” there exists a unique solution x to Ax=b,” would imply that the column
vectors of A4 are linearly independent. He finished by saying, “but without the word
[unique], I just think of ‘we can get to every b.” He did not provide a rationale for why
adding the word “unique” to the statement would imply the column vectors were
linearly independent, and he was not asked for justification. Argument 31.6
demonstrates a shift in Abraham’s ability — from the first interview midway in the
semester to the last day of class — to reason about these concepts in conjunction with one
another. During the first interview (see Figs. 3 and 4), Abraham struggled to explain how
he understood the connection between linear independence and span when 4 is n x n. He
was unable to provide data or warrants to adequately support his claims, and he made
claims regarding how solutions to Ax=b or Ax=0 related to each other or to span and
linear independence about which he was uncertain and partially incorrect. On Day 31, he
seems more confident in his understanding of the concepts’ relationship and distinction,

@ Springer



328

Int. J. Res. Undergrad. Math. Ed. (2015) 1:315-338

Interview 1, Question 6a, Argument 3

Qualifier: But there are cases where it doesn't, and | remember thinking of
one, where it doesn't work like that. And it's actually when the bottom row

ends up being like that [writes “0 0 0 | 1”]. That's when there's no solution

augmented matrix here, and the 0's [draws
augmented matrix shown in (a)]. And then let's
say | was, um, | had some other points [draws
augmented matrix shown in (b)].

(a) =

Whatever | do over here with row reducing this
[points to augmented matrix in (a)), it's really

Data: / have all these points here, and | have this

Claim: When you have Ax =0, a lot

of the characteristics apply to Ax
equals some vector b.

> (b) F -
-

o - ~ s
gl - « - N
< / 5D

Warrant: If there's a unique solution, ¢,=0, ¢,=0
and ¢, = 0 for O [points to the zero vector in (a)]
then whatever, since, | mean, this [points back and
forth between coefficient matrices, shown in (c)]
when you row reduce it, it ends up being like the
same thing on this side, then... then most of the
time, there should be a unique solution for any b

only going to affect this [partitions off over here [points to the <1,2,3> vector]
coefficient matrix in (a) and (b) with his hands]. © - - -

Fig. 4 Abraham reasons that some characteristics of Ax=0 apply to Ax=b

as evidence in his decisive and quick attention to Justin’s suggestion. Abraham’s data
relied on how uniqueness of solutions to Ax=>b implied linear independence. Here
Abraham used as data that which he had previously needed to justify. This ontogenetic
analysis of shift in form and function of Abraham’s argumentation, facilitated by the use
of Toulmin’s Model, shows a transition in Abraham’s ways of reasoning about solutions
to Ax=b or Ax=0, from one of uncertainty to one of great ease and utility.

The final example of Abraham reasoning about solutions to Ax=0 and Ax=b to form
connections between span and linear independence is Argument 1 from Interview 2,
Question la. In this argument, Abraham was responding to the prompt, “True or False:
If the columns of a 3x3 matrix span R>, then the column vectors are linearly
dependent”. Note this is the same prompt he was responding to in the arguments
presenting in Figs. 3 and 4 but with 2 months having passed between his two responses.

1 That would be false. Let’s see. [7-s pause] So if, the way I think of it is, if it, if it’s spanning
2 a 3x3 matrix [draws the outer brackets for a matrix], um, then it's going to have like, you
3 know, 3 pivot positions here [writes 3 ones in on the diagonal]. And for like a square

4 matrix, I just think like if this is 3 pivots in each row, then it’s also going to be,

5 automatically going to be 3 pivots in each column. And that way you’re always going to
6 have a linearly independent set of...of, um, like x equals something, y equals something, z
7 equals something, because of that. And then that’s, so that’s going to be, basically a unique
8 solution for every output. So let’s see, so [writes Ax=b], for every b [taps the b] there's a
9 unique x vector [taps the x], which is [writes a vector <x, y, z> next to the matrix] I guess
10 if you want to think of, I don’t know, this vector [taps on the vector that he wrote next to
11 the matrix then writes an equals sign], this output b [draws two brackets after the equals
12 sign]. There’s a unique <x, y, z> vector such that Ax=b in the output, so that’d be linearly
13 independent, but not dependent.

As he had done in Interview 1, Abraham claimed the statement was false. The
structure of his justification in Interview 2, however, shifted. First, he used as data that
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A had three pivots, which led to a warrant that for “a square matrix, I just think like if
this is three pivots in each row, then it’s also going to be, automatically going to be
three pivots in each column”. Finally, for a backing, he stated, “so that’s going to be,
basically a unique solution for every output...so that’d be linearly independent, but not
dependent”. In the latter portion, there appeared to be an implicit assumption that a
unique solution for Ax=>b for every b implies linear independence (this would be valid,
for the zero vector would be such a vector b and 40=0 for any matrix 4 because it
defines a linear transformation). Abraham’s previous argumentation schemes support
his eventual ability to reason in this way, or, even more so, to reason about, “there exists
a unique solution to Ax=b for every b,” as an alternative definition of linear
independence.

To aid in comparing the two responses, Table 1 has the Toulmin schemes of his
response from the Interview 1 (Fig. 3) in the leftmost column and the Toulmin schemes
of his response from Interview 2 in rightmost column. Here I draw attention to the two
levels of backing within this argument. Recall that during Interview 1, Abraham had
difficulty explaining why the correct answer to the prompt’s question was “false,” with
his first two arguments basically conveying that he “just knew” it was so. His third
argument in that Interview 1 response indicated he was beginning to think in terms of
unique solutions (Fig. 4). As shown in the right side of Table 1, however, he used this
very thing that he struggled with in Interview 1 as backing for his claim during
Interview 2. In other words, he justified that a spanning set of vectors were linearly
independent by reasoning about unique solutions to Ax=b. Through ontogenetic
analysis focused on a comparison of Interview 1 and 2, a dramatic shift in
Abraham’s ways of reasoning is illuminated. Furthermore, nuances of this evolution
of reasoning are shown plausible when additional arguments (namely those presented
in Figs. 4, 5, 6, and 7) are considered.

Reasoning About Solutions to Support Claims About Other Concepts

Abraham also used solutions to reason about relationships between other concept
statements within the IMT. Examples for each relevant concept are: free variables
(during Interview 1); one-to-one (during whole class discussion and Interview 2); onto
(during Interview 2); determinants (during Interview 2); null space (during whole class
discussion and Interview 2); and eigenvalues (during Interview 2). I conclude by
detailing two of these as exemplars.

Consistent with the argument from Day 31 given in Fig. 5, consider the following
explanation from Interview 2, which occurred about a week after Day 31. During
Interview 2, Abraham was asked to arrange the 16 statements from the IMT (which

Whole Class Discussion, Argument 31.6

Qualifier: But without the word, | just think of we can get to every b |

Data: Because 'unique' makes it Claim: If we added a word ‘unique,” then |
linear independence would put it [the only solution to Ax =0 is
the trivial solution] in there

Fig. 5 Abraham explains why the ‘trivial solution” does not belong with the other statements

@ Springer



330 Int. J. Res. Undergrad. Math. Ed. (2015) 1:315-338

Table 1 Toulmin schemes for Abraham’s two interview responses to the prompt regarding an implication
between span and linear dependence

Prompt: Suppose you have a 3 by 3 matrix 4 and you know that the columns of 4 span R®. Decide if the
following statement is true or false, and explain your answer: The column vectors of 4 are linearly dependent.

Interview One (March 19)

Interview Two (May 19)

Int 1 Q6a Arg 1

Claim: If the columns of a 3x3
matrix 4 span R, then it is FALSE
that the columns vectors of 4 are linearly
dependent.

Data: The column vectors of A would have
to be linearly independent

Qualifier: This is hard to explain

Warrant: The only solution is the trivial solution

(Interviewer asks for clarification of the warrant)

Backing: And so if that holds for zero then
that means that it should hold for, um, every
point. So that every, um, every point would
have a unique solution.

(Reads “explain your answer” prompt and responds)

Int 1 Q6a Arg 2

Claim: If the columns of a 3% 3 matrix 4
span R?, then it is FALSE that the columns
vectors of 4 are linearly dependent.

Data: [ know it’s linearly independent

Qualifier: s so weird, it’s like sometimes
something makes like sense to you, and then
you just know it’s right, but sometimes you don’t
know how to really, like expl—you know what
1 mean? Like really explain, explain why, why
it is true though.

Warrant: like automatically my mind just jumps to,
‘they’re linearly independent, they can,
they span everywhere.’

Int2 Qla Arg 1

Claim: If the columns of a 3x3
matrix 4 span R?, then it is FALSE
that the columns vectors of 4 are
linearly dependent.
Data: Matrices whose columns span
R® have three pivot positions
Warrant: And for like a square matrix,
1 just think like if this is three pivots
in each row, then it's also going to be,
automatically going to be three pivots
in each column.
Backing: And that way you're always going
to have a linearly independent set of...of, um,
like x equals something, y equals something,
z equals something, because of that.
Backing2: And then thats, so that's going to be,
basically a unique solution for every
output...There’s a unique <x.,y, z> vector
such that Ax = b in the output, so that'd
be linearly independent, but not dependent.

were printed on individual cards) into piles that, for him, “went together”. As he and the
interviewer discussed his choices, the interviewer asked Abraham to discuss a grouping
he had not originally made: “I was wondering if you can pull off [to the side] ‘one-to-
one,” ‘onto’ and ‘A4 is invertible’. And can you talk about, do you have any way to
connect these three ideas together?” Abraham’s response culminated in a claim that
“one-to-one and onto together” implies there is a unique solution to Ax=b; he did not
address invertibility in his response. His written response is given in Fig. 6. For brevity,
the full transcript and Toulmin analysis of his initial response is omitted.

First, note that Abraham gave non-standard definitions for onto and one-to-one

—
transformations (see Fig. 6): for “onto,” he wrote, “for every b there is at least one X’
- .
such that AX” = b . For one-to-one, as he wrote, he stated, “one-to-one, I’'m going to
—
say at most. Let’s see if | can say it exactly the same way. For every b there’s at most

- .
one x such that AX = b”. These formulations are nonstandard because one-to-one
and onto are defined as characteristics of functions (the definitions given in class are:
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Fig. 6 Abraham’s written response to how he connects the ideas of “one-to-one,” “onto,” and “A4 is

invertible” together

Let T:R"—R" be a transformation. T is called one-to-one if for every beR™ there
exists at most one xeR” such that T(x)=b. T is called onto R™ if for every beR™ there
exists at least one xeR” such that 7(x)=b.), whereas Abraham defines them as if they
are properties of matrix equations. Abraham’s class only worked with R” as vector
spaces, and transformations 7:R"—R"™ were shown to be able to be defined by a
matrix representation 4, where 7(x)=Ax for an m x n matrix 4. As such, there are a
couple of possible explanations for Abraham’s definitions. Abraham may have been

Interview 2 Q3b, Argument 10
Data: N
Datal: here's at Claim1: / said there
most one solution could be 0 solutions Claim: “one-to-one”
or one to Ax = b. implies “linear
ind d "
| Warrant1: This is the definition of 1-1 I independence

Data2: And then | can Claim2: There's
reduce this, if Ax = 0, what one solution to
do we know about Ax = 0? Ax=0.

We know that it always has
at least one solution,
namely the trivial solution,
it always has at least that.

Warrant2: So the definition of linear
independence, right here, the only
solution to Ax = 0 is the trivial solution

Warrant: So there’s 1 solution to Ax = 0. Then that solution must be the
trivial solution. If there's one solution, it must be the trivial solution.

Fig. 7 Abraham explains how one-to-one and linear independence are related
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speaking metonymically (Lakoff and Johnson 1980) about the matrices as if they were
themselves the linear transformations; alternatively, Abraham may have incorrectly
assigned “one-to-one” and “onto” as properties of matrix equations.

Abraham argued that onto transformations have at least one solution and one-to-one
transformations have either zero or one solutions. He wrote “span” under his definition
of onto, pointed to his definition, and stated, “this is span”. He wrote “L.I.” (for linear
independence) under his definition of one-to-one, pointed to this definition, and stated,
“this is linear independence” (see Fig. 6). He noted the intersection of those possibilities
implied that if a transformation is both one-to-one and onto, then for every b there
would be exactly one solution x such that Ax=b.

As a follow-up, Abraham was asked to further explain how one-to-one and linear
independence were related for him (lines 2—-3 in the below transcript); note the prompt
is rather open-ended. Thus, Abraham could have discussed a relationship at a broad
conceptual level, provided a proof of the concept statements’ equivalence, or provided
a proof of one direction of the implication. His response most closely resembles that the
column vectors of the matrix associated with a one-to-one transformation would be
linearly independent.

Int: The one thing I would like to hear, maybe you said it before, if you did, you can say a quick
response, How it is that onto and span are related, and one-to-one and linear independence are
related?

A:  This one, why is one-to-one linear independent? How do I think of this? [22-s pause] So if there’s at
most one solution, I said there could be zero solutions or one to Ax=b right? Here’s at most one
solution, so there’s zero or one solutions. Solutions. Now, [5-s pause] I know how I think of this.
This, if I reduce it down to Ax=0. How can I, what am I trying to do again, linear independence,
right?

O 001 N A W~

10 Int: Yeah, how those two ideas, one-to-one and linear independence connect for you?

11 A: So this is the definition of one-to-one, so I have zero or one solutions to Ax=b. So that

12 comes naturally from there ... I can reduce this, if Ax=0, what do we know about Ax=
13 0? We know that it always has at least one solution, namely the trivial solution, it

14 always has at least that. So then to me that naturally goes to, there’s one solution to
15 Ax=0. Because you, for Ax=0, you can never have zero solutions, you always have at
16 least zero being a solution. So now that says there’s one solution to Ax=0. So that’s the
17 trivial solution, ooh. So the trivial, that’s the trivial solution. Which leads to linear

18 independence. So the definition of linear independence, right here, the only solution to
19 Ax=0 is the trivial solution. So there’s one solution to Ax=0. Then that solution must
20 be the trivial solution. If there’s one solution, it must be the trivial solution. Because no
21 matter what, zero is going to be the solution to 4x=0. That’s how I think of that.

22

During his response to the interviewer’s question (line 1-3), Abraham said the word
“solution” 21 times (lines 4-22), ten of which were noted in the Toulmin’s scheme of
this argument (see Fig. 7). In essence, Abraham responded by referring to the defini-
tions of both one-to-one and linear independence, as well as the zero property of linear
transformations (i.e., that 7(0)=0 for any linear transformation 7) to reason that if a
given transformation is one-to-one, the column vectors of the associated matrix are
linearly independent. Note that Abraham’s discourse about one-to-one (that for every b
there is at most one solution x such that Ax=b) is consistent with his previous
explanation of the concept.
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The Toulmin’s Scheme for Abraham’s response is composed of a claim, data
comprising two sub-arguments, and a warrant. In the first sub-argument within the
data, Abraham claims that based on the definition of one-to-one, there could be “zero
solutions or one to Ax=b" (lines 5-6, 11). Note that the data-warrant pair of this sub-
argument previously served as a claim that needed justified for Abraham. Within the
second sub-argument in Fig. 8, Abraham explained Ax=0 always has at least one
solution, and if there is only one (the trivial solution), the column vectors of A are
linearly independent (lines 11-17). The warrant for the entire argumentation then
concluded that if the only choice was for Ax=0 to have one solution, “it must be the
trivial solution. Because no matter what, zero is going to be the solution to Ax=0.
That’s how I think of that” (lines 21-22). When reasoning about one-to-one transfor-
mations, Abraham relied on an interpretation of solutions to matrix equations (for every
b there is at most one solution x such that Ax=b) rather than linear transformations
defined by a matrix representation. This may have allowed him to more easily deduce a
connection to linear independence, which can also be defined in terms of solutions to
the matrix equation Ax=0 (the only solution to Ax=0 is x=0). Thus, this serves as an
example of Abraham’s sophisticated ways of reasoning about solutions to Ax=0 or
Ax=b in a variety of situations.

The last example of Abraham reasoning about solutions to make connections
between other concept statements in the IMT also comes from the second interview,
as Abraham explained why he placed the cards “the number zero is not an eigenvalue
of A” and “the null space of 4 contains only the zero vector” into a pile of concept
statements that “went together” for him (this was part of the card sorting task previously

Interview 2 Q3, Argument 3
Data: -
Datal: 0 is an | Claiml: Ax=0
eigenvalue Claim: If the number zero is an

eigenvalue of A, then the null

Data2=Claiml: Ax=0 Claim2: We cqnﬁnda space does not contain only
nonzero solution
the zero vector

Warrant2: By definition of an
eigenvector

Data3=Claim2 There exists a Claim3: That

nonzero solution [T | would make it
linearly
dependent

Warrant3: By definition of
linear dependence

Claim4: The null space
doesn’t contain only
the 0 vector

Datad=Claim2: If there’s a
nonzero solution here T

Warrant4: The null space is part of the domain,
so it contains all the solutions to Ax = 0

Warrant: / think of them together if | put a negation in front of them

Backing (implicit): if the negation of two statements ‘go
together,’” the two statements ‘go together.”

Fig. 8 Abraham explains how “zero is an eigenvalue” and “N(A4)#{0}” are related
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described). In a rather complex justification (which lasted nearly 10 min during the
interview), Abraham justified that he relates the concept statements to each other by
thinking about their negations. The Toulmin scheme for one direction of Abraham’s
argument, “If zero is not an eigenvalue of 4 then the null space of 4 does not contain
only the zero vector” is given in Fig. 8.

When asked to connect the cards, “zero is not an eigenvalue of 4” and “the null
space of 4 is only the zero vector,” Abraham first stated he liked to think of “zero is an
eigenvalue of A4” instead. The remainder of his argument, thus, detailed why that
negation implied the negation of the second statement, namely, “the null space of 4
does not contain only the zero vector”. The Toulmin scheme for his argument (see
Fig. 8) is composed of complex data, a warrant, and an implicit backing. The structure
of the data is an example of a sequential structure, which is a Toulmin scheme within
which the data for one specific claim contains an embedded string of data-claim pairs,
such that subclaims serve as data for subsequent claims (Wawro 2012).

Abraham began by stating, “I’m thinking of an eigenvalue’s definition something’s,
those are nonzero x such that Ax=MXx. And so if the number zero, ... So then if it is, if
A=0 then Ax=0. And then by the definition of an eigenvector, we can find a nonzero
solution”. Here Abraham claimed that if zero is an eigenvalue of 4 (Datal), then Ax=0
(Claim 1). Abraham repeated that claim as his next data for the claim that Ax=0 has a
nonzero solution (Claim2). He supported why the data supported the claim by
referencing the definition of eigenvector (Warrant2). He then repeated Claim 2 and
used it as Data3 to support that having a nonzero solution implied the column vectors of
A were linearly dependent (Claim3); for Claim2 and Claim3, which relate to the
existence of nonzero solutions, he provided warrants that referenced the definitions
of eigenvalues and linear dependence, respectively. Abraham then paused, stating:

And how does this relate to null space for me? Because this is saying the number
zero. Then I think of this because if there’s a nonzero solution here, then the null space
doesn’t contain only the zero vector. So I think I think of them together, if I put a
negation in front of them. Because then if the number zero is eigenvalue, then the null
space of 4 does not contain only the zero vector. The null space contains, the null space
is part of the domain, so it contains all the solutions to 4Ax=0.

Abraham “backtracked” a bit, restating Claim2 as data for a new claim that the null
space doesn’t contain only the zero vector (Claim4). He provided a warrant for the
Data4-Claim4 pair, that the null space is composed of all solutions to Ax=0, that gives
information about how Data4 supports Claim4. Finally, Abraham concludes his argu-
ment with a warrant that he thinks of the two cards together via negation; this relies on
an implicit backing that the negation of two statements go together then the two
statements go together. Note, then, that this argument provides a justification for only
one direction of the equivalence between “zero is not an eigenvalue of 4” and “the null
space of 4 contains only the zero vector”.

Both of the main concepts within the argument in Fig. 8, those of eigenvalues of null
space, were developed within the latter third of the semester for this classroom
community. Furthermore, although the classroom community had established the
inclusion of both of the statements, “the number zero is not an eigenvalue of 4” and
“the null space of 4 contains only the zero vector” in the IMT, they had never explicitly
discussed how to justify the equivalence of these two statements in particular. Thus,
Abraham’s argument here is unique when compared to what was discussed in the
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classroom. Of further interest is that Abraham chose to associate those two concept
statements with each other as ones that, for him, “went together”. From considering
Fig. 9, one can see how prominent and integral reasoning about solutions to 4x=0 (in
particular, the existence of nontrivial solutions) was in how he justified the implication
from zero as an eigenvalue to a nontrivial null space.

Conclusion

There is precedence within mathematics education research to characterize student
understanding by the depth and flexibility by which one can recognize and make
connections among ideas (Dorier and Sierpinska 2001; Harel 1997; NCTM 2000). In
this paper, I contribute to this body of work by presenting results about the ways in
which one student, Abraham, reasoned about solutions to Ax=0 and Ax=b to draw
connections between other concept statements within the Invertible Matrix Theorem.
The data were analyzed through the use of Toulmin’s Model and coordinated with the
microgenetic and ontogenetic strands of genetic analysis. This case study serves as an
example of an individual student’s prominence and success with reasoning about
solutions in higher-level mathematics. Given the abundance of research literature that
documents student difficulties in reasoning about solutions in mathematics, this serves
as a contrasting example highlighting what deep understanding and complex justifica-
tions are possible for students as they engage in mathematics.

Abraham’s mathematics serves to inform a broader theory towards how students
reason about concept equivalence in linear algebra. The body of research details various
modes of description (e.g., Hillel 2000) and interpretations (Larson and Zandieh 2013)
that characterize the variety and diversity of students’ conceptualizations in linear
algebra. Abraham’s reasoning about solutions — in various modes of description (e.g.,
“we can get to every b” in Fig. 5) embodies a travel description of solution) and in
various interpretations (e.g., coordinating solutions to vector equations and matrix
equations in Fig. 9) — lends insight into specific mechanisms by which students might
reconcile meaning across representations of concepts in linear algebra.

For instance, consider Abraham’s flexibility in symbolic representations and inter-
pretations related to the solutions of the matrix equations Ax=0 and Ax=b. I conjecture
that Abraham’s flexibility with various symbolic representations of the two matrix
equations and how to interpret those afforded him ways to reason about what the
existence and uniqueness of solutions to Ax=0 might imply about solutions to Ax=b,
and vice versa. For instance, Fig. 3 illustrates Abraham’s reliance on the augmented
matrix form of the two equations to reason about “when you have Ax=0, that a lot of

Fig. 9 Abraham writes two
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the characteristics apply to Ax=b". First, he translated the given information from one
symbolic representation (that of matrix equations) into another representation (that of
augmented matrices). He then reasoned about row-reduction of the coefficient matrices
in order to make claims about solutions to the augmented matrices, which he then
translated back into matrix equations (see Fig. 3). While this argument was not
completely accurate mathematically (he wasn’t sure about when row reduction indi-
cated nonexistence of solutions to a matrix equation), I contend the progress he made
with reasoning about solutions in that argument was facilitated by his flexibility with
symbolic representations.

Another example of his flexibility with symbolic representations occurred in
Interview 1, shortly after the argument summarized in Fig. 3. Abraham was attempting
to explain why “the columns of A span R*” implied “Any vector b in R* can be written
as a linear combination of the columns of 4.” Abraham stated, “I’'m just rewriting it a
different way to try to think about it,” as he wrote the vector equation and
corresponding matrix equation (see Fig. 9). The first representation in Fig. 9, the
vector equation, corresponds to what Larson and Zandieh (2013) call the linear
combination interpretation, in which the components of x are weights on the columns
of A that combine to produce the vector b. A statement Abraham made in small group
discussion a couple weeks prior in class, in which he said, “Because the weights are
really what the solution is,” supports the claim that Abraham could make this interpre-
tation. Additionally, his statement during Interview 2 that “the null space is part of the
domain, so it contains all the solutions to Ax=0" is consistent with Larson and
Zandieh’s transformation interpretation of a matrix equation, in which x is an input
vector that corresponds to an output vector 0 via transformation by the transformation
defined by A. Further research needs to be conducted to investigate the plausibility of
this conjecture, that Abraham’s success with reasoning about solutions to Ax=0 and
Ax=b was facilitated by his flexibility with various symbolic representations and
interpretations of the two matrix equations.

Finally, this in-depth case study of Abraham’s reasoning about solutions offers
implications for future instruction in introductory linear algebra. Given that students
often struggle with the abstract and proof-oriented nature of linear algebra, investigat-
ing one student’s successful navigation provides insight into possible avenues to pursue
in teaching such a course. Although not emphasized in this paper, the classroom
community in which Abraham was a member was highly inquiry-oriented; that is,
students were expected to both inquire into the mathematics in a genuine way, as well
as be curious about and engage in other students’ thinking about the content. On the
other hand, the teacher facilitated this type of classroom environment by inquiring into
student thinking and allowing that to help shape the direction of the classroom
discourse. This type of environment may have played an integral role in fostering
Abraham’s ability to reason about the content and to verbalize his associated justifica-
tions clearly.

Second, a focused investigation into what ways of reasoning facilitated Abraham’s
success gives insight into what could be leveraged in the classroom for other students’
benefit. For instance, Abraham was flexible in his use of symbolic representations,
proficient in navigating the various interpretations of matrix equations, and explicit in
referencing concept definitions within his justification (e.g., see Fig. 8). A linear
algebra teacher may find it useful to purposefully emphasize these approaches within
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the classroom. This could be facilitated, for instance, by providing opportunities for
students to reflect on the different symbolic forms and translations between them, as
well as by having focused discussion on the importance of definitions within proof in
mathematics. These implications would also be a profitable avenue for future research.
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