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Abstract Combinatorial enumeration has a variety of important applications, but there
is much evidence indicating that students struggle with solving counting problems. The
roots of such difficulty, as well as ways to mitigate such difficulty, have not yet been
thoroughly studied. In this paper, one particular aspect of students’ counting activity is
explored — the use of the problem-solving heuristic of solving smaller, similar prob-
lems. Drawing upon student data from clinical interviews in which post-secondary
students solved counting problems, four ways in which students successfully utilized
this strategy are described. Additionally, three potential pitfalls of the strategy are
identified and discussed. Finally, the case is made that the strategy is particularly useful
within the area of combinatorics.

Keywords Combinatorics - Counting problems - Problem solving - Discrete mathematics
- Smaller cases

Introduction and Motivation

Combinatorial topics have relevant applications in areas such as computer science and
probability (e.g., Jones 2005; Polaki 2005), and they provide worthwhile contexts in
which students can engage in meaningful problem solving. As such, combinatorics has
received attention in both K-12 and undergraduate curricula, emerging as an important
aspect of a well-rounded curriculum (e.g., National Governors Association Center for
Best Practices and Council of Chief State School Officers 2010; NCTM 1989; 2000).
Research indicates, however, that students face difficulties with combinatorial concepts,
and this is certainly true at the undergraduate level. Godino et al. (2005) note that in
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Roa’s (2000) study, 118 undergraduate mathematics majors were given a questionnaire
with 13 “simple”! combinatorial problems (Godino et al. 2005, p. 4). They note that
these students “generally found it difficult to solve the problems (each student only
solved an average number of 6 problems correctly)” (p. 4). In their study on under-
graduates, Eizenberg and Zaslavsky’s findings similarly “support the assertion that
combinatorics is a complex topic — only 43 of the 108 initial solutions were correct”
(2004, p. 31). Additionally, Hadar and Hadass (1981) state that, “combinatorics is a
field which most of the students find very complicated” (p. 436). Other researchers
(e.g., Eizenberg and Zaslavsky 2004; Lockwood and Gibson 2014; Hadar and Hadass
1981; Kavousian 2008) concur with the claim that combinatorial problems are non-
trivial for students, and some (e.g., Batanero et al. 1997) propose potential reasons for
such difficulties. Given the fact that discrete and combinatorial topics are something
with which mathematics and computer science majors should have facility, the reported
success rates are alarming.

Beyond the potential role of combinatorics to help students succeed as computer
programmers or statistically literate citizens, there is something about the domain of
combinatorics that fosters deep and profound reasoning. Indeed, Sriraram and English
(2004) note that, “Combinatorial problems ... constitute a rich opportunity for math-
ematical exploration” (p. 189). In his undergraduate textbook Applied Combinatorics,
Tucker (2002) says of his counting chapter, “We discuss counting problems for which
no specific theory exists” (p. 169). He further notes that “facility with these three basic
skills in problem solving [logical reasoning, clever insights, and mathematical model-
ing], as much as an inventory of special techniques, is the key to success in most
combinatorial applications.” Finally, Tucker calls the counting chapter “the most
challenging and most valuable chapter in this book™ (p. 169). Combinatorics as a
discipline is an ideal setting for fostering meaningful problem solving and rich math-
ematical thinking. As such, research on the teaching and learning of combinatorics
warrants further attention in the mathematics education community.

There is much to learn about students’ combinatorial thinking and activity.
Researchers interested in the teaching and learning of combinatorics must not merely
look for quick fixes to improve students’ performances, but rather they should seek
ways in which to strengthen students’ combinatorial thinking and activity, both to
deepen students’ conceptual understanding and to equip them with meaningful ap-
proaches with which to solve combinatorial problems. There is a genuine need for
researchers to look more closely at students’ work on combinatorial problems — to
identify specific areas of struggle for students and to attend to potential ways in which
students may improve.

In this paper, I narrow the focus to one particular factor that is prevalent in students’
solving of combinatorial problems — the use of the problem solving heuristic of solving
smaller, similar problems. The research goal addressed in this paper is to identify and
describe a variety of ways in which students utilize the problem solving strategy of

! Godino et al. (2005) do not explain what they mean by simple. It appears to mean that the problems were
straightforward, focusing on a particular combinatorial operation (such as combination, permutation, etc.), free
of any particularly tricky or deceptive elements. An example of such a problem is found on page 9: “Problem
3: A boy has four different colored cars (black, orange, white and green) and he decides to give out the cars to
his friends Fernando, Luis and Teresa. In how many different ways can he distribute the cars? For example, he
could give all the cars to Luis.”
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working through a smaller problem while solving combinatorial tasks. I seek to
contribute both to the combinatorics education literature and to the problem solving
literature — to shed light on the problem solving strategy of using smaller problems, and
to provide particular insight into students’ combinatorial activity. Even more, I make
the case that work with smaller problems serves as an especially significant problem
solving strategy within the domain of combinatorial enumeration.

Literature Review and Theoretical Perspective

By a strategy of solving smaller, similar problems, I mean the problem solving
technique of attempting one or more simpler versions of a problem as a means of
gaining insight into a solution technique that may apply to the original problem. To
further clarify what is meant by “smaller, similar problems,” consider the following. In
any given counting problem, there are typically a number of certain conditions that
specify what the problem is asking. These conditions refer to the rules or limitations
that must be met in a given problem. Some of these might be numerical in nature (e.g.,
the specific number of letters in a password, or number of choices of shirts or pants for
an outfit), but others might refer to non-numerical conditions (e.g., the fact that
repetition of letters is allowed in a password). For clarity, I refer to numerical conditions
as parameters and to non-numerical conditions as constraints. In relation to a given
problem, any other problem that a student might attempt to solve will be called
“smaller” if it reduces one or more of the parameters in some way, and will be called
“similar” if it generally maintains the constraints of the original problem. It is note-
worthy that the numerical reduction of the parameters may indeed affect certain
mathematical properties of those conditions, sometimes in unexpected ways. For
instance, if a student reduced a composite number (like 100) to a smaller prime number
(like 3), there may be some unexpected properties about the small prime number that
would not carry over to the original problem.

To engage in the small cases strategy discussed in this paper, I mean that a student
will, as an intentional strategy, implement the following steps: a) identify a smaller
problem that numerically reduces one or more of the parameters of the problem but
maintains the overall constraints of the original problem, b) attempt to solve that
smaller problem, and c) apply what he or she learned in solving that smaller problem
to the original problem. Put less technically, the smaller problem should involve smaller
numbers, but it should maintain the overall rules or purpose (one could say the gist) of
the original problem. At times I also refer to this as “solving a smaller case” because it
represents solving a smaller instance or case of the original problem.”

As an example of the smaller, similar problem strategy studied here, an original
problem may be, “How many 6-character license plates can be made, where each
character can be any capital letter or any numerical digit? Repetition of characters is
allowed.” The primary conditions of the problem are that there are a certain number of
characters (six), there are a certain number of options for each character (36; 26 capital

2 Observe that another strategy may involve simplifying the constraints while maintaining the parameters, or
performing a combination of these modifications. This strategy is fundamentally different in many ways,
however, and so will not be discussed in this paper.
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letters and 10 numerical digits), repetition of those characters is allowed, and, because
they are license plates, the order of non-identical characters matters (ABCDEF would
be a different license plate from FEDCBA). A student might reduce the original
problem to “How many 4-character license plates can be made, where each character
must be A, B, or C, where repetition is allowed?” Here, the student numerically reduces
two of the parameters (the number of characters and the number of choices for those
characters), and yet maintains the overall constraints of the problems (that repetition is
not allowed and that license plates are the objects being counted).

When talking about reducing problems to smaller, similar problems, an important
issue is whether the similarity exists in the eyes of the student or the researcher. I have
previously suggested (Lockwood 2011b) that actor-oriented transfer (AOT) is a
valuable lens through which to examine students’ combinatorial problem solving.
Lobato (2003) introduced the notion of AOT, describing a shift from “an observer’s
(expert’s) viewpoint to an actor’s (learner’s) viewpoint by seeking to understand the
processes by which individuals generate their own similarities between problems” (p.
18, emphasis in original). In this view, the researcher focuses on student-generated
connections between problems, and not on connections that the researcher may expect.
Subsequently in this paper, as I discuss connections that students make between
original problems and smaller problems, I atte mpt to look at such connections from
the students’ perspectives. That is, drawing upon Lobato’s (2003, 2012) work with
actor-oriented transfer, in this study I seek to judge student-generated similarities
among problems, not relationships that I myself determine to be similar.

Silver (1979; 1981) examined the solving of “related” problems by having middle
school students categorize sets of 16 to 24 algebra word problems. He found direct
relationships between students’ successes in problem solving and ability to categorize
problems according to mathematical structure; in these studies, the problems were
judged as related by experts, not by the students themselves. The specific strategy of
solving smaller related problems has been alluded to by problem solving researchers
like Schoenfeld (1979, 1980) and Polya (1945). Polya discusses this strategy in terms
of “discovering a simpler analogous problem” (p. 38, emphasis in original) and
suggests that solving such a problem provides a model to follow when solving the
original problem. Schoenfeld (1980) also lists as frequently used problem solving
heuristics both considering “slightly modified” and “broadly modified” problems (p.
801). Additionally, Schoenfeld (1979) conducted a study examining the effectiveness
of explicitly teaching problem solving heuristics, and considering “a smaller problem
with fewer variables” (p. 178) was one such heuristic that he examined. Schoenfeld’s
and Polya’s attention to such a strategy suggests that it could be valuable for problem
solving across a variety of mathematical domains.

In the combinatorics literature, little has been investigated about the use of smaller
problems in the domain of counting problems. While no studies have explicitly looked
at the use of small cases in the context of solving such problems, there is one study that
alludes to such a strategy. Eizenberg and Zaslavsky (2004) examined undergraduate
students’ verification strategies on combinatorial tasks. One of those strategies they
identified was “Verification by modeling some components of the solution” (p. 26),
and one aspect of this type of verification involved applying “the same solution method
by using smaller numbers” (p. 26). Eizenberg and Zaslavsky provide an example of an
expert mathematician effectively using this strategy, but they are quick to point out that
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keeping the structural integrity of a problem when going to smaller numbers can be
tricky — particularly with combinatorial problems. Indeed, they note that while the
strategy “could be very powerful...it requires deep structural consideration.” They go
on to say that “We speculate that although it may seem natural to students to employ
this strategy (as indeed some tried to), applying it correctly needs direct and systematic
learning” (p. 32).

In their longitudinal study, Maher and her colleagues (e.g., Maher and Martino 1996;
Maher et al. 2011) have emphasized ways in which carefully chosen tasks can foster
reasoning and proof among even very young students. Their work has seen students
generalize using smaller problems, and it suggests that meaningful representations and
structures can form key mathematical relationships for students. They show, for
instance, that students referred to prototypical problem types even years after their
initial work on that problem (e.g., students refer to “the towers problem” in Maher and
Speiser 2002). However, these researchers have not yet isolated the particular strategy
of solving smaller, similar problems as a relevant factor of student work with particular
domain-specific implications.

Additionally, combinatorially, I frame this paper within my notion of a set-oriented
perspective (as discussed in Lockwood 2013; 2014). I advocate a perspective that the
activity of counting can be viewed as inherently involving the enumeration of sets of
outcomes (see also Hadar and Hadass 1981; Polaki 2005), and that solving counting
problems can be framed in light of organizing and structuring those outcomes. I provide
evidence that there is much benefit for students in considering sets of outcomes as they
count. Drawing upon this work, then, I relate the findings below to the perspective that
activities related to sets of outcomes (such as systematically listing) can be beneficial
for students’ success on counting problems. The studies discussed above not only
situate my work, but they also serve as a theoretical framework, guiding the analysis of
the data and the discussion of the results.

Methods
Participants

In the study described in this paper, I interviewed 22 post-secondary students (12
undergraduates and 10 graduate students) as they solved combinatorial tasks. These
students were recruited from graduate and undergraduate mathematics courses at a
large, public university in the western United States. They were chosen based on their
willingness to participate and on their familiarity with basic combinatorial concepts
such as binomial coefficients (as determined by a recruitment survey). All of them had
taken at least one discrete mathematics course, and some had taken courses in combi-
natorics or graph theory. Two undergraduates were computer science majors, the rest of
the participants studied mathematics. I had initially interviewed eight undergraduate
students, and the tasks proved to be challenging for them. In attempting to collect rich
data and to achieve theoretical saturation (Auerbach and Silverstein 2003), I extended
my recruiting to graduate students as well.

Each of these students participated in individual, videotaped, 60—90 min-long semi-
structured interviews. Fontana and Frey (2005) differentiate between structured
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interviews, in which the interviewer “asks all respondents the same series of pre-
established questions with a limited set of response categories” (p. 701-2), and
unstructured interviews, which are “open-ended, in-depth (ethnographic) interview[s]”
(p. 705). Semi-structured interviews typically involve “an interview guide as opposed
to a fully scripted questionnaire” (Willis 2005, p. 20), and I chose such interviews to
allow for flexibility that could allow me to adapt to students’ responses. In my study,
the structure of the interviews was first to give students five combinatorial problems to
solve on their own, and they solved all of these problems in succession in the first half
of the interview. During this time, I encouraged the students to think aloud as they
worked, and at times I asked clarifying questions or asked them to explain their work.
My questions during the interviews were not intended to explicitly teach or instruct, but
rather to elicit students’ thinking.

After they had completed work on the five problems, the students subsequently
returned to a subset of these problems, during which time I presented alternative
answers for the students to evaluate. I chose which problems we revisited, and this
decision was made in the moment, based on a student’s work in a given interview.
Factors that affected this choice of which problem to revisit included: students’ initial
answers (for instance, if a student arrived at one of the anticipated correct (or incorrect)
answers, I might present them with an incorrect (or correct) answer); my perceived
trajectory of a student’s work on a given problem (for instance, if a student had been
incorrect on a problem but had displayed some promising line of reasoning, I might ask
them to revisit that task); and my perceived notion for what tasks would yield the
richest data (for instance, if a student had been particularly detailed or verbose in their
explanation of a certain problem, I might have asked them to revisit that problem). My
content knowledge of the material enabled me to make informed decisions about which
tasks to pursue.

Typically, having students revisit problems resulted in students comparing two
answers, both of which could seem reasonable, but one of which contained an error.
The motivation for this design was based on a desire to put students in a situation in
which they had to evaluate incorrect but seemingly reasonable answers. Furthermore,
the design facilitated ample opportunity for students to consider the problems and to
express their thinking. Further details of the study can be found in Lockwood (2011a).

Tasks

While students in the study were given five tasks, here I focus on only two of the tasks
(the Passwords problem and the Groups of Students problem); all of the following data
excerpts refer to one of these problems. Below, for each problem, I briefly provide both
a correct answer and an incorrect answer that are most relevant to subsequent discus-
sion, acknowledging that there are in fact many correct and incorrect answers that could
be presented. Both of these problems were adapted from upper-undergraduate or
graduate level texts (Martin 2001; Tucker 2002) and require some knowledge of
combinatorial concepts to be solved efficiently.

The Passwords Problem The Passwords problem states, “A password consists of 8

upper-case letters. How many such 8-letter passwords contain at least three Es?” The at
least constraint is a noteworthy one. Because of this constraint, one solution is to break
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the problem into cases,” in which the passwords contain three, four, five, six, seven, or
eight Es. For any of those cases, the number of passwords containing & Es is found by
choosing spots for those Es to go (there are k
the remaining 8-k spots with any of the 25 letters that are not E. Therefore, a correct
result (subsequently referred to as Expression PC for Passwords Correct) is

8 (8 ~ 8 8 8 8 8 8
k§3(k)258 k= (3)-255+ (4)-25“+ <5)-253+ (6>-252+ (7)-25‘ + (8)-250.

There is also a tempting solution that does not involve a case breakdown, which

8) ways to do this), and then filling in

reflects a subtle error. Namely, the answer 3

Expression PI for Passwords Incorrect) can be argued by first choosing where to put

8>-265 (subsequently referred to as

three Es (there are ( 2 ) ways to do this), there are guaranteed to be at least three Es in

the password. Therefore, the remaining five letters could be any letter, including an E
(hence, ). However, the problem with this answer is that some particular solutions get

sense of the magnitude of these expressions, Expression PC yields 575,111,451, while
Expression PI gives 665,357,056.

The Groups of Students Problem® The Groups of Students problem states, “In how
many ways can you split a class of 20 into 4 groups of 5?” A correct answer to this
problem (subsequently referred to as Expression GC for Groups Correct) is

)G

41

To arrive at this solution, five students can be chosen to be in a group, there are

<250) ways to do this, then 5 of the remaining students are chosen to be in another

group, ( 155 > , then five more to be in a group, < 150) , and then finally the last five to

be in a group, (2 ) . However, the product must be divided by 4 factorial because the

? In the discussion of this problem, the word “case” indicates a strategy of breaking the original problem into
disjoint sub-problems, which together comprise the entire problem; a “case” in this context suggests one of
these sub-problems. This is a separate use of the word “case” than the remainder of the paper, in which a
smaller “case” is meant as a smaller instance of the larger problem.

4 A more detailed discussion of set partition problems such as the Groups of Students problem, see Lockwood
and Caughman 2015.
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groups are not meant to be labeled or distinguished in any way — there is not a Group 1,
Group 2, Group 3, and Group 4.

In order to see the need to divide by 4 factorial, particular outcomes can be
considered. Suppose the first group that was chosen consisted of kids A, B, C, D, E,
(call it Group A), the second group, kids F, G, H, L, J (Group F), the third group, kids K,
L, M, N, O (Group K), and the fourth group, kids P, Q, R, S, T (Group P). Then this
solution could be written as AFKP, and it denotes the order in which the groups were
chosen. However, suppose that each of the groups were the same (Group A still
consists of A, B, C, D, E, etc.), but that they were chosen in a different order. That
is, suppose the solution instead was KAFP or PAKF, representing the same groups that
were picked in different orders. The problem only asks for groups of children; there is
no first group, second group, etc. Therefore, if the particular division of the class is
AFKP, it is the same division as KAFP. In fact, such a division occurs exactly 4
factorial ways (the number of ways to arrange the sequence of letters A, F, K, P).
Division by 4 factorial thus ensures that each solution gets counted once, as it should
be.

A typical incorrect solution (subsequently referred to as Expression GI for Groups

Incorrect) is

20\ (15 (10 (5

5 5 5 5)
where the division by 4 factorial is neglected. The subtlety of the discussion above
highlights the fact that this mistake could easily occur, and this possibility for error
made it a particularly desirable problem for the study. Again, to get a sense of the size

of these numbers, Expression GC gives 488,864,376 and Expression GI yields
11,732,745,024.

Data Analysis

Initial data analysis involved transcription of the videotape excerpts. Then, in line with
the methodological framework of grounded theory (Auerbach and Silverstein 2003;
Strauss and Corbin 1998), I examined the data carefully and looked for phenomena that
might be organized into themes. As this was a part of a larger study (other findings are
reported elsewhere in Lockwood 2011a), I had initially gone through the entire set of
transcripts and videotapes, coding noteworthy recurring ideas. The notion of small
cases presented in this study was one such emergent theme, and I flagged episodes that
represented instances of students” work with smaller cases. For the writing of this
paper, I focused on these episodes, re-reading the transcripts and further familiarizing
myself with instances in which students used small cases. I then re-watched the videos
of these relevant excerpts, reviewed the transcripts, and categorized pertinent phenom-
ena that I observed through this process. What emerged were particularly relevant
instances of student work that highlighted various aspects of students’ uses of small
cases in their work on advanced combinatorial problems.

Grounded theorists Auerbach and Silverstein (2003) refer to abstract groups of
themes as theoretical constructs. These theoretical constructs can then be organized
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into a theoretical narrative, “which summarize(s) what we have learned about our
research concerns” (p. 40). That is, the narrative, which is based on theoretical
constructs, can give a sense of the connections between the raw data and research
questions. Following their methodological recommendations, I organized phenomena
into themes and ultimately constructed a narrative about the role and relevance of small
cases for students in the study.

Results and Discussion

I organize this discussion section into three major parts. First, I briefly provide general
findings on the frequency and the extent to which small cases arose in the data. Second,
I discuss features and benefits of small cases within the domain of combinatorial
problem solving, drawing upon examples from the data to do so (specifically, students’
work on the Passwords and Groups of Students problems). Third, I discuss potential
dangers of using smaller cases in an imprecise manner, again illustrating with examples
from the data.

General Findings

The data consist of 103 instances of students working on a counting problem (22
students working through five problems each, with some exceptions due to time
constraints). The overall success rate was not high — only 42 of 103 initial solutions
were correct. Of all of the 103 instances, there were 15 total times in which students
referred to small cases. In 14 of these occurrences, the student identified and attempted
to solve a smaller, similar problem, and then applied what he or she learned in solving
that smaller problem to the original problem. In one instance a student used
smaller, similar problems but did not relate his work back to the original
problem. Table 1 below shows the students who used the strategy, which
problems they worked on as they used the strategy, whether the problem
properly reduced numerical parameters while maintaining constraints, and
whether they related the problem to the original problem. In this table, I am
counting at most one instance per student per problem — there is a 1 in a cell if
the student used smaller cases on a given problem in any capacity.’

It is also noteworthy that the strategy was relatively infrequently used. While for
some students this seemed to be a strategy that they regularly employed (some students
said as much), many of the students did not seem to use it at all. That is, although small
cases arose a total of 15 times, only ten (six graduate and four undergraduate students)
of the 22 students drew upon the strategy, meaning 12 students never used small cases
in their interviews. However, in spite of the fact that the strategy seems to have been

> The reader may note that with the exception of Owen’s work on the Cards problem, all of the instances of
small cases arose in the context of either the Groups of Students problem or the Passwords problem. While
students solved three other problems in the interviews, the small cases strategy did not arise in those contexts. I
suspect that this is due largely to the fact that the other problems involved numbers that were relatively small in
magnitude. The correct answers to the other problems were 153, 226, and 53, compared to 575,111,451 for the
Passwords problem and 488,864,376 for the Groups of Students problem.
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Table 1 Students who used the strategy of solving smaller problems

Student (Undergraduate Problem Worked on a smaller, Related the problem
or Graduate) similar problem to the original problem
Aiden (U) Groups of Students 1 1
Anderson (U) Groups of Students 1 1
Passwords 1 1
Jenny (G) Passwords 1 1
Keith (U) Groups of Students 1 1
Passwords 1 1
Matthew (G) Groups of Students 1 1
Mia (G) Groups of Students 1 1
Mike (U) Groups of Students 1 1
Owen (G) Cards Passwords 1 0
Groups of Students 1 1
Paige (G) Groups of Students 1 1
Passwords 1 1
Zach (G) Groups of Students 1 1
Passwords 1 1
TOTALS 15 14

underdeveloped and underutilized among the students in my study, the strategy over-
whelmingly helped the students who chose to implement it. Given students’ overall
difficulties on the problems, then, and given the fact that the use of smaller cases
seemed to help some students, I contend that the strategy is worth examining as a
potentially powerful aspect of combinatorial problem solving.

Ways in Which Students Use Small Cases

In this section I discuss ways in which student utilized small cases as they solved
combinatorial problems. The examples below highlight some of the benefits of using
small cases. These include using small cases: a) to facilitate systematic listing (which
can be used for detecting useful patterns or identifying an overcount), b) to tackle one
particular aspect of the problem, c¢) to explain the difference between two discrepant
answers, and d) as a means of articulation, communication, and explanation.

Using Small Cases to Facilitate Systematic Listing Systematic listing involves the
listing of outcomes in an organized way. There were a handful of instances in which
students’ uses of small cases facilitated systematic listing, and this activity clearly
benefitted them in their solving of a given problem. This systematic listing helped
students in two particular ways: a) to detect useful patterns, and b) to address an error of
overcounting. I provide examples of each of these types below.

Systematic Listing (in Smaller Cases) as a Means to Detect Useful Patterns in
Generating a Solution One way in which students utilized smaller cases was to detect
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useful patterns when generating a solution.® Below we see Paige’s reflection on the use
of a smaller case as she discusses pattern formulation.

P: In counting problems this is a regular occurrence, where I will break it down into something small, try and
figure out the pattern on a smaller level, and then apply that pattern up.

As a specific example of this method, in Anderson’s work on the Groups of Students
problem, he spent considerable time and energy listing out particular outcomes in the
context of smaller cases. Having initially been overwhelmed by the original problem,
Anderson ended up methodically building from smaller to larger cases, hoping to detect
a pattern in the numbers that he could generalize. Specifically, Anderson began with
considering having four people in the class, split into four groups, and he reasoned that
there is one way to do that. He then bumped the problem up to eight people split into
four groups, and began to list out some of the ways to split up eight letters (A through
H) into four groups. As we see underlined below, however, the 8-person case was too
large for him to manage.

A: Sol guess let’s bump it up to 8. So now, if I take the first 8 letters of the alphabet, we can have AB CD EF
and GH. Sure that’s fine. We’d have AB CD EG and FH. Sure, and then we have AB CD EH FG. See
this is, this is where is starts boggling me, it’s because when we take out the separate groups and we’re
trying to count how many we can have.

To scale back some, Anderson decided to decrease the number of groups so as to
make the problem more tractable. He started with dividing a class of four into two
groups, and through listing found that there were three ways to do this. He then
increased the problem to a class of six being split into two groups, and through careful
systematic listing he found that there are 10 such possibilities. Anderson continued in
this way, and at the heart of this work was pattern recognition — he was searching for a
pattern in the numbers in order to generate the answer. While we ultimately ran short of
time in the interview before Anderson could entirely finish this problem, I judge that he
was on a very productive path toward making meaningful progress on the problem.
Indeed, he said, “I just haven’t figured it out yet. I’d need to play with more examples
to see if I can find something that lines up”.

It is noteworthy, too, that when we revisited the problem, and I presented Anderson
with the alternative answers to the problem, he related them to the work and patterns he
had generated initially. When it came to making sense of the solutions, then, it seemed
as though his involved work of systematic listing and looking for patterns was
instrumental in helping him to understand the problem generally. The experimentation
ultimately led to better understanding of the problem for Anderson.

Systematic Listing (in Smaller Cases) as a Means to Identify an Overcount In
solving the Groups of Students problem, Mia had initially arrived at Expression GI, and

© In discussing pattern generation in this context, I am not advocating simply blindly searching for patterns —
manipulating numbers without thinking deeply about the problem. However, in counting problems, it seems as
though searching for patterns through listing in the context of smaller problems can potentially be beneficial.
Such activity can help to make an overwhelming problem more attainable.

@ Springer



350 Int. J. Res. Undergrad. Math. Ed. (2015) 1:339-362

when we revisited the problem, I gave her the correct Expression GC. Mia was thus in a
position of comparing two different expressions to determine which was correct.
Mia had some initial intuition about the role of four factorial, but she decided
to attempt a smaller case in order to be sure. She worked through a smaller
case of dividing six people into two groups of three. She first wrote down A,
B, C, D, E, F to represent the people, and she wrote two circles with three
dashes each in them. She noted that if she applied her initial method of
Expression GI to the smaller case, she would get (g)(g) = 20, and she
stated that 20, “would not be too bad to write out.” This was an important
observation; she computed the number of possibilities based on one expression,
and she used that activity to begin to write out specific outcomes, which
ultimately allowed her to detect how overcounting had occurred. Had this
computation yielded a larger result that could not so easily be listed out, I
suspect that she may have looked for another option.

Mia then stated that if she applied the other expression (Expression GC) to the
situation, she would get 10. She proceeded to write some examples out to see if she
would get 20 or 10 as her answer for the small case. Here we see an instance in which
Mia, in the context of the smaller situation, computed totals according to both possible
expressions and compared the two. The smaller example allowed her to begin to write
particular examples of outcomes, whereas within the original context this could not
have been done feasibly.

Mia then wrote out divisions of six students into groups of two, and she
wrote out ABC DEF, then CEF ABD, and then CDF ABE as possible divisions
of the students. She paused and then wrote DEF ABC, and something signif-
icant happened: Mia noted that this was the same outcome as something she
had already written — that is, ABC DEF was the same as DEF ABC. This
activity is noteworthy — I contend that the smaller case (and specifically the
smaller numbers) enabled Mia to write out some particular outcomes that she
otherwise would not have been able to do (she had not written out such
outcomes in her work on the original problem).

M: Um, alright A, B, C and then that forces DEF here. So that’s one. ABD CEF. ABE and CDF. Hmm. Let’s
see, oh right, because the first 3 could have been DEF, and then I would have been forced to put ABC
in this group, but that’s really the same, so these [referring to ABC DEF and DEF ABC] are really the
same. Um, oh. Oh, okay so you divide by 2 because, so how would that happen up here? Maybe you
chose ABCDEF here and then in the next slot they could have been chosen this way, that’s no different
than that. Okay, yeah, I think that this double counts because if I just choose 3 people, it
could have been A, B, and C, and then that forces DE and F in the second group. But, let’s
say the first three people were DEF, that forces ABC in the second group, and that’s exactly
the same, just, it doesn’t matter, there’s, there’s, ABC are in a group and DEF are in a
group. So this [Expression GI] double counts this, and I think, then, dividing by 4 makes
sense. [Note, she went on to say 4 factorial, not 4].

As we see, Mia explained the overcounting by referring to her initial solution; she
identified two outcomes as being “exactly the same,” as her language underlined above
indicates. At the end of the excerpt she returned to the original 20-person problem and
considered whether division by 4 factorial made sense. She was ultimately able to
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understand why division by 4 factorial in the original problem made sense and to
identify Expression GC as the correct solution.

Using Small Cases to Tackle One Particular Aspect of a Problem Another way in
which students utilized small cases was to shed light on one specific aspect of a
problem. As an example, we consider Paige’s work on the Passwords problem. Paige
was enacting a correct fotal-minus-bad approach, in which she wanted to subtract
passwords with exactly zero, one, or two Es from the total number of 8-letter pass-
words. She quickly determined the number of passwords with exactly zero and exactly
one E. As the final part of her total-minus-bad approach, she needed to figure out how
to count the number of 8-letter passwords with exactly two Es. Paige realized that in
order to solve this part of the problem, she needed to figure out the number of ways to
place two Es among eight spots. She felt confident about how to fill in the remaining
letters (in 25° ways), and so her success on the problem momentarily hinged on one
particular part of the problem — placing the two Es in eight spots. Paige suspected that
the number of ways to do so involved a permutation, gP», but she was not sure. (Note,
this is not correct. Combinations, and not permutations, should be used to place the Es.)
In order to check whether this permutation formula was correct (thus allowing her to
solve the problem), Paige used a smaller case, which she describes in the underlined
section below.

P: Wait, is that right? gP,. Yeah ‘cause order matters, I have, I think that’s right. You know what I’'m not
100 % sure if this is the right formula, so ... whenever I am unsure of something in a counting problem
and I start second guessing myself on like whether or not I'm remembering things correctly,

I: Okay.

P: I usually make a much smaller case, and try and see if this formula matches up with a smaller case that I
can actually physically count. So, I’'m going to make it smaller, um, instead of 26 letters I’'m just going
to think about, uh, A, B, and C, and I’m going to have three slots I think, yeah let’s have three slots, and
I want to know the number of ways I can get let’s say 2 Cs. I don’t know if this is going to pan out, I
might need to do a bigger case ... Um, so I can write out this pretty quickly, oh actually, I'm kind of
doing it already for 2 As, hmm, yeah I'll just do it for 2 As, since I’ve already started with my As.

As we see in the excerpt above, Paige attempted a smaller problem of 3-letter
passwords, using the letters A, B, and C, and containing at least two As.
Over the next several minutes, Paige’s work was characterized by writing out
3-letter words and looking for patterns. It is noteworthy, though, that Paige
made an error here. She counted out the number of words that had exactly two
As, of which there are six (Fig. 1 below shows the 6 words and her compu-
tation of 3P,). While this is correct, it is presumably not what she meant to
count. She should have simply counted the number of ways of placing exactly
two As in three spots (of which there are 3). This had an impact on her work,
because as she computed the result using the formula she was testing, 3P, it
also yielded six. This thus (incorrectly) confirmed her permutation formula for
a word of length three.

Thinking her permutation formula was correct for the 3-letter case, Paige then
proceeded to check for a word of length four, which took considerably more time.
This activity involved detailed listing of 4-letter passwords and looking for patterns as
she went. In so doing she realized that regardless of where she placed her two As in the
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Fig. 1 Paige lists 3-letter words with exactly two As
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4-letter password, she always had nine options of how to arrange the remaining letters
(which could be Bs or Cs).” We see her language below, and she made a significant
realization that actually she wanted to choose spots for the As.

P: Hmm, how can I make that better? So how many different ways could I place, ‘cause those were all 9’s. So
really I just want to know how many different ways I could place 2 As. Oh, well so, if I think of like the
slots as like numbered, maybe,

I. Okay.
P: Um, it’s like I want to choose the slots, And the order, hmm, does order matter here, I think it might be that
I want to, like, know, like I have 4 slots, and I want to know the number of ways I can choose 2 of those

slots to put the As in, but then I think I need to divide that answer by 2, because I can’t tell the
difference between the As.

This was an important step for her, ultimately allowing her to figure out that the

number of passwords with exactly two Es was ( 8 ) -25% (and not 3P2-256), and thus to

2
arrive at the correct answer in the original problem.

We see in this example an instance in which a student used a smaller case to tackle a
particular part of the problem. Paige’s success on the problem was contingent upon the
correct solution of one small aspect of the problem (the ways of placing the Es), and she
used small cases to figure out the one piece that she really needed. Paige’s successful
utilization of this strategy involved listing outcomes of a smaller problem, and this
allowed her to realize that she wanted combinations, and not permutations, for the
number of ways to place Es in the password. This work enabled her to generate the
correct answer and ultimately be successful on the Passwords problem. I suggest that
Paige’s work on the smaller case gave her increased accessibility in dealing with the
complicated nature of the problem. Working through particular examples (passwords)

71 am not completely certain why Paige made the transition from incorrectly counting words in the 3-letter
case to correctly counting the ways of placing As in the 4-letter case. I conjecture that because she could not
write the entire words as easily as she could in the 3-letter case, she was more inclined to separate out the
placing of the As and the filling out of the rest of the word (the Bs and Cs) as two separate processes. Thus, she
was less inclined to inadvertently count 4-letter words with two As, but rather she could count the ways of
placing two As within a 4-letter word.
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enabled her to make progress that she might not otherwise have been able to make with
more unwieldy numbers or objects. While I cannot claim that Paige would not have
correctly solved the problem without the use of the smaller case, the evidence above
indicates that small cases helped her in her work.

Using Smaller Cases to Explain the Difference Between Two Discrepant
Answers Another way in which students use small cases is to explain the difference
between two discrepant answers. This particular use of smaller cases relates very
closely to the design of my study (and in fact may be a product of the specific design).
As discussed in the Methods section, the study was designed to put students in
situations in which they compared two seemingly equivalent answers, both of which
seemed to be reasonable (but one of which contained an error).

While the example outlined below is situated particularly within this context, I
maintain that it is still a relevant finding, and that it is not merely an isolated incident
that could only occur within my particular study. Indeed, I point it out here because
students and teachers may often find themselves in situations in which they need to
understand or explain why a particular answer is incorrect (imagine a classroom in
which two groups of students disagree over two different answers). One of the
compelling aspects of counting is that incorrect counting processes can seem logically
sound. The example of Anderson’s work on the Passwords problem below shows how
a careful examination of a smaller case can shed light on key differences between two
seemingly-similar counting processes.

As mentioned above, an interesting aspect of the Passwords problem is that
Expression PI can seem correct. Here we see that Anderson had also felt Expression
PI was correct, and he was trying hard to understand which expression might be wrong.
He worked through a smaller case in a very precise and detailed fashion, and this
enabled him to perceive an important insight.

In his work on the problem, Anderson found himself in a situation of comparing
Expression PC and Expression PI. He took some time to consider it, and as he talked
through the expression, he justified to himself why it might make sense; he explained
the counting process and said, “based on how it works” he felt that it could make sense.

As Anderson thought more about why the discrepancy occurred, he decided to
truncate the situation to examining the number of 4-letter passwords that contain at
least three Es, rather than 8-letter passwords that contain at least three Es. Specifically,
this came about as he had written down slots and had put 1 s where an E would go, and
25 s where a non-E would go. After writing a couple of these slots, he decided to look
instead at only four slots instead of dealing with all eight (see Fig. 2). He noted that there
were 25 options for any placement of three Es, and he explained again that there were

(g) ways to place three Es in the four slots, and then 25 choices for the remaining

letter. And then he considered the case in which all four letters were Es, and he stated that
there was just one way to do that (this gave him an initial answer of 101).

Then, Anderson engaged in numerical computation for several minutes. He tried the
4-letter problem with the second alternative answer (Expression PI). When he did this,

he arrived at (g ) -26, which gave an initial answer of 104. Expression PC had given

him an answer of 101, and thus he noted, “the difference is already there”.
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Fig. 2 Anderson writes out a smaller version of the Passwords problem

A: Uh, if I was going to translate to the second one then it becomes, uh, in the four case it
becomes (4
3
104. Well, let’s see. Uh, what was the total on this? It was 100, and 1. The difference is
already there. It’s 101, versus 104. Um, okay well since there’s already a difference here in
the half case, where I’'m only taking four letters instead of eight.

) equals four, but since the last one doesn’t matter, it’s 26, which is, uh, blah,

This is quite significant. Anderson realized that the discrepancy between the expressions
existed even in the smaller problem, and ultimately this enabled him to focus very closely
on the small case. This numerical difference of 101 and 104 was small enough for him to be
able to consider in detail, and he proceeded to examine the difference here more closely.

The following episode was key for him. First, he said, “I have E, E, E, A through Z.
Which is equal to 26”. And he wrote down E E E A-Z. Then, he said, “Then I have another
E, E, A through Z, E, which is another 26,” and he wrote E E A-Z E. Then he said, “And
since I do this four times, I have 4 times 26, which is 104, okay, which would suggest that
the second one (Expression PI) is correct” (see Fig. 2 below, the right half of the paper).

Then, nearby (the left half of the paper in Fig. 2), he wrote out E E E A-Z-E, and he said,
“I have 3 Es, then I set them to any 25 letters, so let’s see, A through Z minus E. And so 1
have 100 different ways to do that”. Then he wrote E E E E and noted “But then I also have
4 Es, and there’s only one way to do that.” His reflection on this discovery is seen below.

A: Oh, there we go, that’s where the difference is. So the difference is, um, yes there’s 26 different ways to
arrange it so that the first 3 letters are Es, and then the last one can be any of the 26 letters. And then
there’s another way to arrange it so that the first 2 and the last letter are Es, and the 3rd letter is any
letter between A and Z, except if the third letter is an E, it’s exactly, it’s the exact same case as if the E
was the last letter in the first case, which means it’s counting multiple passwords twice.

We see that Anderson identified a particular password (the all Es password) that was
counted too many times by the incorrect solution. After this, I asked Anderson a couple of
questions as a follow up. He gave some sense as to why it took him a while to explain what
was wrong with the problem. Simply writing down the range (either A —Z or A — Z
excluding E) was not enough for him to see what was happening. His brain was “too lazy
to come up with a specific example,” and it was not until he came up with that particular
example that he could identify the error. This is an insightful self-reflective statement. He
was able to identify that a key step in seeing the issue was writing down a specific example
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instead of just writing down a range of choices. I argue that the fact that he was in a smaller
case (with fewer letters and slots to consider) facilitated his identification of a particular
example.

A: And I was like, oh, the problem — the two methods still come up with different answers, so something
must be off on some fundamental level somewhere. Uh, so I realized, well, since my brain’s not all that
math oriented, I guess I’ll just like write it out and see where I go, uh, so let’s come up with a few
examples, so I was like EEE, and I was like, well, my brain’s too lazy to come up with a specific
example, so I guess I’ll just write down the range, and then I should be okay.... Um, and I guess it’s that
step that my brain kept skipping due to laziness, (chuckles) that made me overlook that one problem.

After this discussion with the smaller case, Anderson was able to use his work in the small
case to make sense of which expression was correct in the original problem. His work
through the small case was a vital part of Anderson successfully evaluating the alternative
solution and correctly deciding on the correct answer. He used the smaller case to make sense
of an apparent discrepancy between two seemingly correct, yet actually different, answers.

Using Small Cases as a Means of Articulation, Communication, and Explanation A
final way in which students seemed to use small cases effectively was as a means of
communication and explanation. In his work on the Groups of Students problem, Owen
provided an example of a way in which a small example served as a means for him to
articulate (both to himself and to me) why the incorrect Expression GI had resulted in
an overcount. Unlike Mia’s or Anderson’s work, the small case did not serve strictly as
a vital aspect of him figuring out why there was an overcount. As such, he was not
using his small case in his execution of the problem, but he used the smaller case as a
means to communicate explicitly exactly what had gone wrong.

Owen had initially gotten a solution equivalent to Expression GI (he had left off the
last binomial coefficient). When we returned to the problem later in the interview, I
gave him Expression GC. He noted that he was “immediately confused” by the 4
factorial, but, having both Expression GI and Expression GC before him, he proceeded
to examine which solution might be correct. After examining the solutions for a minute
or so, Owen seemed to indicate that he understood what was happening. His language
below suggests that he realized overcounting was occurring in some way; in the first
underlined section he had figured out what was going on in the problem. However, he
chose to describe and explain the answer using eight instead of 20 people.

O: ...Like what if I picked, yeah I see, I see why they did it. What if I picked, okay, oh man I am bad at
counting, okay.

I.  You’re not bad at counting, this is hard.

O: No no, I’'m bad. Look, I think this student might be better than me, hold on. If I'm, let me walk through

this students’ thinking... You pick the five, the four groups... Okay. Um, let me, I don’t want to draw
20 dots or 20 things. Let’s make it a much smaller situation. Uh, what if it’s eight, eight total students.

When he explained it, he made the argument using a smaller case instead of working
with the original 20-person problem as stated; that is, he split eight students into four
groups of two. Because of his limited language about the actual moment of epiphany, it
is difficult to tell if his realization occurred in the 20-person context or the 8-person
context. Based on the second underlined phrase above, in which he used the number of
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groups in the original problem (and not the smaller numbers), I suspect that Owen had
indeed been thinking in terms of 20 students broken into four groups of five. Also, I do
not doubt that Owen’s articulation of the smaller case solidified his thinking, and that
perhaps talking through the 8-student case helped him to make sense of the situation
more than his initial moment of epiphany had allowed (and thus the smaller case served
him conceptually and not exclusively as a means of communication). Nonetheless, I
argue that this instance highlights the potential ways in which students could use
smaller cases as a means of communication and explanation.

It is noteworthy that Owen’s choice of a smaller problem numerically reduces
parameters but maintains the constraints of the original problem. He wrote down
ABCDEFGH, and he wrote the corresponding solution that Expression GI would have
yielded with eight students, <§><g>< g ) . <§> He then took different colored
pens, and, as he explained the solution below, he underlined each binomial coefficient
with a different color (pink, red, orange, and green, respectively). The corresponding
drawing is seen in Fig. 3.

O: Okay look...I’'m going to order my selections, because I think of them as happening in some order. So it’s

like this first [draws a pink line under ( g ) 1, and I'm going to do this second [draws a red line under ( g ) 1

this third [draws an orange line under (;)], and this fourth [draws a green line under (i ) ], right?

Owen recognized that when he chose the groups of students to be AB, CD, EF, and
GH, he could have chosen them in some order; the colors represented a particular order
in which he chose that division of the 8 people. As he talked about choosing a pair of
students, he drew a color under that pair (for example, when he said, “Then I pick C
and D” he drew a red dash under those letters). He drew lines under AB then CD then
EF then GH in that first example, and he drew AB, EF, GH, CD in the second.

O: What if, when I first chose 2 students, I picked, I’'m going to make it really obvious, A and B [draws a
pink line under AB]... Cool, then I have 6 remaining. Then I pick C and D [draws a red line under
CD]. Oh, what if I have 4 remaining? Oh I’'m going to pick these 2 [draws an orange line under EF,
then draws a green line under GH].

Fig. 3 Owen’s color-coded explanation of the reduced Groups of Students problem
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He then noted that he could pick the same division of 8 people (AB, CD, EF, GH) in
another way, and he drew colors above the letters to represent picking the pairs in a
different order. This time, he drew AB first, then EF, then GH, then CD. When he says,
“I could have picked CD or I could have picked EF” he referred to the different colors
he drew below and above the letters, respectively.

O: Well, that’s one way to count, pick ‘em, right? Color, change the colors drawn above again. So you can
put the pairs, you can pick the pairs in different orders... To make it obvious I’ll draw the colors. Look,
I’m just drawing the same exact pairs, different colors up here...To symbolize that if I did this, I could
have picked him, this same pair twice, right, but second I could have picked CD or I could have picked
EF.

1. Sure.

O:  And then third I could have picked EF or GH...And last, CD or GH, the remaining pairs...Same exact
pairs, counted twice here, counted only once here because you’re dividing out the ordering of the
pairs... So this is the order of the pairs, this is my overcounting, overcounting here, this is the number
of ways to order 4 things, this way you get rid of those double counts.

Owen’s smaller case had a communicative and explanatory element to it. That is, it
seems as though the smaller case facilitated his articulation of what exactly went
wrong. It is not to say that Owen could not also have easily explained his work (and
the overcount) using the original problem, but he chose not to do so. And the smaller
case, which was easier to write out, was certainly effective in helping him to explain
key aspects of the problem and the incorrect solution. The smaller case thus served as a
useful form of communication for Owen.

As another example of this phenomenon, Mike had solved the Groups of Students
problem without using a smaller case. In discussing his work, Mike indicated that if
asked to explain the solution to someone else, he would talk through a smaller example,
noting, “I would just say that you could make a smaller example with just, we’d want to
do at least 3 groups to show why it has to be a factorial, I suppose, and so you’d have 3
groups of maybe 6 objects.” So while solving a smaller problem was not a part of his
solution process, he seemed to recognize that using a smaller problem could be an
effective means of explanation. This kind of communication seems to have a natural
relationship with teaching. Like Mike, a number of students commented that if they had
to explain their work to students in a classroom setting, they would consider small cases.
This seemed to be because these students saw small cases as allowing for actually listing
out some outcomes, which could help students get a sense of the problem. Pedagogical
ideas are discussed in the section on the avenues for further research.

Potential Pitfalls in Working with Small Cases

The results above highlight various ways in which students used the problem solving
strategy of smaller cases, and these results emphasize the potential benefit of such a
strategy for solving counting problems. However, there were also instances in the data
that suggested the strategy could lead to negative consequences if it was not imple-
mented properly. Below, I draw attention to three such pitfalls that arose during the
study. These are meant to point out what can happen if the strategy is not carried out
with care and precision.
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Mathematical Properties Between the Original Problem and the Smaller Problem
May Differ It can be difficult to reduce a problem to a smaller problem that maintains
the same mathematical features of the original, and combinatorial problems can be
particularly susceptible to such a challenge. As discussed previously, the numbers 100
and 3 have different properties; reducing a problem dealing with 100 objects to a
problem dealing with 3 objects could potentially change some subtle mathematical
features of the problem. As students numerically reduce some parameter in order to
create a smaller problem, some typically unforeseen mathematical property can arise
(or disappear) that had been absent (or present) in the original problem.

As a specific example, this issue arose in Paige’s work, when she evaluated the
correct alternative answer to the Groups of Students problem. Expression GC has a 4
factorial in the denominator, while Expression GI does not, and when Paige compared
the two answers, she sought to examine whether division by 4 factorial was necessary.
On this problem Paige had reduced the problem to splitting into two groups; had she
applied Expression GC to such a case, it would have meant dividing by 2 factorial.
However, two and two factorial are equal, and simply by looking at one small
case she could not clearly tell whether she was dividing by two or by two
factorial (and thus whether she should divide by four or 4 factorial in the
original problem). While the reduction of the problem from dealing with four
groups to two groups undeniably made the outcomes easier to list, a specific
property about the number 2 (that does not apply to the number 4) affected
Paige’s ability to generalize from the smaller case. Fortunately, Paige was able
to recognize 2’s special property, and she sought other means of reasoning
through why 4 factorial made sense.

This example highlights the fact that different numbers have properties that may
cause them to behave in certain ways, and reducing parameters to make a smaller
problem can enhance some properties or inhibit others. It takes mathematical knowl-
edge and experience to foresee how certain numerical properties could affect the
constraints of the problem, and this is issue is something of which students ought to
be aware.

The Relationship Between the Smaller Problem and the Original Problem Can be
Lost Another potential danger is that students should not become so involved in a
smaller case that they are unable to relate it back to the original problem. For example,
in her work on the Passwords problem, Jenny spent a considerable amount of time
working through a small example to make sense of a particular part of the problem. At
one point, she was trying to remind herself of the ways of placing the remaining non-E
letters, and to address this issue she looked at a case of only 3 letters. In the course of
this work, she drew a very detailed tree diagram and spent a considerable amount of
time working through that diagram. Eventually, this work had the effect of distracting
her from what she had initially been doing. She had difficulty connecting her work on
the small case back to the original problem, and to recall how those endeavors
particularly related to what she was trying to accomplish. This is not to say that detailed
and lengthy forays into smaller cases are always bad — Anderson, for example, showed
instances of very effective work with small cases that could be called tangential.
However, such work is only effective insofar as it can be directly related back to the
problem at hand.

@ Springer



Int. J. Res. Undergrad. Math. Ed. (2015) 1:339-362 359

The Smaller Problem Can be Worked Carelessly, Without Precision and Atten-
tion to Detail A final point is that effectively working through small cases often
requires students to be precise and methodical. This is not new advice in the problem
solving literature; Polya (1945) emphasizes this in his famous book, How to Solve It
(e.g., pp- 68—69). This is particularly noteworthy in counting problems, though, when
numbers can be large and maintaining the integrity of the original problem can be
difficult. In the examples I have described of successful implementation of small cases,
these students” work was marked by very precise, detailed work. The students did not
seem in a hurry just to apply a formula, get an answer, and be done. Rather, they
invested time (often more than 15 min) in figuring out the problem, and they were
willing to try a couple of cases and to engage in systematic listing. While these are
certainly desirable qualities for mathematics students in a variety of settings and
domains, these are particularly important attributes when dealing with complex
counting problems.

Conclusions and Avenues for Further Research
Conclusions

In drawing conclusions from the results above, I first point out that the strategy of using
small cases in the context of combinatorial tasks is related to sets of outcomes. In prior
work, I indicated the importance of considering sets of outcomes for students as they
count, suggesting that much benefit could be afforded by explicitly utilizing sets of
outcomes in the activity of counting (Lockwood 2013, 2014; see also Hadar and
Hadass 1981; Polaki 2005). The findings in this paper build upon this notion, indicating
that students’ uses of smaller cases, in particular their use of systematic listing, was
related to their facility with the set of outcomes. In some instances, the use of a smaller
problem allowed for work with the set of outcomes that might not otherwise have been
attainable.

Second, I contend that the utilization of smaller cases is particularly useful in the
domain of combinatorial enumeration. The strategy of using smaller cases can be a
powerful problem-solving resource, and the nature of counting problems makes them
particularly appropriate for the strategy of using smaller, similar problems. Specifically,
in counting problems, sets of outcomes are often so large that they can be difficult to
conceive of and manage (for example, the answer to the Passwords problem is over 575
million, and the answer to the Groups of Students problem is approximately 488
million). Smaller cases can reduce the magnitude of such sets and can make the
problems and the solution sets more accessible. Additionally, it is very important for
a student to be able to articulate what he or she is trying to count, and smaller cases can
particularly facilitate such activity. In some counting problems the objects themselves
that are being counted can be quite difficult to articulate (for example, in the Groups of
Students problem, an outcome is one partition of 20 students into four groups of five;
this necessitates coordinating a number of factors — 20 distinct students, what such a
division might look like, and how they might be divided to create a desirable division).
Considering these difficulties with manipulating large sets of outcomes and articulating
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those outcomes, smaller cases are particularly useful because they allow not only for
the magnitude of the outcomes to be reduced, but often also for the outcomes
themselves to be easier to identify. Counting problems are complex problems that are
easy to state but can be difficult to solve, and they tend to involve answers of great
magnitude that cannot easily be checked. As such, the use of small cases provides a
way to ground a student’s work meaningfully.

Finally, given the complexity of counting problems, another finding is that the
strategy of using small cases can be useful but requires care. When a smaller problem
is utilized, students must be aware of any subtleties or complexities of the original
problem. They must attend both to the parameters and the constraints of the problem,
being aware of potentially significant mathematical properties that might affect their
work. Students must also be precise and methodical in their work. The general positive
qualities of a careful mathematics student become especially valuable in the context of
using smaller problems on combinatorial tasks.

Avenues for Further Research

The results discussed above highlight ways in which students used smaller cases in
their work on combinatorial problems. Overwhelmingly, the strategy helped the stu-
dents who chose to implement it, in spite of the potential drawbacks they could have
encountered. Given student difficulties with counting problems, the use of smaller
cases seems to be a promising domain-specific strategy that could be useful for
students. However, beyond the results presented above, at this point there is not much
known about students’ uses of this strategy, particularly in the combinatorial context. I
discuss potential avenues for further research that could stem from this initial work.

One potential direction for further study is to conduct research that clearly targets
how students think about and reflect upon their uses of small cases. Little is currently
known about whether students recognize the potential value of such a strategy, whether
they see the potential downsides, and whether it is a strategy that they employ across
mathematical domains. Such reflection about the strategy could give insight into
students’ current thinking and beliefs about such strategies, particularly in the context
of combinatorial problems. Studies could be conducted that specifically target students’
thinking about their uses of smaller cases, perhaps presenting interventions in which
students are explicitly instructed to reflect upon their use of small cases in their problem
solving work.

Another possible avenue of further study is to investigate effective ways to develop
this strategy among students. This is not a trivial endeavor — successful use of the
strategy can be overwhelming, because of some of the potential disadvantages men-
tioned above. Schoenfeld (1979) presented evidence that the problem solving heuristic
of solving a similar problem was in fact one that could effectively be taught. That is,
some of his students who received explicit instructed about the strategy went on to
utilize it successfully. There is thus precedence for explicit instruction of the strategy,
and a study could be conducted about the effectiveness of teaching the strategy in the
context of combinatorics. Such research could begin with teaching experiments and
could extend into curricula development and classroom implementation. Related to
this, students’ uses of small cases seem to be related to the verification of combinatorial
problems, as Eizenberg and Zaslavsky (2004) suggest. Due to large sets of outcomes,
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combinatorial problems are notoriously difficult to verify; however, the use of smaller
cases could be presented as a verification strategy for students.

Also, it could be worthwhile to study pre-service teachers’ knowledge and beliefs
related to this strategy. This is relevant both for understanding their own notions of such
a strategy, but also to gain insight into how they might implement the strategy in the
classroom. Researchers could learn more about how teachers could foster the use of
such a strategy among students. I would advocate such an investigation within the
specific mathematical domain of combinatorics, but it may be worthwhile to look at the
strategy more generally as well.
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