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Abstract
Learning mathematics requires students to become fluent in some of the discipline-
specific ways of communicating through words, symbols and diagrams, creating
difficulties for many learners to engage with the subject. Computer programming
environments have inspired efforts to support students’ communication, by making
abstract ideas more tangible and concrete within such environments. In this article,
I examine students’ challenges in interpreting symbols and diagrams when using a
visual programming environment to create representations of distance and speed.
The environment presented difficulties related to understanding the meanings of
symbols and how they fit together, as well as using symbols to create visual
representations. In overcoming these challenges students created representations
that, although they contained less information than traditional mathematical ones,
were nonetheless meaningful to the students who created them. These findings add
complexity to existing research on the potential of programming environments for
learning mathematics, and suggest a potential to re-envision what technical math-
ematical discourse might look like in interdisciplinary settings.
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The integration of mathematics and computer programming arises naturally
from the combination of efforts to foster greater integration of science, tech-
nology, engineering and mathematics (STEM) at all levels of instruction
(DeCoito et al. 2016; Johnson 2012; Tai 2012), as well as policy recommen-
dations for the use of technology in mathematics (NCTM 2000; CCSSM 2010).
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Although combined mathematics–computer programming instruction is atypical
currently in middle and secondary grades, efforts persist to incorporate com-
puting and computer programming into mathematics learning. Evidence of these
efforts can be seen through federal initiatives, such as the US National Science
Foundation’s STEM+C funding program, professional workshops on the nature
of computational thinking (NRC 2010) and calls from the field (Grover and Pea
2013). Efforts to integrate mathematics and computer science foreshadow inno-
vation in how students might learn about mathematics and computer program-
ming in increasingly integrated ways. To prepare for this, there is a present
need to consider carefully how students’ participation in computer programming
tasks shapes their mathematical learning and, more specifically, their mathemat-
ical discourse.

Research using functional linguistics has documented how formal mathematical
language has developed to its current level of abstraction and the difficulties that this
formality can present for students (Halliday 1993; O’Halloran 2015; Schleppegrell
2007). From a multimodal perspective, which assumes that meaning is simultaneously
created through spoken language, symbol systems and visual representations (Lemke
1998; O’Halloran 2015), each of these modes of communication presents challenges to
students who must learn to communicate through the standard discourse of mathemat-
ics. With the integration of computer programming and mathematics – and the ways in
which computer programming changes the nature of students’ mathematical work
(Feurzeig and Papert 1968/2011) – it is important to consider how these challenges
surface and are dealt with in such contexts.

O’Halloran (2015) has argued that, although language (both spoken and written) is
often prioritized in the study of how meaning is made and communicated, modes of
communication such as symbolism and images are often central to creating and sharing
knowledge in mathematics. I adopt this perspective to consider ways in which students
communicated mathematical ideas through the use of a computer programming envi-
ronment and pose the following question: What challenges of communication through
symbols and diagrams surfaced in students’ use of a computer programming environ-
ment to solve a mathematically oriented task, and how did students respond to these
challenges? This work supports efforts towards integrated STEM learning and, specif-
ically, the integration of mathematics and technology. By offering insight into how
students’ use of a programming environment shapes their communication, this study
can help researchers and educators anticipate, and respond to, students’ mathematical
discourse in such settings.

A Review of Relevant Literature

In this section, I first describe how the increasing relevance of computer science and
computational thinking helps to motivate the integration of mathematics and computer
programming. Then, I briefly review existing literature on the use of computer pro-
gramming environments in mathematics and introduce the notion of a visual program-
ming environment. Finally, I introduce the framework guiding the present study, which
is based on the multimodal nature (i.e. through language, symbols, and images) of
mathematical communication.
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Computational Thinking and its Applications to Mathematics

Computational thinking – a term which emerged in the discipline of computer
science – has been characterized by a variety of actions such as Bthinking
recursively ,̂ Busing abstraction and decomposition when attacking a large
complex task or designing a large complex system^, Busing heuristic reasoning
to discover a solution^ and Bmaking trade-offs between time and space and
between processing power and storage capacity^ (Wing 2006, pp. 33–34). In
recent years, computational thinking has gained momentum from encompassing
valued twenty-first-century skills and dispositions that can be applied across
disciplines, including mathematics. Thus, while the purpose of the present study
is not to document students’ use of computational thinking, a brief overview of
research in this area is useful for contextualizing the research project, through
which students used a computer programming environment to complete math-
ematical tasks in an after-school setting.

Arguments for the importance of computational thinking in K–12 settings have
emerged alongside frameworks for what this practice may look like. For instance, Barr
and Stephenson (2011) described computational thinking in terms of the capabilities
students would need, the dispositions they would need to maintain and the classroom
culture that would support such capabilities and dispositions. For example, not only
should students learn to test and debug, but they also need persistence and a classroom
climate accepting of failure. Based on observations of young students using a visual
authoring environment, Brennan and Resnick (2012) offered a slightly different ap-
proach, enumerating a set of concrete concepts from computer science – such as loops
and conditionals – and a set of practices – such as testing, debugging, and abstracting.
From these studies, it is clear that students need some particular knowledge and
dispositions to engage in computational thinking.

As the effort to characterize computational thinking across grade levels has been on-
going, there have also been initiatives to integrate computation and computational
thinking within existing STEM coursework (Weintrop et al. 2016). This effort has
been supported by three central arguments: the knowledge and skills encompassed by
computational thinking are applicable across STEM content areas; such integration is
the best way to reach a wide range of students; it prepares students for the ways in
which STEM disciplines are evolving (Jona et al. 2014; Weintrop et al. 2016).

Grover and Pea (2013) supported this argument for the applicability of compu-
tational thinking, claiming that, Bthe approach to problem solving generally de-
scribed as [computational thinking] is a recognizable and crucial omission from the
expertise that children are expected to develop through routine K–12 Science and
Math education^ (p. 40). Offering a complementary perspective, Baldwin et al.
(2013) argued that, not only can principles of computer science be integrated into
mathematics settings, but also mathematics content and practices should be more
purposefully integrated into computer science courses.

The construct of computational thinking is important for understanding the role of
computer programming, and computer environments, in the teaching and learning of
mathematics. Across grade levels and settings, there is a movement to integrate
technical disciplines, especially with respect to leveraging the affordances of computer
science to solve problems in other disciplines such as mathematics.
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Computer Programming Environments in Mathematics

Computer technologies for learning mathematics differ in the ways that students
interact with the objects of those environments and, thereby, with the mathematical
ideas they encounter through those environments. Computer programming environ-
ments are characterized by the feature that users can control what appears on the
computer screen through symbolic inputs, entered according to the syntax of the
environment. The earliest of these environments were those designed with the Logo
programming language. Logo was meant to provide novice computer users with a
language for expressing mathematical ideas (Papert 1980). Logo programming envi-
ronments allowed for abstract mathematical ideas to be represented by concrete objects,
and students controlled those objects through keyboard inputs.

Users of programming environments maintain symbolic control over their work by
inputting commands, rather than directly manipulating objects on the screen (Healy and
Hoyles 2001). Their syntax provides students with a language – less formal than
abstract mathematical language – in which to talk about mathematical ideas (diSessa
2000; Eisenberg 1995; Hoyles and Sutherland 1989). In addition, these environments
can support students to make connections between symbolic and visual representations
of mathematical ideas (e.g. Clements and Battista 1989, 1990; Edwards 1991, 1997;
Hoyles and Healy 1997; Hoyles and Noss 1992). But computer programming is itself
part of a discipline with complex concepts and procedures, and it can be difficult for
teaches toc ombine the teaching of programming with the teaching of mathematics
(Benton et al. 2017). Many recent instances of teaching about computer programming
occur outside of typical classroom settings and do not incorporate explicit mathematics
related goals (Lye and Koh 2014). Thus, there is an on-going need to explore the
relationship between learning programming and learning mathematics.

Since the popularity of Logo microworlds, students’ use of programming environ-
ments in mathematics has received relatively little attention in research and teaching, as
dynamic geometry software became a more ubiquitous resource in mathematics class-
rooms (Sinclair 2014). However, as the construct of computational thinking has grown
in prominence and utility, programming environments are re-emerging as popular
educational resources (e.g. Higginson 2017; Lye and Koh 2014; Repenning 2012),
and dynamic geometry environments have been re-envisioned as instances of visual
programming languages (Sinclair and Patterson 2018). Additionally, there is a growing
body of literature addressing the use of modern programming environments to support
mathematical thinking and problem solving (e.g. Calder 2010; DeJarnette 2018a, b;
Korkmaz 2016; Swanier et al. 2009; Smith and Neumann 2014). Part of the current
popularity of computer programming in mathematics can be attributed to the relative
ease of use of modern programming environments.

Scratch (http://scratch.mit.edu) and Etoys (www.squeakland.org) are examples of a
class of visual programming environments, which provide a collection of blocks –
known as code blocks – that can be put together like puzzle pieces to create a line of
code. The purpose of a visual programming environment such as Scratch is that it
provides syntactical support (Repenning 2012) through the menu of code blocks.
Instead of learning a programming language (and its associated syntax), users can
‘piece together’ computer programs in a visual way. Code blocks are often color coded,
and they represent commands through language that is closely related to informal

Digital Experiences in Mathematics Education (2019) 5:36–58 39

http://scratch.mit.edu
http://www.squeakland.org


spoken language. Even so, code blocks can be considered a form of symbolic repre-
sentation in as much as they provide shorthand notation in reference to more complex
ideas and procedures.

In this way, such environments incorporate a set of symbolic (through the use of
code) and visual (through the activity produced by the code) representations. Although
these modes of communication may be more intuitive than traditional mathematics
(Feurzeig and Papert 1968/2011), they still require some degree of learning to use.
Thus, this study seeks to examine some of the ways in which the challenges of
symbolic and visual communication that have been documented in mathematics
translate to a visual programming setting.

Multimodal Communication in Mathematics

A variety of perspectives have contributed to understanding how students engage in
mathematical discourse in different settings (e.g. Adler and Ronda 2015; Forman et al.
1997; Morgan 2006; Sfard 2001; Zahner 2012). Mathematics, like any subject, requires
the use of discipline-specific language with a technical vocabulary and grammar
(Schleppegrell 2007), which facilitate the production of logical and coherent arguments
(Halliday 1993). At the same time, these features create challenges for students, who
must learn to speak and write in a way that is often decontextualized and disconnected
from the use of language in everyday settings.

Much of the existing work on students’ mathematical discourse places a high
priority on students’ and teachers’ spoken communication. For example, researchers
have documented how students’ use of spoken, technical language in mathematics
classrooms may differ from the language of formal, academic mathematics
(Moschkovich 2007). In technology-rich settings, Anderson-Pence (2017) described
how technology tools can mediate students’ spoken interactions around mathematics
tasks. Attention to language is crucial, given that spoken interactions may be the most
prominent mode through which teachers and students communicate in mathematical
settings (Lemke 1988). However, given that mathematics is inherently multimodal –
relying upon the use of spoken and written language, in addition to symbol systems and
visual representations (Lemke 1998; O’Halloran 2015)1 – there is a need to attend to
the multiple modes through which meaning is constructed.

O’Halloran (2015), in particular, has suggested that language is often secondary to
the use of symbols and images for creating and communicating meaning. Recognizing
the situated nature of communication, and given my interest in how students’ created
representations through their use of a visual programming environment, I adopt
O’Halloran’s perspective and attend to the particular challenges of symbolic and visual
communication. By highlighting some of the features of students’ use of symbols and
images, there is opportunity to complement existing literature on the nature of students’
spoken interactions and expand existing frameworks for what constitutes mathematical
discourse in technology rich settings.

Symbolic notation can be thought of in terms of its vocabulary (i.e. the meanings of
specific symbols) and its grammar (i.e. the ways symbols are connected to

1 Although not the focus of this paper, gesturing is also an important mode of communication in mathematics
teaching and learning (Morgan 2006).
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communicate meaning). In the context of a visual programming environment, vocab-
ulary would refer to the collection of code blocks, while grammar would encompass
knowledge of how those blocks can be fitted together in meaningful ways. Symbolic
notation in mathematics is a Bdesigned^ mode of communication (Halliday and
Matthiessen 2014), in that conventional forms of use have been established to serve
the functions of Bencoding mathematical relations and deriving results to solve
problems^ (O’Halloran 2015, p. 69).

Efficiency is a primary feature of symbolic notation. Each symbol has a discipline-
specific meaning and conventions such as spacing and the use of brackets encode
meaning differently from typical written communication. Symbolic expressions are
also dense in the information they convey (O’Halloran 1999, 2000, 2005). Related to
the hierarchical nature of mathematical knowledge, understanding symbolic expres-
sions often requires prior knowledge that is not made explicit (O’Halloran 2015). All of
these features serve to create a level of abstraction that provides an efficient way to
encode and solve problems, while also creating a potential barrier for students whose
mathematical learning depends on mastering this mode of communication.

The use of visual representations such as graphs, tables and diagrams has been
emphasized in mathematics education as a way for students to build connections
between concepts and procedures (e.g. NCTM 2000). From an applied linguistics
perspective, visual representations serve specific functions by connecting mathematical
processes to the concrete, physical world (O’Halloran 1999) and by foregrounding key
information and relationships without the additional detail embedded within symbolic
notation or spoken language (O’Halloran 2015). Even as visual representations strip
away some of the need for technical language and symbols, they present their own set
of potential challenges to learners of mathematics.

As summarized by O’Halloran (2015), and similar to the use of symbolic notation,
visual representations typically follow special conventions that are singular to the
discipline; they tend to be dense in the amount of information they express, thus
implicitly requiring prior knowledge of how they should be interpreted. The production
of graphs and diagrams, especially in media with high production value (e.g. textbooks
or professional websites), can decontextualize information and overstate the truth value
of the relationships or processes represented in the image. Finally, visual representa-
tions frequently embed language or symbolic communication. For example, graphs
require the labeling of axes, tables are sometimes populated with symbols and diagrams
often use labels or keys to highlight central features. In many cases, this integration of
visual representation with language or symbols can serve a purpose of making those
connections more explicit to students, but it should not be taken for granted that they
will always recognize the relationships between images and symbols.

In light of current efforts to establish a synergy in students’ knowledge related to
mathematics and, respectively, computer science, computer programming suggests one
potential source that may eventually serve students in doing mathematics. However, a
question that is underdeveloped in existing literature is how students develop skill at
communicating when interacting within an environment that merges the technical
language of mathematics with the technical language of computer science.

This study represents an effort to acknowledge the potential value of the movement
towards computational thinking, while also uncovering challenges that students may
encounter when doing mathematics through the language of computer science.
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Documenting the challenges of such multimodal communication is not to suggest that
these challenges should be avoided, but rather to help anticipate some of the ways in
which teachers may respond to the needs of students.

Methods

The data for this study come from an after-school club designed to study the intersec-
tion of mathematical problem solving and computer programming for middle-grades
students. The club ran for eight weeks during the fall term at a large suburban middle
school in the United States, serving grades 7–8. This particular middle school has a
large number of after-school clubs in which students can participate. After learning
about the popularity of these clubs among students, I presented the idea to the school’s
principal of an after-school club focused on programming and mathematics, and
advertised the club at the school as an opportunity for students to learn some introduc-
tory coding skills and to use them to write computer programs in a mathematics setting.

Although I had no prior connection with the school, students and parents knew that
the club was associated with a university research project. All students at the school had
the opportunity to join the club; 29 students signed up: eighteen 7th-graders (12–
13 years old) and eleven 8th-graders (13–14 years old). Some students who joined the
club had had some exposure to coding through tasks with 3D printing and program-
ming robots in a class offered at the school, although all students were at an introduc-
tory level of knowledge. All participants were enrolled in a mathematics class at the
time of the club.

The after-school club met for 90 min, once per week, for eight weeks. I led each
session and two graduate students helped facilitate. Students were introduced to
Scratch, a visual programming environment, which they used for the duration of the
club. In the first two weeks of the after-school club, I introduced students to some of the
basic features of Scratch. Students learned to create an object and to make it move in
different directions. They also practiced using basic logical relations, such as if–then
statements and loops. Following this initial exposure to Scratch, students then spent the
next six weeks working on a sequence of projects.

The projects included tasks such as creating visual representations to document the
motion and speed of a moving object, designing a Bfunction machine^ that would
create ordered pairs related through a mathematical function and creating a Bnumber
wizard^ that would guess a number based on a sequence of questions posed to a user. In
addition to the projects that students completed in Scratch, we conducted a weekly task
from CS Unplugged (https://csunplugged.org/en), which is a program designed to
foster the principles of computer science without using a computer. Students worked
on tasks such as determining the most efficient way to sort a list and creating a map that
would represent distances between nodes.

The projects that students completed required specific knowledge that they had
learned in the first weeks of the club, but the projects also allowed students to explore
other features of the Scratch environment. During weeks 3–8, when students worked
primarily at their own pace, we began and closed each session by inviting several pairs
of students to share the progress they had made or any new techniques they had
learned. Intermittently during each session, I brought students together to introduce a
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particular technique or to respond to a common challenge that had surfaced. During
times that students were working on their projects, the facilitators and I circulated the
room and worked with individuals and small groups to answer questions and help
debug.

Students worked in pairs throughout the club, with each pair of students sharing a
single lap-top computer. The rationale for assigning students to work in pairs came
from the novelty of Scratch and the potential challenge of learning to use it. Given that
it was a new environment for most students, and all students were novice programmers,
I expected that working with a partner would help overcome frustrations or the feeling
of being Bstuck^ at any point in their work. I assigned students in same-gender pairs in
order to reduce variation – as much as possible – in the gender dynamics that played
into students’ interactions around the computer. I also tried to assign the student pairs
according to grade level, although that was not always possible, so that students would
know one another and have shared experiences in terms of their current classes and
prior knowledge.

Students’ Use of Scratch to Represent Distance and Speed of Moving Objects

During weeks 3–4 of the club, students were tasked with using Scratch to program a car
to drive around a track and then creating dynamic representations of the car’s speed and
distance travelled as functions of time. With Scratch, users program objects through a
collection of drag-and-drop code blocks that piece together to form lines of computer
code.

The user interface of Scratch includes three primary components (Fig. 1), which are
typical of visual programming environments: the left-most pane of the interface
displays a back-drop, into which visual objects can be inserted; the middle pane
includes a menu of blocks representing pieces of code that can be used to program
the objects; the right pane is a workspace in which users can piece together the different
code blocks to create short programs. In the example in Fig. 1, the backdrop represents
a racetrack containing two cars and students have used the code blocks to compose a
program making the red car drive continuously around the track.

I provided students with a pre-made Scratch file with the racetrack back-drop on which
a blue car was already programmed to drive around the track at a constant speed. I
assigned students the two-part goal of (1) programming the red car so that it would be able
to beat the blue car in a race around the track and (2) creating dynamic, visual represen-
tations of the distance the red car had travelled, and the speed at which it was traveling, at
any given moment. The second part of the task was purposefully broad, as part of the
intention of the project was to explore the degree to which students would translate their
knowledge of mathematics to this after-school, computer-programming setting.

I provided each pair of students with a handout that described the task they were
intended to achieve, as well as a set of questions to guide students’ reflection. However,
I found that by mid-way through week 3 most students had disregarded the handout
and were focused on the work they were engaged in at the computer. The task was
projected at the front of the room for students to refer to periodically and the research
team circulated the room to answer questions and press students for creative ideas.

At the beginning of the project, and throughout the two-week period, I reminded
students of the common representations that are used in mathematics for representing
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speed and distance – graphs, tables, and symbolic representations – typically when
students expressed feelings of being stuck or not knowing what types of representations
to create. However, I most often saw that students created a range of novel represen-
tations and, in those cases, I pressed them to describe their motivation and process for
creating such representations prior to suggesting alternative ideas.

Students’ knowledge of Scratch at this stage of the after-school club was at a
novice level. They were familiar with the basic functionalities of Scratch, but
they had not, for example, been given explicit instruction about how to create a
graph. This was not problematic, in the context of the study, because its
purpose was not to document to degree to which students could learn a taught
procedure, but rather to examine the choices students would make in using the
language of Scratch to create different representations. For the sake of
supporting students to have productive experiences in the club, the research
team gave fairly substantial help when students requested it and assisted
students in executing ideas they suggested.

An important point about Scratch, particularly in contrast with more traditional
mathematics technologies such as calculators or dynamic geometry environments, is
that the built-in mathematical functionalities of Scratch are limited. The environment
includes a pre-designed back-drop that mimics the look of a Cartesian plane. In the
menu of code blocks, there are blocks to perform arithmetic operations on pairs of
numbers; to compare numerical values; to manipulate the x- and y-co-ordinates, as well
as the orientation, of objects on the screen.

Fig. 1 The Scratch environment (the image across the bottom shows the full interface, while the pull-out
images show the three components of the environment: the visual elements on the left, the menu of tile options
in the center and the work space on the right)
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But there is no built-in graphing function: to produce a graph, students would need
to program an object to move through a sequence of corresponding x- and y-co-
ordinates. Similarly, there is no built-in table feature. There is, however, a code block
to create a list, which students would need to populate in order to maintain a current
representation of the distance and speed of the car. One hypothesis of this study was
that, rather than attempt to recreate traditional mathematical representations, students
would make use of the capabilities of Scratch to create novel representations of the
distance and speed of the car as it drove around the track. Moreover, the creation of
these representations would depend, to some degree, upon how students had pro-
grammed their cars to move.

Participants and Data Collection

Data for this study came fromweeks 3–4 of the club and I only included pairs of students
for which both members of the pair were present for the two consecutive weeks. I
excluded one pair from the analysis who completed the task primarily in conversation
with the instructor. In all, four pairs of students were included in the analysis (Table 1).

In total, students had approximately 75 min to work on the two parts of the car-
driving project, spread across two weeks. Each computer was equipped with screen-
capturing software that produced a video recording of all of the activity occurring on
the computer monitor synched with an audio record of students’ conversations about
the task. Following the data collection, I worked with two research assistants to
segment the video recordings according to the phenomenon that students were
discussing – speed or distance of the red car – according to the representation that
was the topic of discussion. I produced transcripts of the relevant segments for the four
pairs of students, transcribing students’ turns of speech and noting the ways in which
students’ work on the computer screen was updated as they talked.

Data Analysis

I used an abbreviated version of O’Halloran’s (2015) framework for multimodal
analysis of the mathematics register to code the transcripts according to sym-
bolic and diagrammatic difficulties (see Table 2). Importantly, this list of
challenges surfaced through analyses of traditional mathematics texts and com-
munication (i.e. not through the use of programming environments). Thus,
although this list served as a starting point, I did not assume that all of the
challenges would surface in students’ work here, nor that they would surface in
the same way. The challenges and descriptions served as phenomena to look for
in the transcripts and videos of student work. The unit of analysis at this stage

Table 1 Pairs Included in the Analysis

Allen (7th) & Kyle (7th)

Ashley (7th) & Rosie (7th)

Eleanor (8th) & Melanie (7th)

Kelly (8th) & Shannon (8th)
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was a segment, or a section of transcript, in which students discussed a
representation of speed or distance.

Following the coding of the transcripts, I aggregated them according to the themes
that surfaced with regard to students’ challenges with communication and how they
responded to those challenges. Because of the exploratory nature of this work, these
themes highlight the most salient issues that I identified in students’ communication
and provide a starting point for further research into the nature of students’ integrated
mathematics–computer programming work.

Findings

Students’ work during the car-driving task yielded insights related to how challenges of
symbolic communication and visual representations are situated within the context of a
visual programming environment. There were several challenges that did not surface in
students’ use of Scratch. Decontextualized knowledge was not a problem in either the
use of symbolic or visual representations, because the task was contextualized through
the use of Scratch and the physical motion of a car. Additionally, the use of visual
representations did not present challenges related to special conventions, density of
information, implicit reasoning, or recoding of uncertainty. Largely, these challenges
did not surface because students had agency both in deciding which representations
they would create and in determining the conventions they would follow.

Themost prominent challenges that did surface in students’workwere related to the use
of special symbols and grammatical strategies. I present the challenges related to symbolic
and, respectively, diagrammatic representations in the following sections, as well as some
of the ways that students addressed these communication challenges through their work.

Table 2 Symbolic and diagrammatic difficulties of mathematical communication (from O’Halloran 2015)

Challenges Description

Symbolic

Special symbols Symbols are used in discipline-specific ways.

Grammatical strategies Meaning is encoded in ways that differ
from usual spoken language.

Decontextualized knowledge Symbolic expressions are independent of context.

Diagrammatic

Special conventions Diagrams follow implied conventions
for the display of information.

Density of visual interplay The density of information that is
communicated through a single image.

Implicit reasoning Visual information requires reasoning
based on assumed prior knowledge.

Recoding of uncertainty High production values imply high
truth value of images.

Decontextualized knowledge Participants and processes become abstract.

Embedding of symbolic and linguistic terms Images embed symbolic or language elements.
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Specialized Symbolic Meanings and New Grammatical Strategies

Visual programming environments are designed to translate complex programming
languages into more intuitive collections of drag-and-drop blocks. While this design
does help to overcome the burden of learning a programming language, drag-and-drop
environments themselves incorporate structures and conventions for piecing together
communication. The use of special symbols – or symbols that have discipline-specific
meanings – became especially salient when the vocabulary of Scratch differed both
from everyday and from more traditional mathematical language, such as in the case of
variables. A variable, in the language of computer science, is a named storage location
which stores user-determined values. In the excerpt below, Ashley and Rosie added a
tile to their car-driving program to display a variable that they had created and labeled
Bspeed^ (see Fig. 2). Because they had not assigned a value to the variable, by default it
took a constant value of 0, which it displayed as the car drove around the track.

Rosie: Um, oh, Bshow .̂ BShow variable^, click that.

Ashley: [Drags the Bshow variable^ tile into the workspace and selects the
variable Bspeed^ from the drop-down menu.]

Rosie: Okay, ready? Play.

Ashley: [Runs the script. The car drives around the track, and the Bspeed^
variable displays a value of 0.]

Rosie: Wait, what?

Ashley: But it says the speed is at zero.

Rosie: Oh no, that is definitely more than zero.

(Session 3, turns 3–9)

As is illustrated in Fig. 2, Ashley and Rosie created a fairly sophisticated program to
make the car drive, given their relative inexperience with Scratch. They used a
Bforever^ loop to make the car move forward constantly and they used an Bif–then^
statement, along with color sensing commands, to adjust the orientation of the car any
time it veered off the track and onto the grass. However, when they decided to use the
Bspeed^ variable to represent the speed of the car, they inserted a code block to display
the variable without connecting its value to the motion of the car.

Ashley and Rosie, like some other students in the study, seemed to interpret that a
variable with a given label would automatically display information that was consistent
with the meaning of the label. This assumption was not unfounded, given that drag-
and-drop blocks in Scratch are designed to mimic the informal language that would be
used to discuss actions and features of an object. For example, blocks labeled Bx
position^ and By position^ automatically display the position of an object within the
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co-ordinate grid, while a tile labeled Bdistance to^ calculates the Euclidean distance
from one object to another.

The challenge of variables came from the fact that, when students created variables,
they also needed to assign values to them. Students were able to address this challenge
in some cases by contextualizing their communication about variables through the
programs that they were creating. In the following excerpt, Shannon had created a
variable labeled Bcounter^ meant to keep track of how far their car had moved, but the
students did not know how to use the variable.

Kelly: How’d you make the red car counter?

Shannon: I just made a variable, said counter. Oh, wait a minute. I think I’ve got
it. Change counter by one [dragging a Bchange counter by^ tile into the
workspace]. I think I have it.

(Session 3, turns 371–372)

Shannon seemed to know, based on the fact that she had just created the counter
variable, that it did not yet encode any meaning. While studying the code that she had
used to make the car drive around the track, she recognized that she could connect this
variable to her existing script to give it meaning. Shannon and Kelly had previously
created a control by which users could turn the car to the left or right by clicking the left
or, respectively, right arrows.

To incorporate the counter variable, Shannon included a new command so that every
time the left arrow key was pressed the counter increased by 1 (Fig. 3). As Kelly
quickly noted, this construction effectively used the variable to count the number of left

Fig. 2 Ashley and Rosie’s first attempt to display the speed of the car
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turns the car had made, rather than the number of steps it had moved. Still, Shannon’s
work here was a first stage towards displaying understanding of the meaning of variable
within the visual programming environment, by using it within the context of the
program she was writing. In fact, many students eventually pursued similar strategies
and used Bcounter^ or Bdistance^ variables set to increase in a 1–1 correspondence with
the number of steps the car had moved.

Closely related to the specialized meanings of symbols within the Scratch environ-
ment was the challenge of the new grammatical strategies of the environment. This
refers to the challenge students experienced not only of knowing what different code
blocks meant, but also of knowing how they should be pieced together. Like any
language, Scratch requires certain grammatical constructions in order to make meaning.
Within Scratch, the shapes of blocks are meant to indicate where those blocks can fit.
Long rectangular pieces are designed to be stand-alone pieces of code, which can be
added to scripts and have other information embedded within them. However, there are
also blocks that represent Boolean or numerical values, the state of an object (e.g.
whether it is touching a certain color) or mathematical operations.

Students often struggled to translate what they wanted to do mathematically into the
grammar of Scratch, as in the case of Melanie and Eleanor below. In this example,
Melanie had found the Bdistance to^ tile in the menu options for the red car (see Fig. 4)
and the students wanted to use that tile to measure the distance from the red car to the
finish line on the track.

Melanie: Now we can add in the drop-down menu Bdistance to^ and then, Sprite
one, I guess is what it’s called.

Eleanor: How does this [the Bdistance to^ tile] get activated?

Fig. 3 Shannon and Kelly’s workspace, with scripts circled connecting the students’ use of the counter
variable to the motion of the car
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Melanie: Usually everything starts with the flag button.

Eleanor: This won’t attach to anything though.

Melanie: What?

Eleanor: This button doesn’t attach to anything.

Melanie: Because it goes […] You know how these have blanks? You have to put
it into the blanks so it’s not already one of the blocks.

(Session 3, turns 131–137)

Because the Bdistance to^ tile represents a numerical value, it was designed to be
embedded within another command requiring numerical input. Melanie and Eleanor
wanted to use the tile to display the distance, but they did not know how to incorporate
the tile within a string of commands. This unfamiliarity with the grammar of Scratch
was a persistent challenge for students in their attempts to create representations of the
speed and distance related to the motion of the car.

Embedding of Symbolic Terms within Visual Representations

The work of O’Halloran and others has documented the ways in which visual representa-
tions often incorporate symbolic or linguistic elements, such as the labeling of a diagram or
the co-ordinates and units of a graph. The embedding of symbolic and linguistic elements
within visual representations took a slightly different form in students’ use of Scratch and
was closely related to challenges associated with symbolic communication. Before students
had the opportunity to interpret visual representations, they needed to use the symbolic code
to create the representations themselves. This challenge is exemplified particularly well
through the case of Kyle and Allen, who spent most of their time over the two sessions
working on creating a tabular display of the number of laps that each car had completed.

Fig. 4 Melanie and Eleanor’s use of the Bdistance to^ tile, which provided a menu to measure the distance
from the car to several other objects on the screen
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Kyle and Allen’s first technique for representing the distance their car had travelled,
which they also applied to the computer-controlled car, was to construct a variable to
calculate the number of laps the car had made around the track. Following that, they
decided to create a tabular display of the number of laps each car had driven, using the
Blist^ feature in Scratch. In Scratch, the Blist^ block stores a sequence of information
that can be inputted manually or through an automated script. Lists can also be
displayed on the screen and a list looks like a traditional table in as much as it is
displayed as a column with several rows. Kyle and Allen created a list that they named
Blaps^ and their process for populating the list revealed some of the challenges with the
symbolic information that needed to be included within the visual representation.

The students’ first strategy was to create a script to add B1″ to the laps list every time
their car touched yellow (i.e. crossed the finish line) (see Fig. 5). The representation
they produced, also illustrated in Fig. 5, was a list called Blaps^ that stored a sequence
of 1’s as the car drove around the track. Although the students did not make this point
explicit, the car’s distance was encoded through the length of the list, which noted the
car’s total number of laps around the track.

Allen and Kyle expressed dissatisfaction with the display of the list and began modi-
fying the display of information about the car’s distance. In their second iteration, the
students changed their script so that each time the car crossed the finish line they added the
text Bred car laps^ at the next open position in the list (see Fig. 6). After an initial test of the
script, Allen added a final command at the end of the loop to delete the entire list. The effect
of this construction was that the list was deleted each time the car went around the track, so
that there was only ever one entry labeled Bred car laps^. In their next iteration of the script,
which began at the start of Session 4, Kyle and Allen replaced the text of Bred car laps^
with the value Blaps + 1^, which was the length of the existing list. Again, because they
were deleting the entire list with each iteration of the script, the list continually populated
and deleted the value of B1^ in the first entry. At this stage, Allen began to be more explicit
about his interpretation of the list and what he wanted it to represent.

Allen: Okay so look at this. It says Bone^ then empty. Then Bone^, then Bone^,
then Bone^, then Bone^. We need to make it add one even though it’s adding one.

Fig. 5 Kyle and Allen’s first attempt at creating a table to represent the car’s distances travelled
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Kyle: Just do Badd laps^ instead of Badd laps plus one^. Delete all of laps. Move
that out of there forever.

Allen: No, we need to do that or else it’ll keep on adding up and it’ll lag out.

(Session 4, turns 25–27)

Eventually, Kyle and Allen produced a list that continually populated the value of
BLaps + 1^ (where BLaps^ was a variable increasing by one each time the car touched
the yellow finish line) at the top of the list. As is illustrated in Fig. 7, the total number of
laps the car had travelled could be interpreted differently, depending on whether one
looked at the top-most value of the list or whether one looked at the total length of the
list. As Allen noted, the discrepancy surfaced because of the way they created their

Fig. 6 Kyle and Allen’s second attempt at creating a table to represent the car’s distances travelled

Fig. 7 Kyle and Allen’s final attempt at creating a table to represent the cars’ distances travelled
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BLaps^ variable – specifically, that the value of the variable increased every time the car
touched the yellow finish line.

Allen: Well, dude, we need to do it, if touching color yellow then teleport away,
because it might […] it’s so thick, because if it goes over it counts like two or
three laps.

(Session 3, turn 305)

Because the car may have registered Btouching^ the finish line multiple times each time
it crossed, the total number of laps according to the table entry was larger than the
number of laps according to the length of the table. This recognition is significant not
only because of its implications for the design of Allen and Kyle’s program, but also
because it reveals Allen’s understanding of how the creation of the variable, the use of
the variable to make a list and the eventual display of that list were interrelated and
necessary for understanding the final product.

The challenge that Kyle and Allen encountered in embedding symbolic information
for the creation of a visual representation was common across all pairs of students that
participated in the Scratch club. The three other pairs of students in this study all
discussed, and briefly attempted, the creation of tables and graphs to represent infor-
mation about speed or distance, and none of the pairs made substantial progress in
creating a graph.2 The most productive way for students to overcome these challenges
was to develop visual representations that were more straightforward and more tailored
to the visual programming environment. Figure 8 illustrates two such examples, which
are specific cases of fairly typical strategies that students employed. In the picture on
the left of Fig. 8, Melanie and Eleanor programmed the two cars to draw pen trails as
they moved around the route, keeping track of the cars’ paths and giving a rough
estimate of the relative distance each car had travelled. In the picture on the right,
Ashley and Rosie used text to display how much time had passed and they used
features embedded within Scratch automatically to keep track of the time.

Discussion

The symbolic challenges that students encountered in their use of Scratch were
primarily related to the special symbol meanings and new grammatical strategies of
the Scratch language. The visual challenges that students encountered came from the
embedding of symbolic and linguistic elements in visual representations, and these
challenges were closely related to the symbolic challenges students experienced. They
implicitly overcame several other challenges that have been documented as inherent to
mathematics discourse by creating representations that were highly localized to the
Scratch environment: There were few implied or special conventions required for
interpreting the diagrams, as students made the information explicit in their creation;
the density of visual information was substantially decreased compared with more

2 There were two pairs participating in the Scratch club who made progress towards graphing the car’s
distance as a function of time, but they did not meet the criteria for inclusion in this analysis.
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traditional mathematical representations; the knowledge was contextualized to the
specific task at hand. Finally, there was little implicit reasoning required to interpret
the visual representations students created, because they were so closely connected to
the concrete context that they represented.

In many ways, students’ work in this study confirmed the findings of prior research
regarding the potential of computer programming environments to support students’
mathematical work (Clements and Battista 1989, 1990; diSessa 2000; Edwards 1991,
1997; Eisenberg 1995; Hoyles and Healy 1997; Hoyles and Noss 1992; Hoyles and
Sutherland 1989). Students’ work was concretized in the context of representing the
motion of a tangible object within the computer environment. The complexity and
abstraction that is typical of traditional mathematical discourse was largely absent from
students’ talk; instead, students’ use of Scratch allowed for expression and agency in
determining what representations they would create and how they would create them.
However, those decisions were constrained in some ways by the challenges that
students encountered with interrelated modes of symbolic and visual communication.

The design of Scratch, and other environments like it, allows for more intuitive use,
lowering the bar of entry for users to create and manipulate objects through computer
code.With little or no programming experience, students in this study were able to move
and control objects, as well as create various representations of that motion. However,
the intuitive design of visual programming does not mean that there is nothing to learn,
especially in cases where concepts and constructs are used differently in different
disciplines. To learn to Bspeak^ symbolic mathematical language, students need to learn
the meanings of symbols, as well as how they are put together to form arguments
(Schleppegrell 2007). To domathematics that is integrated with computer programming,
students need to translate between two related, but distinct, technical languages.

One could ask whether the challenges that students encountered were related
to their knowledge of different mathematical representations (e.g. how a table
should be created to purposefully represent information) or to their ability to
translate that knowledge into the language of Scratch. Noss and Hoyles (1996)
suggested that computers could serve as a ‘window’ into students’ understand-
ing, by revealing difficulties that may be obscured through routine practice with
standard representations and procedures. In a more typical paper-and-pencil
environment, many students would likely have been able to draw a graph to

Fig. 8 Two examples of how students simplified their visual representations, through the use of pen trails (left)
and text (right)
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represent a given context. But requiring students to communicate the creation of
such a representation through the use of a novel language – even one that was
designed to mimic intuitive, everyday language – revealed that students may
have been missing some of the links between the multiple semiotic systems that
make up the language of mathematics.

The question of whether students’ challenges originated in their understanding of the
mathematics or their use of the technology risks losing a broader point about the nature
of tasks that become possible through the use of a programming environment. In a
more typical paper-and-pencil context, it would not be possible to create a dynamic
representation corresponding to the action of an object in real time. Thus, even if a
student were able to produce static visual representations, that knowledge would be of
little use in modeling contexts that require more dynamic displays of information
(English et al. 2016). The introduction of computer programming into mathematics
and other STEM disciplines should not only support students’ learning but also help to
re-envision what it means to engage in those disciplines (Baldwin et al. 2013; Barr and
Stephenson 2011; Weintrop et al. 2016). Doing so requires further attention to how
students can be supported in making connections among multiple semiotic systems.

The issue of which types of tasks become possible through the intersection of
computer science and mathematics recalls the increasing prominence of computational
thinking and computer science in K–12 education. Weintrop et al.’s (2016) taxonomy
of computational thinking practices in mathematics and science offers one of the most
comprehensive characterizations of how computational thinking is applied across
STEM disciplines. Although this taxonomy describes some aspects of multimodal
communication – including creating visualizations, communicating information about
a system and programming – it was not intended to account explicitly for the nuances
of communication in integrated settings. In addition to descriptions of the knowledge
and competencies that students must develop to order to engage in computational
thinking (Barr and Stephenson 2011; Brennan and Resnick 2012), it may be worth-
while for future work to attend to how applications of such thinking are communicated
across other technical disciplines.

The difficulty of learning to use technology to do mathematics is not solely linked to
programming environments. Studies of students’ use of computer algebra systems (CAS)
have documented students’ struggles inputting or displaying information in such environ-
ments (Artigue 2002; Guin and Trouche 1998), while research findings on the use of
dynamic geometry environments have shown that students do not always use the available
tools correctly or to their fullest capacity (Jones 2002; Sinclair 2003). A key difference of
the present study is that many of the technologies that have been previously researched
Bembody mathematics^ in the sense that they employ mathematical models both at the
level of user interface and in the underlying processes (Laborde 2007, p. 72). While visual
programming environments such as Scratch certainly incorporate mathematical models for
internal processing, they do not offer mathematically oriented user interfaces. Thus, the
challenges that students experience arise from their ability to translate mathematical
discourse to a new technical discourse, one with its own rules and conventions.

The findings of this research have implications for how teachers view students’
mathematical learning with technology. It is not uncommon for teachers to perceive
technology as a ‘servant’, facilitating the work that students need to do while not
changing the nature of that work (Goos et al. 2003; Smith et al. 2016). The
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introduction of a computer programming environment, one which is not designed
with specific mathematical tasks or concepts in mind, upends such a perspective
and requires a shift towards a more integrated approach to mathematics teaching
and learning (Monaghan et al. 2016). There are efforts at various levels of
instruction to pursue such initiatives (Baldwin et al. 2013; Barr and Stephenson
2011; Cetin and Dubinsky 2017), although there is no unified vision within the
discipline of mathematics regarding the role either of computing or of computer
programming (Lockwood et al. 2018). The role of the latter in school mathematics
can be better understood as our knowledge of students’ use of mathematical
discourse better incorporates the complexity of integrating other technical
languages.
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