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Abstract
For any convex quadrilateral, joining each vertex to the mid-point of the next-but-one
edge in a clockwise direction produces an inner quadrilateral (as does doing so in a
counter-clockwise direction). In many cases, a dynamic geometry measurement of the
ratio of the area of the outer quadrilateral to the area of the inner one appears to be 5:1.
It turns out, however, that this is due to rounding. We generalise the construction by
replacing mid-points by more general ratios, finding the maximum and minimum
values of the area ratio and determining the conditions on the original quadrilateral
that achieve those two extremes.

Keywords Dynamic geometry software . Computer algebra software . Geometry-algebra
interplay.Beingmisledbymissingdecimalplaces .Convexquadrilaterals .Ratiosofareas

Introduction

Given a convex quadrilateral, form the mid-points of the edges and then join them to
the vertices in cyclic order, as shown in Fig. 1.

In dynamic geometry software, the ratio of the area of the outer to the area of the
inner quadrilateral is often given to be 5:1 over a range of positions for W – so much so
that it is tempting to conjecture that the ratio will always be that (both authors have
been so tempted, independently). However, when the software is induced to show as
many decimal places as possible, it turns out that the ratio differs from 5:1 in the third
or fourth decimal digit over quite a large range of choices of W. When people use
dynamic geometry software to construct an example, their starting configurations are
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often quite close to being trapezia1 (trapezoidal), for which the ratio really is exactly
5:1, and small variations in W make little difference in the ratio.

The aim here is to show two things: that the ratio of the area of the outer quadrilateral
to the area of the inner quadrilateral is always at least 5:1, with equality only when the
inner quadrilateral is a trapezium (trapezoid), and that the ratio is at most 6:1, with this
equality only when the quadrilateral degenerates into a triangle with W coinciding with
either X or Z. The situation is then generalised.

Remarks about Being Fooled by Rounding

When students use a calculator to compute the ratio of consecutive terms from a
Fibonacci sequence, they often conclude that the ratio is constant, but this is due to
the limited number of decimal places used on their calculator. Even though well aware
of this phenomenon, it is still easy to be caught similarly in fresh situations, which is
what happened to us with the outer to inner area ratio. Even when the ratio shifts to
5.01:1, say, this is perhaps more likely to be dismissed as a rounding error than treated
as a genuine counter-example to the constant-ratio conjecture. After all, when there is a
whole region of invariance in a DGS phenomenon, it is likely to be universal.

Special Case: Mid-Point Reasoning

Let X, Y and Z be three vertices of a convex quadrilateral in cyclic order, and W the
fourth point. By translation, Y can be taken as the origin. By rotation and scaling in
skew directions, X and Z can be taken to be [2, 0]2 and [0, 2] and these affine actions do
not affect the ratio of areas. The use of 2 is in order to avoid fractions when calculating
mid-points. Let W then be [2a, 2b]. Alternatively, but equivalently, treat X – Yand Z –
Y as basis vectors and then W= 2a(X – Y) + 2b(Z – Y).

These ‘affine-simplified’ co-ordinates make the algebra a great deal simpler. How-
ever, in order to combine algebra with general DGS diagrams, it is useful to construct a

1 We use the British English term trapezium, meaning a quadrilateral with at least one pair of opposite sides
parallel.
2 Due to the many brackets in the on-coming algebraic expressions, in this piece co-ordinates are indicated
using square brackets – [a, b] – rather than round ones – (a, b).
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Fig. 1 Clockwise and counter-clockwise orientations for the mid-point construction
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procedure which converts DGS co-ordinates into affine-simplified co-ordinates (so as
to check geometrical relationships algebraically), together with its inverse, in order to
convert affine-simplified co-ordinates into DGS co-ordinates (so as to display and
check the results of algebraic calculations geometrically).

Restricting the outer quadrilateral to being convex is achieved through requiring a, b
and a + b – 1 to be non-negative (see Fig. 2).

The applet Outer to inner quadrilateral area ratios (Mason, 2019) provides displays
for the more general situation, as well as for this initial special case.

The relation between the two orientations is that interchanging the first and second
co-ordinates, and interchanging a and b, converts the first clockwise orientation
diagram in Fig. 2 into the other orientation. Thus, it is sufficient to work only with
the first orientation.

The mid-points of the edges of the quadrilateral are

MWX ¼ W þ Xð Þ
2

MXY ¼ X þ Yð Þ
2

MYZ ¼ Y þ Zð Þ
2

MZW ¼ Z þWð Þ
2

So, in affine-simplified co-ordinates,

MWX ¼ 1þ a; b½ �

MXY ¼ 1; 0½ �

MYZ ¼ 0; 1½ �

MZW ¼ a; 1þ b½ �
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Fig. 2 Affine-simplified co-ordinates
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The vertices of the inner quadrilateral can then be found (the calculations are omitted
due to not being edifying; they will be done more generally shortly). The inner
quadrilateral is a trapezium in the first orientation, either when the segments ZMWX

and XMYZ are parallel or when WMXY and YMZW are parallel. In terms of affine-
simplified co-ordinates, these conditions are expressed algebraically as a + 2b – 3 = 0 or
2a – b – 1 = 0, respectively. Corresponding conditions for the second orientation can be
produced by interchanging co-ordinates and reversing a and b.

Because of what happens in the area calculations, it is convenient to specify T = (a +
2b – 3)(2a – b – 1), noting that, when both factors are zero, the inner quadrilateral is a
parallelogram and a = b = 1.

The locus of positions of W that make the inner quadrilateral a trapezium, while still
preserving the convexity of the outer quadrilateral, is shown in Fig. 3 using two fine-
dotted lines. Notice that because of the requirement for convexity, one is a segment
bounded by the extended edges YX and YZ of the quadrilateral, while the other is a ray
with its vertex on the diagonal XZ. These two lines are parallel to the pair of parallel
edges of the inner trapezium. The intersection point is the position for W that makes the
inner quadrilateral a parallelogram. The outer quadrilateral is then also a parallelogram
in general, but a rhombus in affine-simplified co-ordinates.

The ratio of the areas of the outer to the inner quadrilateral was found initially by
using dynamic geometry software, then gazing at the algebra trying to make use of the
trapezium conditions. The lower bound of 5:1 was anticipated to occur when a = b = 1
(and the inner quadrilateral is a parallelogram). The upper bound of 6:1 was found by
taking a limiting case in which the quadrilateral degenerates into a triangle when W
coincides with either X or Z (a = 1 and b = 0 or a = 0 and b = 1), which the DGS
suggests is where the maximum occurs (see Fig. 4).

Using the anticipated bounds, the algebra involves large polynomials in a and b
which can be re-expressed usefully as follows:

ρ ¼ Areaouter
Areainner

¼ 5þ T2

T 2 þ 4S
¼ 6–

4S
T 2 þ 4S

where S = S1S2 with S1 = ab + 2b2 + 4a – 2 and S2 = 4ab + 2a2 – 3a + b + 1.
With hindsight, it is easy to re-express these as:

S1 = ab + 2(b – 1)2 + 4(a + b – 1) ≥ 0, since a + b ≥ 1 and a ≥ 0 and b ≥ 0,
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Fig. 3 Loci of W for trapezia while preserving convexity

255Digital Experiences in Mathematics Education (2019) 5:252–265



and
S2 = 2(a – 1)2 + 4ab + (a + b – 1) ≥ 0, for the same reasons.

Because S1 and S2 are both non-negative when a, b and a + b – 1 are all non-
negative, 5:1 and 6:1 are the lower and upper bounds for the ratio of the area of the
outer quadrilateral to the area of the inner quadrilateral, when the outer quadrilateral is
convex.

The expressions for ρ were the result of considerable exploration, including even-
tually conjecturing that the denominator might be expressed in terms of T and S. Only
later did it become obvious how to find them logically, as will emerge shortly in the
more general setting.

The equations S1 = 0 and S2 = 0 represent conics and, as can be seen from the
expression of the ratio, turn out to be the loci of W for which the algebraic area ratio
is 6:1. They are shown in Fig. 5. However, the only values of a and b that lie on this
locus, and which also maintain a convex quadrilateral, are when a = 1 and b = 0, or
when a = 0 and b = 1, as was shown in Fig. 4. These are limiting positions for W.

Notes about Relationships

Geometrically, when the inner quadrilateral is a parallelogram, the ratio of 5:1 can be
seen fairly directly, as shown in Fig. 6.
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Fig. 4 Positions of W with the maximum ratio while preserving convexity
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Fig. 5 Loci of S1 = 0 and S2 = 0 shown dashed
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Using the fact of the mid-point construction

Areaouter
2

¼ 4Aþ Dð Þ þ 4Bþ Cð Þ ¼ 4C þ Að Þ þ 4Dþ Bð Þ

where each bracket is half of the area of half of the whole outer quadrilateral. The area
covered twice is A + B +C +D, and the area not covered is the Inner Area, from which
it follows by the carpet theorem (Bogomolny, 2018) or by simple algebra, that
Areaouter = 5(A + B +C +D) = 5Areainner. Indeed, the triangles C and D are congruent,
as are the triangles A and B (Fig. 6, left side). Two superimposed grids depict these
congruences geometrically ‘without words’, in Fig. 6 (right side).

When the inner quadrilateral is a trapezium but not a parallelogram, there is only one
pair of parallel lines forming the trapezium.

Using C and D to label the areas as shown in Fig. 7 (left side), it is still the case that
Areainner =A + B +C1 +D. Drawing in parallel lines in Fig. 7 (right) side produces two

Fig. 6 Minimum ratio achieved for parallelogram seen as an area calculation (left) and as two grids
superimposed (right)
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Fig. 7 Labelling areas and forming the shaded triangles with parallel lines
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small triangles with parallel sides which are therefore similar. The shaded triangles are
congruent according to the algebra, but it is not obvious how to prove this synthetically.

Some Generality: Edges Divided in the Ratio μ:(1 – μ)

The next step was to generalise the mid-point construction to dividing the edges in the
ratio μ: (1 – μ) in cyclic order around the quadrilateral. Since this case is subsumed in
the following more general result, details are omitted. The minimum and maximum
area ratios for the clockwise construction turned out to be:

1−μ2

1−μð Þ2 and
1−μþμ2

1−μð Þ3 which, in the case of μ ¼ 1
2, have the values 5 and 6 respectively.

The counter-clockwise values are obtained by replacing μ by 1 – μ.

General Theorem: Opposite Edges Divided in Given Ratios

Given a convex quadrilateral X, Y, Z, W, in cyclic order, divide one pair of opposite
edges in the ratio μ: (1 – μ) and the other pair in the ratio ν: (1 – ν), both in cyclic order.
Join each vertex to the division-point on the next-but-one edge clockwise, and do the
same counter-clockwise. This produces two inner quadrilaterals. Denote by ρ the ratio
of the area of the outer quadrilateral to the area of the inner quadrilateral.

Then, for the clockwise orientation, 1þμν
1−μð Þ 1−vð Þ ≤ρ≤max 1−μ 1−νð Þ

1−μð Þ 1−vð Þ2 ;
1−v 1−μð Þ
1−μð Þ2 1–μð Þ

� �
:

For the counter-clockwise orientation, the bounds are found by replacing μ by 1 – ν,
and ν by 1 – μ so

1þ 1−μð Þ 1−vð Þ
μv

≤ρ≤max
1−μ 1−vð Þ

μv2
;
1−v 1−μð Þ

μ2v

� �
:

Development and Proof

Start with simplifying the co-ordinates, without loss of generality, using affine trans-
formations. Since μ and ν are used, it is sensible to use co-ordinates [0, 0], [0, 1], [1, 0],
and [a, b] for the vertices, as shown in Fig. 8, in the two orientations.

Convexity requires the conditions that a, b and a + b – 1 be non-negative.
The division points are given by:

MWX ¼ 1–μð ÞWþ μX ¼ 1–μð Þaþ μ; 1–μð Þb½ �

MZW ¼ νWþ 1–νð ÞZ ¼ νa; 1–νð Þ þ νb½ �

MYZ ¼ 1–μð ÞYþ μZ ¼ 0;μ½ �
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MXY ¼ 1–νð ÞXþ νY ¼ 1–ν; 0½ �

Since the two orientations are related by interchanging first and second co-ordinates,
interchanging a and b, and interchanging μ with 1 – ν, (this will be referred to as the
interchange), it is again sufficient to deal with the clockwise orientation only. It is,
however, useful to carry both sets of calculations forward in a CAS for oneself for
comparison later.

A reasonable conjecture is that the trapezia condition will still give the minimum
area ratio. The condition for the inner quadrilaterals to be trapezia is that μνT = 0,
where T = (μ(a – 1) + (b – 1))((a – 1) – ν(b – 1)). This locus is displayed in Fig. 9 for
both orientations. Note that again the locus ofW (which forces the inner quadrilateral to
be a trapezium) consists of lines through [1,1] parallel to the pair of parallel lines
forming the trapezium.

The corresponding conditions for the counter-clockwise orientation are found by
making the interchange. The relevance of expressing these in terms of a – 1 and b – 1
will appear later.

Sticking with the clockwise orientation, the equations of the lines forming the inner
quadrilateral can be calculated, and from them the vertices of the clockwise inner
quadrilateral can be found with the help of a CAS (see Fig. 10):

zmwx ¼ Line Z;MWXð Þ;whose equation is : y–1ð Þ μþ 1–μð Það Þ þ x 1– 1–μð Þbð Þ
¼ 0;

= [1-v, 0]

= [va, (1-v) + vb]
= [a, b]

= [(1 - µ)a + µ, (1 - µ)b]

= [1, 0]= [0, 0]

= [0, µ]

= [0, 1]
W

XY

Z MZW

MXY

MYZ

MWX

= [1-v, 0]

= [va, (1-v) + vb]
= [a, b]

= [(1 - µ)a + µ, (1 - µ)b]

= [1, 0]= [0, 0]

= [0, µ]

= [0, 1]
W

XY

Z MZW

MXY

MYZ

MWX

Fig. 8 Inner quadrilaterals formed by clockwise and counter-clockwise [μ, ν] divisions
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Fig. 9 Showing loci of points W for which the inner quadrilateral is a trapezium
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ymzw ¼ Line Y;MZWð Þ;whose equation is : yνa–x 1–ν 1–bð Þð Þ ¼ 0;

xmyz ¼ Line X;MYZð Þ;whose equation is : yþ x–1ð Þμ ¼ 0;

wmyz ¼ Line W;MYZð Þ;whose equation is : y–bð Þaþ x–að Þ μ–bð Þ ¼ 0:

V1 ¼ ymzw∧zmwx ¼ υa aþ μ−μað Þ
μν aþ b−1ð Þ þ aþ μ−μað Þ ;

1þ v b−1ð Þð Þ aþ μ−μað Þ
μν aþ b−1ð Þ þ aþ μ−μað Þ

� �

V2 ¼ zmwx∧wmxy

¼ aþ μ−aμð Þ aþ b−1þ ν 1−bð Þð Þ
aþ b−1ð Þ þ ν 1−bþ bμð Þ ;

b aþ b−1ð Þ 1−μð Þ þ b 1−ν þ μνð Þð Þ
aþ b−1ð Þ þ ν 1−bþ bμð Þ

� �

V3 ¼ wmxy∧xmyz ¼ aμþ μ ν−1ð Þð Þ þ b 1−vð Þ
aμþ μ ν−1ð Þ þ b

;
bμν

aμþ μ ν−1ð Þ þ b

� �

V4 ¼ xmyz∧ymzw ¼ aμν
aμν þ 1þ ν b−1ð Þ ;

μ 1þ ν b−1ð Þð Þ
aμν þ 1þ ν b−1ð Þ

� �

Algebraic manipulation can be eased by constructing a procedure in a CAS which
calculates the lines and their pairs of intersections, and then applying it four times. This
makes it easy to carry forward in parallel the calculations associated with the other
orientation.

= [1-v, 0]

= [va, (1-v) + vb]
= [a, b]

= [(1 - µ)a + µ, (1 - µ)b]

= [1, 0]= [0, 0]

= [0, µ]

= [0, 1]

V3

V2

V1

V4

W

XY

Z MZW

MXY

MYZ

MWX

Fig. 10 Affine-simplified co-ordinates and inner vertex labels in clockwise orientation
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The ratio of the outer to inner areas, denoted by ρ as a function of μ and ν, can be
found (a computer algebra system is again recommended!). However, making sense of
the multiple lines of algebraic output requires some judicious conjecturing. In retro-
spect, much later, it was straightforward to conjecture that the minimum ratio occurs
when the inner quadrilateral is a parallelogram, which means W = [1, 1] and then to
find useful expressions for the ratio. The first conjecture is that:

ρmin ¼
1þ μυ

1–μð Þ 1–υð Þ :

Subtracting ρmin from the area ratio ρ and factoring reveals the numerator of the residue
to be –μν2T2, which is confidence-inspiring, since the minimum should be achieved
when the inner quadrilateral is a trapezium so that the residual term will be 0, though
the negative sign is a trifle worrying. The unexpected negative sign also appears in the
denominator, but it takes some thinking to locate a convenient form for this
denominator. Proceed first to consider the maximum.

It is likely that the maximum occurs when W= [1, 0], or W = [0, 1]. It turns out that,
in general, these are different:

ρmax1 ¼ 1−μ 1−vð Þ
1−μð Þ2 1−vð Þ and ρmax2 ¼ 1−v 1−μð Þ

1−μð Þ 1−vð Þ2 .

Their difference is ρmax1–ρmax2 ¼ μν μ–υð Þ
1–μð Þ2 1–υð Þ2, which means that ρmax1 is conjectured to

be the maximum when μ ≥ ν, otherwise the conjectured maximum is ρmax2. The reverse
will be the case in the other orientation.

Subtracting ρ from each of these potential maxima, and factoring, reveals the
numerators to be -μ2vS and -μv2S, where S is the product of two quadratics in a and
b, one of which is zero when W = Z, that is, when a = 0 and b = 1. Thus, negative signs
appear in both numerator and denominator and, consequently, can be removed. Simple
algebra (if only it had been thought of in the beginning instead of much later!), making
use of the difference between the conjectured maximum and the conjectured minimum
enables the ratio of outer to inner area to be presented as:

ρ ¼ Areaouter
Areainner

¼ 1þ μν
1−μð Þ 1−νð Þ þ

μ
1−μ

� �
ν

1−ν

� � μνT 2

1−μð ÞνT 2 þ S

¼ 1−μ 1−νð Þ
1−μð Þ2 1−νð Þ −

μ
1−μ

� �2 ν
1−ν

� � S
1−μð ÞνT2 þ S

¼ 1−v 1−μð Þ
1−μð Þ 1−νð Þ2 −

μ
1−μ

� �
ν

1−ν

� �2 ν−μð ÞT2 þ S
1−μð ÞνT2 þ S

¼ 1−v 1−μð Þ
1−μð Þ 1−νð Þ2 −

μ
1−μ

� �
ν

1−ν

� �2 R
μ 1−νð ÞT 2 þ R
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where S = S1S2 and

S1 ¼ aþ b−1ð Þ þ abμν þ b−1ð Þ2

S2 ¼ a−1ð Þ2μ μν þ ν þ 1−μð Þ þ ab μν μþ 1−νð Þ þ ν þ 1−μð Þ þ b−1ð Þ2ν μ−νð Þþ
aþ b−1ð Þ μ2ν2 þ μν ν þ 1−μð Þ þ μ−ν

� 	

It turns out that putting (v − μ)T2 + S = R means that R = R1R2 (thanks to CAS!) where:

R1 ¼ μ a−1ð Þ2 þ abþ μν aþ b−1ð Þ

and

R2 ¼ μ ν−μð Þ a−1ð Þ2 þ ν−μð Þ 1−μν
�
þ μν

�
1þ μν

� �� �
ab

þ μν ν þ 1ð Þ þ ν 1−νð Þð Þ b−1ð Þ2 þ μþ 1−ν þ μν ν þ 1−μð Þð Þ aþ b−1ð Þ:

S1 and R1 are quadratic expressions which have been arranged in order to show that
they are always non-negative when the quadrilateral is convex. S2 and R2 have been
arranged in order to show that they are always non-negative when μ ≥ ν and μ ≤ ν
respectively. Thus, ρmax1 ≥ ρ when μ ≥ ν and ρmax2 ≥ ρ when μ ≤ ν.

Note that, when μ = ν, S = R, with S1 = R1 and S2 = R2 (to within a scale factor).
Because S1= 0 and R1 = 0 go through Z and X respectively, they account for the zero

in the numerator of the difference between the two potential maxima and ρ. Curiously,
all four conics go through MXY, while, in the counter-clockwise case, all four go
through MYZ (Fig. 11).

The same applies to the other orientation where the relevant conics can be found
using the interchange.

R1
S1S2

W

XY

Z

MZW

MXY

MYZ

MWX

Fig. 11 Conics S1 and S2 = 0 on which ρmax1 is achieved when μ> ν, one of which passes through Z, and
conic R1 = 0 on which ρmax2 is achieved and which passes through X
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It is intriguing, but not particularly edifying, to explore relationships among the
individual trapezia conditions and the four conics arising from both of the orientations.
For example, R1 – S1 = T and S2 – R2 = (1 + μν)T.

Some Historical Remarks

Exploration began with the special case in which μ ¼ ν ¼ 1
2. Success with

proving the extremes of 5:1 and 6:1 generated sufficient confidence to consider
the more general case in which the edges are divided in the same ratio
cyclically around the quadrilateral. The values for the minimum and maximum
were found by guessing that the position of W would arise in the same way as
in the particular case, and so it transpired. The trapezia conditions first emerged
from using a CAS to factor the difference between the general ratio and the
conjectured minimum. Although obvious in retrospect, there was a moment of
excitement when the trapezia conditions were recognised in the numerator of
the difference. The format of the denominator of the residual term was discov-
ered only after much gazing and pondering, and a decision to try to make use
of the T-expression. When T was used to eliminate the highest degree terms in
μ appearing in the residual denominator, the rest factored unexpectedly, pro-
viding a second frisson of excitement.

Ambition led to trying the most general case in which the ratio divisions on the
edges of the quadrilateral are all different, but it soon became evident from the DGS
(and quiet reflection) that there could not be any satisfying extremes for the ratio.

Embarking on dividing opposite edges in the same ratio, using μ and ν, began easily
enough. Subtracting the conjectured minimum achieved with a parallelogram, then
factoring, revealed the trapezium conditions as expected. However, it was a challenge
to deal with the two possible maxima. It was only in retrospect when revising these
notes that the idea of relating the numerators of the differences ρ – ρmin and ρmax1 – ρ
made it obvious how to find the residual denominators. Whenever the algebra became
an obstacle, use was made of specific examples to check comprehension of the algebra,
geometrically.

Showing that the S and R expressions were non-negative took even more gazing and
pondering until the formats used here were discovered. They were then checked by
constructing a procedure to re-express quadratic expressions in a and b in terms of (a –
1)2, (b – 1)2, ab and (a + b – 1). It was startling to discover these terms as a basis for
presenting the constraints. They provide the reason for presenting the trapezia condi-
tions in the form used. Of course, the ab term can be re-written as (a – 1)(b – 1), with a
revision to the coefficient of a + b – 1 so as to express the conics neatly, but the present
form is needed in order to see directly that the quadratic expressions are always non-
negative when the quadrilateral is convex.

Special Case of Trapezia

Consider the case in which zmwx is parallel to xmyz, so that μ(a – 1) + (b – 1) = 0. The
parallel lines have implications for areas as shown in Fig. 12 (left).
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Drawing a line through MZW parallel to wmxy and a line through MXY parallel to
ymzw creates two triangles (shaded in Fig. 12, right side). Denote their areas by ΔC and
ΔD respectively. Then:

1
v2 −1
� 	

C1 þ ΔCð Þ ¼ C2 þ ΔC and 1
v2 −1
� 	

D1−ΔDð Þ ¼ D2−ΔD

using the parallels construction making up the dark-shaded triangles.
Reading around the inner quadrilateral,Areaouter ¼ Areainner þ AþB

μ2 þ C1 þ C2 þ D1 þ D2:

Considering the four triangles that surround the inner quadrilateral, but with
overlaps,

vAreaouter ¼ A
μ2 þ D1 þ B

μ2 þ C1 and μAreaouter = (A + B +C1 +D1 +C2 +D2).

Putting these together, it turns out that:
Areaouter
Areainner

¼ 1þμυ
1–μð Þ 1–υð Þ þ ΔC–ΔDð ÞK where K is some factor.

Since ΔC and ΔD are similar, it requires only that they be congruent to validate the
minimum ratio. This follows from the algebraic calculation (thanks to a CAS) that:

V1MZW
V4V1

¼ μ2v2

1−μð Þ2 ¼
V3MXY
V2V3

and YV4
V4V1

¼ μ2

1−μð Þ2 ¼
WV2
V2V3

.

Consequently, ΔC= ΔD and so the minimum area ratio is what the algebra says. It
remains a challenge to find a synthetic (Euclidean) proof.

Conclusions

Alerted to an erroneous assumption based on not considering enough decimal places,
we were led to an exciting exploration which was made possible for us through the use
of a DGS for formulating conjectures, and a CAS for carrying out algebraic calculations
with co-ordinates. The two went hand in hand, as we went back and forth between the
two making, testing and validating conjectures, while seeking geometrical implications
of algebraic relationships.

While synthetic geometry proofs (without using co-ordinates) continue to escape us,
combining algebra with geometry provides a rich playground for exploration. Students
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Fig. 12 The trapezium case showing areas and an extra construction
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could be offered the mistaken conjecture that the ratio is always 5:1 and invited to try to
find the actual minimum and maximum using a DGS alone. Or they could choose
values for μ and ν, and then watch the area ratio change (to two decimal places …
where it remains largely constant) until the they think of increasing the number of
decimal places. However, experiencing the power of having a CAS to do the tedious
co-ordinate calculations – and relating the geometry to the algebra and vice versa –
offers an instance of mathematical exploration which would otherwise be too compli-
cated for most students.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.
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