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Abstract The Calculus Concept Readiness (CCR) instrument assesses foundational
understandings and reasoning abilities that have been documented to be essential for
learning calculus. The CCR Taxonomy describes the understandings and reasoning
abilities assessed by CCR. The CCR is a 25-item multiple-choice instrument that can be
used as a placement test for entry into calculus and to assess the effectiveness of
precalculus level instruction. Results from administering the CCR to first semester
calculus students at the beginning of the semester revealed severe weaknesses in
students’ foundational knowledge and reasoning abilities for learning calculus.
Correlating CCR results with course grades revealed that students with higher CCR
scores are better prepared to succeed in beginning calculus. The CCR data further
identified specific ways of thinking and concepts for which precalculus instruction
could be improved to influence student learning and preparation for calculus.
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Introduction

Precalculus courses in the United States (US) are not achieving their educational
potential, especially with regard to preparing students to succeed in calculus (e.g.,
Breidenbach et al. 1992; Carlson 1998; Moore 2012; Moore and Carlson 2012). One
consequence of this is high attrition from precalculus to calculus, but the major
consequence is the lost learning opportunities that would benefit precalculus and
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calculus students. The attrition and missed educational opportunities are enormously
expensive because they delay STEM students’ progress toward degrees, lower the
learning in some degrees, or cause students to drop out of STEM altogether. Research
over the past few decades point to ways precalculus and calculus courses can be
strengthened to address this alarming situation (e.g., Carlson and Rasmussen 2008).
This research has informed the development of the Calculus Concept Readiness (CCR)
instrument,' while curriculum and instruction in precalculus level courses have not
been noticeably impacted by research on learning key ideas of precalculus level
mathematics.

This article provides an overview of literature that has identified foundational
precalculus level reasoning abilities and understandings that students need for under-
standing key ideas of calculus. The Calculus Concept Readiness (CCR) Taxonomy is
presented to detail the specific abilities assessed by the CCR instrument. We conclude
by sharing results from administering the CCR to US college students prior to taking
beginning calculus.’

Background

Over the past 25 years many mathematics education researchers have found that student
difficulties in understanding key ideas of calculus are rooted in their weak understand-
ing of the function concept (e.g., Breidenbach et al. 1992; Carlson 1998; Carlson et al.
2010; Tall and Vinner 1981; Tall 1992, 1996; Thompson 1994a; Smith 2008; Zandich
2000). Early studies of students’ understandings of the function concept revealed
common misconceptions among students (e.g., Monk 1992; Sierpinska 1992; Vinner
and Dreyfus 1989) including their: i) strong tendency to view a graph as a picture of an
event (Monk 1992), rather than a representation of how two quantities change together;
and ii) viewing a function as a recipe for getting an answer instead of as a process that
maps input values to output values (Breidenbach et al. 1992; Carlson 1998). These
weaknesses in students’ understanding of the function concept are contributing to
students being unprepared to understand ideas in beginning calculus.

Other studies have investigated student thinking in the context of curriculum tasks
designed to develop student understanding of ideas of function (Dubinsky and Harel
1992; Moore and Carlson 2012), function composition and inverse (Engelke et al.
2005; Engelke 2007), quantity (Moore and Carlson 2012; Moore 2012, 2014), expo-
nential growth (Castillo-Garsow 2010; Strom 2008), and central ideas of trigonometry
(Moore 2013, 2014). These studies consistently report that when students conceptualize
a function as a process that maps input values from a function’s domain to output
values in a function’s range, they are able to understand and use the idea of function,
function composition and function inverse to solve novel problems (Engelke 2007;
Moore and Carlson 2012). As students begin to reason about how the input values and

! The CCR instrument is part of the Placement Testing Suite of the Mathematical Association of America that
is delivered by Maplesoft. Parrallel forms of the initial CCR have been developed and are being disseminated
to inform precalculus instruction.

2 Many students who graduate from US high schools and attend US colleges and universities are not prepared
to take beginning calculus, resulting in their enrolling in a course in precalculus as their first college level math
course.
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output values of a function change together they are able to distinguish between
different function types, explain the meaning of a concave up graph and conceptu-
alize the covarying quantities related by trigonometric functions in precalculus
(Moore 2012, 2014) and the Fundamental Theorem of Calculus (e.g., Carlson
et al. 2003; Oechrtman 2008; Smith 2008; Thompson 1994a). This is encouraging
since it suggests that student learning in precalculus level mathematics can be
affected by instructional interventions that support students in understanding and
reasoning with the function concept.

Foundational Reasoning Abilities and Understandings for Learning
Calculus

This section provides a more detailed description of the reasoning abilities and under-
standings that students need to develop prior to beginning a course in calculus. In
particular we describe what is involved in conceptualizing quantities and make an
argument for the importance of covariational reasoning in defining meaningful func-
tions to model relationships in word problems. We discuss the importance of develop-
ing a process view of function and what it means. We also describe complexities of
engaging in proportional reasoning and conclude by discussing understandings of other
key ideas (e.g., constant rate of change, average rate of change) that are needed for
learning calculus.

Covariational Reasoning

In the context of mathematics it is common that students need to conceptualize
quantities in a problem situation and to consider how those quantities are related and
change together (Carlson et al. 2002; Thompson 1994b). This ability to both concep-
tualize a situation and imagine the measurable attributes of the objects (quantities) in a
situation is referred to as quantitative reasoning (Smith and Thompson 2007,
Thompson 1993, 2011, 2012). For example, when watching a race one might initially
observe runners and a starting line, and then when the starting gun is fired be interested
in how a quantity such as distance of a runner from the starting line changes as the
runner is moving down the track. One might also notice that the elapsed time since the
runner started the race is increasing and that the length of the race is 100 m. The
observer has conceptualized two varying quantities, the elapsed time since the start of
the race and the distance of the runner from the starting line, and one fixed quantity, the
length of the race.® There are many other varying and fixed quantities that could be
conceptualized in this situation (e.g., the height of the runner or the distance of the
runner from the finish line). However, it is important that students learn to focus on and
conceptualize the quantities that are relevant for the line of inquiry they are pursuing.*

The mental process of relating two varying quantities requires that students think
about how the two quantities are changing together. Gaining clarity about sow the

? Students can engage in covariational reasoning prior to being formally introduced to the function concept.
4 Most applied problems in precalculus and beginning calculus request that students define a formula or
function to express one quantity in terms of other formulas.
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runner’s distance from the starting line is changing with the elapsed time since the
runner started running might involve considering fixed amounts of change in one
quantity while considering how much the other quantity is changing. In this example
we might consider fixed amounts of time (e.g., 2sec) while considering how much
distance the runner traverses for each successive Y2sec of the race. If we were to
observe that the runner was traveling a greater distance, over some interval of time for
each successive Y2sec since starting the race, we might conclude that the runner’s rate
of change of distance with respect to time is increasing over that interval of time.

Carlson (1998) documented that both precalculus and second semester calculus
students had difficulty creating a graph to represent the height of water in a spherical
bottle as a function of the amount of water in the bottle. Carlson et al. (2002) later
described 5 mental actions associated with covariational reasoning in the context of
making or interpreting a graph of two quantities that change together. These mental
actions include: i) conceptualizing the quantities in the situation that are to be related; ii)
imagining how the direction of the two quantities change together (e.g., as the elapsed
time since the race started increases the distance of the runner from the finish line
decreases) iii) imagining how the amount of change of one quantity changes while
considering contiguous fixed amounts of the other quantity on intervals of that quantity;
and iv) imagining how the average rate of change of the output variable with respect to
the input variable is changing on small contiguous intervals of the input variable.

A student who considers how two quantities in a dynamic situation change together
is said to be engaging in covariational reasoning (Carlson et al. 2002; Thompson
1994b). This is a foundational way of thinking that is needed to construct meaningful
formulas and graphs to model relationships in applied contexts (Carlson et al. 2002;
Moore and Carlson 2012). Covariational reasoning has also been documented to be an
essential reasoning ability for understanding and using ideas in beginning calculus
(Carlson et al. 2003; Engelke 2007; Smith 2008; Thompson 1994b; Zandieh 2000).

When students first encounter word problems in precalculus, regardless of the type
of function model that is needed, they must first conceptualize the quantities to be
related (e.g., length of the radius of an expanding sphere and volume of the expanding
sphere, angle measure and vertical distance, ambient temperature and the temperature
of an object, amount of time since making an investment, the value of the investment).
Once the relevant quantities in a word problem have been conceptualized students are
able to think about how the quantities are related and how they change together. These
conceptualizations describe the reasoning that students must engage in to construct a
formula to model the relationship between two quantities in an applied context (Moore
and Carlson 2012).

Understanding the Function Concept

Carlson and colleagues (Carlson 1998; Carlson et al. 2002) found that many precalcu-
lus level students have difficulty using and interpreting function notation, and many are
not clear on what it means to express one quantity as a function of another. Precalculus
students sometimes confuse the output of a function with the function name and
interpret the equal sign as a statement of equivalence rather than as a means of defining
a relationship between two quantities that change together (e.g., Carlson 1997, 1998).
Students who exhibit a process view of function are better prepared to understand and
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use function notation to relate values from a function’s domain to its range. This is
because they see both a function’s defining formula and graph as specifying how to
process the input values to produce output values. This image supports students in
thinking about function composition as the stringing together of two function processes
for the purpose of relating two quantities that cannot be directly related by a single
formula. Students who have a process view of function are also able to understand the
idea of function inverse as a new mapping that reverses the process of the original
function.

Carlson (1995) investigated precalculus level students’ understanding of function.
She found that when function names such as f, g, and 4 were used, students were
unclear as to what the letters meant and that some students believed that the letters
represented variables. This is not surprising because up to this point in students’
experiences in algebra, letters had been used to define variables. This conception does
not support students in viewing a function that has been named with a letter and defined
with a formula as representing a process that maps input values in a function’s domain
to output values in a function’s range.

Extending the process view of function to reason about how the values in a
function’s domain covary with values in a function’s range involves considering how
function values change over a continuum of values, rather than just imagining one input
value being mapped to one output value one value at a time. This extends the process
view of a function so that students are able to both construct meaningful graphs, and to
describe what a graph’s concavity conveys about how the function’s output value is
changing relative to its input value. Several studies (e.g., Carlson 1998; Carlson et al.
2002; Carlson et al. 2010; Moore and Carlson 2012) revealed that attention to the
quantities being modeled in a situation, and the ability to think about how one quantity
is changing while imagining fixed incremental changes of the other quantity, enables
students to understand and use ideas of constant rate of change and to interpret and
construct meaningful function formulas and graphs to represent specific linear, expo-
nential, quadratic, rational, and periodic growth using functions.

The idea of average rate of change on an interval of a function’s domain is also a key
idea of precalculus that is needed for learning calculus. It is common for precalculus
level students to associate the word average with a procedure to add numbers in a list
and then divide by the number of items added (Carlson et al. 2010). In contrast, one
accurate and meaningful understanding of the idea of average rate of change of a
function on an interval, is that the average rate of change is the constant rate that would
achieve the same change in both the input and output quantities as the actual function
on the interval of interest (Thompson 1994b). Studies (e.g., Carlson et al. 2002; Carlson
et al. 2010) have consistently revealed that the vast majority of students at many
different universities across the US exit precalculus courses without understanding
the idea of average rate of change.

Proportional Relationships
The ability to recognize situations in which two varying quantities are related propor-
tionally has been documented to be problematic for precalculus level students (Castillo-

Garsow 2010). They might be able to solve for x when given a situation in which x/y=
3/7 and, but if given a problem that requires students to recognize that the ratio of two
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varying quantities is a constant, or that two varying quantities are related by a constant
multiple, the vast majority of precalculus level students have difficulty recognizing
proportional relationships in dynamic situations (Carlson et al. 2010). For example,
when administering the rain-gauge problem (Fig. 1) to 1205 precalculus students at the
end of the semester, only 43 % of these students provided the correct response of 7%
(Carlson et al. 2010). Most of these students recognized that when the wide cylinder
had 6 inches, the narrow cylinder had 4 inches. However, they failed to recognize that
as the amount of rain increased, the ratio of the number of inches of rain in the wide
cylinder to the number of inches of rain in the narrow cylinder had to remain in a
constant ratio of 4:6. It was common for students who provided an incorrect response to
reason that, if the water rises to the 11th mark on the narrow cylinder it would rise to the
9th mark on the wide cylinder since the amount of water originally in the wide cylinder
was 2 less than what was in the narrow cylinder.

To the right are drawings of a wide and a narrow cylinder. The cylinders have
equally spaced marks on them. Water is poured into the wide cylinder up to the 4th
mark (see A). This water rises to the 6th mark when poured into the narrow cylinder
(see B). Both cylinders are emptied, and water is poured into the narrow cylinder up to
the 7th mark. How high would this water rise if it were poured into the empty wide
cylinder?

Recent work to improve student learning in precalculus (Carlson et al. 2015) has
highlighted the important role that proportional reasoning plays in understanding and
using the idea of constant rate of change. If two quantities are changing at a constant
rate of change, the changes in the two quantities are proportional. It is this understand-
ing that is needed to determine a new value for one quantity when the constant rate of
change and a value of the other quantity is known. Many applied problems in
precalculus and beginning calculus require use of proportional reasoning.
Recognizing proportionality of quantities and using proportional reasoning is also
key to understanding and using the idea of angle measure in trigonometry (Moore
2013).

Angle Measure and Sine Function

The ideas of angle measure and trigonometric functions have been documented to be
under-developed in inservice teachers (Thompson 2008; Thompson et al. 2007) and
precalculus level students (Moore 2012, 2013) and preservice teachers (Moore 2012;
Moore et al. 2012). Students often do not conceptualize an angle measure as an amount
of openness between two rays with a common endpoint; nor do they recognize the need

To the right are drawings of a wide and a narrow cylinder. The
cylinders have equally spaced marks on them. Water is poured into
the wide cylinder up to the 4™ mark (see A). This water rises to the
6™ mark when poured into the narrow cylinder (see B). Both
cylinders are emptied, and water is poured into the narrow cylinder

up to the 7" mark. How high would this water rise if it were poured

into the empty wide cylinder?

Fig. 1 The rain-gauge problem (Piaget et al. 1977; Lawson 1978)
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to use an arc of a circle (with its center at the angle’s vertex) to measure an angle’s
openness.

According to Moore (2013), approaches that help students view an angle’s measure
in terms of the relative length of circle’s arc that the angle subtends, are able to
understand the idea of radian measure and effectively use the radius of a circle as a
unit for measuring angles. Examination of student thinking during a teaching experi-
ment designed to support student understanding of trigonometric functions revealed
that when students are able to reason about how an angle’s measure and the vertical
coordinate of the arc’s terminus (measured in units of the arc’s radius) covary, they are
better able to understand the sine function and use it meaningfully to model periodic
motion (Moore 2012). This image of the sine function in the unit circle context also was
useful for students in connecting their unit circle conceptions of the sine and cosine
functions to their conceptions of these functions in the triangle trigonometry context.
These students came to understand specific right triangles as corresponding to specific
input—output pairs of the trigonometric functions.

The CCR Taxonomy

The CCR Taxonomy (Table 1) includes three primary reasoning abilities that are
foundational for learning and using key ideas of calculus. The taxonomy includes
understandings of various function types that emerge from examining growth patterns
in data, and other understandings that have been identified in research studies to be
essential for either constructing or interpreting meaningful function formulas and
graphs. Lastly, the taxonomy has a category that describes the trigonometric ideas that
are needed to model periodic growth and to understand and connect unit circle and
triangle trigonometry.

The CCR is a 25 item multiple-choice exam with each question having five answer
choices. Eighteen of the twenty-five CCR items assess or rely on student understanding
of the function concept. Five items assess student understanding or use of trigonometric
functions, and four items assess student understanding or ability to use exponential
functions. Ten items are situated in an applied (or word problem) context and require
students to reason about quantities and use ideas of function, function composition, or
function inverse to represent how the quantities change together. There are other items
that provide information about such things as students’ understanding of notational
issues, their ability to interpret the meaning of an absolute value inequality such as [x—
3|<5, and whether they can determine the inverse function of an exponential function.
In some problems students are expected to recognize equivalent expressions, perform
translations on a known function, and/or use structural equivalence in their reasoning,
such as recognizing that 3(x+2)*—4(x+2)+7=0 is a quadratic function in (x+2).

The Process of Developing the CCR
The literature review and CCR taxonomy informed the development of items produced
by a committee of five mathematicians and one mathematics educator. Four of the

mathematicians have participated in developing and scoring items for Advanced
Placement Calculus, one has worked in placement testing for over 20 years, and the
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Table 1 The CCR taxonomy

Reasoning abilities

R1 Proportional reasoning: Observe that two quantities that are changing together are related by a constant
multiple and that as the two quantities change together the ratio of one quantity to the other remains
constant; then use this knowledge to determine new values of one quantity for specific values of the
other quantity.

R2 Process View of Function: View a function as a process that maps input values in a function’s domain
to output values in a function’s range.

R3 Quantitative and Covariational Reasoning: Conceptualize quantities in situations and reason about how
two quantities in a situation change together.

Understand, represent and interpret function growth patterns
F1 Linear
F2 Exponential
F3 Non-linear polynomial
F4 Rational
F5  Periodic
Understand and use the following concepts or ideas
Ul Quantity
U2 Variable
U3 Slope/Constant rate of change
U4  Average rate of change
U5 Function composition
U6 Function inverse
U7 Function translations (horizontal and vertical shifts)
Understand central ideas of trigonometry
T1 Angle measure
T2 Radian as a unit of measure

T3 Sine and cosine functions as the covariation of an arc’s length (measured in units of the circle’s radius)
and the horizontal or vertical coordinate of the arc’s terminus (measured in units of the arc’s radius).
These questions exploit the idea that every circle can be considered a unit circle.

T4 Sine and cosine functions as a representation of the relationship between an angle measure and sides of
a right triangle

Other abilities
Al Solve equations
A2 Represent and interpret inequalities
A3 Use and solve systems of equations

A4 Understand and use function notation to express one quantity in terms of another

mathematics educator had led the development of the Precalculus Concept Assessment
(PCA) instrument (Carlson et al. 2010).

Following methods of instrument development used to develop the Precalculus
Concept Assessment (PCA) (Carlson et al. 2010), the Mechanics Baseline Test
(Hestenes and Wells 1992) and the Force Concept Inventory (Hestenes et al. 1992),
open-ended questions were designed to assess the reasoning abilities and understand-
ings that had been revealed to be most critical for learning calculus. According to
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Lissitz and Samuelsen (2007), the development of a valid examination should
always begin by identifying the constructs worthy of assessment. Question wording
and item distractors for the multiple-choice items were based on student interview
data that illustrated common student thinking when responding to each open-ended
item. Further interviews were conducted with students after the initial multiple-
choice items were developed to identify or refine item distractors so that they were
representative of five common student responses, and to verify that questions and
answer choices were interpreted as we intended. The taxonomy and CCR items
went through multiple cycles of refinement. Clinical interviews with students were
conducted repeatedly until each CCR item had been validated to: i) be consistently
interpreted, ii) assess the knowledge intended by the item designer, and iii) have
distractors that were representative of student thinking as revealed during the
interviews.

After validating that the CCR items assess what we claimed, we administered the
CCR exam to 631 students at three public universities and one private university. The
data was subsequently analyzed to examine trends in the CCR data.

Analyses of CCR Results

We administered CCR to 601 Calculus 1 students at three different universities during
the first week of the fall 2009 semester. Our primary goal was to determine how well
CCR scores predicted grades in Calculus 1 courses. We administered CCR to thirty
precalculus students in the last week of classes, comparing student course grades with
their CCR scores. We used these quantitative data to: (1) estimate the reliability of the
test as a whole; (2) measure how each of the 25 items was functioning, individually and
as a part of the test; and (3) measure validity of the instrument as a measure of readiness
for success in learning calculus.

Reliability is a measure of consistency of scores on repeated administrations of
the test. Since repeated administrations pose logistical difficulties, reliability esti-
mates from a single administration of the test are made from correlations of scores
on subsets of the test. For example, split-half reliability is a correlation of scores on
halves of the test. The estimate of reliability we used is an extension of the split-half
reliability, called Cronbach’s alpha. To measure item functioning, we computed a
difficulty index (the percent correct), a discrimination index, and the point-biserial
coefficient for each item. The point-biserial coefficient of an item is the correlation
between the scores on the item and the scores on the entire test with the item
deleted.

We measured validity of CCR as a predictor of course grades in Calculus 1
(predictive validity), correlated CCR scores with the American College Testing
(ACT) mathematics scores (concurrent validity), and compared grades in a prerequisite
precalculus course to CCR scores (criterion validity). Each of these analyses indicated
that CCR scores are useful when deciding on readiness for success in the study of
calculus.

> The ACT college readiness assessment is a standardized test for high school achievement and college
admissions in the United States produced by ACT, Inc.
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Establishing CCR Validity® and Predictive Potential

During the fall semester of 2009, CCR was administered to 215’ Calculus 1 students at
a large public university during the first week of class. Approximately 70 % of these
students were freshmen (149 freshmen and 66 upperclassmen) and were placed in the
course by virtue of having an ACT mathematics test score of at least 26. Most of the 66
upperclassmen were in the class by virtue of passing a prerequisite course. Final course
grades were obtained for 214 of these 215 students. The statistics for these students are
given in Table 2.

Table 3 provides the Pearson correlation coefficients between ACT mathematics
scores (most recent and maximum in 2007-2009), the score on CCR, and the course
grade (0—4 with withdrawal (W) being 0). These are all significant at the 0.0001 level
under the null hypothesis that the correlations are 0. The number of records for each
correlation is given as N.

The above results (Table 3) indicate that course grades are moderately correlated to
CCR scores and ACT, while the correlation of grades with ACT scores is somewhat
weaker. This raised the question of using both ACT scores and CCR scores to explain
variation in course grades. The results of two multiple regressions are given in Tables 4
and 5.

These results indicate that using an ACT score (most recent or maximum in 2007—
2009) in conjunction with the CCR score does not add much to the explanation of the
variation of course grades. There is considerable overlap in the predictive information
from CCR scores and ACT scores, but the predictive power of CCR is better, with CCR
scores contributing significantly to the explanation of the variation of course grades.

We provide a brief description of the 25 items, the percent correct (P), a measure of
discrimination (D), and the point-biserial coefficient (PBS) (see Appendix A). The
percent correct is a measure of item difficulty. The Discrimination Index (D) (Kelly
et al. 2002) is computed from equal-sized (27 %) high and low scoring groups on the
test by subtracting the number of successes by the low group on the item from the
number of successes by the high group, and dividing this difference by the size of a
group. The range of this index is +1 to —1, and values of 0.4 and above are regarded as
high and less than 0.2 as low discrimination. We observed that 12 of the items have
high discrimination indexes and four (20, 21, 23, 24) have low indexes. Not surprising
these four items with low discrimination indexes correspond to the ones on which our
interviews revealed severe weakness in most students. Three of these four are trigo-
nometry items, corroborating our findings from the clinical interviews that even high
performing students had weak understanding of ideas of angle measure and trigono-
metric functions in the unit circle context.

The Pearson point-biserial for each test item is a correlation of the scores on that
item (dichotomous at 0 or 1) and the scores on the test with that item deleted. A point-
biserial of at least 0.15 is recommended but “good” items have point-biserials greater
than 0.25 (Varma 2012). It is noted that all of the items have biserial coefficients greater

© The authors are indebted to Charles Stegman and Clay Johnson of the National Office for Research on
Measurement and Evaluation Systems and Joon Jin Song of the Statistical Consulting Institute of the
University of Arkansas for assistance in analyzing these data.

7 These 215 students were a subset of the 601 beginning calculus students who completed CCR.
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Table 2 Basic statistics on CCR

Ni M . Dev.
and ACT scores and course grades umber can  Std. Dev

CCR score 214 1037 3.86
ACT (max 2007-2009) 144 27.38  3.90
ACT (most recent in 07-09) 144 26.82  4.15
Course Grade (04 with W=0) 214 1.80 1.51

than 0.15 and nineteen of them have coefficients greater than 0.25 and moderate to high
discrimination indexes. The six items 18, 19, 20, 21, 23 and 24 with a point-biserial
lower than 0.25 are items on which the percentages of correct answers were less than
20 %, similar to what one would expect if students were selecting an answer without
even reading the question.

Reliability Measure

The Cronbach coefficient, alpha, is an estimate of test reliability, i.e., the internal
consistency of the test. The raw Cronbach coefficient from this test administration is
0.665 (p<0.0001); standardized it is 0.658. The raw Cronback alpha of 0.665 increases
slightly with items 18, 19, 20, 21, 23, and 24 deleted (one at a time), consistent with the
low correlation of these items with the rest of the test as indicated by the point-biserial
coefficients. These data provide further support of qualitative studies that have revealed
severe weaknesses of students’ understanding of trigonometry. Since our the research
literature and our own qualitative data support that the understandings assessed by these
items are important for learning key ideas of calculus we are retaining these items on
CCR to raise awareness of the need for greater curriculum focus with ideas of angle
measure (T1 and T2), function translations (U7), and trigonometric functions (T3 and
T4). We are also hopeful that shifts in the conceptual focus of curriculum will lead to
improved results on these items.

Validity Measures

Our analysis of CCR scores from assessing 215 Calculus 1 students at the beginning of
the course shows a reasonably strong connection between levels of CCR scores and

Table 3 Pearson correlation coefficients

ACT recent ACT max 07-09 CCR score Course grade
ACT recent 1
N=144
ACT max 07-09 0.94 1
N =144 N=144
CCR score 0.54 0.54 1
N =144 N=144 N=215
Course grade 0.36 0.38 0.51 1
N=143 N=143 N=214 N=214
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Table 4 CCR score and ACT

. Dependent variable: course grade
recent as explanatory variables

Variable Parameter estimate Standard error ¢ value Pr> [t
CCR score  0.15 0.03 441 <0.0001
ACT recent 0.04 0.03 1.38 0.17

success in their Calculus 1 course, as measured by course grades. The mean CCR
score of students whose course grades were A, B, or C is 11.83, while the mean
CCR score for students whose course grades were D, W, or F is 8.49. Tables 6 and
7 give the grades sorted by CCR score and the mean CCR scores for students with
grades of A, B, C, D, F, and W. These tables indicate a reasonably strong
correlation between CCR scores and course grades, and it is noted that each of
the 15 students with CCR scores of 17 or more earned a grade of A or B. This
finding suggests that CCR items assess prerequisite knowledge for learning key of
ideas of calculus.

Factor Analysis

A conceptual analysis of what is assessed by individual items revealed that each item
assesses a unique combination of reasoning abilities, understandings, and notational
issues, and that this uniqueness of individual items results in low correlations between
items. Carlson et al. (2010) report similar findings that four PCA items that primarily
assessed students’ ability to use function composition were weakly correlated. Their
clinical interviews revealed differences in the complexity of the items that might have
attributed to the low correlation.

Criterion Validity

Another type of validity study involved comparison of the CCR results to the
outcome of the prerequisite precalculus course at the university where this study
was conducted. Since students who earn grades of A, B, or C in a precalculus course
are presumably ready to learn the content taught in a Calculus 1 course, testing
precalculus students at the end of the course should reveal a correspondence
between success in the course and a CCR score. Data from 30 precalculus students
(Tables 8 and 9) at the same university were tested at the end of their course. The

Table 5 CCR score and ACT max

07-09 as explanatory variables Dependent variable: course grade

Variable Parameter ~ Standard ¢ value  Pr> |t
estimate error

CCR score 0.15 0.03 421 <0.0001

ACT max 07-09  0.05 0.03 1.65 0.10
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Table 6 Course grades for various

CCR scores CCR score N A B D F W GPA(W=0)
2 2 0 0 1 1 0 0 1.50
3 4 0 0 0 O 1 3 0.00
4 8 0 0 1 3 1 3 0.63
5 9 0 3 2 1 0 3 1.56
6 s 0 2 2 3 17 0.87
7 6 0 2 3 3 2 6 0.94
8 8 3 2 3 2 2 6 1.44
9 5 0 3 5 2 3 2 1.40
10 9 0 4 5 1 5 4 1.21
11 25 4 7 6 1 1 6 2.00
12 25 4 7 4 3 2 5 1.92
13 111 4 3 0 o0 4 2.00
14 217 7 3 1 2 1 2.67
15 6 3 2 0 1 0 0 3.17
16 6 3 0 2 0 1 0 2.67
17 8 7 1 0 0 0 0 3.88
18 5 3 2 0 0 0 O 3.60
19 1 0 1 0 0 0 0 3.00
24 1 1 o 0 0 0 o0 4.00

correlation between CCR test scores and course grades in precalculus was 0.58 with
the following results that, when combined with the predictive study, yields reason-
ably consistent results.

Our data analysis illustrates two approaches for validating a placement instru-
ment. One is to compare placement test scores to an existing criterion for placement
in calculus, namely successfully completing a precalculus course. Since this place-
ment testing is administered at the end of a precalculus course, students who have
dropped out are not available for the study. The second approach for validating a
placement instrument is to compare students’ placement test scores with their
grades in calculus. There are also limitations to this approach since factors other
than knowledge of and facility with precalculus concepts influence grades in

Table 7 Summary CCR score

. Course N  Mean CCR  Standard  Minimum  Maximum
statistics for course grades

grade score deviation ccr score  CCR score
A 37 145 33 8 24
B 45 112 33 5 18
C 40 99 32 2 16
D 22 81 35 2 15
F 21 9.5 32 3 16
W 50 84 3.1 3 14
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Table 8 Basic statistics from

. N Mean CCR score  Std. Dev. ~ Minimum  Maximum
precalculus testing

30 935 2.99 4 16

calculus. As a result, it is unlikely that a test administered at the beginning of a
course will predict accurately all students’ course grades. Since students in this
study were placed in Calculus 1 by using ACT mathematics scores, and in one
institution, a procedurally oriented placement exam, these conditions likely reduced
the variation in the CCR scores of our sample, resulting in the likelihood that the
predictive power of CCR scores was reduced.

These results of this analyses revealed that students who receive higher CCR scores
generally performed better in Calculus 1. In fact, students who scored 11 or higher on
CCR passed calculus (grade of A, B, or C) at rates of 66 %, 86 % and 91 % at the three
universities participating in this study. This finding is consistent with the results
reported by Carlson et al. (2010) using the Precalculus Concept Assessment (PCA).
The authors reported that 77 % of 248 Calculus I students who took PCA at the
beginning of a fall semester, and received a score of 13 (out of 25) or higher, were
awarded a course grade of A, B, or C. However, the 0.51 correlation coefficient
between the initial CCR score and final course grade was slightly higher than the
correlation coefficient of 0.47 between PCA scores, also administered at the beginning
of a fall semester, and final course grade. The success rate (at least a grade of C) of
95 % or greater for students who scored a 15 or higher on CCR suggests that
collectively the items on CCR assess essential understandings that are used in begin-
ning calculus. However, a success rate of 27 % for those with CCR scores less than 9
indicates that some students are achieving grades of A, B, or C in Calculus 1 without
initially understanding many fundamental function concepts. This finding might be due
to the strong procedural emphasis in this calculus curriculum, rather than an indication

Table 9 Distribution of precalcu-

lus grades by CCR score CCR score N #A #B #C #D #F
4 2 0 0 0 2 0
5 0 0 0 0 0 0
6 1 0 0 1 0 0
7 2 0 1 0 0 1
8 9 1 1 2 4 1
9 5 0 1 2 2 0
10 0 0 0 0 0 0
11 2 0 0 1 1 0
12 3 1 2 0 0 0
13 2 0 2 0 0 0
14 1 1 0 0 0 0
15 2 1 0 1 0 0
16 1 0 1 0 0 0
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of the overall efficacy of CCR to detect strengths and weaknesses in students’ founda-
tional knowledge for calculus.

Beginning Calculus Students are Not Prepared to Understand Calculus

An examination of the CCR response patterns of the 601 students completing CCR at
the beginning of calculus revealed severe weaknesses in these calculus students’
understandings and reasoning abililities of ideas on which calculus is built. The
majority of students were unable to answer both proportional reaosning questions
correctly and only 9 % of the 631 students answered all three function word
problems (See Appendix A, Items 2, 7, 12), suggesting weakness in their ability
to construct meaningful formulas by examining the quantities in a dynamic word
problem context. Another area of difficulty was in students’ ability to compose two
functions. Only 28 % of students provided a correct response to the item that asked
students to define the area A4 of a circle in terms of its circumference C (Fig. 2) and
only 29 % of the students selected the correct answer to a question that asked them
to determine the area of a circular oil spill that traveled outward from the center of
the spill at a speed of 2 feet per second. In another function composition item that
provides a table of values for the functions f'and g and asks students to determine
the value of /(g (3)), only 37 % of the students chose the correct answer. Interviews
with students on this item revealed that students who selected the correct answer
spoke about the functions as a means of processing input values to produce output
values, while students who selected incorrect answers did not. They appeared to use
the table as a way to look up answers without any guiding principles for how
quantities in one column were mapped to quantities in another column. We also
observed that the students in this study did not perform any better on items that
required them to execute standard procedures or remember common definitions.
Only 21 % of the students selected the correct answer to the item that asked them to
solve £ (1)=100" for ¢, while the answer f ' (£)=1/100" was selected by 53 % of the
students.

An examination of student responses on the four trigonometry function questions, 3
of which were asked in the context of unit circle trigonometry (Appendix A, Items 21,
23, 24), further revealed severe weaknesses in their covariational reasoning abilities,

Which of the following formulas defines the area, A, of a circle as a function of its circumference
CZ

Tarn
C2

)

c. A=Qnr)

d. A=’

e. A:n(lcz)
4

Fig. 2 Area-circumference item

a. A

b. A
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with 16, 21 and 17 % respectively of the students selecting the correct answers. On a
fourth more traditional trigonometry item that asked students to identify the formula for
the graph of a cosine function with a period 27¢/3, only 21 % of the students selected the
correct formula.

The following sections provide a more detailed description of student think-
ing on three CCR items. These descriptions reveal the nature of students’
weakness and specific reasoning abilities and understandings assessed by these
CCR items.

Proportional Reasoning

Two varying quantities are related proportionally if their ratios remain constant or if
they are related by a constant multiple. The CCR assesses whether students can
recognize this structure in an applied context, and then set up and solve an equation
stating the proportional relationship when the value of one of the proportional quanti-
ties is known. The CCR has two items that assess students’ ability to apply proportional
reasoning. One item is in the form of a capture-release problem (item #1, Appendix A)
with 61 % of the students in our study selecting the correct response.® The other item
asked students to construct a formula to represent the driving distance d on a road in
terms of the number of centimeters 7 between two points on a map, given that 3 cm on
the map corresponds to 114 km of actual driving distance. We expected that almost all
beginning calculus students would select the correct response and were suprised that
only 65 % of beginning calculus students selected the correct answer of d=38x The
most common incorrect choices were d = %x and d=114x. These students were clearly
not imagining the quantities in the situation and how they are related and change
together.

Function as Process

The CCR contains items that require students to compose two functions in a graphical,
tabular, and word problem context. One of these items was a function composition
word problem (Fig. 2) that prompted students to define the area of a circle in terms of
its circumference. Interviews conducted with students who answered this question in an
open-ended format revealed that the item assesses students’ ability to identify the
quantities to be related (U1) in a word problem. The item also assesses student ability
to interpret the phrase, “express area 4 as a function of circumference C” as a prompt to
construct a formula of the form, 4 = <some expression that contains C> (AS5). Students
must recall the formulas for the area and circumference of a circle, and view these
formulas/functions as processes that map values of one quantity to values of another
quantity (R2). To obtain the function that relates the area and circumference of a circle,
students must recognize that the two formulas can be combined it they first invert the
formula that defines a circle’s circumference in terms of its radius (US). They also
recognize that by composing (U4) the area formula with the inverted circumference

# The data for the Carlson, Oehrtman & Engelke study was collected at the end of precalculus and the data for
our study was collected during the first week of a beginning calculus. As a result, the samples are not
comparable.
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formula they are able to define a new formula that defines the circle’s area in terms of
its circumference.

Follow-up interviews were conducted with 19 students, 7 students had provided
the correct answer and 3 students had constructed each of the four most common
incorrect responses. Analysis of interview data with students who provided a
correct answer revealed a common approach of verbalizing the problem goal (to
express area in terms of circumference). These students typically wrote the formulas
A=mr"and C=nr?, and eventually recognized that they needed to re-express the
circumference formula by solving for r (or determining the inverse of the circum-
ference formula) to obtain »=C/(27t). When students were prompted to explain how
they knew to solve the circumference formula for », a common response as
articulated by one student was,

I know that A=70 and I need a formula for area in terms of circumference. I then
need to solve C=27r for r so I can put »= C/2) in for r. This will give me a formula
that takes values of C and computes values of 7. When I put C/27) in for » we get a
formula that takes values of the circumference C and computes the area A.

The students who selected this response appeared to be thinking of formulas as
processes for determining values of one quantity when values of another quantity are
known. Various misconceptions and impoverished ways of thinking led students to
select the incorrect responses. Students selecting answers (c) and (d) were unable to say
what it means to express one quantity in terms of another and students who selected
answer choices (b) and (e) appeared to view the letters in the formulas as something to
solve for. Interview data further revealed that students who selected the incorrect
responses did not view C/A27) as an expression that determines values for » when
values of C are known. It was interesting that many students wrote the formula C=27r
but did not recognize that they could reverse the process of the formula to obtain r=C/
(2m) to express 7 in terms of C.

When administering the item to 631 students who completed CCR, only 28 % of
these students selected the correct response. Since at least 13 % of the students (out of
631) selected each answer choice, this quantitative data (Table 10) further supports the
findings from analyzing the qualitative data that the five answer choices are represen-
tative of common student answers.

Idea of Quantity and Covariational Reasoning

Ten of the 25 CCR items (1, 2, 6, 7, 8, 11, 12, 17, 20, 23) require students to
conceptualize quantities as a first step in responding to the question. In each of
these items the student must first imagine some measurable attribute of a situation
and subsequently define a variable to represent the values that this attribute’s
measure can assume. Such an item is often followed by a request to define a
formula to relate two quantities. These items are typically applied problems that
also assess whether students have a process view of function. An item that
assesses whether students are able to engage in covariational reasoning asks that

Table 10 Area-circumference

a.2830 % b.13.67% ¢.20.19% d.21.62% e. 1558 %
answer percentage
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students think about how the two quantities in a situation or applied context are
changing together. One example of this type of problem is the bottle that asks
students to construct a graph of the height of water in the bottle in terms of the
volume (Carlson 1998).

Another item on quantity and covariational reasoning is a question that asks students
to describe how the top of a 10-foot ladder, leaned in a vertical position against a wall,
changes as the distance of the bottom of the ladder is pulled away from the wall at a
constant rate (Carlson 1998; Kaput 1992). It is noteworthy that some items that require
students to use covariational reasoning might not require that students initially identify
quantities in the problem context. One example is a CCR item in which students are
asked to describe the behavior of the rational function, f'defined by f(x):xz/(x -2).In
this question students need to think about how the values of the output f{x) change
while imagining changes in x. They might begin by reasoning that, as x decreases from
4 to 3, f{x) increases from 8 to 9, as x decreases from 3 to 2.5, f{x) increases from 9 to
12.5, as x decreases from 2.5 to 2.4, fix) increases from 12.5 to 57.6, etc. CCR has 7
items (4, 6, 7, 11, 16, 21, 23) in which students need to reason covariationally to
provide the correct response.

A Quantitative Reasoning and Slope Item

The following item (Fig. 3) requires that students conceptualize two quantities (the
distance of the top of the ladder from the floor and the distance of the base of the
ladder from the wall) (U1). They then need to imagine how the distance of the base
of the ladder from the wall changes as the top of the ladder increases to twice its
original distance from the floor (R3). As they imagine how these measurements
change together (engage in covariational reasoning), they also need to think about
how the quotient of the ratio of the changes in these two quantities (slope) (U3)

A ladder that is leaning against a wall is adjusted so that the distance of the top of the ladder

from the floor is twice as high as it was before it was adjusted.
BEFORE AFTER

< 7 <% P

The slope of the adjusted ladder is:

Less than twice what it was

. Exactly twice what it was

a
b

¢. More than twice what it was

d. The same as what it was before
e

There is not enough information to determine if any of a through d is correct.

Fig. 3 Slope of ladder item
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changes as the distance of the ladder from the wall decreases (R3). Another correct
justification involved imagining how the ratio that represents the slope of a line
changes if the algebraic form of the slope is changed by doubling the value of the
numerator and decreasing the value of the denominator. Students who used this
approach verbalized that doubling the numerator would produce a slope twice what
it was before, but doubling the numerator and decreasing the value of the denom-
inator would produce a slope that is more than twice as large as what it was before.
These students were able to imagine how concurrent changes in two lengths on the
illustration impacted the values of the numerator and denominator and how these
values impacted the value of the quotient.

Only 27 % of 631 students who completed CCR (Table 11) provided a correct
response to this item. The most common incorrect response was choice (b), exactly
twice what it was. Interviews with seven students who selected this choice revealed that
these students were not conceptualizing the slope of the straight line (ladder) as a ratio
of two quantities.

Follow-up interviews revealed that most students who chose answer (b) were
only focusing on the amount of increase of the top of the ladder. When prompted
to elaborate on their rationale for this choice, one student explained, “since the top
of the ladder is two times higher when the ladder is repositioned, the slope will be
twice as large.” The student failed to consider the effect of the shortened distance
of the base of the ladder from the wall and never considered the slope as
representing a ratio of the two distances. Students who selected answer (e), not
enough information to determine, thought they needed exact numbers for the
distances to be able to compute and compare the slopes. Students who thought
the slope was less than twice what it was (answer (a)) thought that the smaller
denominator made the slope less than twice what it was. Students who indicated
that the ladder’s slope had not changed (answer (d)) indicated that the ladder itself
did not change because the positioning of the ladder on the wall had no effect on
the shape of the ladder. These students were not thinking about the slope as
representing a ratio of two quantities.

A Trigonometry Item: Assessing Ideas of Angle Measure and Sine Function

The following trigonometry item (Fig. 4) relies on students having developed robust
conceptions of function (R2), angle measure (T1), radian as a unit (T2) and the sine
function (T3), in addition to being able to imagine and fluently reason about how two
quantities change in tandem (an angle measure and distance) (R3). Responding to this
item requires that students first have a conception of the sine function as representing
the covariation of an angle measure and the distance of a point on the unit circle
(positioned at the end of the terminal side of the angle) from a horizontal line through
the circle’s center (T3, R3). Determining the function that expresses d in terms of k also
requires that students conceptualize an angle measure in relation to arc length that is cut
off by the rays of an angle positioned at the center of a circle and measured in lengths of

Table 11 Slope of ladder answer

percentages a)5.89% b)48.01% ¢)2734% d)3.50% e)14.63 %
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Starting at P and ending at Q, an object travels counterclockwise k feet along a circle with radius
47 feet. If d represents the directed distance (in feet) from the horizontal diameter to Q, which of
the following could express d as a function of k?
a.  d=f(k)=47sin (k)

b. d=f(k)=47sin (47k)

o

.k
d=f(k)=47 sin (9*4)

47 feet

.47
d.  d=f(k)=47sin (?)

ok
e. d=f(k)=47sin (E)

Fig. 4 Periodic motion item

the circle’s radius (T1 and T3) (k needs to be divided by 47). As students imagine k
varying, they also imagine how d varies (R3) and recognize that, since the output of the
sine function is measured in lengths of the radius (radian), this value needs to be
multiplied by 47 to express the value of d in feet.

Only 21 % of 631 students who completed CCR selected the correct answer, (e)
(Table 12). As noted above, responding to this question requires that students under-
stand ideas of angle measure, radian and sine function. They must also reason about
quantities, their variation and their covariation—how the values of two quantities, k£ and
d, change in tandem.

Students who selected answer (a) did not understand the idea of angle measure
and that an angle measure can be expressed in lengths of the radius. The interview
data also revealed that these students did not understand that the input to the sine
function must be expressed as an angle measure. Students who selected answer (b)
did not understand the idea of angle measure. Students who chose answer (c¢) or
(d) had a weak understanding of angle measure and radian as a measure of the
number of radius lengths subtended by the rays of an angle with its vertex
positioned at a circle’s center.

Concluding Remarks

A CCR cut score of 11 out of 25 (44 %) is a relatively low score on an exam that
assesses fundamental ideas and reasoning abilities for calculus, suggesting that
many students are succeeding in Calculus 1 without the prerequisite knowledge.
The CCR break points of 11 and 9 that our data suggests could be used to advise
students relative to whether they should (or should not) enroll in Calculus 1 are
separated by only two CCR items. This implies small differences in the initial
knowledge base of students who pass Calculus 1, and those who fail Calculus 1.

Table 12 Periodic motion answer

percentages a)2496% b)827% ¢)1940% d)20.19% e)21.14 %
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This observation could be explained by the fact that the Calculus 1 courses in this
study did not rely on student understanding of foundational knowledge. Our
observation that 27 % of students who received a nine or below were able to pass
calculus with an A, B, or C also raises questions about the conceptual focus of these
Calculus 1 courses.

These data in combination with our examination of the percentages of correct CCR
answers further supports that many student are taking and passing first semester
calculus with severe deficiencies in their reasoning abilities and knowledge base.
One explanation for this finding is suggested in a recent study (Tallman and Carlson
under review) that examined 150 randomly chosen Calculus 1 final examinations
selected from 246 Calculus 1 final examinations administered at institutions of higher
learning across the United States in the fall of 2010. They found that the exams were
highly procedural in their focus—87 % of the items were coded as recall a fact or carry
out a procedure. Our results combined with Tallman and Carlson’s findings strongly
suggest a potentially serious shortcoming in the conceptual focus of Calculus 1. They
also point to the need for further investigation of the content focus and student learning
in both precalculus and beginning calculus in the United States. Another noteworthy
finding of this study is that all students who received a 17 or higher on CCR received
an A or B in Calculus 1. This finding supports that CCR is assessing relevant
knowledge for succeeding in calculus, whether the course has a conceptual focus or
not.

Examination of student responses on the collection of items that assess students’
function conception revealed that the vast majority of students in our study did not view
a function as a process. This finding corroborates results that have been previously
reported in the literature (e.g., Breidenbach et al. 1992; Carlson 1998; Dubinsky and
Harel 1992). We found similar data trends for the collection of items that require
students to use covariational reasoning to consider growth patterns in two quantities
changing together. Students were asked to describe the behavior of the function f
defined by 1 (x)=1/(x-2)%. Only 37 % of students selected the correct answer—as the
value of x gets larger, the value of f'decreases, and as the value of x approaches 2, the
value of f'increases. Another noteworthy result is the high percentages of students who
selected incorrect answers for the proportional reasoning and exponential growth items.
These findings suggest a need for higher standards for curriculum and courses prior to
calculus in terms of the degree to which they support students’ development of
fundamental reasoning abilities and understandings needed for learning and using
central ideas of calculus.

Our analysis of the CCR data suggests that it is useful as a tool to assess the
effectiveness of a precalculus course or curriculum in preparing students for
calculus. It can also be used to advise students about their readiness for calculus.
We expect that CCR correlations with success in calculus will be higher when
administered as a pre-test to students enrolled in calculus courses that emphasize
understanding (making connections) and reasoning with ideas. Even though calcu-
lus courses vary in the amount of emphasis placed on skills, techniques, and
understanding and using key concepts, we believe that CCR is a good measure of
whether students are prepared to learn and understand calculus. However, we
encourage those who administer CCR to Calculus 1 students to use the cut scores
that we have suggested as advisory, and to consider local constraints and current
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curriculum foci in precalculus and beginning calculus to adjust break points
accordingly.
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Appendix

Table 13

Table 13 The nature of items, Percent Correct (P), Discrimination index (D), and Point-Biserial Coefficient
(PBS)

Item P D PBS Nature of item

1 0.62 047 0.39 Identify an inference for a population from a sample using proportional reasoning
0.33 0.47 0.40 Choose an expression of the area of circle as a function of its circumference

0.73 0.51 0.46 Identify the interval where one function exceeds the other from the graph of two
functions

w

0.51 0.31 0.26 Identify the statement that best describes a given linear relationship of two variables
0.61 0.54 0.43 Identify the average rate of change of a function over an interval from a graph
0.38 0.54 0.49 Choose an exponential model of growth of a beanstalk

0.27 0.27 0.29 Identify an expression of the area of an expanding circular oil spill

0.61 0.36 0.30 Choose the meaning of G(m+5) knowing G(m)

0.51 0.44 0.36 Identify how two exponential growth functions differ

10 047 0.66 0.46 Choose the value of a composite function from a table

11 031 039 0.37 Identify how the slope of a ladder changes

12 0.71 0.58 0.47 Identify an equation that models distance on a map

13 0.32 041 0.37 Identify the inverse of a given exponential function

© 0 9 N »n A

14 032 0.46 0.44 Identify expression that gives distance between two points on a number line

15 0.63 047 0.40 Identify the behavior of a function at a point of inflection

16 043 0.51 0.42 Identify the behavior of rational function

17 0.34 036 0.28 Choose an expression of the relative position of two runners on a track

18 043 0.29 0.21 Choose an expression of a function that is translated vertically and horizontally
19 049 0.24 0.21 Given sine of an angle identify the cosine of the angle

20  0.15 0.14 0.18 Identify specified point of intersection of a circle and a parabola

21 0.14 0.15 0.16 Identify the range of the sine function over an interval

22 036 0.29 0.26 Identify formula of a translated trigonometric function

23 024 0.14 0.16 Choose an expression of the vertical distance on a circle centered at origin in terms
of arc length

24 0.16 0.17 0.17 Identify coordinates of a point on a circle centered at the origin in terms of cosine
and sine

25 029 0.29 0.29 Identify the relationship between two functions connected by a parameter
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