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Abstract
We posit a dual approach to digital task design: to engineer opportunities for students to
conceive of graphs as representing relationships between quantities and to foreground
students’ reasoning and exploration, rather than their answer-finding. Locally integrat-
ing Ference Marton’s variation theory and Patrick Thompson’s theory of quantitative
reasoning, we designed digital task sequences, in which students were to create
different graphs linked to the same video animations. We report results of a qualitative
study of thirteen secondary students (aged 15–17), who participated in digital, task-
based, individual interviews. We investigated two questions: (1) How do students
conceive of what graphs represent when engaging with digital task sequences? (2)
How do student conceptions of graphs shift when working within and across digital
task sequences? Two conceptions were particularly stable – relationships between
quantities and literal motion of an object. When students demonstrated conceptions
of graphs as representing change in a single quantity, they shifted to conceptions of
relationships between quantities. We explain how a critical aspect: What graphs should
represent, intertwined with students’ graph-sketching. Finally, we discuss implications
for digital task design to promote students’ conceptions of mathematical representa-
tions, such as graphs.

Keywords Digital task design . Variation theory . Quantitative reasoning . Graphs

By means of digital technology, students have opportunities to sketch and interpret
dynamic graphs linked to video animations (Kaput 1994; Kaput and Roschelle 1999;
Schorr and Goldin 2008). Yet, such opportunities are only a starting point. Instead of
promoting reasoning, student interactions with digital technology may focus on skills
and recall (Kitchen and Berk 2016). We developed digital task sequences that center on
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students’ reasoning and exploration, rather than answer-finding. A key aim was for
students to expand their conceptions of what is possible for graphs to represent.
Integrating different theories, we designed and conducted a study investigating sec-
ondary students’ engagement with the task sequences.

Student difficulties with graphs have presented an enduring challenge. Prior to the
pervasiveness of digital technology, researchers documented them via the interpretation
of graphs. Three key difficulties included students’ interpretations of graphs as repre-
sentations of (1) characteristics of a physical object (e.g. a hill) (Clement 1989;
Leinhardt et al. 1990), (2) a literal path of an object (e.g. a walk from home to school)
(Bell and Janvier 1981; Kerslake 1977) and (3) elapsing time, even when neither
variable was time-dependent (e.g. mass vs volume) (Janvier 1998).

Although digital technology has brought many affordances (Drijvers 2015; Lobato
et al. 2019) both university and secondary school students continue to have difficulties
with graphs. Moore et al. (2019) found that university mathematics students’ perceptual
interpretations of graphs can account for their struggles, while Vitale et al. (2019) found
that the designer’s goal for a task can impact secondary science students’ focus on
relationships represented in graphs. By conceiving of graphs as representing relation-
ships between quantities, students could interpret trends and issues represented by
graphs encountered in their daily lives.

We employ a dual approach to digital task design: to engineer opportunities for
students to conceive of graphs as representing relationships between quantities and to
foreground students’ reasoning and exploration, rather than their answer-finding. To
illustrate this, consider a video animation of a toy car moving along a path, with a small
shrub positioned to the lower right of the toy car’s path (Fig. 1). Given a co-ordinate
plane with axes labeled ‘total distance traveled’ and ‘distance from shrub’, students can
sketch a graph to represent the situation.

A teacher or researcher may tell students that the graph should represent a relationship
between the different distances. Yet students can have a wide range of conceptions of what
their graphs represent. For one student, the graph may represent the literal path of the car.
For another, the graph may represent the changing length of a stretchable cord connecting
the car and the shrub. Rather than attempting to fix or replace student conceptions, we

Fig. 1 Toy Car video animation and linked co-ordinate plane
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instead acknowledge their viability. Accordingly, we foster opportunities for students to
shift their existing conceptions, through their own goal-directed activity.

In this article, we report on results of a qualitative study of thirteen secondary
students (aged 15–17), who interacted with digital task sequences during a series of
three individual, task-based interviews. We developed the digital task sequences in a
freely available, web-based platform – Desmos – in collaboration with Dan Meyer, its
Chief Academic Officer. The task sequences incorporate video animations with oppor-
tunities to sketch and interpret different graphs, each representing the same relationship
between attributes depicted in the animation. We investigate two questions: (1) How do
students conceive of what graphs represent when engaging with digital task sequences?
(2) How do student conceptions of graphs shift when working within and across digital
task sequences?

Integrating Theories for Design and Analysis

In our design and analysis, we integrated two theories: Patrick Thompson’s theory of
quantitative reasoning (Thompson 1994, 2002, 2011) and Ference Marton’s variation
theory (Marton 2014; Kullberg et al. 2017). Drawing on Thompson’s theory, we
explain how students could conceive of these attributes in a specialized way – as
capable of varying and being possible to measure. Drawing on Marton’s theory, we
explain how students could discern graphs as representing a relationship between
attributes depicted in a video animation. In each of these theories, the researchers
acknowledge that a student’s perspective is different from a researcher’s perspective
and explain how they address a juxtaposition of these different perspectives. Thompson
(1994) states that calling an attribute a quantity depends on a person’s conception of
that attribute. Similarly, Marton (2014) states that adults cannot expect children to
discern something that adults discern in the world, just because adults tell them or show
them. By employing theories that foreground the student perspective, we take into
account differences among the goals of designers, students and researchers.

Thompson (1994, 2011) explains students’ mathematical thinking in terms of
students’ conceptions of attributes. If a student can conceive of the possibility of
measuring some attribute, then that attribute is a quantity for that student. For example,
a student may view a video animation of Cannon Man, who is shot vertically into the
air, then comes back down to the ground (Fig. 2). In this situation, there are many
different attributes, one of which is Cannon Man’s total distance traveled – both up and
down. If a student conceives of the possibility of measuring Cannon Man’s total

Fig. 2 Still shots of the Cannon Man video animation
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distance, the attribute is a quantity for the student. Employing Thompson’s theory, we
center students’ conceptions of possibilities for measuring attributes, rather than their
accuracy in determining measurements.

The theoretical construct of covariational reasoning (Carlson et al. 2002; Thompson
and Carlson 2017) builds on Thompson’s theory of quantitative reasoning. Through
covariational reasoning, students can conceive of relationships among attributes that are
capable of varying and being possible to measure. For example, in the Cannon Man
situation, students can form or interpret a relationship between two different attributes –
Cannon Man’s height from the ground and Cannon Man’s total distance traveled.
Students can represent relationships between Cannon Man’s height and distance in
different ways. We focus on one such representation – a Cartesian graph.

Marton and colleagues (Marton 2014; Kullberg et al. 2017) appeal to discernment and
variation to explain the design of student learning opportunities. Design begins with a
teacher/researcher identifying an object of learning for students, acknowledging that it is
not necessarily available for students to discern, or separate, just because a researcher
identifies it. To come to know an object of learning, students discern critical aspects, or
dimensions, of it. Researchers can identify some critical aspects prior to an intervention.
Yet, critical aspects intertwine with students’ perspectives, and different critical aspects
may arise for different groups of students (Kullberg et al. 2017). While we have
considered some critical aspects (e.g. location of graph attributes on a co-ordinate plane),
we acknowledge and welcome the possibility for new critical aspects to emerge.

To open opportunities for student discernment, teacher/researchers design patterns of
difference and sameness, first across backgrounds of invariance and then across different
backgrounds (Marton 2014). In the design of the patterns, difference precedes sameness
(Kullberg et al. 2017; Marton 2014). The patterns take a particular order: contrast,
generalization, then fusion. With contrast, designers vary aspects essential to the object
of learning; with generalization, designers vary non-essential aspects. With fusion,
designers vary both. For example, our intended object of learning is a student conception
of a graph as representing a relationship between quantities. Within a single situation (e.g.
the Cannon Man), we vary the location of graph attributes, having students sketch two
different graphs (contrast). Then, we vary situations (generalization). Across the different
situations, we vary both the kinds of graphs and of attributes (fusion).

Researchers’ intended objects of learning can differ from students’ enacted or lived
objects of learning (Kullberg et al. 2017). The former are what teacher/researchers
identify that students should learn. Both the enacted and lived objects of learning
depend on the teacher/researcher and students’ engagement in learning opportunities,
and hence may differ from the intended object of learning. While enacted objects of
learning refer to spaces of possibilities for student learning, lived objects of learning are
what students actually learned. We assume that student conceptions of graphs extend
beyond just those conceptions we intend, and that interacting with the same digital
tasks can provide different opportunities for different students.

Students’ Conceptions of What Graphs Represent

By the phrase students’ conceptions of what graphs represent we mean students’ goal-
directed mental activity (Simon et al. 2004) related to their graphing. Students can have
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a variety of goals when graphing (e.g. producing an accurate graph, appearing smart in
math), and their goals may differ from those of researchers. With the term represent we
foreground the perspectives of those engaging in representing (Kaput 1998). If a
student is representing with a graph, then that graph represents something for the
student. Secondary and university students have wide ranging conceptions of what
graphs can represent. We use the term conceptions, rather than a deficit-based term,
such as misconceptions. Even if students’ conceptions differ from conceptions that
researchers intend, they are still conceptions for the student.

When students sketch and interpret graphs, they can conceive graphs iconically, as
resembling physical features of observable objects (Clement 1989; Leinhardt et al.
1990). For example, a student may interpret a graph relating attributes of a bottle as
resembling the literal shape of a bottle. Johnson (2015) reported the work of a
secondary student, Mason, during a task-based, individual interview. He was
interpreting a graph representing the height and volume of liquid in a bottle of unknown
shape, and initially drew a bottle that resembled the curved shape of the given graph.
When Johnson asked him to explain why the bottle would be shaped as he predicted, he
began comparing heights and volumes in different sections of the graph, and used those
comparisons to explain why the bottle would be shaped differently from the graph. As
Mason’s work illustrates, opportunities to discern individual attributes represented in a
graph can foster students’ shifts from physical, feature-based conceptions to
relationship-based conceptions.

Students can also conceive of graphs as representing physical features of familiar
graphs (Moore and Thompson 2015). For example, students may think that graphs
begin in a particular location on the co-ordinate plane, such as the vertical axis. Moore
(2016) reported the work of a university student, Belle, working in a digital task
environment. Belle stated that she intended to sketch a graph to represent a relationship
between attributes. Yet, she anticipated that her graph would start in an unfamiliar
location and, hence, she was convinced that her graph could not be accurate. Designing
tasks to open opportunities for students to focus on reasoning, rather than accuracy,
may foster shifts in student conceptions of graphs.

However, students can also interpret graphs as representing the physical path of an
object (Bell and Janvier 1981; Kerslake 1977). For example, consider a situation and a
corresponding graph: A child walks from home to school, then back home; a corre-
sponding graph shows the child’s distance from school along one axis and the child’s
total distance traveled along another. A student may conceive of that graph as
representing the literal path that the child walked to school. A ‘literal motion’ interpre-
tation is relevant for student work in digital task environments linking video animations
and dynamic graphs. Because the animations are moving, and the graphs are
representing attributes of objects shown in the animation, students may think that the
graphs should resemble the literal paths of the objects in the animations.

Finally, students can interpret graphs as representing a single attribute varying with
elapsing time (Janvier 1998; Johnson and McClintock 2018). For example, consider the
co-ordinate plane shown in Fig. 1, representing a toy car’s total distance traveled and
the toy car’s distance from the shrub. A student could think the graph represents the
length of a stretchable segment connecting the toy car and the shrub, which varies with
elapsing time. Janvier (1998) argued that this ‘chronicle’ interpretation of graphs, as
literal time-passing, contributes to student difficulty with interpreting graphs
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representing non-temporal attributes, such as mass and volume. Despite potential
limitations, students who conceive of graphs as representing a single attribute varying
as time elapses can shift to conceiving graphs as representing relationships between
quantities (Johnson et al. 2017b). A key factor affording students’ shifts was their
conception of the attributes represented by the graphs, as being capable of varying and
being possible to measure. Therefore, it is useful for task designers to provide oppor-
tunities for students to conceive of how they could measure the attributes represented in
graphs, as well as how those attributes could vary.

A Dual Approach to Digital Task Design

Tasks encompass more than just observable artifacts; they include the intentions of the
task designers, the students working on the task and the teacher/researchers
implementing the task (Johnson et al. 2017a). First, we share design elements of our
task sequences, then we explain our theoretical and conceptual bases for design. Table 1
provides our blueprint for the task sequences. Each task sequence has six key elements,
in which students have opportunities: (1) to conceive of the possibility of measuring
attributes given a video animation depicting an object in motion (Task VM); (2) to
represent change in individual attributes on a Cartesian plane (Task A1); (3) to sketch a
Cartesian graph to represent attributes in the situation (Task G1); (4) to represent
change in individual attributes for a new Cartesian plane, with the same attributes
represented on different axes (Task A2); (5) to sketch a new Cartesian graph to
represent the same attributes (Task G2); (6) to reflect on relationships represented by
both graphs (Task R).

We designed the Cannon Man and Toy Car task sequences in Desmos; students
moved through a series of screens, which they worked on at their own pace. To

Table 1 Blueprint for the digital task sequences

Task Description

VM View video animation. Identify measurable attributes. Students view a video animation of a
situation depicting an object in motion. They identify attributes in the situation and discuss how it
could be possible to measure them.

A1 Represent individual attributes. Students drag dynamic segments along the axes of a Cartesian plane
to represent change in individual attributes. Then, students view a computer-generated video of the
dynamic segments changing together.

G1 Represent attributes changing together. Students sketch a single Cartesian graph relating both
attributes. Then, students view a computer-generated graph and reflect in writing.

A2 Re-represent individual attributes. Students drag dynamic segments along the axes of a new
Cartesian plane to represent change in individual attributes. Then, students view a new
computer-generated video of the dynamic segments changing together.

G2 Re-represent attributes changing together. Students sketch a new Cartesian graph, with the same
attributes represented on different axes. Then, students view a new computer-generated graph and
reflect in writing.

R Reflect on relationships represented by both graphs. Students respond, in writing, to questions
focused on relationships represented by the different graphs.
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illustrate, we use the Toy Car digital task sequence. In Screens 1 and 2, students are to
view a video and consider the possibility of measuring the attributes in the situation
(Task VM). In Screens 3–5 and 9–11, students are to manipulate dynamic segments to
represent variation in individual attributes (Tasks A1, A2, respectively; Figs. 3, 4).
Then, in Screens 6–7 and 12–13, they are to sketch their own graph, then view a
computer-generated graph (Tasks G1, G2, respectively; Figs. 5, 6). In Screens 8 and 14,
they then are intended to reflect on what each graph could represent and, in the final
screen (Screen 15), are to respond to another student’s claim about relationships
represented by the graphs (Task R). The Cannon Man task sequence follows the same
format as this one.

Promoting Student Conception of Graphs as Representing Relationships
between Quantities

Drawing on Thompson’s theory, we designed opportunities for students to conceive of
attributes as being possible to measure (Task VM, Table 1). With these opportunities,
we mean something other than determining particular amounts of measurement (e.g.
the toy car moved three feet). Rather, we mean opportunities for students to explore
possibilities for measuring attributes in the situation. For example, students could
conceive of the distance between the toy car and a shrub (see Fig. 1) as the length of
a stretchable cord, one that changes as the toy car moves along the track.

The types of attributes in digital tasks can impact student opportunities for engaging in
covariational reasoning (Johnson et al. 2017b). In our task sequences, the axes represent
attributes other than time. One reason for this choice is because students may have yet to
conceptualize elapsing time; it just may be something that students feel to be passing as they
consider a situation (Thompson, 2012). Even if time is not represented explicitly on a graph
axis, it can be an implicit variable. Patterson andMcGraw (2018) presented paper and pencil
graphing tasks to individual secondary students enrolled in a selective summer mathematics
program; they found that an implicit variable of time could influence students’meanings for
graphs. In our tasks, time is also an implicit variable. For example, CannonMan’s height and
distance change together as time elapses. In the animation, Cannon Man slows down as his

Fig. 3 Toy Car, screen 4: distance from the shrub (vertical)
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parachute opens. Yet the computer-generated graphs relating height and distance (Fig. 7) are
piecewise-linear. By selecting length attributes, we intend to engineer opportunities for
students to distinguish two different elements of attributes: (1) being possible to measure
and (2) being capable of varying.

Integrating the theories of Thompson and Marton, we also designed opportunities
for students to vary attributes individually, then concurrently (Tasks A1, A2, Table 1).
Thompson (2002) advocated that students use their fingers as tools, sliding them along
the axes of a graph, to represent change in individual attributes represented by the
graph. Hence, we designed dynamic ‘stretchy’ segments, which students could digitally
manipulate to represent variation in individual attributes. Drawing on Marton’s theory,
we designed patterns of contrast, generalization and fusion.

We provided multiple opportunities for students to vary each attribute, then both
attributes, first against a background of invariance (e.g. Tasks A1 and A2 [Table 1] in a

Fig. 4 Toy Car, screen 11: total distance traveled (vertical), distance from the shrub (horizontal)

Fig. 5 Toy Car, screen 7: first computer-generated graph
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single digital task sequence), and then against different backgrounds (e.g. repeating
tasks A1 and A2 [Table 1] across different digital task sequences). For example, Fig. 3
shows the Toy Car’s distance from the shrub and total distance traveled represented on
the vertical and horizontal axes, respectively, while Fig. 4 switches the representation of
the attributes on the axes.

Students have many opportunities to use different types of representations (e.g.
tables and graphs) to represent the same relationship between attributes. We took a
different approach, designing opportunities for students to use different forms of the
same type of representation (e.g. two different-looking graphs) to represent the same
relationship between attributes (Tasks G1, G2, Table 1). We drew inspiration for this
design choice both from Marton’s variation theory and from Moore and colleagues
(Moore et al. 2013, 2014). When investigating prospective secondary mathematics
teachers’ reasoning, Moore and colleagues engaged participants in using different kinds
of graphs to represent the same relationship between attributes. Sometimes participants
sketched polar and Cartesian graphs (Moore et al. 2013) and, at other times, only
different kinds of Cartesian graphs (Moore et al. 2014). Employing Marton’s theory, we
hypothesized that sketching different graphs representing the same relationships
(contrast) could open opportunities for students to discern critical aspects of Cartesian
graphs. Figure 7 shows two different graphs representing the same relationship between
attributes in the Cannon Man task sequence.

Fig. 6 Toy Car, screen 13: second computer-generated graph

Fig. 7 Two different graphs in the Cannon Man task sequence
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Foregrounding Students’ Reasoning and Exploration, Rather than their Accuracy

While students can sketch graphs accurately, they may not necessarily focus on
relationships among attributes. In a study of 325 eighth-grade science students working
in a digital task environment, Vitale et al. (2019) investigated how two different
approaches might impact students’ conceptions of density and buoyancy relationships
represented in a mass–volume graph. They found that when students were focused on
graphical accuracy, they were less likely to focus on relationships represented by the
graph itself. Their findings align with the design of our digital task sequences, which
focus on students’ reasoning and exploration, rather than on the accuracy of the graphs
that students produce.

With each of the tasks in Table 1, we foreground reasoning and exploration, rather
than accuracy. In Task VM, students are to reflect on how they might measure attributes
in each situation, rather than finding particular measurements. In Tasks A1 and A2,
students are to explore change in individual attributes, then interpret how both attributes
are changing together. In Tasks G1 and G2, when students are to view the computer-
generated graphs, the purpose is not to fix the graphs they have sketched, but rather to
make sense of how such a graph could represent a relationship between attributes in a
situation. Through the reflection questions (Task R), students are asked to explore
similarities and differences between their graphs and the computer-generated graphs.

Methods

We conducted the study over a four-week time period near the end of the school year
(late April through early May) at a suburban high school in the metropolitan area of a
large US city, ranked as high performing based on state test results. Prior to asking for
student volunteers to participate in the study, over the course of a few months, Johnson
met with teachers in the school’s mathematics department and visited mathematics
classrooms. Through these informal interactions, Johnson intended to communicate
that we were not just swooping in to ask some questions, but rather that we were
working to get to know their school setting. In this school, students were tracked for
mathematics, and we selected students from general track, rather than advanced track
courses. They did not receive any special instruction prior to the study. All participants
were familiar with Cartesian graphs.

Thirteen students volunteered to participate in the study: Five were in ninth grade
(~15 years) and enrolled in an Algebra I course, while the other eight were in eleventh
grade (~17 years) and enrolled in an Algebra II course. At the school, 36% of students
qualified for free or reduced lunch (an indicator of low socio-economic status) and 52%
identified as students of color. For their participation, students received a graphing
calculator, which they could use for exams and classwork: Many who participated said
that they were glad to receive a calculator.

Task-Based Interviews, Exploratory Teaching

Johnson conducted a series of three task-based interviews (Goldin 2000) with individ-
ual students (~35 min per interview, 39 total interviews). Interviews occurred once or
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twice per week, with at least one day between interviews. During the interviews,
Johnson engaged in exploratory teaching (Steffe and Thompson 2000) to investigate
the viability of the digital tasks for promoting students’ conceptions of graphs as
representing relationships between quantities. Our focus on reasoning and exploration
began with setting the stage for the interview. Johnson told each student that the
purpose of the interview was to learn more about students’ mathematical reasoning
when working on some new digital tasks, that may look different from math tasks they
are used to seeing.

Telling students that they were experts in their own reasoning, Johnson
explained that her role was to learn from them, asking questions to keep them focused
on their reasoning, rather than on the accuracy of their graphs. For example, regardless
of the final graph that students created, Johnson asked students to explain what they
were trying to graph. If students expressed concern about their graphs being wrong, she
told students not to worry about accuracy, emphasizing that the point of these inter-
views was to learn about their thinking, not to determine whether they were right or
wrong. Through these efforts, we intended to make each interview feel more like a
conversation, rather than an interrogation of a student by a more knowledgeable other.

During the set of three interviews, students worked on three digital task sequences:
The Ferris Wheel, the Cannon Man, and the Toy Car, respectively. In all three
interviews, students worked on a digital tablet (an iPad), and Johnson ensured that
students progressed through the task sequences in the order intended. In the Ferris
Wheel task sequence (first interview), students engaged only in some of the tasks
described in Table 1. They worked with an interactive animation of a Ferris wheel,
discussed how it could be possible to measure different attributes, then sketched a
graph relating those attributes (Tasks VM and G1, Table 1). The second and third
interviews (with regard to the Cannon Man and the Toy Car, respectively) incorporated
the full task sequence in Table 1.

Data Analysis

All interviews were video-recorded. During each interview, either McClintock or
Gardner wrote field notes. To promote consistency, we used a field note template,
which organized the notes based on students’ responses to the different tasks in each
digital task sequence. Field notes included evidence of students’ conceptions of task
attributes as possible to measure and capable of varying, as well as evidence of what
students may be trying to represent with their graphs.

We focused retrospective analysis on students’ responses to the Cartesian graphing
tasks (Tasks G1 and G2, see Table 1). Across the set of three interviews, students had
opportunities to sketch five Cartesian graphs. Viewing the video recording of each
student’s work on each of the Cartesian graphing tasks, we engaged in multiple passes
of retrospective analysis. First, we described three aspects of students’ work: Sketches
of (or attempts to sketch) a viable graph; Explanations of their graph (or attempts to
explain) in terms of the attributes in the situation; hand movements or other physical
motions related to their graphs or task attributes (e.g. using their hands to show how
Cannon Man’s height changed). Second, we made inferences about students’
representing. We used four different codes to characterize students’ representing:
Covariation (COV), Variation (VAR), Motion (MO), and Iconic (IC). Table 2 provides
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descriptions of each code. With the codes COV and VAR, we draw on Thompson’s
theory; the codes MO and IC refer to alternative student conceptions of graphs (Bell
and Janvier 1981; Kerslake 1977; Moore and Thompson 2015). Across the set of
codes, we distinguish between students’ conceptions of graphs as representing attri-
bute(s) possible to measure (COV, VAR) or literal objects given in situations (MO, IC).
Although we entered our analysis with codes already in mind, we allowed for the
possibility for new codes to emerge, or for our existing codes to expand.

Viewing video alphabetically by students’ pseudonyms, we completed the first and
second passes for each Cartesian graph task in the Ferris wheel and Cannon Man
situations. Next, we analyzed the Toy Car situation, which resulted in refinements to
our codes. In particular, we expanded the COV code to include students’ attempts to
represent quantities not explicitly represented in the animation. For example, one
student intended to sketch a graph of Cannon Man’s height from the ground as it
varied with elapsing time, to account for the non-constant rate at which Cannon Man
emerged from the Cannon and parachuted to the ground. When we coded a form of
representing for a task, a student may have shifted to engaging in that form of
representing after an “aha” moment or engaged in that form of representing throughout
their work on the task. Although some students demonstrated evidence of more than
one form of representing within a task, we elected to use a single code for students’
representing within that task. If a student demonstrated partial evidence of one form of
representing, but engaged more consistently in another form of representing, we
weighed the evidence, then included the code that we interpreted to best characterize
the student’s representing in that task.

In the third pass of retrospective data analysis, we built from theory to explain
students’ shifts in representing across the Cartesian graphing tasks in each interview.
Drawing on Thompson’s theory, we analyzed students’ conceptions of attributes in the
task as capable of varying and possible to measure. For example, in the Toy Car task
sequence, Johnson asked students to explain how they might measure the toy car’s
distance from the shrub and the toy car’s total distance traveled. We built from students’
responses to analyze their conceptions of the attributes, as well as their conceptions of
relationships between those attributes.

Drawing on Marton’s theory, we analyzed spaces of possibilities for student learn-
ing, having designed the digital task sequences with this intended object of learning: A

Table 2 Descriptions of codes characterizing students’ representing

Code Description of Code

COV Covariation. Students sketched (or attempted to sketch) a graph that depicted a relationship between
attributes. Students described the graph in terms of two interrelated attributes.

VAR Variation. Students sketched (or attempted to sketch) two separate graphs, one for each attribute in the
situation. Students described each graph in terms of only one attribute (e.g., the “height” graph).

MO Motion. Students sketched (or attempted to sketch) a graph that depicted the motion of an object in a
situation (e.g., a toy car moving along a path). Students described the graph in terms of motion.

IC Iconic. Students sketched (or attempted to sketch) a graph that resembled an observable object or
familiar graph shape. Students described the graph in terms of its physical characteristics.
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conception of a graph as representing a relationship between quantities. Within each
task, we identified student goals for sketching graphs, which we linked to different
student conceptions of what graphs could represent. These goals constituted students'
enacted objects of learning. Finally, we hypothesized students’ lived objects of learn-
ing, based on the stability of their conceptions, or shifts in their conceptions, within and
across the task sequences.

Results

We investigated two research questions: (1) How do students conceive of what graphs
represent when engaging with digital task sequences? (2) How do students’ concep-
tions of graphs shift when working within and across digital task sequences? We coded
four distinct student conceptions of what graphs represented – a relationship between
quantities (COV), a single quantity varying with elapsing time (VAR), the literal
motion of an object (MO) and an observable object or familiar graph (IC). Table 3
shows the codes for each student, across the digital task sequence.

We found the COVandMO conceptions to be particularly stable. In the Ferris Wheel
task sequence, four students demonstrated COV conceptions and four students demon-
strated MO conceptions. All eight of them continued to demonstrate either COVor MO
conceptions, respectively, during the Cannon Man and Toy Car task sequences.

Overall, four students shifted to COV conceptions. In the Ferris wheel task sequence,
two students demonstrated VAR conceptions. Both of them shifted to COV conceptions
by the end of the Toy Car task sequence. Students initially demonstrating IC conceptions
also shifted conceptions. Two of those three shifted to COV by the end of the Cannon
Man task sequence, while the other one shifted to MO.

Table 3 Codes for students’ representing, with student’s grade level (9th or 11th) in parentheses

Student(s)
(grade)

Ferris Wheel, G1,
Interview 1

Cannon Man, G1,
Interview 2

Cannon Man, G2,
Interview 2

Toy Car, G1,
Interview 3

Toy Car, G2,
Interview 3

Alex (11th),
Austin (9th),
Jayden
(11th), Tyler
(9th)

COV COV COV COV COV

Harun (11th) VAR COV COV COV COV

Aisha (9th) VAR VAR COV VAR COV

Amanda (11th) IC COV COV COV COV

David (11th) IC MO COV COV COV

Kara (11th) MO MO COV MO MO

Keshia (9th),
Carmen
(11th)

MO MO VAR MO MO

Gemma (9th) MO MO MO MO MO

Eliza (11th) IC MO MO MO MO
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How Students Conceived of What Graphs Represent

We identified three goals, aligned with different conceptions: How do I show what I
see? (IC/MO); How many graphs do I need? (VAR); What are the things I am
graphing? (COV). Although we coded for IC/MO separately, we found students’ goals
to be compatible—to attempt to sketch a graph to show what they literally saw in a
video animation. During interviews, students with VAR conceptions often asked if they
should draw one graph or two, and Johnson would tell them to use however many
graphs they would like. In contrast, students with COV conceptions wondered about
which attributes they were graphing, and they frequently looked at the axes when
deciding how to sketch their graphs. Employing Marton’s theory, we interpret each of
these three goals to be enacted objects of learning. Overall, only two of the goals
became lived objects of learning: the IC/MO goal, How do I show what I see? (five
students) and the COV goal, What things am I graphing? (eight students). We report on
five students: David, Carmen, Keshia, Aisha and Alex. These five students were
representative of the range of stability or shifts in conceptions of all thirteen students
in the study.

When students conceived of graphs as representing observable features or motion of
objects, their goal was to sketch a graph that showed what they saw (IC/MO). Prior to
sketching the graph shown in Fig. 8, right, Johnson asked David to explain how he
might measure the distance traveled and height from the ground for a cart beginning at
the base, then moving counterclockwise around one revolution of a Ferris wheel (Fig.
8, left). David attempted to determine particular amounts of height and distance, stating,
“I think of how much the distance would be, in pi. I think it would be three-fourths pi.”
Going further, he said, “You can think about the circle [the Ferris wheel, Fig. 8, left] as
a grid. I would think about the center as being zero, zero, and maybe here [pointing to
the lower right] being three, negative three.”

Based on Thompson’s theory, we interpret David to be conceiving of distance and
height as amounts to find rather than attributes possible to measure (quantities). When
requested to sketch a graph relating the Ferris wheel cart’s distance traveled and height
from the ground for one revolution of the wheel, David asked, “Would you like me to

Fig. 8 Ferris Wheel interactive animation (left), David’s graph (right)
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imagine an equation for that?” Johnson told him he could do whatever he liked and
David then produced the graph shown in Fig. 8 (right). We coded his conception IC,
because his graph resembled the image of the Ferris wheel that he had seen in the
interactive animation. His co-ordinates represented different places on the wheel, based
on approximate locations from the origin (Fig. 8, right). Employing Marton’s theory,
we interpret David’s enacted object of learning to be that, when there is no equation
given, a graph shows what he saw in the situation.

Students may conceive of attributes in ways consistent with Thompson’s perspective
on quantities, but still hold MO conceptions of graphs. In the Toy Car G1 task, Carmen
demonstrated that she conceived both of the car’s total distance traveled and of the
distance from the shrub as capable of varying and possible to measure (quantities, per
Thompson’s theory). Yet, she sketched a graph representing the path of the toy car
(Fig. 9), circling its beginning and ending points, and including a dot to represent the
shrub (Fig. 9, right). Carmen explained her graph this way: “What I thought about was
that, like, it’s a starting point. And it’s starting to go closer and then it starts going back
further. So that’s how I saw it. I saw it as if it’s going closer, then further.” Not only did
her graph bear resemblance to the path of the toy car, she explained her graph in terms
of the motion of the toy car; hence we coded Carmen’s conception as MO. Employing
Marton’s theory, we interpret her enacted object of learning to be that a graph literally
shows the motion of an object in an animation.

Students who demonstrate MO conceptions may sketch graphs bearing less-striking
resemblances to objects’ literal motion. To illustrate this, we share Keshia’s work on the
Toy Car G1 task. Like Carmen, prior to sketching a graph, Keshia demonstrated that
she conceived of the toy car’s distance from the shrub and distance traveled as
quantities, as per Thompson’s theory. After watching the Toy Car video, Keshia
explained that she thought she could measure the toy car’s distance traveled. When

Fig. 9 Carmen’s graph for the Toy Car G1 task
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Keshia read that the distance from the shrub could be another attribute to measure, she
stated that she had not thought about that possibility, but it was a “good one”. While
explaining, Keshia moved her hand back and forth from the car to the shrub, then
sketched the graph shown in Fig. 10. She explained her graph in terms both of distance
and of movement: “It’s showing you how far it went all together [moves her hand along
the graph, going from left to right], and it’s also showing you when it starts moving up,
and when the slope starts moving down”. Because Keshia moved her hand along the
graph when talking about the distance as well as focusing on the movement of the toy
car and graph, we coded her conception as MO.

While Keshia’s MO conception accounted for much of her work in the digital task
sequences, we determined an additional critical aspect (Marton 2014) – her notion of
what graphs should represent. To illustrate, when Keshia was sketching the graph
shown in Fig. 10, she said, “Maybe it would look right if it’s a squiggly line, but that
doesn’t seem normal in a graph”. Although Keshia entertained the possibility of a non-
linear graph, she discounted it, based on what she deemed graphs should be like.
Hence, employing Marton’s theory, we interpret Keshia’s enacted object of learning to
be that a graph should not only represent the motion of an object in an animation, but
also fit in with her notions of what a graph should be.

When students conceived of graphs as representing a single quantity varying with
elapsing time, their goal was to determine how many graphs they needed (VAR). For
the Cannon Man G1 task, Aisha immediately asked, “Can it be two different lines?”,
and Johnson confirmed that that would be okay. Aisha then sketched the graphs shown
in Fig. 11, saying, “This would be distance [sketching the linear portion, then pointing
to the distance axis], and then it would be a parabola for the height [sketching the
curved portion, then pointing to the height axis]”. Like Keshia and Carmen, prior to her
work on the Cannon Man G1 task, Aisha demonstrated that she conceived of Cannon

Fig. 10 Keshia’s graph for the Toy Car G1 task
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Man’s height from the ground and total distance traveled as capable of varying and
possible to measure (quantities, as per Thompson’s theory). Aisha added points to the
height graph, explaining that each point represented a different height for Cannon Man.

Aisha also drew connections between her distance graph and the continually
increasing dynamic segment she observed moving along the distance axis in Cannon
Man Task A1, stating: “If this keeps going [moving her hand along the distance axis],
might as well make it a linear”. Because she demonstrated that each of her graphs
represented a single quantity, varying with elapsing time, we coded Aisha’s conception
as VAR. Employing Marton’s theory, we interpret Aisha’s enacted object of learning to
be that graphs represent individual quantities varying with elapsing time. Aisha’s
conception shifted during the Cannon Man task sequence, and we share more about
that shift in the next sub-section.

When students conceived of graphs as representing relationships between quan-
tities, their goal was to sketch a graph that showed both attributes simultaneously
(COV). Alex demonstrated that he conceived of Cannon Man’s height from the
ground and total distance traveled as capable of varying and possible to measure
(quantities, as per Thompson’s theory). For the Cannon Man G2 task, Alex reflected
on how each of the quantities were varying when he worked to sketch the graph
shown in Fig. 12: “Height’s going to go back down at some point. Distance is
always going to be increasing. I have to figure out a way to draw these together.”
Alex drew arrows to the bottom and left of the horizontal and vertical axes,
respectively, to show how Cannon Man’s height and distance were varying. Al-
though Alex and Keshia both drew arrows in their graphs, Alex’s arrows represent-
ed the variation in each of the attributes and separated the variation from the shape
of the graph itself. Because he worked to sketch a graph to relate both attributes, we
coded Alex’s conception as COV.

Fig. 11 Aisha’s graphs for the Cannon Man G1 task
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Similar to Keshia, Alex’s notion of what graphs should represent impacted his work
on the digital task sequences. He questioned the viability of his graph shown in Fig. 12,
commenting: “Usually most graphs are going that way [pointing to the right]. They’re
not going back that way [pointing to the left]. I’ve never seen a graph go like that
[pointing to the left]. It just doesn’t match up.” While Alex drew an accurate graph, he
was not convinced his graph could make sense, based on what he deemed graphs
should do. Employing Marton’s theory, we interpret Alex’s enacted object of learning
to be that a graph should not only represent relationships between quantities, but also fit
in with his notions of what a graph should be. Alex and Keshia both demonstrated the
compelling nature of students’ notions of what graphs should be and how those notions
can impact students’ work in digital task sequences.

How Students’ Conceptions of Graphs Shifted when Working within and
across Digital Task Sequences

We focus our analysis on shifts that occurred across different tasks within the same
digital task sequence, during the same interview. Mostly, we saw shifts in students’
conceptions during the Cannon Man task sequence. Only one student (Aisha) demon-
strated a shift in her conception of graphs during the Toy Car task sequence – and that
shift was the same as what she demonstrated in the Cannon Man task sequence. We
report on two students, Aisha and David, who represent the breadth of shifts that we
saw across all students.

In the Cannon Man digital task sequence, Aisha shifted from conceiving of two
quantities varying individually with elapsing time to conceiving of a relationship
between quantities (from VAR to COV). For the Cannon Man G2 task, Aisha no
longer asked if she could draw two different graphs. Rather, she drew one graph

Fig. 12 Alex’s graph for the Cannon Man G2 task

357Digital Experiences in Mathematics Education (2020) 6:340–366



(Fig. 13), with two related parts: A line segment, extending along the vertical axis, and
a graph she called a ‘parabola’, opening to the left, with end-points on the vertical axis.
We view Aisha’s shift in her goal as an indication of a shift in her conception of what is
possible for graphs to represent.

As with Alex and Keshia, Aisha’s notions of what graphs should represent impacted
her work in the digital task sequence. When she began to sketch a graph with distance
and height represented on the vertical and horizontal axes, respectively, she said,
“Usually, if you give somebody a graph, it’s facing this way, yes. But I imagine the
distance on the ground [rotating iPad 90° counterclockwise so the distance axis appears
horizontal], which I can’t do.” In her response, Aisha distinguished between how she
conceived of distance (on the ground) and how the graph represented distance along the
vertical axis. Rather than just sketching a graph, Aisha explained what she ‘wanted’ a
graph to do. To encourage her, Johnson said, “Even if it doesn’t look like how you are
used to graphs looking, draw it like how you want it to go and tell me why”. In
response, Aisha sketched the graph shown in Fig. 13, explaining how her graph showed
Cannon Man’s height increasing and decreasing (arrows along the graph), and Cannon
Man’s total distance continuing to increase (arrows along the vertical axis).

Employing Thompson’s theory, we interpret that Aisha was beginning to demon-
strate evidence of a COV conception of graphs. The vertical segment representing the
changing distance was an important part of her graph. When she saw the computer-
generated graph (Fig. 7, right), she said that she expected to see that segment. We claim
that Aisha shifted from VAR to COV because her goal shifted from sketching two
separate graphs to sketching interrelated representations (a distance segment and a
height graph), to account for the direction of change in each attribute. Notably, her
graph was sufficient for her, despite her discerning differences between the computer-

Fig. 13 Aisha’s graph for the Cannon Man G2 task
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generated graph and her graph: “It’s the same thing to me, essentially. It’s just straight
and not curved.”

Employing Marton’s theory, we interpret Aisha’s enacted object of learning to have
shifted during the Cannon Man digital task sequence. In the specific G2 task, Aisha
conceived of graphs as representing relationships between attributes, even when those
attributes are depicted in unfamiliar ways. In the Toy Car task sequence, Aisha again
shifted from VAR to COV, just as she had done in the Cannon Man task sequence.
While working on the CannonMan task sequence was sufficient to shift some students’
conceptions for the remainder of the digital task sequences (e.g. Harun, David,
Amanda, see Table 3), she demonstrated the same shift in a new task sequence.
Because she continued to shift from VAR to COV, we interpret Aisha’s lived object
of learning to be the same as her enacted object of learning in the Cannon Man G2 task.
Opportunities to work on similar digital task sequences having different backgrounds
could promote stability in her shifts to COV.

In the Cannon Man digital task sequence, David shifted his conceptions of what
graphs represent, from the Cannon Man G1 task (MO) to the Cannon Man G2 task
(COV). Like his goal for the Ferris Wheel task sequence, David’s goal on the Cannon
Man G1 task was to represent what he saw. He demonstrated evidence that he conceived
of the graph as representing the literal motion of Cannon Man. In the Cannon Man G2
task, he shifted his conception, to account for Cannon Man’s height and distance in his
graph. Figure 14 shows his graphs for the Cannon Man G1 and G2 tasks, respectively.

Prior to sketching the graph shown in Fig. 14 (left), David manipulated the dynamic
segments to represent changes in Cannon Man’s height and distance (Cannon Man task
A1). In the transcript that follows, Johnson asked him to explain why he thought
manipulating the segments was more challenging than sketching a graph.

Researcher: What makes it hard?
David: When you see something in real life, something like this. You’re not
seeing just distance or just height. You’re seeing the actual graph, if that makes

Fig. 14 David’s graphs for the Cannon Man graphing tasks – G1 (left) and G2 (right)
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sense. I think it’s easier to understand when you have the option to do that instead
of just distance, or just height.
R: When you are seeing the actual graph, what does the actual graph show
you?
D: Shows me more closely the path he’s taking. With just height and distance,
you only see, just how high he’s going or how far out he’s going, but you don’t
actually see the true line or path he’s following.

Manipulating the dynamic segments provided David with an opportunity to conceive
individual attributes of height and distance as capable of varying and possible to
measure (quantities, as per Thompson’s theory). He contrasted these segments with
what he termed an ‘actual’ graph, which would show Cannon Man’s literal path. When
he sketched the graph shown in Fig. 14 (left), he asked if he could use points, to which
Johnson said he could do whatever he preferred. He started by plotting the maximum
point, because “it makes the graph easier to find a path for”.

David explained his graph in terms of the path that Cannon Man traveled: “Here’s
where he starts, maybe two or three feet above, just cause he’s in the cannon, then he
follows this path until he reaches the max, comes back down and goes completely to
the ground”. In this Cannon Man G1 task, we coded his conception as MO, because he
sketched a graph to represent the literal path of Cannon Man. Employing Marton’s
theory, we interpret his enacted object of learning to be that graphs represent the actual
motion of objects.

As with Aisha, David’s notion of what a graph should represent impacted his work
on the task. Prior to sketching the graph shown in Fig. 14 (right), he expressed that he
thought it would be “kind of hard”, and then asked Johnson, “Do you want me to draw
what I think?” She confirmed this and he immediately began sketching the graph
shown in Fig. 14 (right), starting near the origin, then moving along the graph, adding
the detached blue segment in the upper corner after he sketched the rest of the graph.
We interpret his question to refer, in part, to whether he should attempt to show realistic
aspects when sketching a graph, which he thought was important to do. He did
represent realistic aspects by adding the detached blue segment in the upper part of
the graph. From our perspective, because he included an additional segment, his graph
represents a space of possibilities for a graph of Cannon Man, rather than a single
graph. Although aspects of his graph still represented the motion of Cannon Man, we
interpret David’s goal to have shifted from solely showing the path of Cannon Man, to
accounting for Cannon Man’s height and distance. Therefore, we claim that his
conception shifted from MO to COV, albeit an inchoate form of COV.

Employing Thompson’s theory, David conceived of Cannon Man’s total distance
traveled as something different from the distance we intended when designing this task.
We intended the total distance traveled to be the vertical distance, both up and down. In
contrast, he described Cannon Man actually moving from left to right, despite the video
showing only up and down movement. He conceived of the distance as the horizontal
distance traveled along the ground, when Cannon Man moved from left to right, and he
explained that this distance could be different depending on how the parachute opened.
David did, however, conceive of the height in a way consistent with our task design, as
measuring Cannon Man’s vertical distance from the ground. He readily manipulated a
dynamic segment on the horizontal axis to represent Cannon Man’s height, accounting
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for the varying speed at which he traveled as he moved the segment. When sketching
the graph shown in Fig. 14 (right), David began the graph above the origin to account
for Cannon Man’s height from the ground, which would not actually be zero.

Employing Marton’s theory, we interpret David’s enacted object of learning in the
Cannon Man task sequence to be that graphs account for given attributes in a situation,
yet still somehow show the literal path of an object. Given his interpretation of distance,
it was difficult to separate the actual path of Cannon Man from the shape of the graph
itself, even though the graph for this G2 task represented the distance along the vertical
axis, rather than along the horizontal one. Therefore, while we coded David’s concep-
tion as COV, we gathered additional evidence from the Toy Car task sequence to make
claims about his lived object of learning. During the Toy Car task sequence, he
sketched graphs that represented a relationship between the toy car’s distance from
the shrub and the toy car’s total distance traveled.

We claim that David’s lived object of learning was that graphs represent a co-
ordination between different amounts of quantities. To illustrate, we explain how he
conceived of his graph (Fig. 15) for the final graphing task, Toy Car G2. He chose to
plot individual points, because he thought he could be more accurate, describing how
he thought about the dynamic segments when deciding where to plot different points.
Johnson asked him to illustrate for a specific point, and he drew segments along the
horizontal and vertical axes, stating: “For the short distance he’s traveled so far
[pointing to segment on the vertical axis], that’s how far he is out from the bush
[pointing to segment on the horizontal axis]”. Employing Thompson’s theory, we
interpret that David conceived of each point as representing a co-ordination between
amounts of different distances; or, to use Thompson’s term, he conceived of each point
as a multiplicative object.

Fig. 15 David’s graph for the Toy Car G2 task
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Across all students, David’s shift was the most drastic. Notably, he was the only
student who, after demonstrating a MO conception, went on to demonstrate a COV
conception as a lived object of learning. Opportunities to manipulate the dynamic
segments, representing each attribute, fostered his conception of a graph as representing
a relationship between quantities. We posit that the change in the type of motion from
the Cannon Man to the Toy Car opened more possibilities for David’s emerging COV
conception to become more stable.

Discussion

We identified students’ goals for their graphing, aligned to their conceptions of graphs.
Students demonstrating IC or MO conceptions had a goal of using their graphs to show
what they literally saw in an animation. Students demonstrating VAR conceptions had a
goal of using a graph to represent individual attributes. Students demonstrating COV
conceptions had a goal of co-ordinating different attributes in a single graph. In
addition, a fourth student goal emerged through our analysis: What graphs should
represent. We found this last goal to be compelling for students demonstrating a range
of conceptions, because it could afford or constrain their other goals for graphing.
Hence, we recommend that researchers design learning experiences to account for
students’ notions of what graphs should represent. In our design, we aimed to com-
municate to students that we cared about their reasoning more than their answers, and
we view that design choice as opening possibilities for students to make their notions
explicit.

Our research questions focused on students’ conceptions of what graphs represented
and Thompson’s theory was central to our analysis of them. Students who demonstrat-
ed a COV conception conceived of graph attributes as quantities. However, conceiving
of graph attributes as quantities was not sufficient for students to demonstrate COV
conceptions of graphs (see our analysis of Carmen). Researchers also may employ
Thompson’s theory to examine students’ conceptions of mathematical objects repre-
sented in graphs, such as slope. For instance, Ellis et al. (2018) drew connections
between two middle-school students’ quantitative reasoning and their conceptions of
what slope could represent. In our analysis, we characterized students as having COV
conceptions of graphs, but we did not engage in analysis to distinguish gradations in
students’ COV conceptions. In future research, scholars could work from the levels of
variational and covariational reasoning posited by Thompson and Carlson (2017) to
engage in more fine-grained analysis both of students’ VAR and of their COV
conceptions of graphs.

Shifts in Students’ Conceptions of Graphs

We saw a variety of pathways in students’ shifts to covariational reasoning within and
across the digital task sequences (see Table 3). While we analyzed four distinct
conceptions of graphs (IC, MO, VAR, COV), students did not necessarily need to
progress through all four conceptions to shift to a COV conception. Most students’
shifts in the Cannon Man task sequence lasted across the Toy Car task sequence;
however, some students’ shifts were fleeting or fluid. In the Cannon Man task
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sequence, three students (Kara, Keshia and Carmen; see Table 3) demonstrated fleeting
shifts fromMO conceptions of graphs to VAR or COV conceptions, but they continued
to demonstrate MO conceptions in the Toy Car task sequence. In contrast, Aisha
demonstrated a more fluid shift to a COV conception of graphs, as she re-progressed
in her shift from a VAR conception to a COV conception in the Toy Car task sequence.

When students demonstrated VAR conceptions of graphs, we were successful in
providing opportunities for them to shift to COV conceptions. However, when students
demonstrated MO conceptions, we were less successful. Although six students dem-
onstrated MO conceptions of graphs, only one student (David) demonstrated a COV
conception as a lived object of learning. Rather than characterizing our student
participants as having deficits that mitigated their shifts, we intentionally characterize
our efforts to engineer learning opportunities as being more or less successful. With this
decision, we intend to convey that, under different circumstances or with different task
sequences, these same students might have shifted to COV conceptions of graphs,
despite not demonstrating such shifts during this study. A variation theory lens helped
us to guard against a deficit perspective, because we were constantly weighing what we
intended for students to learn, the opportunities we created for students to learn and
what students actually learned during their work with the digital task sequences.

When students demonstrated or shifted to MO conceptions of graphs, their concep-
tions remained particularly stable throughout the task sequences. Students may have
encountered many graphs that share observable characteristics with the motion of
physical objects, even though graphs do not need to share such characteristics. Students
demonstrating MO conceptions could benefit from embodied tasks for graphing motion
(Duijzer et al. 2019), so that they could have opportunities to form links between their
own movements and the appearance of graphs they sketch. Task sequences could begin
with a background of invariance, and different kinds of motion, and then incorporate
variation in both backgrounds and motion.

With different methodological choices or different theoretical lenses, researchers
could expand possibilities for studying students’ graphing activity. When we examined
shifts in students’ conceptions of graphs, we selected a single code (e.g. VAR) to
characterize their overall representing on a single task (e.g. Cannon Man G2). To study
finer-grained shifts, researchers could investigate students’ micro-shifts, within a single
task. Such investigations could draw on single, illustrative cases to explain why certain
conceptions (e.g. MO) remain so persistent. While we chose to integrate Thompson’s
theory of quantitative reasoning and Marton’s variation theory, scholars could employ
different theoretical lenses to investigate students’ work with digital task sequences
such as the ones we described.

Conclusion

In our digital task design, we had a dual aim: To promote students’ conceptions of
graphs as representing relationships between quantities (COV) and to open opportuni-
ties for students to focus on reasoning and exploration, rather than accuracy. While
students may hold many conceptions of graphs, a COV conception is important for
students to develop. First, it can support students’ interpretation of graphs containing
non-temporal attributes, such as the mass–volume graphs reported on by Vitale et al.
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(2019). Second, students demonstrating a COV conception are well positioned to
analyze critically information presented in graphs, because they have a goal of co-
ordinating attributes represented on different axes.

We contend that opportunities for students’ reasoning and exploration encompass
not only the digital task sequences themselves, but also the interactions that students
have during their work on those task sequences. We anticipated that student participants
may have perceived a need to perform, which is why, throughout the interviews,
Johnson consistently communicated that we cared more about student reasoning than
we did about their graphical accuracy. We find it impossible to disentangle our efforts to
promote students’ conceptions of graphs and to open students’ opportunities for
reasoning. Through our synergistic efforts, we engendered students’ shifts to
relationship-based conceptions of graphs.

As researchers investigating students’ conceptions, our design decisions are never
neutral. To guard against deficit perspectives, researchers investigating students’ math-
ematical conceptions should interrogate their own research designs, so that they may
uncover potential biases. By critiquing their own research designs, rather than pointing
to deficits in their student participants, researchers can promote students as capable of
engaging in rich mathematical thinking and reasoning, even if students have yet to
demonstrate such reasoning in a research setting.
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