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Abstract Statistics is a challenging subject for many university students. In addition to
dedicated methods of didactics of statistics, adaptive educational technologies can also
offer a promising approach to target this challenge. Inspectable student models provide
students with information about their mastery of the domain, thus triggering reflection
and supporting the planning of subsequent study steps. In this article, we investigate the
question of whether insights from didactics of statistics can be combined with
inspectable student models and examine if the two can reinforce each other. Five
inspectable student models were implemented within five didactically grounded online
statistics modules, which were offered to 160 Social Sciences students as part of their
first-year university statistics course. The student models were evaluated using several
methods. Learning curve analysis and predictive validity analysis examined the quality
of the student models from the technical point of view, while a questionnaire and a task
analysis provided a didactical perspective. The results suggest that students appreciated
the overall design, but the learning curve analysis revealed several weaknesses in the
implemented domain structure. The task analysis revealed four underlying problems
that help to explain these weaknesses. Addressing these problems improved both the
predictive validity of the adjusted student models and the quality of the instructional
modules themselves. These results provide insight into how inspectable student models
and didactics of statistics can augment each other in the design of rich instructional
modules for statistics.
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Statistical methods are highly relevant for conducting research in many fields of
science. Therefore, many university programs include introductory statistics courses
(Castro Sotos et al. 2007), which are often challenging for students (Murtonen and
Lehtinen 2003; Tishkovskaya and Lancaster 2012). This is partly due to the complexity
of the domain itself (Castro Sotos et al. 2007), and partly to the large size of the groups
of students to whom these courses are taught, which greatly reduces teachers’ ability to
provide individual guidance to students.

From the field of statistics education research, various suggestions for enhancing
statistics education have emerged in the past decades. A major change that has taken
place concerns the main goals of statistics courses. Whereas traditionally the primary
focus was on deriving statistical formulae and carrying out calculations, nowadays
much more attention is paid to the interpretation of data and the ability to reason
statistically about real-world problems — also referred to as ‘statistical literacy’ (Lovett
and Greenhouse 2000). This shift in goals is partly evoked by the large-scale avail-
ability of statistical software that can take care of calculations. Accomplishing this shift
involves specific didactical considerations in instructional design, such as using real
contexts and data for promoting meaningful statistical reasoning (Ben-Zvi 2000).

Another possible enhancement of statistics education, which is especially relevant
when individual guidance by teachers is difficult to achieve, comes from a different
area: adaptive educational technologies (Herder et al. 2017). These technologies help
convert results of automated assessment into detailed information for students and
teachers, including diagnostic feedback (Stacey and Wiliam 2013). In the case of
statistics education, with its challenging number of concepts to master, it seems
particularly promising to provide students with information on their mastery of these
individual concepts. One popular adaptive educational technology for providing such
information is the inspectable student model (Bull and Kay 2007).

A student model is a structured collection of information about the individual
student’s characteristics, such as knowledge, difficulties and misconceptions, in the
domain of study. Adaptive educational systems elicit this information based on stu-
dents’ interaction with learning content: solving tasks, taking tests, studying examples,
etc. Presenting this information to students as feedback and allowing them to inspect it
freely is known to promote reflection, increase motivation and provide metacognitive
support for self-regulated learning (Bull and Kay 2007). In other words, an inspectable
student model can support a student in forming an opinion about his or her current
progress and making a well-considered decision about the next learning step (which
concepts to focus on, which task to attempt, etc.).

However, the effectiveness of such an enhancement of the learning process in many
respects depends on whether inspectable student models can be combined with the
employed didactical approach. In the context of this article, the question is: how can the
fields of didactics of statistics and inspectable student models be integrated? And can
they strengthen each other?

To address these questions, inspectable student models were implemented in five
modules containing practice exercises related to introductory statistics. These modules
were embedded in an online educational system and were offered to 160 students in the
Social Sciences as a part of their first-year, introductory statistics course. The
inspectable student models were evaluated from two standpoints: the perception of
the students who worked with them and their internal quality. Students’ perceptions
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were collected through a questionnaire and served to evaluate whether combining the
fields of didactics of statistics and inspectable student models was appreciated by
students. For the quality analysis, evaluation methods from both fields were used. This
quality analysis served two goals: to evaluate whether the implemented student models
were successful and to explore how this implementation could be improved. Four main
problems in the implementation were identified, for which solutions were sought both
in the student model design and in the instructional design of the statistics modules.

Theoretical Background

Before attempting to combine the two fields of didactics of statistics and inspectable
student models, we would like to explore both fields separately. In this exploration, we
explicate difficulties that students experience in statistics education and examine how
they are addressed both by didactical methods (i.e. methods informed by domain-
specific pedagogical considerations) and by the information provided to students
through inspectable student models. Moreover, we look for differences between the
two fields that might lead to challenges in integrating them.

Didactics of Statistics

Research in statistics education has identified several causes for the challenging
character of statistics. First of all, the field of statistics involves a large number of
abstract concepts, such as probability distributions, sampling variability and confidence
intervals. Second, constructing sound statistical conclusions requires the ability to
integrate such abstract concepts both into calculations and into complex chains of
reasoning (Castro Sotos et al. 2007). For example, understanding the method of
hypothesis testing requires knowledge of probability distributions, sampling variability
and significance levels, as well as the ability to reason using conditional statements
(e.g. “under the assumption that the null hypothesis is true, this outcome, or a more
extreme one, is very unlikely”). Finally, abstract definitions of statistical concepts such
as variability often conflict with students’ prior, informal knowledge and their view of
the real world (Garfield and Ahlgren 1988).

To support students in overcoming these challenges — that is, in gaining understand-
ing of these abstract concepts, calculations and chains of reasoning — various strategies
are prevalent in statistics education. Recommendations by Ben-Zvi (2000) and the
GAISE college report (Garfield et al. 2005) include the use of real data sets and a focus
on conceptual understanding and statistical reasoning, rather than mere acquisition of
knowledge of procedures. Real data sets can engage students in thinking about the data
and relevant statistical concepts. The recommendation to focus on conceptual under-
standing and statistical reasoning rather than on procedures is based on the assumption
that students with a good conceptual foundation will easily grasp new procedures and
techniques, whereas procedural knowledge without conceptual understanding tends to
be too superficial and not well integrated.

These insights may also guide instructional design. Taking real data sets from real
contexts as a starting point for instructional design results in clusters of tasks that are
related to each other through these contexts. A single context may, for example, be used
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for comparing different representations of the data, calculating and interpreting confi-
dence intervals, and carrying out hypothesis tests. The sequencing of such closely
related tasks is crucial (Drijvers et al. 2013). Deliberate task sequencing can serve to
introduce concepts gradually, first informally and only later in a more formal way (e.g.
Aberson et al. 2003) or to evoke crises to promote deeper reflection (Bokhove and
Drijvers 2012). When exploring a context, earlier tasks are typically aimed at becoming
acquainted with the context and data, whereas in later tasks the by-now familiar context
can serve as a concrete example — and hence support understanding of more abstract
concepts and their interrelationships. In other words, well-considered clustering and
sequencing of tasks in instructional design is essential both for engaging with real
contexts and for addressing conceptual understanding and statistical reasoning.

Inspectable Student Models

Student models are the core components of adaptive intelligent educational systems.
They infer, store and update a system’s estimations of the current knowledge state of
each individual student, thus providing a basis for adaptively optimized support that the
system can offer. A frequently used student model organization is an overlay model,
which computes individual student mastery scores for a set of knowledge components:
important concepts, methods or other coherent pieces of domain semantics (Carr and
Goldstein 1977). In combination, these knowledge components constitute a model of
the domain under study. A (partial) example of such a domain model is shown in the
left-hand column of the inspectable student model displayed in Figure 1. In this
example, the knowledge components are grouped into five categories and for two of
them individual knowledge components are shown.

The knowledge components of different domain models can differ in several
aspects, thus allowing for tailoring the model design to specific characteristics of the
domain and the educational setting at hand. First of all, knowledge components can
represent elements of procedural knowledge (‘how’- knowledge) that define procedures
or skills in the domain or they can represent declarative knowledge (‘what’-knowledge)
that define important concepts and facts (Brusilovsky and Millan 2007). For statistics
education, in which a focus on conceptual understanding is advocated, this latter type
seems more appropriate. A second layer of diversity comes from the degree of
granularity. A designer of a model might decide to break the knowledge in the domain
into as small elements as possible, thus improving the potential precision of the model.
She might also decide to define knowledge components at the level of larger categories
and topics, thus facilitating easier content modeling — connecting learning tasks to
knowledge components.

The student’s mastery of the knowledge components (KCs) in the domain
model is represented in an overlay: a set of scores that is usually based on the
student’s performance on learning tasks associated with corresponding KCs. The
connection between tasks and KCs can be represented by a so-called Q-matrix
(Barnes 2005; Tatsuoka 1983), with a row for each KC and a column for each
task. The entry (i, j) is equal to 1 if the jth task is connected to the ith KC, i.e. if
the ith KC is relevant to solving the jth task, and 0 otherwise. The scores in the
overlay may be either qualitative (poor, medium, good), simple numerical (a
percentage, for example) or uncertainty-based (Brusilovsky and Millan 2007).
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Category Score
(#) Types of random variables 66%
(#) Visual data representations 74%
(=) Cumulative frequencies and percentiles 60%
Cumulative frequency 54%

Percentile rank

Percentile 33%

(+) Measures of central tendency 75%

| Measures of statistical dispersion

Measuring variability

Standard deviation sample 69%

Standard deviation population

Range

Fig. 1 An inspectable student model on descriptive statistics

An example of an overlay is displayed in the right-hand column of the student
model in Figure 1.

The main purpose of student models in adaptive educational systems is usually to
provide a basis for adaptation. However, the information that the student model
contains can also be used as valuable feedback for the student: if shown to the student,
a student model can promote reflection and support both planning and navigation (Bull
and Kay 2007). Reflection may, for instance, be promoted by a low score on a concept
that a student thought she already had mastered and, as such, the open student model
may reveal gaps in the student’s knowledge of the domain. For these purposes, a fairly
simple student model design may suffice.

Although sophisticated methods exist for enabling students to edit or negotiate with
their student model (e.g. Dimitrova et al. 2001; Zapata-Rivera and Greer 2002), for the
purpose of reflection, planning and navigation, promising results have been obtained
with much simpler inspectable student models (Arroyo et al. 2007; Long and Aleven
2011; Mitrovic and Martin 2002) that do not allow a student to adjust the contents of
the model (Bull 2004). Moreover, Bull and Kay (2007) argue that, in student models
with the purpose of promoting reflection, the scores can be presented in a simple way,
without mentioning the uncertainties surrounding them. Reflection is most likely
evoked by differences between the model and the student’s own view, which are
presumably larger if uncertainty is omitted.

A final remark on student models concerns their relation to instructional design.
Such models are often used to inform adaptation. In such cases, the instructional design
includes variation of the order of tasks, depending on student achievement so far. To
this end, the tasks need to stand alone rather than to be organized in a pre-structured
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sequence. Even in many cases where student models are rendered inspectable, they
have initially been designed to inform adaptation and are therefore connected to a set of
independent tasks, rather than to a sequence of closely related tasks that share contexts
or build on one another.

To summarize, the main difficulties for students in statistics education are the large
number of abstract concepts involved and the ability needed to integrate these concepts
into calculations and chains of reasoning. Methods from the didactics of statistics to
address these difficulties include both the use of real data sets and contexts and a focus
on conceptual understanding. Inspectable student models provide an additional method
by supporting students in gaining insight into the structure of the domain of statistics, as
well as revealing knowledge gaps.

An important difference between the methods from the two fields lies in
instructional design: the didactical methods result in sequences of closely related
tasks that share contexts and build on one another, whereas inspectable student
models are traditionally connected to sets of rather independent tasks. Therefore,
our first question from the introduction — whether the fields of didactics of
statistics and inspectable student models can be combined — can be explicated as
follows: (RQ1) Are inspectable student models suitable for implementation in
didactically grounded, sequential statistics modules consisting of closely related
tasks? The second question, whether the two fields can strengthen each other,
focuses on the evaluation methods available in both fields: (RQ2) How can
didactical analysis inform design of inspectable student models and, vice versa,
how can student model evaluation methods inform didactical design?

Methods

To address these research questions, inspectable student models were designed and
implemented in five didactically grounded modules which were used in an intro-
ductory statistics course at Utrecht University. In the following sub-sections, we
first describe the educational setting for this study, including a description of the
online educational system that was used. Next, we discuss the didactical design of
the modules and student model design. Lastly, we outline data collection and
describe the methods we have used for analyzing the quality of the different
components of the student models.

Educational Setting and the ‘Digital Mathematics Environment’

The participants in this study were 160 first-year students in the Social Sciences at
Utrecht University. In the fall of 2016, these students took part in a mandatory statistics
course as one of the first courses in their bachelor’s degree program. This course lasted
ten weeks, and covered the following five topics:

Descriptive statistics.

z-values and sampling distributions.

Hypothesis testing: z-tests.

Hypothesis testing: #-tests for one sample and dependent samples.

Hypothesis testing: #-tests for independent samples.

kW=
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Each topic consisted of a lecture followed by practice in a digital statistics module.
Students were allowed to work on the modules individually or in groups and could
choose to work at home or in supervised lab sessions.

The five digital modules were offered in the Freudenthal Institute’s Digital Mathe-
matics Environment (DME; see Drijvers et al. 2013). The DME offers support for a
variety of interactions, such as number and formula input, multiple choice tasks, drag-
and-drop tasks and interactive animations. Immediate verification feedback is provided
for students’ answers, informing students whether or not their answer is correct, but not
what the correct answer is. Moreover, for most task types, elaboration feedback is
available to explain errors that have been made. Students are allowed to attempt tasks
multiple times and usually continue trying to solve each task until they succeed.

A typical DME page is shown in Figure 2. The circles in the bottom bar of the page
indicate the student’s progress in the module. These indicators turn green once the
student has solved correctly all the tasks on the page while they remain red as long as
this is not the case. As suggested in literature (Brusilovsky et al. 2009), such coloring of
progress indicators can have a strikingly motivational effect: in order to obtain green
progress indicators students keep attempting tasks until they find the correct answer. In
Figure 2, the indicators reveal that this student has completed pages 2, 3 and 4 correctly,
and still has to work on pages 5 to 11. Since page 1 only contains an introductory text
and no tasks, its indicator is grey.

Didactical Design

The modules used in this study were designed by the lecturers for the statistics course,
supported by DME experts. Each module consisted of a series of pages containing sets
of closely related tasks. The number of pages varied between 12 and 22, while the
number of tasks in the modules varied between 98 and 232. The page shown in Figure 2
is a translated version from the fifth page of the third module. It contains a context
description on the left-hand side of the page and three sets of tasks on the right-hand
side. Each individual interaction component is regarded as a task.

DME pages have a very flexible layout, which allows for different numbers of tasks
on each page. Moreover, the DME facilitates initially hiding information that might not
be needed by all students. The lecturers made extensive use of this option to include
hints and extra tasks serving as intermediate steps. On the page shown in Figure 2,
hidden information is available through the hint buttons. The information that is
revealed upon clicking the top-most hint button is shown in Figure 3. Whereas students
were obliged to complete all tasks on the main pages, use of these hints and interme-
diate tasks was optional. Moreover, use of the hidden information did not affect the
page indicators, so these would turn green once all tasks on the main page were
completed correctly.

As recommended in the literature, the modules made extensive use of real data sets
and contained many tasks that focused on conceptual understanding and statistical
reasoning. Most tasks in the modules were connected to a context and all contexts were
based on real research projects and contained real data. In the modules, students were
invited to engage deeply with these contexts. Contexts were used to address multiple
concepts and to highlight aspects of the relations between concepts. On the example
page in Figure 2, students are asked to carry out a hypothesis test, determine the effect
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> Module 3

Problem 2 MTS1HS 8
There is evidence that REM sleep, which is said to be a Do these data support the claim that there is a significant increase in REM activity
related to dreaming, can play a role in learning. For during exam weeks? Use a test with & =.01.

example, Smith and Lapp (1991) found an increased

REMsieep for:students Initheir:exam weels. Suppose The average REM activity of students during exam weeks | is  significantly
that the mean REM activity in a sample of n =16
students in an exam week is equal to M = 134. In the higher, since z = E.BI X and that is | larger than 2, il I -

student population, the mean REM activity is
pproximately normally distributed with mean = 110 [ Hint ]

and standard deviation ¢ = 50.

o

Calculate Cohen's d to estimate the effect size. How can this effect be interpreted?

d= D This is regarded as a| Choose B effect.

Write a sentence that describes the resuit of this hypothesis test and the measure of
effect size as would be done in a research paper (following the APA guidelines)

)

The REM activity during exam periods is significantly | Choose

(M= . ) than usual (| Cno§' =110), z = ... . P —...I
d=_.
-m-

(X X X XOJOIOIOI0IOIO)

Fig. 2 A translated DME-page from the third module (on hypothesis testing).

size and report the results as would be done in a research article. Furthermore, contexts
were deliberately varied to confront students with various applications and the appear-
ance of various concepts: testing left-sided, right-sided or two-sided; positive and
negative values of the test statistic; known and unknown population variances; signif-
icant and non-significant results, and so on. Conceptual understanding was, for exam-
ple, addressed by tasks asking students to interpret the rejection of a null hypothesis in
the given context or to describe the influence of sample size on concepts such as effect
size or power. The number of procedural tasks was kept low by regularly using SPSS
output, instead of asking students to calculate the test statistic themselves in all the tasks
on hypothesis testing.

1. State hEEotheses

2. Look up the critical value(s) for the chosen a and the test direction

a= (in two decimals)

and the test is | rightsided | v |¥
So the critical value(s) is/are | +

v L 33 Y (in two decimals)

3. Calculate the test statistic

4. ComEare the test statistic to the critical value and draw a conclusion.

Fig. 3 Initially hidden intermediate steps for the DME page shown in Figure 2
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The use of real data sets and a focus on conceptual understanding and statistical
reasoning had consequences for the ordering of tasks on each page and for the ordering
of the pages themselves. In Figure 2, the ordering of the three sets of tasks is
determined by their content: the hypothesis test needs to be carried out before calcu-
lating the effect size or reporting the results. In the ordering of pages, difficulty level
was taken into account, for example by introducing the more complicated #-test for
independent groups after sufficient exposure to the easier z-test and #-tests for one group
and for dependent groups. Finally, whereas concepts were typically addressed in
isolation on earlier pages, later tasks required more and more understanding of com-
binations of and relations between concepts. For example, early pages contained
separate sets of tasks for stating hypotheses, finding a critical value or calculating a
test statistic, whereas later pages contained only one set of tasks asking the student to
carry out a complete hypothesis test. After finishing the module, students were
presented with their student model, which they could revisit any time after that.

Design of Inspectable Student Models

Student models were implemented in all five modules. The student models were
devised by the first author, in collaboration with two experts: the main lecturer of the
course and the fifth author. Three separate components were designed: domain models,
Q-matrices with connections between KCs in the domain models and tasks in the
modules, and a calculation method for computing overlay scores.

The first step in domain model design involved formulating KCs based on the tasks.
Taking the tasks as the starting point may seem a reversed approach, since tasks are
designed to cover a certain domain rather than vice versa. However, it is also an
approach that lecturers or designers could easily pursue. Because of the large respon-
sibility that university teachers have for designing their own instructional material,
design feasibility was deemed important in the context of this study. Since the purpose
of the student model was to promote conceptual understanding, KCs were mainly
developed to represent declarative rather than procedural knowledge. To ensure that the
model completely covered the domain in the end, the second step consisted of adding
and adjusting KCs based on a consultation of already available domain models
(ALEKS"), as well as other instructional material on the same topic (SURF?). In the
third and final step of domain model design, the two experts were consulted and KC
definitions were fine-tuned based on their comments.

A rather coarse-grained approach was adopted to design KCs, which means that they
were relatively broad in scope. For example, instead of defining KCs for calculating
different test statistics (z-test, ¢-test for one sample, and so on), a single one was defined
for calculating the test statistic. Although finer-grained domain models generally allow
for more sophisticated diagnoses (Sosnovsky and Brusilovsky 2015), we had two
decisive reasons to opt for a coarser-grained approach. The first was student model
comprehensibility, since the main purpose of the models was to offer students insight
into their own understanding of the domain. The second was, again, design feasibility;
in this approach, a quick analysis of tasks suffices to determine the KC(s) involved.

! Course materials downloaded on October 16, 2015, from www.aleks.com/about_aleks/course_products
2 http://bit.ly/surfstat
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For each module, a separate domain model was designed. However, since modules
3,4 and 5 all covered hypothesis testing, their models overlapped to a large extent. The
final ones contained between 8 and 19 KCs. To improve comprehensibility of the
student models, the KCs in each domain model were grouped into two to five
categories.

Design of the Q-matrices was straightforward. Tasks were connected to all KCs that
were related to the task. For example, tasks that involved finding a critical value were
connected both to the KC on the critical value and to the one on the significance level,
since the latter is needed to find the former. The majority of tasks was connected to only
one KC, but for some up to six KCs were judged relevant. To improve Q-matrix
consistency, the two experts were invited to connect a subset of the tasks to the domain
models. Most expert connections were the same as the researchers’ and differences
were discussed until consensus was reached.

The final component in student model design was the calculation method for overlay
scores. This was based on the number of attempts students needed to finish the tasks
connected to each KC. A straightforward numerical implementation was chosen, in
which each task connected to a KC contributed equally to its score. The formula we
used for calculation of the overlay scores was:

n Z_T:l ;.

i=1 m

SCOTeK( student = n

with:

t; the ith task connected to this KC (i € {1, ..., n}).

a,, ; the jth attempt score by this student for task #; (j € {1, ..., m}).

This formula can be explained as follows: for each task, a task score was calculated
as the mean attempt score over all attempts by this student on this task. The attempt
score was 0 for incorrect attempts, 0.5 for half-correct ones (for example, if the answer
still needed to be rounded off) and 1 for correct ones. For instance, the task score for a
student who first gave two incorrect answers before answering correctly was 0.33. The
student’s score for a KC was then calculated by averaging the task scores for all tasks
connected to the KC.

Giving all tasks equal weight in the calculation of overlay scores may seem
unfair, since students are likely to learn and hence perform better on later tasks
than on earlier ones. However, tasks also tended to become more complicated
throughout the modules, requiring students to combine several concepts rather
than using them in isolation. Since students were invited to study their student
model only at the end of each module, a final difficult task could easily result
in an underestimation of the student’s knowledge, if more recent tasks had been
assigned a larger weight.

A translated example of a student model for the first module is presented in Figure 1.
The domain model for this module contained five categories. In the inspectable student
model, students could unfold each category (by clicking the + button) to view the
individual KCs and their overlay scores. Category scores were calculated as the
weighted mean of the KC scores in the relevant category, weighted by the number of
tasks to which they were connected.
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Data Collection

After the student models were implemented in the instructional modules, they were
offered to the Social Sciences first-year students. Data collection focused on student
perception (see RQ1) and student model quality (see both RQI and RQ2). To inves-
tigate student perceptions about the models, a short questionnaire was added at the end
of each module, on the page in which students could inspect their student model. In this
questionnaire, students were asked to respond to three statements, concerning the match
between the tasks and the KCs, the clarity of the KC descriptions and the scores in the
overlay. Students could indicate their degree of agreement or disagreement with each
statement using a five-point Likert scale.

The log files containing student work on the five modules were the most important
data source for evaluating the quality of the student model. Each week, the student
work for that week’s module was exported from the DME. The first module contained a
page with information on this study and asked students for their consent. Work from
students who did not give consent was deleted (26 out of 186) and all other log files
were rendered anonymous before further analysis. For each module, all students who
attempted at least one task were included in the analysis. Table 1 summarizes properties
of the students” work and also provides the number of tasks in each module and the
relevant number of KCs. As can be seen in the table, student numbers slowly decreased
from 160 students in the first module to 117 in the fifth. This can be attributed to
students quitting the course or choosing other means for studying the course material.

Data Analysis

Questionnaires were used to assess the suitability of the student models in the statistics
modules (see RQ1) from the students’ perspective. Each of the five modules contained
a questionnaire on the last page, and each questionnaire contained three statements, to
which students could respond on a five-point Likert scale. For each of the fifteen state-
ments, a mean score over all students was calculated as a measure of agreement of the
students to the statement.

For the evaluation of student model quality, methods from both the didactics of
statistics and the student modeling fields were combined. First, a learning curve
analysis (Martin et al. 2011) was carried out in order to assess domain model quality
(RQ1) and to identify weaknesses in their design and implementation (RQ2). Next,
these weaknesses were further investigated through didactical task analysis, which led

Table 1 Degree of data collection from the five modules

Module Tasks KCs Students Attempts per student (SD) % attempted tasks (SD)

1 98 19 160 109 (36) 57 (14)
2 107 8 141 113 43) 63 (17)
3 110 14 129 89 (40) 45 (17)
4 232 14 127 190 (75) 52 (18)
5 132 16 117 137 (66) 58 (18)
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to possible improvements to both the student models and the instructional modules
(RQ2). Finally, predictive validity analyses (Sosnovsky and Brusilovsky 2015) were
carried out to assess both the quality of the overlays in the original design (RQ1) and
those in the design, after implementing the improvements identified in the learning
curve analysis and didactical task analysis (RQ?2). In the following, the three methods,
as well as our implementations, are described in more detail.

Learning curve analysis is specifically aimed at evaluating the domain model. The
assumption behind learning curve analysis is that learning generally follows a power
law. When first encountering a concept, students’ incomplete understanding results in
errors on tasks related to that concept. After more and more encounters with the
concept, the students’ understanding becomes more complete, resulting in a decrease
in the number of errors related to the concept (Martin et al. 2011). In other words, for
each KC in the domain model, the error rate is expected to decrease and, if this were
indeed the case, the KC is regarded as a valid unit of knowledge.

To generate learning curves, first for each student and then for each KC, a student’s
attempts on tasks connected to the KC were sorted in chronological order. This resulted
in lists of attempts, in which, for example, the sixth attempt could be the first attempt by
a student on the sixth task connected to the KC, the sixth attempt by this student on the
first task, or anything in between. The length of the lists varied over students and KCs,
since students needed different numbers of attempts to finish the tasks connected to the
different KCs.

After ordering the attempts, the correctness of each one was indicated. Because we
were interested in the number of errors, we marked errors as 1 and other attempts as 0.
Next, error rates for individual KCs were calculated for each attempt number, by
dividing the number of students who made an error related to the current attempt
number for a given KC by the total number of students who made an attempt for that
attempt number for that KC.

number of incorrect nth attempts on a KC
Error rate nth attempt =

total number of nth attempts on a KC

These error rates were plotted against the attempt numbers and a power law was
fitted, using the formula:

Error Rate = B-AttemptNo

with the decay factor « and starting value B as parameters. Moreover, R* was calculated
as measure of goodness of fit.

Since students could attempt tasks multiple times, and not all tasks were obligatory,
the number of attempts for the different KCs varied across students. Consequently, the
number of students decreased as the attempt number increased. That is, for higher
attempt numbers, the error rates were based on attempts by fewer students.

To ensure reliable error rates, Martin et al. (2011) recommend cutting off the
learning curve after a certain attempt number. They propose two methods for defining
the cut-off point: either by selecting an acceptable reduction in the number of students
or by making a judgement call on where to cut off after examining where the learning
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curve seems to be deteriorating. Martin and colleagues used a one-half cut-off, meaning
that they cut a curve off once only half of the students remained. In examining the
learning curves for our domain models, we noticed that many learning curves deteri-
orated already after losing one third of the students who made a first attempt. Therefore,
we decided to use a two-thirds cut-off. This higher cut-off level can be explained by the
large number of non-obligatory intermediate steps in the modules. As can be seen in
Table 1, the average number of attempted tasks was considerably lower than the total
number of tasks in each module, caused by students skipping the non-obligatory
intermediate steps. Therefore, for high attempt numbers, error rates were predominantly
based on students who made use of the intermediate steps. This was a smaller, and
probably weaker, group of students than the complete student population and hence the
error rate was likely to increase with this decrease in student numbers.

After assessing the quality of all individual KCs, some were found to have increas-
ing rather than decreasing error rates. To explain these increasing error rates a didactical
inspection of the instructional modules was carried out. To this end, single tasks and
sets of similar tasks were repeatedly disconnected from the KC and new learning curves
were generated. Once a decreasing learning curve was found, the set of tasks that was
currently disconnected was designated as a possible cause for the originally increasing
learning curve. Next, a didactical analysis of these tasks was performed to find a sound
explanation for the increasing learning curve. In cases where it did not prove possible to
designate just one task or set of similar tasks as a possible cause, all tasks connected to
the KC were analyzed from a didactical perspective, and especially the concepts judged
to be addressed in the tasks were reconsidered. Through this interplay between the
learning curve analysis and the didactical task analysis, we attempted to improve the
quality both of the student models and of the instructional models themselves.

Both the learning curve analysis and the subsequent didactical task analysis specif-
ically targeted the domain model and did not address the overlays. Therefore, overlay
quality needed to be assessed through a third method: predictive validity analysis. In
predictive validity analysis, student performance is predicted based on the student’s
previous attempts. The correlation between these predictions and the actual student
performances is used as a quality measure for the overlays. To find this correlation, the
following two values were calculated for each KC involved in each attempt by each
student:

* The student’s prior knowledge level for the specific KC up to the current attempt.
» The student’s posterior actual performance for the specific KC after the current
attempt.

The prior knowledge levels were calculated based on the tasks that a student had
already attempted, using our calculation method for overlay scores. Posterior student
performance was based on attempts following the current attempt. Sosnovsky and
Brusilovsky (2015) argue that correlating single step performances with knowledge
predictions is problematic and propose using simple moving averages over five
attempts. We followed this suggestion by selecting the first five attempts after the
current attempt that also involved the current KC. For these five attempts, the average
attempt score was calculated (again, correct = 1, half-correct = 0.5 and incorrect = 0) as
a measure of actual performance.
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Results

We first provide the results of the questionnaires about the students’ perceptions of the
models. Next, we present the main quality assessment of the implemented domain
models: learning curve analysis. The results of this form the starting point for didactical
task analysis. This leads to the identification of four problems in implementing
inspectable student models in rich instructional modules for statistics and to possible
improvements of the domain models, Q-matrices and the instructional modules to
resolve these four problems. Finally, the results of the predictive validity analysis reveal
the quality of the overlays, as well as the value of the improvements arising from the
didactical analysis.

Student Perceptions of the Student Models

Table 2 summarizes the results of the questionnaires at the end of each module.
A score of 1 corresponded with ‘Totally disagree’ and a score of 5
corresponded with ‘Totally agree’. From the table, it can be seen that students
agreed to a large extent with statements 1 and 2, and to a moderate extent with
statement 3. The strong agreement with statements 1 and 2 suggests that
students perceived the tasks in the modules and the KCs in the domain models
to match well and that the descriptions of the KCs were clear. The moderate
measure of agreement with statement 3 implies that students thought the scores
from the overlays represented their current knowledge of the concepts quite
well. All in all, students seemed to perceive the student models as comprehen-
sible and plausible.

Domain Model Quality According to Learning Curve Analysis

To assess the quality of the domain models, learning curves were generated for
56 out of 71 KCs in the five domain models. For the remaining 15 KCs, not
enough data was available to obtain a learning curve. For each of these 56
KCs, the error rates were computed and a power law curve was fitted. This
resulted in decreasing learning curves for 34 KCs and increasing learning
curves for 22 KCs.

For the 34 with decreasing learning curves, the mean goodness of fit (R%)
was 0.49 (SD=0.29). For the increasing learning curves, the degrees of fit were
generally weaker, with mean goodness of fit=0.35 (SD=0.33).

As mentioned before, KCs with learning curves that decrease as a power
function represent cognitively valid units of knowledge. Therefore, according to
this criterion, in the initial design 34 out of 71 KCs were well defined. It may
seem disappointing that only half of the KCs were well defined, and this
indeed suggests that just implementing student models in didactically grounded
instructional modules does not automatically result in high-quality feedback to
students. However, the presence of increasing learning curves also provided a
good starting point for further analysis: didactical inspection of connected tasks
may shed light on prerequisites, opportunities and limitations in implementing
student models in didactically grounded statistics modules.
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Table 2 Questionnaire results

Module 1 Module 2 Module 3 Module 4 Module 5

Statement 1: The tasks in the DME match well with the topics in the student model

Mean 4.30 4.42 4.26 4.44 4.43

SD 0.67 0.69 0.68 0.58 0.59

N 125 89 54 27 23
Statement 2: The descriptions of the topics are clear

Mean 423 421 4.17 4.15 422

SD 0.73 0.82 0.91 0.82 0.80

N 125 89 54 27 23
Statement 3: I think the scores on the topics are a good representation of my knowledge

Mean 3.85 4.08 4.10 4.00 3.90

SD 0.73 0.70 0.77 0.89 0.89

N 120 88 52 26 21

Underlying Problems Based on Didactical Analysis

For the 22 KCs with increasing learning curves, the connected tasks were analyzed
from a didactical perspective to try to identify underlying problems that caused the
learning curves to increase. Four different difficulties were identified; some increasing
learning curves were completely explained by one of them, whereas for other KCs two
of them applied. The first problem relates to single tasks distorting the learning curve,
while the second concerns groups of tasks that address concepts from different
perspectives and the third connects to tasks that involve multiple concepts. The fourth
and final difficulty involves a lack of opportunities for in-depth thinking about the
particular KC in the learning module. This final one also applies to the 15 KCs for
which not enough data were available to obtain a learning curve. The four problems are
elaborated below.

Tasks with Specific Purposes

For 12 out of the 22 KCs, the increasing learning curve could be attributed to one or
two single tasks; disconnecting these tasks from their KC yielded a decreasing learning
curve. Didactical analysis of the disconnected tasks, compared with the tasks that
remained connected, revealed that these tasks often had a specific purpose in the
module.

In six of these cases, the tasks that were disconnected were the first ones in which
the students encountered the KC. An example is a KC on the significance level, for
which the learning curve is shown in the left-hand graph in Figure 4. The error rate for
the first attempt is remarkably lower than for subsequent attempts. Disconnecting the
first task from the KC yielded the right-hand learning curve in Figure 4. Without the
first task, the learning curve became decreasing with a very high goodness of fit (R* =
.98), indicating that the remaining tasks constituted a valid KC.
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A didactical inspection of the disconnected task and those that remained
connected revealed that the first task was appreciably easier than the subsequent
ones. The first task only asked students to reproduce a value for the signifi-
cance level from the problem description. Later tasks required students to use
the significance level for defining the rejection region in a hypothesis test. Such
easy first tasks for a concept occurred more often in the modules. Apparently,
for the designers of these modules, it was natural to introduce concepts in a
quite gentle manner, the purpose of these easy first tasks being to enhance
students’ self-confidence, rather than to provide students with the opportunity to
practice. This resulted in very low initial error rates and increasing error rates
once tasks became more demanding.

Another specific purpose that tasks could have was to emphasize a specific aspect or
detail of a KC. This was the case for three KCs. At first sight, the tasks causing the
increasing learning curve were very similar to the tasks that remained connected. A
closer didactical inspection revealed that the disconnected tasks had a slightly different
emphasis concerning the KC. This was, for example, the case for a KC involving
calculating Cohen’s d in the third module. The learning curve for this KC is shown in
the left-hand graph of Figure 5.

The six tasks connected to this KC required students to calculate or interpret
a value of Cohen’s d, a measure of effect size. Cohen’s d is calculated as
d= @, with M the sample mean, p the population mean and o the standard
deviation for the population. In four out of the six tasks, M was larger than p
and hence explicitly taking the absolute value was not necessary. In the two
tasks causing the increasing learning curve, however, M was smaller than p.
Many students forgot to take the absolute value and hence, erroneously, gave a
negative effect size as answer. In other words, these two tasks emphasized the
fact that Cohen’s d is always positive, whereas the other tasks only concerned
using the correct values in the calculation. Since these two were the fourth and
fifth tasks connected to this KC, the students’ errors on these tasks caused
relatively high error rates for attempt numbers four and higher. Disconnecting
these tasks with a slightly different emphasis resulted in the decreasing learning
curve displayed in the right-hand graph of Figure 5.
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Fig. 4 Error rates for the KC ‘Significance level’
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Most increasing learning curves that could be attributed to one or two single tasks
could be explained by these specific purposes for tasks. However, for five KCs the
didactical analysis, and especially an inspection of the errors students made, identified
flaws in task design. Although the modules were thoroughly tested by colleagues of the
designers, this was the first time that students had worked with them. Flaws in task
design resulted in confusion among students and, consequently, in high error rates.

Concepts Addressed from Multiple Perspectives

For six KCs with increasing learning curves, we have been able to partition the
connected tasks into groups for which each had a decreasing learning curve. These
groups were identified by setting up a detailed description of the concepts addressed
and the actions required in all connected tasks.

An example is the KC on the mean. Its learning curve is shown in the left-most
graph in Figure 6. By analyzing the connected tasks, three conceptually different task
types were distinguished. Of the 15 connected tasks, eight concerned calculating or
estimating the value of a mean, based on given data. Four others concerned the
appropriateness of using the mean for different types of variables. The remaining
three tasks concerned the calculation of a standard deviation, for which calculating
the mean is an intermediate step.

The learning curves for each of the three sub-groups of tasks are shown in the
second, third and fourth graphs in Figure 6. While the learning curve for the complete
KC increases, the learning curves for each of these subgroups of tasks decrease. This
implies that for students finding the mean, judging the appropriateness of the mean for
different types of variables and finding the standard deviation involved different
procedures and, potentially, types of reasoning.

Tasks Involving Multiple Concepts
In the example above, finding the mean and judging the appropriateness of the mean

are both solely related to the concept of mean, while additionally having to find the
standard deviation obviously also relates to the concept of standard deviation. This
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Fig. 6 Learning curves for the KC on the mean and three task subgroups

occurs frequently: in many tasks, multiple concepts are involved. As mentioned before,
in designing the Q-matrices, tasks were connected to all KCs that were judged to be
involved in the task. For four KCs, including the KC on the mean, this turned out to be
problematic.

Although these KCs were involved in all tasks connected to them, not all errors that
students made could be attributed to them. For some of the connected tasks, different
KCs turned out to be the bottleneck KC — that is, the KC that mainly caused errors on
the task. The example with different task subgroups of ‘the mean’ above can serve to
illustrate this idea of bottleneck KCs: errors that students made are more likely due to a
lack of understanding of the standard deviation itself than to a lack of understanding of
the mean itself. Therefore, errors that students made on these tasks caused an unfairly
high error rate for the KC on the mean. Since the tasks on standard deviations appeared
later in the module than other tasks involving the mean, this may well have contributed
to the increasing learning curve for the mean.

Lack of Opportunities for in-Depth Thinking about Concepts

The final problem that was identified for increasing learning curves concerns KCs with
an overall low error rate. For four KCs with increasing learning curves, the error rates
never rose above 0.3. For such relatively small error rates, slight fluctuations that are
likely due to chance may have caused the learning curve to increase rather than
decrease. Although a low overall error rate suggests that the KC is easy for students,
most of these four KCs were not judged to be easy by the designers of the course.
Rather, they concerned interpreting the meaning of concepts and understanding the
relation between concepts, which are generally considered as difficult aspects in the
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statistics domain. In other words, although the designers included tasks addressing
these difficult KCs, they did not succeed in addressing the actual difficulties that
students have regarding these KCs.

This discrepancy can be attributed to task design. Apparently, the tasks connected to
the specific KC were easy for students and did not engage them in thinking about
statistical concepts in depth. Indeed, tasks connected to these KCs were often multiple
choice, with only two options to choose from. With such little variation in possible
answers, any misconceptions that students may have had were likely to stay unnoticed;
students did not have the opportunity to make many errors and to learn from these
erTors.

Another case in which students did not have enough opportunity to make errors and
reflect on them was formed by the 15 KCs for which no learning curve could be
generated. These KCs were all connected to at most two tasks, which were often
multiple-choice tasks with at most four options to choose from. For these KCs, students
just did not make enough attempts for us to be able to obtain a learning curve. This
suggests that they probably also did not make enough attempts to gain a deeper
understanding of the specific KCs.

Improving Modules and Student Models

The four problems together provide a basis for improvement both of the student models
and of the instructional modules. To obtain a first impression of the value of these
improvements, we carried out a second learning curve analysis with a revised version
of the domain models and Q-matrices. This evaluation was performed with the same
student data as the original analysis, which meant that no adjustments could be made to
the tasks. Therefore, connections to tasks that needed redesign were simply removed
from the Q-matrix. Moreover, KCs for which task redesign was felt needed (in order to
create more opportunities for errors) were removed from the domain model to enable
this analysis.

The improvements that we could make — adjustments to the domain models and Q-
matrices — were mostly easy and straightforward. Tasks with specific purposes that
distorted the learning curves were easily recognized and disconnected from their KCs.
For concepts that were addressed from multiple perspectives, a more thorough analysis
was needed in order to identify the different components into which to divide the KC,
but subsequently reconnecting tasks proved, again, straightforward. Similarly, identi-
fying bottlenecks for tasks needed some analysis, but then disconnecting tasks from
non-bottleneck KCs was easy.

For the new domain models, error rates were again calculated for all individual KCs
and learning curves were fitted. Table 3 summarizes the results of the learning curve
analysis for both the original and the new domain models. The number of increasing
learning curves diminished drastically from the original to the revised domain models.
Moreover, for all remaining KCs in the new models, enough data was available to
generate a learning curve and, hence, for each KC enough tasks were available to
provide students with ample practice opportunities. The five KCs for which the
learning curves were still increasing all had overall low error rates and were regarded
as easy KCs. All in all, the combination of learning curve analysis and didactical task
analysis has led to a marked improvement to the domain models.
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Table 3 Comparing individual KCs in the original and new domain models

Module Original New

Increasing Decreasing Too little data Increasing Decreasing Too little data

1 6 8 5 0 14 0
2 2 4 2 1 7 0
3 7 4 3 3 0
4 3 9 2 0 14 0
5 4 9 3 1 11 0
Total 22 34 15 5 54 0

Overlay Quality According to Predictive Validity Analysis

Our final analysis is aimed at evaluating the quality of the final part of the student
models, the overlays. To evaluate overlay quality, prior and posterior student perfor-
mances were calculated for each attempt by each student on each KC. The prior student
performance was the score the student model would attribute to that KC for that
student, up to that attempt. The posterior student performance was calculated based
on the five next attempts the student made on that KC. In total, the list of prior and
posterior student performances contained 116,729 prior—posterior pairs. Pearson’s
correlation coefficient for this list was »=.315.

Although this value indicates a positive correlation between the students’ under-
standing as predicted by the model and the students’ actual performance, the degree of
correlation is regarded as weak (Evans 1996). One possible explanation can be found in
the formula we used, which is, as we discussed earlier, a fairly naive implementation.
But since prior and posterior performances were calculated for each individual KC, the
quality of the KCs themselves is also likely to influence the quality of the overlays.
Therefore, after improving the domain models and Q-matrices based on the learning
curve analysis and didactical task analysis, we reassessed the overlay scores with a
second predictive validity analysis. For the overlays resulting from the new domain
models, we found a Pearson’s correlation coefficient of »=.423. This is a moderate
positive correlation (Evans 1996) that is markedly better than the one for the original
domain models. This implies that the improvements in the domain model indeed
contributed to more sound student models for didactically grounded sequential
modules.

Conclusion

The two research questions addressed in this study have been:
1. Are inspectable student models suitable for implementation in didactically
grounded, sequential statistics modules consisting of closely related tasks?
2. How can didactical analysis inform design of inspectable student models, and, vice
versa, how can student model evaluation methods inform didactical design?
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The suitability of inspectable student models (RQ1) was evaluated at two levels: a
questionnaire asked students about their perception of the student models, while
learning curve and predictive validity analyses were used to assess the internal quality
of the student models.

Results from the questionnaire showed that students valued the student models for
their clarity and close connections to the tasks in the modules. These results are in line
with findings by Bull (2004), namely that inspectable student models prove useful to
students, and suggest that these findings can be extended to sequential instructional
modules. However, the results from the learning curve and the predictive validity
analyses were less positive. The learning curve analysis revealed that in the initial
domain models, only half of the KCs were immediately well-defined. Furthermore, in
the predictive validity analysis, we only found a weak positive correlation of »=.315
between the predicted and the actual student performance. These results provided us
with a starting point for improving our design and addressing the second research
question of the article.

Learning curve analysis combined with didactical task analysis indeed proved to be
an insightful approach for identifying weaknesses in the student models and instruc-
tional modules. We identified four specific problems: tasks with specific purposes in
the instructional modules, concepts addressed from multiple perspectives, tasks involv-
ing multiple concepts and lack of opportunities for in-depth thinking about statistical
concepts.

The first of these problems is a product of the didactical design of sequential
modules: easy tasks deliberately crafted to introduce a concept gently or to emphasize
a particular aspect of a concept. Although such tasks are useful in the module, they are
not suitable for informing student models, because their error rates are very different
from error rates of other tasks involving the same KC. Rather than discarding tasks for
specific purposes, which would be the approach for databases of independent tasks
(Pavlik et al. 2009), the most sensible approach for sequential modules is to exclude
connections between such tasks and the related KCs from the Q-matrix. As a conse-
quence, instructional modules can contain tasks that are didactically meaningful for the
module, but do not particularly inform the student model.

The second problem (concepts addressed from multiple perspectives) results from
our choice of coarser-grained domain models. Since coarser-grained KCs accumulate
evidence from many underlying atomic KCs, the models they produce are often messy.
Yet, in spite of this low modeling quality, coarser-grained KCs can still provide good
navigational anchors, since they are easy to understand and interpret for students and
easy to design for teachers (Sosnovsky and Brusilovsky 2015). Furthermore, learning
curve analysis, combined with a didactical inspection of connected tasks, has long been
recognized as a useful tool for identifying and splitting KCs with too-broad definitions
(Corbett and Anderson 1995).

The third problem also results from a choice made during the design of student
models, namely connecting tasks to all related KCs. For correctly answered tasks, this
approach works well: a correct answer can serve as an element of proof that a student
understands all related KCs. However, an incorrect answer can have as many causes as
there are KCs connected to a task (and their combinations). Didactical task analysis
may reveal which KC is the most likely cause for errors on a task: that is, identifying
which KC is the likely bottleneck for that task. Since errors on the task may cause
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unfairly high error rates (and, thus, inappropriately low overlay scores) for the other
connected KCs, it may be advisable to remove connections between tasks and non-
bottleneck KCs.

Finally, the fourth problem (lack of opportunities for in-depth thinking about
statistical concepts) can manifest itself in two ways: an overall low error rate or lack
of sufficient information from which to generate a learning curve. In both cases, the
combined learning curve and didactical task analyses may reveal weaknesses in the
design of the instructional module itself which would have otherwise stayed unnoticed.
Redesign of tasks should focus on creating more opportunities for students to make
errors that reflect their misconceptions and to learn from these errors.

We used the findings from the combined analyses to redesign the instructional
modules. The resulting inspectable student models analysed markedly better than the
original ones. In the original models, only 34 out of 71 KCs were characterized by
learning curves that decreased according to a power law. In the new models, the
number of such learning curves was 54 out of 59. Moreover, the combined predictive
validity of the new student models improved considerably when compared with the
original models: »=.423 vs the original »=.315. This shows that didactical analysis
can indeed provide valuable information for designing student models. Moreover,
learning curve analysis did not only provide a basis for improving student models,
but also yielded leads for improving the design of the instructional modules themselves.
In this way, the fields of didactics of statistics and inspectable student models can
strengthen each other in the design of interactive and engaging instructional material.

Discussion

The four identified problems together comprised explanations for all increasing learn-
ing curves we found and provided a basis for improving both the student models and
the instructional statistics modules. Whereas the first problem is specific to sequential
instructional modules, the other problems could also apply to sets of independent tasks.
In fact, as mentioned above, Corbett and Anderson (1995) already used capricious
learning curves as motivation for adjusting their domain model by splitting KCs.
Nevertheless, all four problems illustrate how didactical task analysis can inform
explanations for increasing learning curves and, vice versa, how increasing learning
curves can serve to suggest tasks insert of the didactics of statistics and inspectable
student models that need didactical reconsideration.

Although combining the fields turned out to be fruitful in this study, some remarks
are in order. First of all, the setting was a university statistics course. Since university
lecturers often have a large responsibility for designing and arranging their own
teaching, we pursued a design approach that seemed feasible for them. To this end,
we designed modest sets of independent KCs and connected tasks to all related KCs.
This resulted in several increasing learning curves, which we resolved by removing
connections between KCs and tasks for which that KC did not prove a bottleneck.
Drawbacks of removing such connections are that correct answers can no longer be
used to increase the score for such a non-bottleneck KC and that, in fact, different KCs
may prove to be the bottleneck for different students. A more robust solution would
therefore be to implement relations between KCs (Brusilovsky and Millan 2007).
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Further research is needed to establish the feasibility of this approach for university
teachers.

Another drawback of our student model was its rather low predictive validity, which
was probably caused by our choice of a simple numerical overlay model. An
uncertainty-based overlay model (Sosnovsky and Brusilovsky 2015) seems promising
for improving predictive validity. A second advantage of implementing such an
approach may be that uncertainty can be made visible to the students, which might
offer them useful information for their planning and navigation (Bull and Kay 2007).

Finally, in our evaluation of possible improvements to the student models and
instructional modules, no tasks were redesigned and no new data were collected, so
further research is needed to establish more fully the value of these potential improve-
ments. One aspect specifically to consider is whether identified weaknesses in the
instructional modules do indeed concern the modules themselves or, rather, the suit-
ability of the modules for the implementation of a student model. In other words,
otherwise appropriate learning modules might need adjustment (and addition of tasks in
particular) to also collect enough information for every KC in a student model.
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