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Abstract This article presents the results from a study of 535 early undergraduate
students at six universities that was designed to describe their views of the meaning of
proof and how these views relate to their attitudes and beliefs towards proof and their
classroom experiences with learning proof. Results show that early undergraduate
students have difficulty with mathematical proof. In particular, the study showed that
students’ proof choices were strongly influenced by surface characteristics of the tasks.
However, a large number of students appear to appreciate and acknowledge the rigor
and central role of deductive proof in mathematics despite the difficulties they may face
in producing proofs. Further, the study showed a strong positive relationship between
students’ beliefs about the role of proof and themselves as learners of proof, but weak
relationship between proof ability and self-reported experiences with learning proof.
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Arguments that the Bessence of mathematics lies in proofs^ (Ross 1998, p. 2) and that
Bproof is not a thing separable from mathematics…. [but] is an essential component of
doing, communicating, and recording mathematics^ (Schoenfeld 1994, p. 76) reinforce
the centrality of proof in mathematical thinking. Moreover, not only does the act of
proof Bdistinguish mathematical behavior from scientific behavior in other disciplines^
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(Dreyfus 1990, p. 126), it also serves as a tool for learning mathematics (Hanna 1990,
1995; Hersh 1993). As such, mathematicians and mathematics educators have called for
the learning of proof to become a central goal of mathematics learning and instruction
(NCTM 2000; RAND Mathematics Study Panel 2003). The Committee on the
Undergraduate Program in Mathematics, appointed by the Mathematical Association of
America (MAA) to identify major issues and develop tentative recommendations for an
undergraduate mathematics Curriculum Guide (MAA 2000), has emphasized this goal
and has recommended that proof should be a part of students’ mathematical experi-
ences—especially of those students in mathematics-related programs. The report states
that Bstudents should understand and appreciate the core of mathematical culture: the
value and validity of careful reasoning, precise definition and close argument^ (p. 6).

Yet, research in mathematics education indicates that most students, in particular at the
secondary school level, face substantial difficulties with proof (see Harel and Sowder
2007; Stylianou et al. 2009 for reviews). There also is evidence that college students face
similar difficulties with proof as their high school counterparts. Most notably, Harel and
Sowder (1998) showed that college students focus their attention on the format of the
proof rather than the content. However, we know little about the conceptions of students as
they are beginning to immerse themselves in college mathematics. Perhaps more impor-
tantly, we have not yet explored the relationship between students’ understanding of proof
and their beliefs towards proof. Indeed, we now know that mathematics performance in
general, and the reading and writing of proofs in mathematics in particular, is a complex
one that depends on a wide expanse of beliefs, knowledge, and cognitive skills and that is
uniquely shaped by the realm in which learning occurs (Heinze et al. 2005). It is not at all
clear, however, which of these beliefs and skills are the most salient for undergraduate
students nor how they interact with one another (Moore 1994). Consequently, research
that examines students’ conceptions of proof in relation to their beliefs and attitudes
towards proof, as well as their experiences in learning proof, is greatly needed.

Purpose of the Study

We intend to extend existing research on students’ understanding of proof by describ-
ing early undergraduate1 students’ views of proof, how these views compare with their
beliefs about proof, and relationships between their views of proof and their classroom
experiences learning proof. More specifically, the following research questions guided
the work presented here:

(a) What types of arguments do early undergraduate students accept as proof2? That
is, are students’ judgments of an argument influenced by its appearance in the

1 We define Bearly undergraduates^ to be students who are in their first or second year in college and have not
completed a course beyond second semester calculus and have not taken a formal course on proof.
2 The term Bproof^ is often reserved to describe formal and precise arguments given by mathematicians. For
example, the Harper Collins Dictionary of Mathematics defines proof as Ba sequence of statements each of
which is either validly derived from those preceding it or is an axiom or assumption, and the final member of
which, the conclusion, is the statement of which the truth is thereby established^. However, here we use a
broader definition of proof as an argument that one makes to justify a claim and to convince oneself and others
of the claim’s veracity. By this definition, proofs can have varying levels of strength.
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form of the mathematical proof and the context in which it is used rather than the
correctness of the argument? Do students of different achievement levels in
mathematics vary in their ability to choose deductive arguments?

(b) What are early undergraduate students’ beliefs about the nature of proof, about
themselves as learners of proof, and about the teaching of proof?

(c) What are early undergraduate students’ classroom experiences with learning proof
(as self-reported)?

(d) How do early undergraduate students’ choices of arguments as proofs compare
with their beliefs about proof?

Theoretical Background

Perspective on the Function of Proof in Mathematics

Traditionally, the function of proof has been considered to be that of verification of the
correctness of mathematical conjectures. However, as a number of scholars have
suggested at various times (e.g., Balacheff 1991; Bell 1976; DeVilliers 1990; Hanna
1990; Hersh 1993; Lakatos 1976), proof has other critical functions in mathematics in
addition to verification. In particular, DeVilliers (1990) proposed that mathematical
proof has six interrelated roles: verification, explanation, communication, discovery,
systematization, and intellectual challenge. While all six roles are important, our study
addressed the first three roles of proof primarily.3 In line with Knuth (2002a, b), we
found that, while these roles were proposed in regard to the role of proof in the
discipline of mathematics, they provide a useful framework for thinking about school
mathematics in general, and students’ conceptions of mathematical proof in particular.
Below we explicate three of these roles as a framework for our study.

The first role of proof—verification as a means to demonstrate the truth of a mathe-
matical conjecture or an assertion—is the most widely held view of proof (Hanna 1990).
Indeed, most people who have some understanding of the nature of mathematics as a
science expect that for each correct conjecture there is a Bsequence of logical transfor-
mations moving from hypothesis to conclusion^ (DeVilliers 1990) whose role is to
guarantee the truth of the conjecture in an absolute and definite manner. Although
Davis and Hersh (1981) characterize this as a naïve view of mathematics (as proof can
be fallible), formal verifications maintain an important and useful role in mathematics.

Verification, however, is not the only aspect of proof for practicing mathematicians.
Often proofs are used as a means to gain further insight into a conjecture, to understand
the underlying reasons why the conjecture is true. Of course, not all proofs have equally
explanatory power. Hanna (1990) separates proofs into those that establish certainty
and those that explain. Some claim that, in fact, the explanatory role of proof is of
greater importance to mathematicians than its verification role (e.g., Hersh 1993).

3 While proof can play an important role in the discovery of new mathematics (DeVilliers 1990) and can be
central to the systematization of results such as theorems and axioms into a broader deductive system, it is
highly unlikely that undergraduate students have had opportunities to experience these roles of proof. Earlier
studies, e.g., NAEP results (Silver and Kenney 2000), have shown that students’ experiences with proof are
limited, hence we chose to focus on the most Bobvious^ roles of verification, explanation and communication
that are the most likely to have been part of these students’ experience.
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A third role of proof is communication. This refers to the Bsocial interaction about
the meaning, validity, and importance of the mathematical knowledge offered by the
proof produced^ (Harel and Sowder 2007, p. 817). The emphasis falls on the social
process of interaction among individuals while doing mathematics. Lakatos (1976) has
argued that, within the mathematics community, proof is at the center of mathematical
discussions that allow an argument to evolve in a dynamical manner. This social
interaction also involves the subjective negotiation of not only the meanings of
concepts concerned, but implicitly also of the criteria for an acceptable argument. As
Hanna (1989) has said, this social negotiation is very important in the acceptance of a
particular result and its proof by mathematicians.

Overall, proof in mathematics is multifaceted and should be viewed as such by
learners of mathematics. Indeed, a mature proof conception should include all three
functions of proof discussed above, even though previous studies suggest that students
view proof only in its first role (verification tool). This multifaceted view of proof leads
to the first research question that guided our study, namely, to detail undergraduate
students’ conceptions of the various roles of proof and to use these views as a lens for
understanding students’ difficulties in proof.

Students’ Beliefs About Proof

One of the goals of the study was to identify students’ beliefs about proof as a subject,
about themselves as learners of proof, and about the teaching of proof. Beliefs, attitudes
and emotions are used to describe a wide range of affective responses to mathematics
(McLeod 1992). While all three may impact mathematics learning, it is argued that
beliefs about mathematics may reveal students’ deeply held convictions and may play a
prominent role in students’ problem-solving behaviors (McLeod 1992; Schoenfeld
1992). Beliefs are developed gradually over a long time, are influenced by students’
personal experiences, and are influenced by larger cultural factors. Students’ beliefs
emerge from personal experience (even personal experience of culture), and, once
formed, influence their personal experience by shaping ways they construe contexts
in which they operate. Consequently, students’ beliefs both summarize and shape their
experience. As Schoenfeld (1992) noted, Bwhether acknowledged or not, whether
conscious or not, beliefs shape mathematical behavior. Beliefs are extracted from one’s
experiences and from the culture in which one is embedded^ (p. 360).

McLeod (1992), in a review of the literature on affective issues, used a
variation of the classification of beliefs proposed by Lester et al. (1989), who
described beliefs in terms of the subjective knowledge of students regarding
mathematics, beliefs about self as learner of mathematics, and beliefs about
mathematics teaching. He concluded that beliefs in the first two of these dimen-
sions play a central role in mathematics learning. Indeed, a brief review of this
literature suggests that there is a significant correlation between achievement in
mathematics and confidence in doing mathematics, as well as between achieve-
ment and perceived motivation and personal control (Fennema and Sherman 1977;
Lester et al. 1989; Reyes 1984; Schoenfeld 1989). However, McLeod noted a void
in the literature on students’ beliefs about mathematics instruction (and, as a
result, how beliefs on mathematics instruction may relate to students’ achievement
in mathematics)—a void that remains two decades later.
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Research on the learning of mathematical proof has not documented students’
beliefs about proof nor their beliefs about their own role in learning proof. Even less
is known regarding the possible relationship between these beliefs and students’
achievement in either constructing or evaluating proof. One of our goals in this study
was to gain further insights into students’ beliefs with respect to proof in the three
dimensions suggested by Lester et al. (1989)—verification, explanation, communica-
tion—and the relationship of these beliefs to students’ proof conceptions.

Methods

Participants

The participants were 535 undergraduate students from six American universities. The
study focused on early undergraduate students—those students who were successful in
high school mathematics, hence, enrolled in further, college level mathematics.
Participation was voluntary and based on the criteria that participants (1) had not
previously taken formal courses in mathematical proof, (2) had not completed any courses
beyond an early college mathematics course (first or second semester calculus or equiv-
alent), and (3) were enrolled in a course for which the instructor had agreed to administer
data instruments during class instruction.4 Most students had not, at the time of the study,
declared a major, but were enrolled in mathematics courses that are typical for students
who aim to major in mathematics, the sciences, or engineering.5 At each university one
mathematics professor was asked to oversee the process and ensure that participants
satisfied the criteria we set. Once the data were collected, we checked the student-reported
data and screened out students who did not satisfy our criteria (for example, data from a
group of students who reported being enrolled in a linear algebra course were
disregarded).

While it was not possible to randomly select student participants, effort was made to
use a variety of educational settings in order to have a sample that could be considered
representative with respect to demographics and university type. More specifically, the six
data collection sites included large and small public and private universities located in
Eastern, Western, and Mid-Western regions of United States. Institutions were selected to
represent urban and rural areas and variedwith respect to their degree of focus on research.
In particular, four of these universities were located on the East Coast, one in the Mid-
Western region and one on the West coast. Two of the universities are considered to be
research institutions, offering graduate programs in mathematics and the sciences, while
the remaining four have a stronger emphasis on teaching at the undergraduate level. One
of the six institutions has a strong urban identity with a distinctively diverse student body
while one other university has a rural character. The remaining four universities are

4 No data were collected regarding the current instruction or instructors of the participating students. The
instrument was administered early in the semester, hence the current instructor may not have had a significant
impact on the students, and, the students were explicitly asked to report on their previous mathematics
education, not experiences in their current class.
5 The majority of the participants were enrolled in a typical first or second semester calculus course. We did
not solicit participation from students enrolled in courses such as calculus or quantitative literacy courses for
non-science majoring students.
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located in mid-size cities in the US. The six universities also varied with respect to the
socio-economic profile of their student bodies: one is a private university, while two others
are public universities whose mission is to provide access to students of low socio-
economic status and also to students who may be first-generation college graduates,6, 7

Indeed, statistics (gender, ethnicity, scores on the Scholastic Achievement Test
[SAT®]), based on student self-reporting suggest that our sample is representative of
the overall college student population of the US. Table 1, which compares the sample’s
representativeness with regards to gender and ethnicity to the overall US college
student population (ETS 2003), suggests that the demographics for participants in the
study are aligned with the overall US college student population.

A subset of 60 students also participated in a written test and an interview. This was
a convenience sample; that is, as these students would have to meet with us three times,
we invited only those that were geographically accessible to us. The self-reported
demographic data, however, suggest that the subset was similar in preparation and
demographics to the larger sample of 535 study participants.

Research Instruments

An instrument consisting of (1) a short background demographic questionnaire, (2) a
multiple-choice test, (3) a survey questionnaire, (4) a written test, and (5) an interview
was designed specifically for the purposes of this study. The first three were adminis-
tered to the entire sample (as will be explained in the next section), while the last two
were only administered to a subset of the study sample.

Background Questionnaire The first part of the research instrument consisted of
questions aiming to provide information regarding the demographics of our study
sample. Students were asked to provide information regarding their gender, ethnicity,
mathematics aptitude as measured by the Scholastic Achievement Test [SAT®], their
general mathematics background (e.g., mathematics classes students completed and
grades they received), and their background with respect to proof. This information
helped us determine whether our sample was representative of the overall college
student population of the US. It was also used for background factors in the data
analyses of the multiple-choice part of the instrument.

Multiple-Choice Test The multiple-choice test was designed to examine students’
views on what comprised a proof, its role and function in mathematics, and students’
competency in evaluating simple mathematical proofs. As such, each item had one
correct answer. That is, each item could be scored as correct (1 point) or incorrect (0
points). The test consisted of 38 items that fell in one of two categories:

(a) Items 1–5 elicited students’ views on the overall role (e.g., students’ beliefs on
what constitutes proof), meaning, and function of proof.

6 While we attended to university SES data, we did not collect SES data on individual students.
7 As the preparation of the students at all participating colleges was comparable (by study design) we chose
not to investigate type of university as a source of variation in our results. This would be beyond the scope of
this study.
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(b) Items 6–38 examined students’ ability in evaluating simple proofs and elicited their
views on the role of these specific proofs. In this case, students were presented with
mathematical conjectures and a range of four arguments in support of each of them.
Students were asked to select (a) the argument nearest to the approach they would
have used had they been asked to produce one, (b) the argument they viewed asmost
rigorous (mathematically correct), and (c) the argument they would use to convince a
peer. They were also asked to assess each argument for its validity, explanatory
power and generality. Items 6–14, 15–22, 23–30, and 31–38 corresponded to one of
four conjectures respectively, Fig. 1 shows one conjecture8 with four supporting
arguments and the multiple choice questions asked of students regarding them. The
complete instrument is presented in the Appendix.

The order of the different types of arguments varied among the items. For example,
the first argument for the first conjecture was empirical, while the third argument for the
second statement was empirical. Similarly, the order of the questions following each
conjecture and supporting arguments also varied for each conjecture.

The design of the items was modeled after several studies that examined similar
constructs with students of younger levels (e.g., Healy and Hoyles 2000), pre-service
teachers’ conceptions of proof (e.g., Knuth 2002a, b; Martin and Harel 1989), and
undergraduate students’ ability to judge validity of proofs (e.g., Morris 2002; Selden
and Selden 2003). The instrument design followed partly the framework proposed by
Balacheff (1988) and its implementation by Healy and Hoyles (2000) in that each
conjecture was followed by four arguments of specific types:

8 We called these statements Bconjectures^ rather than Btheorems^ or Bstatements^ to minimize the possibility
that students would tacitly assume that they were offered as true statements. We hoped that they would take
each statement as coming from someone who genuinely wondered whether it was true,

Table 1 Sample demographic
information

At the time that this study was
conducted, there were no compa-
rable data available nationally on
students choosing to not respond
to this question

Our study (n=535) US college student
population

Frequency Percentage Percentage

Ethnicity

White 364 69 76

Black 36 7 9

Asian 59 11 5

Hispanic 37 7 5

Other 29 6 5

Not reported 10 1% 1%

Total 535

Gender

Males 242 45 44

Females 291 55 56

Not reported 2 <1% <1%

Total 535
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Consider the following conjecture and the four possible arguments A, B, C and D that support it. 

Then please answer questions 6-10 with reference to arguments A-D below:

Conjecture: The sum of any two even numbers is always an even number

Argument A: 

2+2 = 4   4+2 = 6 8+144 = 152
2+4 = 6 4+4 = 8 56+230 = 282
2+6 = 8 4+6 = 10 28+11586 = 11614

Therefore, the sum of any two even numbers is always even.

Argument B:

Even numbers are numbers that can be divided by 2. When you add numbers with a common factor, 2 in 

this case, the answer will have the same common factor. 

Therefore, the sum of any two even numbers is always even.

Argument C:

Suppose a and b are two arbitrary even integers.

Then there exist integers j and k such that a = 2j and b = 2k.

Thus, a + b = 2j + 2k = 2(j + k), where j + k is an integer.

It follows that the sum of any two even numbers is always even.

Argument D:

Suppose you have any two even numbers of counters:

Then they can be combined in the following way:

As the picture illustrates, the counters can be divided into pairs with no counter left over. Therefore, the 

sum of any two even numbers is always even.

6. From the above possible arguments, which one would be closest to what you would do if you were asked 

to produce one?

(a) Argument A

(b) Argument B

(c) Argument C

(d) Argument D

7. From the above arguments, choose the one that is the most “rigorous” (mathematically correct):

(a) Argument A

(b) Argument B

(c) Argument C

(d) Argument D

8. From the above arguments, choose the one you would use to explain the conjecture to one of your peers:

(a) Argument A

(b) Argument B

(c) Argument C

(d) Argument D

9. Look again at “Argument A” and determine which of the following best fits your thinking:

(a) It is logically flawed. 

(b) It is a correct argument but it is not a rigorous one. 

(c) It only shows that the statement is true for some even numbers.

(d) It is a strong mathematical argument

Fig. 1 One mathematical conjecture with four argument choices and corresponding multiple-choice items
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(a) an argument characterized as empirical (e.g., Argument A in Fig. 1),
(b) an argument that relied on common properties presented in a narrative but with

insufficient explanation (e.g., Argument B in Fig. 1). This argument can, by some
standards, be considered deductive,

(c) an argument that could be characterized as a deductive proof written in simple
formal style using mathematical symbols (e.g., Argument C in Fig. 1), and

(d) a visual argument that relied on common properties of a generic case (e.g., Argument
D in Fig. 1).

In short, each argument could be classified in two different ways: First with respect to
the mode of presentation (i.e., narrative, numeric, visual or symbolic), and, second with
respect to the proof schema each represented (i.e., empirical vs. deductive,9 as proposed
by Balacheff (1988) and Harel and Sowder (1998)). Note that the instrument included
some distractor items in the deductive category. That is, some Bdeductive-in-
appearance^ arguments that were nonsensical mathematically were included in the
instrument.

The instrument included four mathematical conjectures (shown in Table 9) that also
varied with respect to mathematical content and level of difficulty. It is important to
note that the tasks included in the instrument were ones that first and second-year
college students with little exposure to advanced mathematics could understand. Our
goal was to make the instrument mathematically accessible to all students in order to
maximize students’ levels of response.

Survey Questionnaire The survey questionnaire was also given to the entire sample—
all students who were given the multiple-choice test also completed the survey. It
consisted of 45 Likert-Scale questions that aimed to elicit students’ beliefs about proof
and their previous classroom experiences with proof, both in college and in high school.
The design of the instrument followed common Likert-scale survey methods (e.g., it
used varied positive and negative responses that were subsequently reversed, etc.)
(Hinkle et al. 1994).

To identify students’ beliefs about proof, following the theoretical framework
proposed by Lester et al. (1989) the survey focused on three contexts of proof: (a)
beliefs about proof, (b) beliefs about themselves as learners of proof, and (c) students’
previous experiences with proof in instructional settings. Table 10 shows examples of
items that were designed to address each of these three contexts of proof. A fourth
group of items was developed to address students’ previous experiences with proof.
Overall, the survey was designed to:

1. Identify patterns in student views about mathematical proof and about themselves
as learners of proof—enabling us to classify their views in general profiles.

2. Investigate relationships between students’ profiles (identified through the survey)
and students’ proof conceptions (as assessed by the multiple-choice instrument).

3. Identify patterns in students’ previous experiences with proof (as self-reported).

9 A number of researchers in the field have identified the three main types of proof schemas as empirical,
inductive and deductive. Some, like Harel and Sowder (1998) have refined these categorizations by identi-
fying sub-categories. Here, we only use the broad three categories.
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Written Test A subset of 60 students were asked to construct proofs for the four
conjectures contained in the multiple-choice instrument instead of responding to
multiple-choice items themselves. Two weeks later they were also given the multiple-
choice instrument and survey.

Pilot Testing and Refining the Research Instrument The validity and reliability of
the instrument was established using a series of psychometric procedures. First, to
establish content (face) validity of the multiple-choice instrument, we asked several
mathematicians and mathematics educators with experience in the teaching of college
mathematics to review the tasks and discuss their appropriateness for the purposes of
our study. Further, all parts of the instrument, as well as the written open-format test and
the interview procedures, were pilot-tested twice during the two years previous to the
study reported here. The pilot instrument was administered to a group of 100 students
during the first year at one university and 400 students the subsequent year at all six
participating universities. The data from student responses were analyzed each year and
each part of the instrument was modified during each phase of pilot testing on the basis
of these responses.

Each year we conducted an item analysis (item difficulty and item discrimination).
Item difficulty index (p-value), defined as the proportion of examinees who answered
the item correctly, can range from 0 to 1. Items with higher p-values (e.g., p-value=
0.9) are easier than items with lower p-values (e.g., p-value=0.3). Although, in the
final pilot test, p-values for the multiple-choice items indicated a range in level of
difficulty (0.12≤p-value≤0.68), overall, p-values were positively skewed suggesting
that the test was moderately difficult. In particular, 12 items were considered difficult
(p-value<0.30) and the remaining 26 items were considered moderately difficult
(0.31<p-value<0.7).

Item discrimination is an index that indicates the contribution of each item to the
total score—a correlation between the item score and the total score. Item discrimina-
tion scores can range from −1 to 1. The closer the value of item discrimination to the
value 1, the more informative the item is. A discrimination value equal to 0 means that
the item does not provide any information and such items should be excluded from
subsequent analysis. A negative discrimination index is an indication of poorly devel-
oped item and should be excluded from the analysis. Several factors may contribute to
the negative or near zero discrimination indices. These include items that are poorly
worded (items that are poorly worded and might cause confusion should not be
included in the scoring of the test as they may result in misleading findings); items
that do not measure the same construct as the remaining items in the test (these items
contribute in a lower test reliability (internal consistency) and should be removed from
the test); items that are scored in error (the key of the items was checked and no errors
in scoring had been made). After the initial pilot-testing phase of the study (see Data
Collection and Analysis Procedures), items with negative or zero discrimination values
were dropped from the instrument. Hence, all items used on the final version of the
instrument were ones that had a positive discrimination index during the final data
collection phase.

Finally, the reliability of the multiple-choice test was computed using the Cronbach
alpha formula and was equal to 0.79 (α=0.79). Similarly, the reliability of the survey
questionnaire was computed and was equal to 0.89.
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Data Collection and Analysis Procedures

Data Collection The short background demographic questionnaire, the multiple-
choice test, and the survey questionnaire were administered to 535 students in the six
participating universities early in the Fall semester under comparable testing conditions.
To minimize order effects, the order in which the multiple-choice test and the survey
questionnaire were administered was interchanged: Half the students received the
multiple-choice instrument first and the survey questionnaire second, while the remain-
ing participants received the two parts in reverse order.

A subset of the participants was also asked to participate in the written test and a
subsequent interview.

(a) Written test: Two weeks prior to taking the multiple-choice test and survey
questionnaire described above, 60 students were asked to also construct proofs
to four conjectures. All students were administered the written test within a
classroom setting and were given sufficient time to respond to the items (students
were given 1 hour to complete the test and were offered more time if needed). The
60 students attended an urban and a rural college on the East Coast.

(b) Interview: Of the 60 students who took the written test, 40 participated in inter-
views. The interviews occurred 2 weeks following the administration of the
multiple-choice test. An effort was made to interview students who represented
the broader spectrum of participants, both with respect to demographics and with
respect to performance on the multiple-choice test. That is, students who received
high or low scores on the multiple-choice instrument were encouraged to partic-
ipate in the interview (all 60 students were invited to do so). The 30-min clinical
interview consisted of a set of structured questions to probe the reasons for
students’ responses in the written and the multiple-choice instruments. Each
interviewwas tailored to the student in it. The student was asked to discuss possible
discrepancies in his responses, the reasons for choices he had made for a particular
argument as either Brigorous^ or Bexplanatory ,̂ and why he had assessed a certain
argument as logically flawed, etc. Our aim for these interviews was to gain further
insight into students’ written and multiple-choice test responses.

Data Analysis In order to better understand the findings of the study, we applied an
integrated approach for analyzing data. Information from the multiple-choice test,
background demographic questionnaire, survey questionnaire, written test and inter-
views were used in an integrated manner in order to identify patterns and better
understand the findings of the study. In general, data from the multiple-choice were
presented in terms of total test scores, while information collected from the various
parts of the questionnaire was presented in the form of percentages.

To analyze the data from the survey questionnaire, students were placed into three
groups based on their score on the multiple-choice part of the instrument: (a) high-
performing (students who scored 26–38 correct responses), (b) middle-performing
(students who scored 14–25), and (c) low-performing (students who scored 1–13).
Further, students in each group were classified into four profiles based on their beliefs
about proof and their own role in their learning of proof (as in Carlson et al. 1999).
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The questions we were interested in answering involved frequencies of students in
the different groups (e.g. high- and low-performing, or agree and disagree) and how
each of these groups compared in their approach to proof. For example, we were
interested in examining whether more low- than high-performing students chose a
specific approach in producing proof. In other words, were there any patterns between
performance level and students’ approach to or perception of producing proof? Hence,
one example of a hypothesis is the following: BThere was no statistically significant
difference between the number of students in the high- and low-performing groups in
choosing the deductive-symbolic argument^.

Because the main focus of the hypotheses tested was the comparison of the
frequencies between two or more groups, a chi-square test for dependent samples
was applied. Data on frequency are not expected to be normally distributed. In such
cases, non-parametric tests like the Chi-square test is recommended (Hinkle et al.
1994), as Chi-square is a test that is usually applied to compare two or more groups
on nominal level variables.

We recognize that the use of inferential statistics is highly problematic for samples
that are not selected randomly; a sample that is representative of the population is a vital
factor in generalizing and making inferences about the findings of the study. One way
of obtaining such samples is by applying random selection approaches. However, in
quasi-experimental studies where such an approach is not feasible, alternative
ways like stratified methods can be used to obtain a sample that is representative
of the population. In the current study, we attempted to recruit sites that represent
the overall college population. As stated earlier, an evaluation of the selected
student sample showed that the participant sample was aligned with the overall US
college student population with respect to demographic variables such as gender
and race. Thus, we feel confident that inferences about the findings of the study
could be generalized to the population.

Written Test and Interview Data Analysis Following the analysis of the multiple-
choice instrument, we attempted to contextualize the descriptive statistics and the
statistical correlates identified in the quantitative analyses through data from the student
interviews. In particular, proof constructions of students who were interviewed were
coded with respect to proof schemas (i.e., as empirical or deductive) using the Harel
and Sowder (1998) classification, and mode of presentation (i.e., as narrative, symbolic,
numeric or visual). These proof constructions were subsequently compared and
contrasted with students’ choices on the multiple-choice test using correlation tests.
In Fig. 2 we present four examples of student-constructed proofs. The work shown of
students A and B represents their attempts to construct a proof for Conjecture I. Student
A produced a proof we coded as empirical-numeric, while Student B produced a
deductive-symbolic proof. Note that the proof is not complete, but the student
displayed a disposition towards reasoning in a deductive manner. The work shown of
students C and D represents their attempts to construct a proof for Conjecture II.
Student C produced an empirical-numeric proof. Student D produced a deductive-
narrative proof—even though he attempted to use symbols, his response was presented
primarily in a narrative format. Overall, the data that resulted from the written test and
interviews were used in this study as supportive to the main data produced by the
multiple-choice and survey instruments.
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Results

We first report our findings with respect to the types of arguments that early under-
graduate students accept as proof. We then present students’ beliefs about proof and
their recollections of instructional experiences regarding proof.

Students’ Proof Conceptions

Examining students’ conceptions regarding the types of arguments that they may accept
as proof was the first goal of the study. In the multiple-choice part of the instrument,
students were asked to select arguments nearest to the one they would construct if they
were asked to produce one. Table 2 shows the distribution of students’ choices in these
items.

Students’ Views on the Types of Arguments That Most Resembled Their
Own The first column of Table 2 shows that students’ choices of arguments that most
closely resemble what they would produce for Conjectures I–III using the mode of
presentation of the conjecture as a lens to understand students’ choices. Students’
choices were almost evenly split between numeric, symbolic, and narrative arguments.
Only a small number of students chose the visual argument. For Conjecture IV
(supplementary angles) the visual argument (Choice A) was the most popular
one (chosen by 38 % of the students). It is worthwhile to point out that
Conjectures I–III were about numeric relationships while Conjecture IV was
about a geometric relationship.

Conjecture I

Student A (empirical) Student B (deductive)

Conjecture II

Student C (empirical) Student D (deductive)

[“you are essentially multiplying both sides by the integer so you 
will not have a remainder’]

Fig. 2 Student-constructed proofs
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When using proof schema as a lens (deductive vs. empirical) a different picture emerges:
For conjectures I–III about two thirds of the students consistently reported that they would
construct one of the two types of deductive proofs—either narrative-deductive or symbolic-

Table 2 Percentage for distribution of students’ choices on items that examined their conceptions of
arguments that constitute proof

Argument closest to student approach (as self-reported)

Responses differentiated based on SAT scores

Percentage of responses
among all study
participants

Percentage of responses
among high-aptitude
study participants

Percentage of responses
among low-aptitude
study participants

Conjecture I

Argument A
(empirical-numeric)

32 11 36

Argument B
(deductive-narrative)

34 32 34

Argument C
(deductive-symbolic)

28 56 22

Argument D
(empirical-visual)

6 1 8

Conjecture II

Argument A
(deductive-narrative)

23 17 24

Argument B
(deductive-symbolic)

37 58 33

Argument C
(empirical-numeric)

30 22 32

Argument D
(empirical-visual)

10 3 11

Conjecture III

Argument A
(narrative-deductive)

33 26 35

Argument B
(deductive-symbolic)

27 47 23

Argument C
(empirical-numeric)

30 19 32

Argument D
(empirical-visual)

10 8 10

Conjecture IV

Argument A
(empirical-visual)

38 35 39

Argument B
(deductive-narrative)

29 32 28

Argument C
(deductive-symbolic)

21 26 20

Argument D
(empirical-numeric)

12 7 13
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deductive (62, 60 and 60 % for Conjectures I–III respectively). For Conjecture IV, 50 % of
the students reported that they would construct one of the two types of deductive proofs.

Connecting Student Responses to Their Mathematical Aptitude In order to better
understand students’ overall responses to the multiple-choice tasks, we used data from
the background questionnaire to identify some possible factors that may have impacted
their choices of arguments that (as they claimed) most closely resembled their own. In
particular, we used students’ self-reported scores on the mathematics part of the
Scholastic Achievement Test 10 [SAT®] and looked for differences among high-
performing students (SAT score on the mathematics of 660 or higher) and low-
performing students (SAT score lower than 660). The data (shown in Table 2) indicated
that high-performing students were consistently more likely to choose the Bdeductive-
symbolic^ argument than their low-performing counterparts. For example, for
Conjecture I, 58 % of the high-performing students chose the deductive-symbolic
argument compared to 22 % of the low-performing ones.

Comparing Students’ Proof Constructions with Their Responses to the Multiple-
Choice Instrument Two weeks prior to the administration of the research instrument,
a subset of the study participants was asked to construct their own proofs for each of the
four conjectures. Hence, we were able to compare students’ actual proof constructions
and their self-reports as to which one of the given arguments would be closest to the
one they would construct. Students’ own proof constructions were coded with respect
to proof schemas (i.e., as empirical or deductive) and with respect to mode of
presentation (i.e., as narrative, symbolic, numeric or visual) as shown in Fig. 2.

Table 3 shows the distribution of types of students’ responses in each item as well as
their choices in the multiple-choice instrument. There were some remarkable discrepan-
cies in the similarity of students’ choices in the multiple choice instrument regarding the
argument they selected as closest to their own approach and their actual proof construc-
tions for each of the four conjectures. The majority of the students who completed the
written test consistently constructed proofs that we classified as Bempirical-numeric^ (45,
49 and 75 % for Conjectures I–III, respectively) even though the majority of the same
students (62, 60 and 60 % for Conjectures I–III, respectively) reported that they would
construct either a narrative-deductive or a symbolic-deductive argument. In fact, for
Conjecture II, the argument that was the most commonly reported as closest to one’s
own approach was the least popular type for students’ own proof construction11: 37 % of
the students reported that a deductive-symbolic argument was most like their own, while
only 17% of them actually constructed this type of argument. For all three conjectures the
discrepancy between students’ own constructions and their choices was statistically
significant (χ2=52.66, df=9, p<0.5; χ2=27.33, df=9, p<.05; χ2=68.66, df=9, p<.05
for Conjectures I–III respectively). Further, Table 3 shows that when students attempted to

10 The SAT is a measure of the critical thinking skills for academic success in college. It measures skills in
three areas: critical reading, math, and writing, and it is typically taken by high school juniors and seniors.
Each section of the SAT is scored on a scale of 200–800, with two writing sub-scores for multiple-choice and
the essay. For more information visit www.ets.org or www.collegeboard.org
11 This was with the exception of visual arguments that none of the students used in their own construction of
proofs.
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go beyond the empirical-numeric approach, they were more likely to give informal
narrative arguments rather than either symbolic or visual arguments.

Our follow-up interviews indicated that students often selected the deductive argu-
ment because they viewed it as the best proof, one that matched relatively well their
intuitive understanding of the given conjecture, even though they would not be able to
construct one on their own. The excerpt from Tyler’s interview illustrates this point:

Tyler: Um, yeah, the reason why I wrote this was… I knew um what it had to say, I
just didn’t know how to say this kind of thing. So, the easier… I took the easy
way out and just did uh… some examples to kind of prove my point, rather
than… I would have done it like (b) [deductive-symbolic] if I could just
formulate my ideas better in my head.

Taken together, the data from students’ responses to the multiple-choice instrument
and students’ proof constructions suggest that students are better at choosing a correct
mathematical proof than constructing one.

Perceptions on the Role and Function of Proof

A second goal of the study was to examine students’ perceptions on the role of proofs in
mathematics as a discipline. Students were asked not only to choose the approach that would
most closely resemble their own hypothetical approach, but also to select the arguments they

Table 3 Percentage for distribution of students’ (n=60) constructed proofs and self-reported proof choices

Conjecture closest to student approach (self-reported) Students’ constructed proof

Conjecture I

Argument A (empirical-numeric) 32 Empirical-numeric 45

Argument B (deductive-narrative) 34 Deductive-narrative 45

Argument C (deductive-symbolic) 28 Deductive-symbolic 10

Argument D (empirical-visual) 6 Empirical-visual –

Conjecture II

Argument A (deductive-narrative) 23 Deductive-narrative 34

Argument B (deductive-symbolic) 37 Deductive-symbolic 17

Argument C (empirical-numeric) 30 Empirical-numeric 49

Argument D (empirical-visual) 10 Empirical-visual –

Conjecture III

Argument A (narrative–deductive) 33 Deductive-narrative 14

Argument B (deductive-symbolic) 27 Deductive-symbolic 11

Argument C (empirical-numeric) 30 Empirical-numeric 75

Argument D (empirical-visual) 10 Empirical-visual –

Note that here we report on students’ choices and self-constructed proofs for the first three conjectures. We
chose to omit the data for the fourth conjecture because very few students attempted to write a proof for that
conjecture
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viewed as most rigorous (mathematically correct), and the arguments they viewed as most
explanatory. Table 4 shows the distribution of students’ choices in these items.

Regardless of students’ choices of the argument closest to their own ap-
proaches, there was a remarkable similarity in students’ responses across the
four conjectures when asked to choose the Bmost rigorous^ approach. For each
of the four conjectures, over half of the participants were able to identify
correctly the deductive-symbolic argument as the most rigorous proof (68, 56,
52 and 58 % for Conjectures I–IV respectively) while less than one-fifth chose
either the empirical-numeric or the empirical-visual arguments for any of the
four Conjectures.

Furthermore, when asked to choose the most Bexplanatory^ argument, that is, the
argument they Bwould use to explain the problem to one of their peers^, students’
choices for Conjectures I, III and IV were relatively closely aligned with their choices
of the arguments that would be close to their own approach. In other words, students
most closely identified their own hypothetical proof constructions as arguments that
were explanatory and communicable. However, for Conjecture II, students’ choices
were evenly distributed among the four given arguments. Even so, it is worth noting
that for all four conjectures the majority of the students (at least 75 % of the students for
each conjecture) did not choose a deductive argument as explanatory.

Table 4 Percentages for distribution of students’ choices on items that examined students’ perceptions on the
role of proofs in mathematics as a discipline (n=535)

Solution closest to
student approach

Solution chosen as
Bmost rigorous^

Solution chosen as
Bexplanatory^

Conjecture I

Argument A (empirical-numeric) 32 14 32

Argument B (deductive-narrative) 34 14 34

Argument C (deductive-symbolic) 28 68 12

Argument D (empirical-visual) 6 4 22

Conjecture II

Argument A (deductive-narrative) 23 18 29

Argument B (deductive-symbolic) 37 56 25

Argument C (empirical-numeric) 30 20 25

Argument D (empirical-visual) 10 6 21

Conjecture III

Argument A (narrative-deductive) 33 26 32

Argument B (deductive-symbolic) 27 52 21

Argument C (empirical-numeric) 30 17 32

Argument D (empirical-visual) 10 5 15

Conjecture IV

Argument A (empirical-visual) 38 13 48

Argument B (deductive-narrative) 29 21 24

Argument C (deductive-symbolic) 21 58 14

Argument D (empirical-numeric) 12 8 14
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The narrative argument was the most frequently chosen by students as the
most Bexplanatory^ one for Conjectures I–III. During the follow-up interviews
we asked students who selected this argument as the most explanatory specif-
ically for reasons why they did so. Many suggested that they had made this
choice because they believe that natural language is more explanatory than
symbols. When asked for their reasons for choosing the symbolic-deductive
arguments as rigorous the same students suggested that they has made this
choice because symbols are more Bmathematical^. These are illustrated in the
interview excerpts below:

Adam: It kind of has more laymen terms in it and um… cause (c) [deductive-
symbolic argument] is a good answer but it just has a lot of variables
in it. It’s easier to think this way rather… like when I first read it, I
didn’t think that an even number has to be divisible by two and so I’ll
set one to two times an integer. I just kind of thought of that can be
divided by two and has the same common factor, so… more with
words… […] the rigorous one would be (c) [the symbolic-deductive
argument]. Um, it is more mathematically um based.

Matt: [I chose the narrative argument] because it is a simple, straightforward as
saying like, all right two plus two is four.

Interviewer: Why did you choose different arguments to be the most rigorous and to
be the most explanatory?

Matt: Rigorous is more like it is true, whereas explanatory is just showing you it is
true.

Neil: (a) [narrative] is definitely the one I would use to explain it to somebody. Um
cause it’s easier to explain in language than in symbols, like mathematical
symbols […] [The symbolic-deductive argument] is more like mathematics,
you know, like using equations and… it uses actual mathematics to prove
instead of just words.

Responses to other questions in the multiple-choice instrument provided
further insight into how the students assessed each type of argument. Four
questions following each of the three conjectures asked students to determine
whether they considered each of the arguments to be either logically flawed,
correct but not rigorous, one that shows that the statement is true for some
cases, or a strong mathematical argument. (In Fig. 1, item 10 shows how the
question was posed.) As Table 5 shows, students were aware of the limits of an
empirical approach. The majority of the students (56, 51, 52 and 43 % for
Conjectures I–IV, respectively) assessed the empirical-numeric argument to be
Btrue for only a few cases^, while only a small subset (12, 15, 14 and 21 % for
Conjectures I–IV respectively) assessed empirical-numeric arguments to be
Bstrong mathematical argument(s)^.

At the same time, the majority of the students (64, 59, 52 and 53 % for Conjectures
I–IV respectively) assessed the deductive-symbolic argument to be a Bstrong mathe-
matical argument^. Finally, students’ assessment of the narrative and the visual argu-
ments were fairly uniform across the three conjectures: about 40 % of the students said
that the arguments were correct but not rigorous.
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Students’ Beliefs About Proof

A third goal of the study was to identify students’ beliefs about proof as a subject, about
themselves as learners of proof, and about the teaching of proof, and the relationship of
these beliefs to students’ choices of arguments as proofs. Towards this end we used
students’ responses to the survey questionnaire in the research instrument.

Table 6 gives a summary of the percentage of students who agreed with statements
regarding students’ beliefs towards mathematical proof in relation to their performance
on the multiple-choice part of the instrument. Students were placed in three groups
based on their score on the multiple-choice part of the instrument12: (a) high-performing
(students who scored 26–38 correct responses), (b) middle-performing (students who
scored 14–25), and (c) low-performing (students who scored 1–13). Using these
criteria, a total of 36 students (6 %) were categorized as high performing, 248 students
(46 %) were categorized as middle-performing, and 249 students (46 %) were catego-
rized as low performing.13 For the high- and low-performing groups, we report here the
percent of students who indicated agreement and disagreement with each of the

12 We need to re-iterate that as these items elicited students’ personal views or preferences with respect to
proof, a Bscore^ only indicates the degree of sophistication with respect to proof conception.
13 There is a large discrepancy in the number of students in each of the three groups. In particular, there were
only 36 high-performing students. While changing the criteria for high-, middle- and low-performing could
have provided more balanced numbers, it would also diffuse any differences and response patterns.

Table 5 Percentages for students’ assessment of the validity of each argument (n=535)

Empirical Narrative Deductive Visual

Conjecture I

Logically flawed 7 12 14 30

Correct but not rigorous 25 40 13 43

True for only a few cases 56 9 10 17

Strong mathematical argument 12 37 64 10

Conjecture II

Logically flawed 11 17 9 23

Correct but not rigorous 23 45 19 38

True for only a few cases 51 10 12 27

Strong mathematical argument 15 28 59 12

Conjecture III

Logically flawed 11 22 13 39

Correct but not rigorous 23 31 19 30

True for only a few cases 52 11 15 20

Strong mathematical argument 14 36 52 10

Conjecture IV

Logically flawed 13 7 17 18

Correct but not rigorous 22 41 15 44

True for only a few cases 43 14 14 9

Strong mathematical argument 21 37 53 29
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Table 6 Students’ beliefs about proof, self as learner of proof, and teaching of proof

High-performing
students

Low-performing
students

Percentage
agreeing

Percentage
disagreeing

Percentage
agreeing

Percentage
disagreeing

Beliefs about proof

24. I think constructing proofs is an
important part of doing mathematics

80 5 48 17

25. All students of mathematics should have the
opportunity to learn to read and write proofs

92 3 53 10

26. Proofs are necessary for all areas of
mathematics—not just geometry

94 0 51 15

27. One cannot advance in her/his studies of
mathematics without learning to do proof.

74 6 38 28

28. Proofs are arguments based on logic that
anyone can learn to understand.

75 8 52 14

29.Proofs serve the purpose of not only validating
mathematical conjectures, but also of
communicating and explaining new ideas

86 3 58 11

Beliefs about self as learner of proof

30. It is important to me to participate in
constructing mathematical arguments or
proofs during instruction.

67 11 45 22

31. I believe I can learn to read and write proofs
if I put enough effort into it.

89 11 70 10

32. I enjoy the challenge posed to me when
doing proofs

58 17 28 33

33. I feel better about my understanding of
mathematics if I understand why mathematical
theorems are true.

86 8 65 14

34. It bothers me if an instructor tells me just to
accept a mathematical statement without
explaining why it’s true.

83 9 55 19

35. In learning mathematics, it’s important for me
to understand the reasons not just memorize
the formulas

92 8 59 14

40. I feel that I have an important contribution to make
during the construction of a proof in math class.

36 11 33 24

Beliefs about the teaching of proof

36. If a mathematical statement requires proof, I
think it is the instructor’s (not students’)
responsibility to present this to the class.

58 14 60 9

37. I think students should participate in doing
proofs during class time.

67 6 55 12

38. I think it is important for assessments (e.g., in-class
exams) to include constructing mathematical proofs.

31 33 29 26

39. I think I would benefit from classroom instruction
that involved working in groups with my classmates
to discuss how to prove mathematical statements.

44 17 50 18
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statements. BAgreed^ reflects the percent of students selecting Bagree^ or Bstrongly
agree^ on each of the statements, and BDisagreed^ reflects the percent of students
selecting Bdisagree^ or Bstrongly disagree^.

The data in Table 6 suggest that there is a difference in high- and low-performing
students’ beliefs about proof and beliefs about themselves as learners of proof. High-
performing students tended to hold more positive beliefs about proof than their low-
performing counterparts. For example, four fifths (80 %) of the high-performing
students agreed that Bconstructing proofs is an important part of doing mathematics^,
while less than half (48 %) of the low-performing students agreed with the same
statement. The difference between these distributions was highly significant for this
question (χ2=5.607, df=1, p<.05). Similarly, high- and low-performing students
differed in their choices for questions 25, 26, and 27, which focused on the centrality
of proof in learning mathematics (χ2=4.001, df=1, p<.05; χ2=9.434, df=1, p<.05;
χ2=13.340, df=1, p<.05, respectively).

High-performing students also appeared to be more confident in themselves as
learners of proof than low-performing students. For example, 83 % of the high-
performing students agreed that BIt bothers [them] if an instructor tells [them] just to
accept a mathematical statement without explaining why it’s true^ (item 34) and 92 %
of the same set of students agreed or strongly agreed that B[they] feel better about [their]
understanding of mathematics if [they] understand why mathematical theorems are
true^. Only 51 and 52 % of the low-performing students agreed with these two
statements. The difference between the distributions of students’ choices for the first
item (item 34) was highly significant for this question (χ2=4.271, df=1, p<.05).
Differences in high and low-performing students’ responses for questions 30 and 32,
which focused on their positive attitude toward proof, were also significant (χ2=3.952,
df=1, p<.05; χ2=9.233, df=1, p<.05 respectively).

There was little difference between the two groups’ beliefs about the teaching of
proof. For example, 58 and 60 % of the high-performing and low-performing students,
respectively, agreed or strongly agreed that BIf a mathematical statement requires proof,
I think it is the instructor’s (not students’) responsibility to present this to the class^.

Linking Student Profiles on Beliefs About Proof to Students’ Proof Conceptions As
the first two belief categories (Bbeliefs about proof^ and Bbeliefs about self as learner of
proof^) revealed the most difference between high- and low-performing students, these
data were further analyzed to help us gain a better understanding of the differences.
Students were classified into profiles based on their beliefs about proof and the learning
of proof, and these profiles were associated with students’ scores on the multiple-choice
test.

First, students were classified into four different profiles according to their responses
in the survey items that addressed their beliefs about proof and their own role in their
learning of proof. The profiles were: (1) negative or (2) positive with respect to their
beliefs about proof, and (3) passive or (4) active with respect to their perceived role in
their own learning of proof. Six items (24–29) were used to characterize positive or
negative views about proof, and seven items (30–35 and 40) were used to characterize
students’ active or passive stance on their role in their own learning of proof.

Students’ choices in these survey items were quantified by a Likert scale (1: strongly
disagree, 2:disagree, 3: neutral, 4: agree, and 5: strongly agree). Students who received
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a score of 24 or higher (of a possible 30) for their responses to items regarding their
beliefs about proof were characterized as holding positive views, while students who
received a score of 18 or lower on these items were characterized as holding negative
views.14 Similarly, students who received a score of 28 or higher (of a possible 35) for
their responses to items regarding their perceived role in their own learning of proof
were characterized as having an active stance, while students who received a score of
21 or lower on these items were characterized as having a passive stance towards proof.
15 Each student was characterized as either Bpositive^ or Bnegative^ and as Bpassive^ or
Bactive^.

Once again, we looked at the percentage of students who were classified into each
profile in relation to their performance on the multiple-choice part of the instrument.
Table 7 gives a summary of these data. In comparing these data, we found that 52 % of
the high-performing students held a positive and active stance towards proof and the
learning of proof, while only 25 % of the low-performing group held similar views.
That is, high-performing students are more likely to hold a positive and active stance
towards proof than their low-performing counterparts. The data for the Bnegative and
passive^ profile supported this result: 44 % of the low-performing students held a
negative and passive stance towards proof, while only 24 % of the high-performing
students held this stance.

Students’ Perceived Instructional Experiences in Learning Proof

We used data from the survey questionnaire and the background questionnaire to
consider students’ self-reported classroom experiences with proof in relation to their
proof conceptions. Table 8 summarizes these data.

Table 8 indicates that students who participated in this study reported to have
instructors who did not make proof a central part of their mathematical experience.
In particular, only 25 % of students reported that previous classroom experiences
emphasized the importance of developing proofs, and only 19 % reported that con-
structing proofs was a regular part of classroom activity. Indeed, although 49 % of
students reported that instructors did prove mathematical claims and theorems they
made to the class, this percentage suggests that instructors were likely as not to make
assertions without justification. Moreover, students reported that when instructors did
provide a proof, most (80 %) presented only one argument. Even then, only 49 % of
students agreed that their instructors expected students to understand the proofs
presented to them. It is worth noting that 62 % percent of students reported that prior
instructors used examples to prove mathematical claims.

When students were asked to describe their own experiences and role in constructing
proofs, they consistently noted that their participation was peripheral. Less than one

14 A score of 24 or higher indicated that students primarily agreed or strongly agreed on the 6 items that were
used to characterize positive or negative beliefs about proof, while a score of 18 or lower indicated that
students primarily disagreed or strongly disagreed on these items. Scores of 19 to 23 could indicate mixed and
Bneutral^ beliefs that made it difficult to provide a clear profile for these students.
15 A score of 28 or higher indicated that students primarily agreed or strongly agreed on the 7 items that were
used to characterize students’ active or passive stance on their role in the learning of proof, while a score of 21
or lower indicated that students primarily disagreed or strongly disagreed on the 7 items.
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fifth (19 %) of the students reported to have Bplayed a significant role in developing
proofs during math class.^ This was further corroborated by the fact that only 7 % of
these students presented their proofs to the class and less than a fourth (23 %)
experienced instruction in which proofs were Bconstructed through whole-class discus-
sions that [built] on students’ ideas^. Indeed, for the majority of the students (67 %),
their Bexperience is that math class is more about taking notes on the instructor’s
lectures than arguing with [their] peers about why mathematical statements might be
true or not^. Less than one forth of the students worked either individually (23 %) or in
groups (12 %) to construct proofs (Tables 9 and 10).

These self-reported experiences were consistent regardless of the performance level
of students. That is, there was little difference in student responses based on their
designation as high performing or low performing.

Regardless of the types of arguments that students accept as proof as indicated by the
multiple-choice portion of the instrument, they reported having similar experiences in
their mathematics classes with respect to doing proofs. The same finding applies to
groups with different mathematics aptitude: students with either high- or low-aptitude
with respect to mathematics ability (as indicated by their self-reported SAT mathemat-
ics scores) reported similar instructional experiences.

Discussion

This paper reports results from a study that examined U.S. undergraduate students’
conceptions of proof. In this section we summarize and discuss the main findings with
respect to the four main goals of the study: understanding undergraduate students’
conceptions of proof based on the arguments they accept as proof, their beliefs about
proof, their self-reported classroom experiences with proof and how these three issues
compare.

What Are Early Undergraduate Students’ Conceptions of Proof?

Amajority of students chose the deductive argument from proposed arguments for each
of four conjectures as the one that would most likely closely resemble their own (had
they been asked to construct one), and they also chose deductive arguments to be the
Bmost rigorous ones^ and recognized that empirical arguments were limited (Btrue for
only a few cases^). This finding conflicts with previous work in this area. Previous
studies on secondary school students, as well as on some classes of college students,
reported students’ strong preference for empirical arguments (with respect to proof

Table 7 Percentages for high- and low-performing student profiles and proof conception

High-performing students Low-performing students

Active Passive Active Passive

Positive 52 26 25 24

Negative 2 24 7 44
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Table 8 Students’ experiences with instruction of proof (self-reported) (n=535)

Percentage
of students
agreeing

Percentage of
high-performing
students agreeing

Percentage of
low-performing
students agreeing

Instructor’s role and expectations from students

1. Mathematics instructors I had in the past
proved the theorems and mathematical claims
they presented to the class.

49 56 49

2. In my previous math classes students were
expected to understand the proofs presented to
them by the teacher.

49 33 53

3. Mathematics instructors I had in the past used
diagrams and graphs to prove a theorem or a
mathematical claim.

46 31 46

4. Mathematics instructors I had in the past used
examples to prove theorems and mathematical
claims.

62 50 60

8. Mathematics instructors I had in the past
explained proofs in detail

33 33 36

9. Mathematics instructors I had in the past
presented more than one proof for the same
theorem.

20 8 27

10. Mathematics instructors I had in the past and
students constructed proofs together in class.

21 11 24

14. When constructing a proof, mathematics
instructors I had in the past typically wrote it
out on the board with little input from students.

52 50 48

16. In my previous math classes instruction usually
emphasized the importance of developing proofs
of mathematical statements

25 25 29

17. In my previous math classes constructing
proofs was a regular part of classroom
mathematical activity.

19 25 23

Students’ role

5. In my previous math classes students worked in
groups to construct proofs.

12 6 16

6. In my previous math classes, students worked
individually to construct proofs.

23 11 26

7. In my previous math classes, students presented
their proofs to the class.

7 3 8

11. During previous math classes, students played
a significant role in developing proofs during
math class.

19 17 20

12. During previous math classes, proofs were
often constructed through whole-class
discussions that build on students’ ideas.

23 19 24

15. My experience is that math class is more
about taking notes on the instructor’s lectures
than arguing with my peers about why
mathematical statements might be true or not.

62 72 58

18. In math classes, I often ask the instructor to
explain why a statement is true

39 33 43
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schema) and numeric arguments (with respect to mode of presentation). Healy and
Hoyles (2000), for example, showed that secondary school students accept empirical
arguments as proofs. Similarly, Martin and Harel (1989) showed that pre-service
elementary teachers have a strong preference for inductive arguments, a result that
was more recently affirmed by Morris (2002).

The finding may be explained, in part, by the difference in age between our study
participants and other studies which focused primarily on high school students. It is
worth recalling that the instrument intentionally consisted of tasks which required that
students know something about the mathematical ideas entailed by a conjecture and by
the proposed arguments for it. It is possible that, had the study used a set of tasks
requiring higher-level mathematical knowledge, the study participants might have
responded differently (e.g., they might have then chosen empirical arguments) and this
is an issue that is worth pursuing further. Nonetheless, the fact that students in this study
appear to have a better conception of what constitutes an acceptable proof than seen in
prior studies is encouraging and provides college mathematics instructors a base on
which they can build further instruction on proof. Finally, it is worth investigating

Table 9 The four mathematical conjectures

Conjecture I: The sum of any two even numbers is always an even number.

Conjecture II: For any integers a, b, and c, if a divides b with no remainder, then a divides bc
with no remainder.

Conjecture III: If the sum of the digits of a three-digit integer is divisible by 3, then the number
is also divisible by 3.

Conjecture IV: The supplements of two congruent angles are congruent.

Table 10 Sample survey items

Strongly
disagree

Disagree Neutral Agree Strongly
agree

I think constructing proofs is an important part of doing
mathematics (Beliefs about proof)

1 2 3 4 5

All students of mathematics should have the opportunity to
learn to read and write proofs (Beliefs about proof)

1 2 3 4 5

It is important to me to participate in constructing
mathematical arguments or proofs during instruction.
(Beliefs about self as learner of proof)

1 2 3 4 5

I believe I can learn to read and write proofs if I put enough
effort into it. (Beliefs about self as learner of proof)

1 2 3 4 5

I think students should participate in doing proofs during
class time. (Beliefs about the teaching of proof)

1 2 3 4 5

I think it is important for assessments (e.g., in-class exams)
to include constructing mathematical proofs.
(Beliefs about the teaching of proof)

1 2 3 4 5

Mathematics instructors I had in the past used examples to
prove theorems and mathematical claims. (Students’
previous experiences with proof)

1 2 3 4 5
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whether a possible difference in time and curricular trends between past work and this study: It
is possible that students in the past few yearsmay have had greater experience and exposure to
mathematical proof so they can, at least, identify a deductive argument. However, at this time
this is only a hypothesis; while there have been efforts to make proof a regular part of high
school students’ mathematics experience, and national mathematics organizations (e.g., the
Mathematical Association of America and the U.S. National Council of Teachers of
Mathematics) have been calling for proof to take a more central role in the mathematics
curriculum, one might question the fidelity of the implementation of these calls. At this time,
there are no actual data to show that this has actually happened and participating students’
reports on their classroom experiences with proof certainly do not suggest that this is the case.

Note that students’ choices as to which argument they might accept as proof varied for
each of Conjectures I–IV, making it initially hard for us to discern a clear pattern in
students’ proof conceptions. This discrepancy invited us to consider the nature of the four
conjectures. For Conjectures I and III, more students chose the argument presented in
narrative form, while for Conjecture II, the majority of the students chose the argument
presented in symbolic form. One possible explanation for the discrepancy with respect to
students’ choices in mode of presentation could be due to the statements of Conjectures I
and III in natural language and that of Conjecture II in more symbolic form. In other
words, the statement of the problem (whether in natural or symbolic language) might
affect how students try to prove it (assuming the respondent has had no formal class that
focuses on proof, as was the case with our subjects). Similarly, Conjectures I and III reside
in number theory, while Conjecture IV in geometry, where diagrams are a more natural
part of arguments. As a result, a higher number of students might have chosen a visual
argument for Conjecture IV. Both the way a conjecture is stated and the content topic (i.e.,
geometry) could be considered surface features, and, as such, might have affected
students’ solution choice. Studies on expertise indeed show that novices tend to focus
on surface characteristics of tasks such as content topic andmode of presentation (e.g., Chi
et al. 1988; Schoenfeld 1985; Stylianou and Silver 2004).

Even though the majority of those students who were also asked to construct their
own arguments did not construct valid deductive proofs, the same students still
indicated a preference for general arguments. This somewhat conflicting finding
suggests that students may understand the essence of deductive mathematical argu-
ments (at least in the case of relatively intuitive conjectures that were used in the
instrument for this study) but lack the ability to use the representational system
necessary to write symbolic-deductive arguments (Weber and Alcock 2006, 2009).
Students’ proofs were well-aligned with findings in earlier studies in that, when asked
to produce a proof, students construct empirical-numeric proofs. In broader terms, the
discrepancy between the arguments that students actually produced and those they
selected as closest to what they would construct on their own is reminiscent of research
regarding comprehension versus production (e.g., Clark and Hecht 1983). That is, it is
often easier to understand a proof than to produce one. The knowledge that early
college students appreciate deductive arguments yet lack a rich mathematical represen-
tational system to articulate their ideas might lead textbook authors and instructors to
make ideas of proof more explicit in curricular materials and instruction.

With respect to students’ conceptions on the function of proof, the results show that
students do not perceive deductive arguments as explanatory. Instead, students chose
the narrative arguments as the Bmost explanatory^ ones. This finding is similar to the
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findings of Healy and Hoyles (2000) for middle school students. In their study, too,
students saw as explanatory those arguments that were presented to them in words.
Healy and Hoyles suggested that it is possible that students

simultaneously held two different conceptions of proof: those about arguments
they considered would receive best mark and those about arguments they would
adopt for themselves. In the former category algebraic arguments were popular.
In the latter, students preferred arguments that they could evaluate and that they
found convincing and explanatory, preferences that excluded algebra (p. 425).

It appears that the four or more years of additional mathematics instruction that the
students in our sample received did little to change this double-conception held by
middle school students. This finding confirms views expressed earlier in the literature.
As Schoenfeld (1994) suggested, proof in traditional high school and undergraduate
instruction is used mostly as a verification tool, and not in a way that creates Bpersonal
meaning or explanatory power for students^ (p. 75). Hence, many students may
perceive proof as a task for the instructor, not as a tool for thinking more deeply about
mathematics (Alibert 1988). Harel and Sowder (1998) argued that teachers use Bproof
methods and implication rules that in many cases are utterly extraneous to what
convinces [students]^ (p. 237). Moreover, proving a statement for which the proof
already exists or is intuitively obvious leads to the perception that proof activity is not a
process of discovery (Schoenfeld 1994; Wheeler 1990) and results in a focus on
knowing what, which conceals the value of knowing why.

Finally, our analysis showed that students’ proof conceptions were related to
their overall mathematics aptitude and achievement. High-performing students
on the SAT were consistently more likely to choose the Bdeductive-symbolic^
argument than were low-performing students. This might indicate that proof
cannot be viewed as an isolated competency or as an isolated part of mathe-
matics instruction and curriculum, but one part of the overall mathematical
competency.

What Are Undergraduate Students’ Beliefs About Proof?

Overall, high-performing students tended to hold a more positive and active stance with
respect to their beliefs about proof than their low-performing counterparts. Hence, our
findings resonate with findings on general beliefs about mathematics and general
mathematics performance. That is, just as high-performing students tend to hold more
positive beliefs about mathematics and about themselves as learners of mathematics
(McLeod 1992), they also tend to hold more positive beliefs about proof and about
themselves as learners of proof than their low-performing counterparts.

Results from our analysis suggest that classrooms with passive learning environ-
ments might implicitly reinforce low performance on proof activity in particular and
mathematical activity in general. It, therefore, raises the instructional challenge to build
classrooms where students can be actively engaged in learning about proof as a way to
potentially alter a negative, passive stance towards it. The extent to which classroom
environments can facilitate an active, positive stance on proof remains an area for
further research.
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What Are Students’ (Self-Reported) Classroom Experiences with Learning
Proof?

Overall, students who participated in this study report to have experienced little instruction
that focuses on proof. It is possible that their perception of the kind of instruction they did
receive often marginalized their participation in constructing proofs and did not help them
develop the representational systems to build general arguments. The finding that students
experience with proof is limited is not surprising; previous studies have shown similar
findings. For example, in a relatively broad study involving 62 mathematics and science
teachers in 18 high schools in six states, Porter (1993) found that Bon average, no
instructional time is allocated to students learning to develop proofs, not even in
geometry .̂ Similarly, the report on the videotape study in the Third International
Mathematics and Science Study (TIMSS) noted that Bthe most striking finding in this
review of 90 classes was the rarity of explicit mathematical reasoning in the classes […]
almost total absence of explicit mathematical reasoning^ (Manaster 1998, p. 803).

Students’ reports that prior instructors often used examples to provemathematical claims
is also worth noting. This raises the question of whether students’ reliance on empirical
arguments (e.g., Knuth et al. 2002; Porteous 1986)might be a reflection of their instructional
experiences as much as cognitive issues in their understanding of proof. It also raises the
question regarding when instruction should shift from the use of empirical arguments to
helping students learn to develop more general arguments (some research indicates that this
can begin as early as the elementary grades—see Kaput et al. (2008); Stylianou et al. 2009).

Overall, these data suggest that, regardless of entry-level college students’ understand-
ing of proof, they report to have had limited classroom experiences with seeing or
constructing proofs. Additionally, these experiences were often the presentation of empir-
ical arguments by their instructors, with students playing a passive role in their develop-
ment. As such, these data bring to light persistent instructional paradigms that remove the
learner from actively participating in classroom activity and in which individual learning is
valued over collaborative learning. Moreover, these types of classroom experiences could
help explain why, even at the college level, students often initially cannot construct general
arguments and rely instead on empirical arguments. Even though our data suggest that
students do know how to recognize amore appropriate deductive argument, their responses
to the survey suggest that they have not had the kinds of instructional experiences that
would support their learning how to build general, deductive, rigorous arguments.

Finally, this limited experience with proof appears to be consistent in both high- and
low-performing students. Regardless of students’ conceptions of proof as indicated by
the multiple-choice portion of the instrument and regardless of their overall mathemat-
ics achievement as indicated by the SAT, they reported having similar experiences in
their mathematics classes with respect to doing proofs.

This study suggests that there is much work to be done in K-14 education to prepare
students to understand and construct proofs. In particular, the results suggest that
students have potential to develop general arguments, but lack the representational
systems to do this. Moreover, the results reported here suggest that students often are
not participants in the process of constructing proof, nor do they typically see non-
empirical arguments during instruction. This challenges curriculum and instruction to
provide experience and opportunity to help students build the tools necessary for
understanding and developing proofs.
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Appendix

Multiple Choice Questions

FOR THE FOLLOWING, PLEASE CIRCLE THE RESPONSE THAT BEST REFLECTS YOUR THINKING.

1. Proving a theorem in mathematics implies

(a) one may need to check if it applies to all cases
(b) it may still be rejected at a future time
(c) one may be able to find an exception
(d) it will always be true

2. The relationship among the sides of a right triangle expressed in the Pythagorean
Theorem is true because it has been

(a) verified by measuring the sides of many right triangles
(b) proven by a logical argument
(c) shown in a picture of a triangle with squares built on its sides
(d) told to you by your math teacher

3. Proofs are necessary for

(a) geometric theorems only
(b) algebraic theorems only
(c) all areas of mathematics
(d) various, but not all, areas of mathematics

4. In order to prove that a statement is false, one should

(a) find all possible cases where the statement is false
(b) show several cases where the statement is false
(c) find one example that shows where the statement is false
(d) draw a picture

5. It should be sufficient to prove that a statement is false by

(a) finding a number of well-chosen counterexamples that look at different cases
(b) finding a single counterexample of the statement
(c) constructing a formal proof that the statement is not true
(d) a drawing that illustrates the statement
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Consider the following problem and the four possible solutions A, B, C and D.
Then please answer questions 6–14 with reference to solutions A–D below:

Problem: Prove that the sum of any two even numbers is always an even number

Solution A:

2+2=4 4+2=6 8+144=152

2+4=6 4+4=8 56+230=282

2+6=8 4+6=10 28+11,586=11,614

Therefore, the sum of any two even numbers is always even.

Solution B:
Even numbers are numbers that can be divided by 2. When you add numbers

with a common factor, 2 in this case, the answer will have the same common factor.
Therefore, the sum of any two even numbers is always even.

Solution C:
Suppose a and b are two arbitrary even integers.
Then there exist integers j and k such that a=2j and b=2k.
Thus, a + b=2j+2k=2(j + k), where j + k is an integer.
It follows that the sum of any two even numbers is always even.

Solution D:
Suppose you have any two even numbers of counters:

Then they can be combined in the following way:
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As the picture illustrates, the counters can be divided into pairs with no counter left
over. Therefore, the sum of any two even numbers is always even.

6. From the above possible solutions, which one would be closest to what you would
do if you were asked to solve the problem?

(a) Solution A
(b) Solution B
(c) Solution C
(d) Solution D

7. Which of the following best reflects the reason you chose that particular solution as
the best one?

(a) It looks at a number of cases for different kinds of numbers
(b) It uses symbols and formal mathematical language
(c) It provides a more general argument
(d) It uses a diagram to illustrate the concept

8. From the above solutions, choose the one that is the most Brigorous^ (mathemat-
ically correct):

(a) Solution A
(b) Solution B
(c) Solution C
(d) Solution D

9. From the above solutions, choose the one you would use to explain the problem to
one of your peers:

(a) Solution A
(b) Solution B
(c) Solution C
(d) Solution D

10. Look again at BSolution A^ and determine which of the following best fits your
thinking:

(a) It is logically flawed.
(b) It is a correct argument but it is not a rigorous one.
(c) It only shows that the statement is true for some even numbers.
(d) It is a strong mathematical argument.

11. Look again at BSolution B^ and determine which one of the following best fits
your thinking:

(a) It is logically flawed.
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(b) It is a correct argument but it is not a rigorous one.
(c) It only shows that the statement is true for some even numbers.
(d) It is a strong mathematical argument.

12. Look again at BSolution C^ and determine which one of the following best fits
your thinking:

(a) It is logically flawed.
(b) It is a correct argument but it is not a rigorous one
(c) It only shows that the statement is true for some even numbers.
(d) It is a strong mathematical argument.

13. 13. Look again at BSolution D^ and determine which one of the following best
fits your thinking:

(a) It is logically flawed.
(b) It is a correct argument but it is not a rigorous one.
(c) It only shows that the statement is true for some even numbers.
(d) It is a strong mathematical argument.

14. Suppose it has been proven that the sum of any two even numbers is always even.
One of your classmates asks what needs to be done to prove whether the sum of
two even numbers, that are also square numbers, is always even. Which of the
following best reflects your response?

(a) My classmate doesn’t need to do anything; it has already been proven.
(b) My classmate needs to draw a new picture.
(c) Square numbers are a special case and it requires a different proof.
(d) My classmate should look for a counterexample.

Consider the following problem and the four possible solutions A, B, C and D.
Then please answer questions 15–22 with reference to solutions A–D below:

Problem: For any integers a, b, and c, prove that if a divides b with no remainder,
then a divides bc with no remainder.

Solution A:
If one integer (call it the first one) divides another integer (the second one) without
a remainder, then the first integer must be a factor of the second one. Thus, no
matter what other third integer you multiply the second one by, the first integer will
still always be a factor of that product. This means that if the first integer divides
the second integer, then the first integer must divide the product of the second and
third integers too.
Solution B:
Let a, b, and c be integers and suppose that a divides b with no remainder. Then b
can be written as a multiple of a. That is, b = ak, where k is an some integer. Thus,
(b)c = (ak)c. It follows that since a is a factor of bc, then a divides bc.
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Solution C:
Let a=3, b=9 and c=7. Then 3 divides 9 and 3 divides 9(7).
Let a=5, b=10 and c=34. Then 5 divides 10 and 5 divides 10(34).
Let a=21, b=126 and c=1453. Then 21 divides 126 and 21 divides 126(1453)
Let a=−12, b=96, and c=−15. Then −12 divides 96 and −12 divides 96(−15).
I randomly selected several different types of integers: high and low, positive and

negative, prime and composite. Since I randomly selected and tested a variety of types
of integers, and it worked in every case, I know that it will work for all integers.
Therefore, if a divides b with no remainder, then a divides bc with no remainder.
Solution D:

As the picture illustrates, the counters can be divided into groups of 3 with no
counter left over. Therefore, a divides bc with no remainder.

15. From the above possible solutions, which one would be closest to what you
would do if you were asked to solve the problem?

(a) Solution A
(b) Solution B
(c) Solution C
(d) Solution D

16. Which of the following best reflects the reason you chose that particular solution
as the best one?

(a) It looks at a number of cases for different kinds of numbers.
(b) It uses symbols and formal mathematical language.
(c) It provides a more general argument.
(d) It uses a diagram to illustrate the concept.

Say a=3 and b=6
then b can be combined in 2 groups of 3:

Now, say c=4. Then, bc=24, and it 
can be combined in 8 groups of 3:
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17. From the above solutions, choose the one that is the most Brigorous^ (mathemat-
ically correct)

(a) Solution A
(b) Solution B
(c) Solution C
(d) Solution D

18. From the above solutions, choose the one you would use to explain the problem
to one of your peers:

(a) Solution A
(b) Solution B
(c) Solution C
(d) Solution D

19. Look again at BSolution A^ and determine which one of the following best fits
your thinking:

(a) It is logically flawed.
(b) It is a correct argument but it is not a rigorous one.
(c) It only shows that the statement is true for some numbers.
(d) It is a strong mathematical argument.

20. Look again at BSolution B^ and determine which one of the following best fits
your thinking:

(a) It is logically flawed.
(b) It is a correct argument but it is not a rigorous one
(c) It only shows that the statement is true for some numbers.
(d) It is a strong mathematical argument.

21. Look again at BSolution C^ and determine which one of the following best fits
your thinking:

(a) It is logically flawed.
(b) It is a correct argument but it is not a rigorous one.
(c) It only shows that the statement is true for some numbers.
(d) It is a strong mathematical argument.

22. Look again at BSolution D^ and determine which one of the following best fits
your thinking:

(a) It is logically flawed.
(b) It is a correct argument but it is not a rigorous one.
(c) It only shows that the statement is true for some numbers.
(d) It is a strong mathematical argument.
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Consider the following problem and the four possible solutions A, B, C and D.
Then please answer questions 23–30 with reference to solutions A–D below:

Problem: If the sum of the digits of a three-digit integer is divisible by 3, then the
number is also divisible by 3.

Solution A:
Let a be any three-digit integer such that the sum of its digits is divisible by 3.

Assuming that its digits are x, y, and z, then a = xyz. Let x + y + z be divisible by 3.
Then for xyz one may factor out 3. Hence, 3 is a factor of xyz, then 3 is a factor of
a. Therefore, a is divisible by 3.

Solution B:
Let a be any three-digit integer with digits x, y, and z. By the place value

concept, a=100x +10y + z. This can be re-written as a=(99x + x) + (9y + y) + z.
By the commutative and associative properties, we get a=(99x + 9y) + (x + y + z).
The expression 99x+9y is always divisible by 9, and therefore, also by 3. Since the
second expression, x + y + z, is also divisible by 3, by the Bsum property^ the
number itself is divisible by 3.
Solution C:

Let a=234. 234 is divisible by 3 and 2+3+4=9 is also divisible by 3.
Let a=1707. 1707 is divisible by 3 and 1+7+0+7=15 is also divisible by 3.
Let a=−891. −981 is divisible by 3 and 8+9+1=18 is also divisible by 3.
Let a=−111. 111 is divisible by 3 and 1+1+1=3 is also divisible by 3.
I randomly selected several different types of integers: high and low, positive

and negative, and even and odd. Since I randomly selected and tested a variety of
types of integers, and it worked in every case, I know that it will work for all
integers. Therefore, if the sum of the digits of an integer is divisible by 3, then the
number is also divisible by 3
Solution D:—Diagram

As the diagram shows, if the sum of the digits (in this case 2+2+2) is divisible by
three, the number is also divisible by three.

23. From the above possible solutions, which one would be closest to what you
would do if you were asked to solve the problem?

(a) Solution A
(b) Solution B
(c) Solution C
(d) Solution D
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24. Which of the following best reflects the reason you chose that particular solution
as the best one?

(a) It looks at a number of cases for different kinds of numbers
(b) It uses symbols and formal mathematical language
(c) It provides a more general argument
(d) It uses a diagram to illustrate the concept

25. 25. From the above solutions, choose the one that is the most Brigorous^
(mathematically correct):

(a) Solution A
(b) Solution B
(c) Solution C
(d) Solution D

26. From the above solutions, choose the one you would use to explain the problem
to one of your peers:

(a) Solution A
(b) Solution B
(c) Solution C
(d) Solution D

27. Look again at BSolution A^ and determine which of the following best fits your
thinking:

(a) It is logically flawed.
(b) It is a correct argument but it is not a rigorous one.
(c) It only shows that the statement is true for some three-digit numbers.
(d) It is a strong mathematical argument.

28. Look again at BSolution B^ and determine which one of the following best fits
your thinking:

(a) It is logically flawed.
(b) It is a correct argument but it is not a rigorous one.
(c) It only shows that the statement is true for some three-digit numbers.
(d) It is a strong mathematical argument.

29. Look again at BSolution C^ and determine which one of the following best fits
your thinking:

(a) It is logically flawed.
(b) It is a correct argument but it is not a rigorous one
(c) It only shows that the statement is true for some three-digit numbers.
(d) It is a strong mathematical argument.
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30. Look again at BSolution D^ and determine which one of the following best fits
your thinking:

(a) It is logically flawed.
(b) It is a correct argument but it is not a rigorous one.
(c) It only shows that the statement is true for some three-digit numbers.
(d) It is a strong mathematical argument.

Consider the following problem and the four possible solutions A, B, C and D.
Then please answer questions 31–38 with reference to solutions A–D below:

Problem: Prove that the supplements of two congruent angles are congruent.

Solution A:

Suppose ∠x and ∠y have the same measure. Then the diagram shows that the
supplements of these two angles, 180°—∠x and 180°—∠y, must also have the same
measure. Therefore, the statement is true.

Solution B:
If two angles, say ∠A and ∠B, are congruent, then they have the same measure.
Consider their supplements. Since the supplement of ∠A (or ∠B) is obtained by
subtracting the measure of ∠A (or ∠B) from 180° and since angles A and B have
the same measure, then their supplements must be congruent.

Solution C:
Let ∠A and ∠B be two angles for which ∠A ≅ ∠B. That is, m(∠A) =
m(∠B), where m(∠X) is the measure of ∠X. Let ∠C be the supplement of
∠A and ∠D be the supplement of ∠B. Then m(∠A) + m(∠C)=180° and
m(∠B) + m(∠D)=180°.

Thus, m(∠A) + m(∠C) = m(∠B) + m(∠D). But m(∠A) = m(∠B). Thus,
by substitution, m(∠A) + m(∠C) = m(∠A) + m(∠D). Finally, subtracting
m(∠A) from both sides of this equation implies m(∠C) = m(∠D). Thus, ∠C
≅ ∠D.

Solution D:
Consider two congruent angles that each measure 50°. Each has a sup-
plementary angle that measures 180°−50°=130°. Thus, the two supple-
mentary angles have the same angle measure, which means they are

x 180 - x y 180 - y
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congruent. If there are 2 angles that each measure 75°, then the angles are
congruent and each has a supplementary angle that measures 180°−75°=
105°. Thus, the two supplementary angles have the same angle measure,
which means they are congruent. These examples show that no matter
what the measures of the congruent angles are, their supplements will also
be congruent.

31. From the above possible solutions, which one would be closest to what you
would do if you were asked to solve the problem?

(a) Solution A
(b) Solution B
(c) Solution C
(d) Solution D

32. Which of the following best reflects the reason you chose that particular solution
as the best one?

(a) It looks at a number of cases for different kinds of numbers.
(b) It uses symbols and formal mathematical language.
(c) It provides a more general argument.
(d) It uses a diagram to illustrate the concept.

33. From the above solutions, choose the one that is the most Brigorous^ (mathemat-
ically correct)

(a) Solution A
(b) Solution B
(c) Solution C
(d) Solution D

34. From the above answers, choose the one you would use to explain the problem to
one of your peers:

(a) Solution A
(b) Solution B
(c) Solution C
(d) Solution D

35. Look again at BSolution A^ and determine which one of the following best fits
your thinking:

(a) It is logically flawed.
(b) It is a correct argument but it is not a rigorous one.
(c) It only shows that the statement is true for some numbers.
(d) It is a strong mathematical argument.
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36. Look again at BSolution B^ and determine which one of the following best fits
your thinking:

(a) It is logically flawed.
(b) It is a correct argument but it is not a rigorous one.
(c) It only shows that the statement is true for some numbers.
(d) It is a strong mathematical argument.

37. Look again at BSolution C^ and determine which one of the following best fits
your thinking:

(a) It is logically flawed.
(b) It is a correct argument but it is not a rigorous one.
(c) It only shows that the statement is true for some numbers.
(d) It is a strong mathematical argument.

38. Look again at BSolution D^ and determine which one of the following best fits
your thinking:

(a) It is logically flawed.
(b) It is a correct argument but it is not a rigorous one.
(c) It only shows that the statement is true for some numbers.
(d) It is a strong mathematical argument.

Survey Questionnaire

PART I: CIRCLE THE NUMBERTHAT BEST REFLECTS HOW OFTEN THE FOLLOWING OCCUR BASED

ON YOUR EXPERIENCES IN MATHEMATICS COURSES:

never rarely sometimes very often always

1. Mathematics instructors I had in the past proved the
theorems and mathematical claims they presented
to the class.

1 2 3 4 5

2. In my previous math classes students were expected to
understand the proofs presented to them by the teacher.

1 2 3 4 5

3. Mathematics instructors I had in the past used diagrams
and graphs to prove a theorem or a mathematical claim.

1 2 3 4 5

4. Mathematics instructors I had in the past used examples
to prove theorems and mathematical claims.

1 2 3 4 5

5. In my previous math classes students worked in groups
to construct proofs.

1 2 3 4 5

never rarely sometimes very often always

6. In my previous math classes, students worked
individually to construct proofs.

1 2 3 4 5

7. In my previous math classes, students presented their
proofs to the class.

1 2 3 4 5
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8. Mathematics instructors I had in the past explained
proofs in detail.

1 2 3 4 5

9. Mathematics instructors I had in the past presented
more than one proof for the same theorem.

1 2 3 4 5

10. Mathematics instructors I had in the past and
students constructed proofs together in class.

1 2 3 4 5

PART II: CIRCLE THE NUMBER THAT BEST REFLECTS YOUR AGREEMENT WITH THE

FOLLOWING BASED ON YOUR EXPERIENCES IN MATHEMATICS COURSES:

strongly
disagree

disagree neutral agree strongly
agree

11. During previous math classes, students
played a significant role in developing
proofs during math class.

1 2 3 4 5

12. During previous math classes, proofs
were often constructed through whole-class
discussions that built on students’ ideas.

1 2 3 4 5

13. In my past experiences, students played a
minor role in the development of a proof
during classroom instruction.

1 2 3 4 5

14. When constructing a proof, mathematics
instructors I had in the past typically wrote
it out on the board with little input
from students.

1 2 3 4 5

15. My experience is that math class is
more about taking notes on the instructor’s
lectures than arguing with my peers about why
mathematical statements might be true or not.

1 2 3 4 5

16. In my previous math classes, instruction
usually emphasized the importance of
developing proofs of mathematical
statements.

1 2 3 4 5

strongly
disagree

disagree neutral agree strongly
agree

17. In my previous math classes, constructing
proofs was a regular part of classroom
mathematical activity.

1 2 3 4 5

18. In math classes, I often ask the instructor
to explain why a statement is true

1 2 3 4 5

19. In my previous math classes, constructing
mathematical proofs was usually a part of
my homework assignments.

1 2 3 4 5

20. In the past, my homework assignments
usually required me to justify my thinking
or explain why.

1 2 3 4 5

21. In the past, in-class exams usually asked
me to construct at least one mathematical
proof.

1 2 3 4 5

22. In previous math classes, I have rarely
had to explain my reasoning on an
in-class exam.

1 2 3 4 5

1 2 3 4 5
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23. In previous math classes, I was not really
expected to know or understand the proofs
an instructor might give.

PART III: CIRCLE THE NUMBER THAT BEST REFLECTS YOUR AGREEMENT WITH THE

FOLLOWING:

strongly disagree disagree neutral agree strongly
agree

24. I think constructing proofs is an
important part of doing mathematics

1 2 3 4 5

25. All students of mathematics should
have the opportunity to learn to read and
write proofs

1 2 3 4 5

26. Proofs are necessary for all areas of
mathematics—not just geometry

1 2 3 4 5

27. One cannot advance in her/his studies of
mathematics without learning to do proof.

1 2 3 4 5

28. Proofs are arguments based on logic that
anyone can learn to understand.

1 2 3 4 5

29. Proofs serve the purpose of not only
validating mathematical conjectures, but
also of communicating and explaining
new ideas

1 2 3 4 5

30. It is important to me to participate in
constructing mathematical arguments
or proofs during instruction.

1 2 3 4 5

strongly disagree disagree neutral agree strongly
agree

31. I believe I can learn to read and write
proofs if I put enough effort into it.

1 2 3 4 5

32. I enjoy the challenge posed to me when
doing proofs

1 2 3 4 5

33. I feel better about my understanding of
mathematics if I understand why mathematical
theorems are true.

1 2 3 4 5

34. It bothers me if an instructor tells me just
to accept a mathematical statement without
explaining why it’s true.

1 2 3 4 5

35. In learning mathematics, it’s important for
me to understand the reasons not just memorize
the formulas

1 2 3 4 5

36. If a mathematical statement requires proof,
I think it is the instructor’s (not students’)
responsibility to present this to the class.

1 2 3 4 5

37. I think students should participate in
doing proofs during class time.

1 2 3 4 5

strongly disagree disagree neutral agree strongly
agree

38. I think it is important for assessments
(e.g., in-class exams) to include constructing
mathematical proofs.

1 2 3 4 5
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39. I think I would benefit from classroom
instruction that involved working in groups
with my classmates to discuss how to prove
mathematical statements.

1 2 3 4 5

40. I feel that I have an important contribution
to make during the construction of a proof
in math class.

1 2 3 4 5

Background Questionnaire

The following information is being collected to meet research requirements. It is anonymous and 
confidential and will not be released except in the form of statistical summaries. 

1. Which category best describes you?
White, Non-Hispanic _________
Asian or Pacific Islander _________
Black, Non-Hispanic _________
Hispanic _________
Native American _________
Other _________

2. Female ______ Male ________

3. What was your SAT mathematics score? ___________

4. What was your SAT verbal score? __________

5 What of the following mathematics courses have you taken (or are currently taking) at college?

____ College Algebra
____ Precalculus
____ Calculus I
____ Calculus II
____ Other

6. Have you taken a course that focuses on mathematical proof?
Yes _________     (which one?) ____________
No  _________

7. Please check one: I am a 
Freshman __________
Sophomore __________
Junior __________
Senior __________

8. My GPA is currently
____ 3.5-4.0
____3.0-3.5
____2.5-3.0 
____less than 2.5
____I don't know
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