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Abstract In a sequence of core mathematics courses instituted in 2001 at Brock
University, students learn to design, program and use interactive computer environ-
ments, in order to investigate a self-stated mathematical conjecture, a concept, a
theorem or a real-world situation. In this article, we provide documentation for the
complete implementation process (design and adoption, actual implementation and
student outcomes) of these technology-rich courses, underlining that their development
occurred independent of ideas from the constructionism and microworld literature.
However, we argue for their implicitly constructionist nature and explore the issue of
a form of constructionist implementation acceptable to stakeholders in university
mathematics education. Results of this exploratory case study propose three dominant
elements for an adoptable description: i) students learning (to do) mathematics by
programming and conducting their own mathematical explorations; ii) an explicit aim
of empowering students articulated in pragmatic ways; iii) an implicit acknowledge-
ment of constructionist student learning (e.g., through the explicit role of the instructor
in fostering and valuing student creativity in mathematical work).

Keywords University mathematics - Constructionism - Implementation process -
Adoption - Microworld - Exploratory objects

Very early on in the discussions of the use of digital technology in mathematics
education, Papert (1980a) envisioned a reform of mathematics education where stu-
dents would engage in mathematics learning in a very personal way. Papert (1991) later
termed his approach Constructionism, a paradigm “unique in its attention to the ways in
which meanings are generated during individual and collective bricolage with digital
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artefacts, influenced by negotiated changes students make to these artefacts and giving
emphasis to ownership and production” (Kynigos 2015, p. 361). Papert’s vision was
exemplified by students engaging in mathematical work on Turtle geometry, the first
example of a microworld, namely a self-contained world where students can “learn to
transfer habits of exploration from their personal lives to the formal domain of scientific
construction” (Papert 1980a, p. 177). Since then, there has been much research
concerned with the impact on mathematics learning of using mathematics microworlds
(e.g., Healy and Hoyles 1999; Hoyles and Noss 1987; Kynigos 2007; Sutherland 1987,
Wilensky 1995).

The concept of microworld has evolved over time. Healy and Kynigos (2010)
comment that, whereas mathematics microworlds were initially programmable envi-
ronments accessible to the student, as technology grew more sophisticated, micro-
worlds moved away from computer programming and toward more multimedia envi-
ronments, as well as those that feature the dynamic manipulation of representations. Yet
they also observe, “Programmability [...] has re—appeared recently with the advent of
technologies allowing for programmable simulation-multimedia style tools” (p. 64).
Indeed, some studies have shown how programming supports student understanding of
mathematical concepts (e.g., Leron and Dubinsky 1995; Pesonen and Malvela 2000;
Wilensky 1995) and contributes to the development of critical skills (e.g., Abrahamson
et al. 2006; Marshall and Buteau 2014).

Most of the research on constructionism in university mathematics education has
taken place in a research setting; for example, Wilensky (1995) describes the learning
experience of a university student who used and modified a microworld to understand
Bertrand’s paradox. Only a few research projects have involved full-term,
constructionism-based mathematics courses: for example, Mascaro et al. (2014) discuss
biology masters students learning statistics by use of programming in R, while Kynigos
(2007) examines how mathematics teacher graduate students engage in designing what
he calls ‘half-baked’ microworlds. In fact, not only in university mathematics educa-
tion, but overall, there have been relatively few sustained classroom implementations of
microworlds (Healy and Kynigos 2010). They believe one reason could be that, “The
ideas behind the microworld culture have not yet been presented in a form readily
acceptable not only to school systems, but also to other stakeholders in education” (p.
68). However, this may change, as there has been a recent revival of programming in
national school curricula in several countries — e.g., in France, Sweden, England and
Estonia (Misfeldt and Ejsing-Duun 2015).

By contrast, at the university level, Buteau et al. (2014a) found in their national
survey study that programming was the second most used mathematics technology by
mathematicians in Canada in their research work after computer algebra systems
(CAS). However, surprisingly, among all the eight mathematics technologies surveyed,
only programming was not integrated to the same extent in teaching as it was in
research. Our exploratory case study reported on here modestly addresses this issue of
presenting a ‘form readily acceptable to stakeholders’ in the context of university
mathematics education.

Our research involves a sustained implementation of a sequence of innovative
courses over a dozen years in a university department of mathematics. In 2000, the
Department of Mathematics and Statistics at Brock University revised its core under-
graduate mathematics program, developed a philosophy for teaching and learning, and
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changed to a new program, called Mathematics Integrating Computers and
Applications (MICA), which included the addition of three non-traditional and inno-
vative core courses called MICA I-I-IIT (Ralph 2001)." An overview of the MICA
program can be found in Muller et al. (2009), who emphasize that it “values allocating
time in class for the students to develop and explore conjectures, to put forward
arguments, to discuss and develop their logic, and to trace their own problem solving
processes” (p. 64). Furthermore, the MICA I-II-1II courses “provide opportunities for
students to use their creativity and to also develop intellectual independence [while]
they develop and implement their own [exploratory objects]” (p. 64). More precisely,
students in MICA courses learn to design, program and use interactive and dynamic
computer-based tools (that we called exploratory objects) for the systematic investiga-
tion of a mathematical concept, theorem, self-stated conjecture or real-world situation;
for examples, see the MICA url (n.d.).

The MICA courses did not evolve out of the constructionist movement. They
were the brainchild of mathematician Bill Ralph and were subsequently en-
dorsed by the department. In other words, these courses were initially designed
(and adopted) within a mathematics department, without a mathematics educa-
tion research context or purpose. Nevertheless, as a result of a recent literature
review (Marshall and Buteau 2014), we have characterized exploratory objects
as a ‘microworlds type’ (Marshall et al. 2014), which led us to believe that the
MICA courses might constitute a constructionist approach. The investigation of
the constructionist character of the MICA courses forms the first part of our
study. In it, we explore elements and aspects used by the department (i.e., the
stakeholders), in relation to constructionism, to describe the intended MICA
courses. As such, the study aims to describe the elements of a ‘form’ that
resonated with stakeholders in a university mathematics education context.

The innovation under study is beyond an individual instructor implementa-
tion: to date, five faculty (including Ralph) out of the current fourteen in the
mathematics department and three (MICA graduate) part-time instructors have
taught the MICA courses. Furthermore, the department has until now viewed
these courses as part of the core of undergraduate mathematics education,
alongside topics such as Calculus, Algebra and Statistics. Systemic innovation
as part of core university mathematics courses is relatively rare, as highlighted
by Hillel (2002):

Steen has written that ‘strong departments find that they replace or change
significantly half of their courses approximately once a decade’ and ‘as new
mathematics is continually created, so mathematics courses must be continually
renewed’ (Steen 1992). These on-going updates to the curriculum can be
regarded, in a sense, as ‘deterministic’ aspects of curriculum change, ones that
do not put into question the purpose, goals, and means of undergraduate educa-
tion. (p. 61)

! Changes to the program have occurred recently and should be live starting in Fall 2015, including the
program name change to ‘B.Sc. in Mathematics and Statistics’. MICA courses are now core requirements for
four of the five concentrations, one of which is itself named MICA.
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This study thus also contributes an example of sustained constructionist implemen-
tation over 12 years in core courses within a university mathematics program.

In this article,” we report on our exploratory case study focused on the question:
How could constructionist mathematics courses at the university level be described in
order for stakeholders to endorse and support its implementation? In the second
section, we describe the theoretical framework of the study and in the third the
methodology is presented. A documentation of the design and implementation of the
sequence of MICA courses as part of a core undergraduate mathematics program forms
the fourth section. In the subsequent section, we argue for the implicit constructionist
character of the MICA course implementation, while in the sixth we examine the
‘form’ of the intended course implementation that was adopted by the stakeholders.

Theoretical Framework

For the purpose of our exploratory study, we view the complete process of implemen-
tation of an innovation through three different stages, starting with its design (stage 1),
followed by its actual use (stage 2), and ending with student outcomes as a result of the
innovation realization (stage 3). This simple model is in line with Fullan and Pomfret’s
(1977) discussion concerning implementation of educational innovations.

We describe stage 1 as encompassing “both intended or planned use and [... the]
decision to use, the latter being defined as adoption” (Fullan & Pomfret 1977, p. 336).
This stage usually results in a form of description of intentions and planned use — e.g.,
of the intended objectives, mathematical content, tasks and learning outcomes — that
ultimately get adopted by the policy makers. The innovation design process may
involve, for example, a collaboration between teachers and education researchers
who may or may not be part of those making the decision to adopt the innovation.

Stage 2, the implementation of the innovation proper, “refers to the actual use of an
innovation or what an innovation consists of in practice” (p. 336). As Fullan and
Pomfret stress, implementation is “not simply an extension of planning and adoption
processes. It is a phenomenon in its own right” (p. 336). These authors add that:

the definition does not assume that an innovation is defined in advance by
developers [... and] that regardless of who develops an innovation, when it is
developed, or how it is developed, some implementation will have occurred at the
point when certain new characteristics are actually in use in a social system. (p.
336; emphasis in original)

This would support the view that, for example, a constructionist implementation
could ‘un-intentionally’ take place if all characteristics of such an implementation were
realized. We describe stage 2 as involving the implemented innovation by the teacher
and students in the form of a sequence of realized (mathematical) tasks within or
outside (e.g., assignment) the classroom, including an account of the teacher/student
roles during their activity. This stage involves both the teacher and students wherein the

2 This article elaborates on work presented at the Constructionism and Creativity conference: (Buteau et al.
2014c).
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teacher ‘provides’ an instructional intervention that is ‘received’ by the students (Zvoch
2012). In short, the teacher facilitates a learning environment in which s/he guides and/
or invites students to participate in certain ways. Stage 3 of the complete process of
implementation of an innovation concerns student outcomes, (i.c., student achieve-
ment). It may, for example, take the form of a description of individual and/or collective
knowledge and competencies learned through the innovation implementation. This
stage is thus solely related to students.

In university education, the ‘teacher’ and ‘students’ involved in stages 2 and 3 of the
implementation process are generally well understood. These individuals occupy
somewhat similar roles to those in school education. However, there is a notable
difference between university and school education contexts for the ‘stakeholders’
involved in the innovation designed in stage 1. In many school systems, a reform in
curriculum is initiated through a political system and a ‘committee’ of stakeholders is
struck that may include teachers, school board members, educational experts from the
discipline and from education as well as individuals from other interested parties. In
other words, only a small percentage of the ‘stakeholders’ from stage 1 are involved as
‘teachers’ in stage 2. By contrast, in a university department or teaching unit, the
‘stakeholders’ involved in the design stage represent a majority or all of the members of
the department or teaching unit (Buteau and Muller 2014). This is especially true when
the innovation is focused on core or required components of the program.

Within this model of the implementation process of an innovation, we now embed
principles of constructionism, defined by Papert (1991) in the following way:

Constructionism — the N word as opposed to the V word — shares constructivism's
connotation of learning as ‘building knowledge structures’ irrespective of the
circumstances of the learning. It then adds the idea that this happens especially
felicitously in a context where the learner is consciously engaged in constructing
a public entity, whether it’s a sand castle on the beach or a theory of the universe.

(- D

Thus, the basic principles of the constructionist paradigm involve learning situations
or environments that are student-centred, where students build or construct shareable
objects that are somehow ‘tangible’ (Papert 1990). In other words, it involves learning
through making (Papert 1991). Through activity, learners are ‘consciously engaged’ in
the construction (i.e., the learner must be reflective about his/her construction work).
The other key characteristic defining constructionism is an engagement in meaningful
projects: “people construct new knowledge with particular effectiveness when they are
engaged in constructing personally meaningful products [..., i.e.,] something meaning-
ful to themselves and to others around them” (Kafai and Resnick 1996, p. 214).

Although usually not explicitly mentioned when defining constructionism, two other
ideas are often connected to it. First, the idea of students engaging in “powerful ideas”
(Papert 1980a). Take, for example, the powerful idea mentioned by Papert in the 1972
Second International Congress on Mathematics Education: “Let the student learn
mathematics as applied mathematics [...] in the sense that mathematical knowledge
is an instrument of power, making it possible to do things of independent worth that
one could not otherwise do” (as reported in Hoyles 2014). The idea of students
engaging with powerful ideas is related to giving students a sense of empowerment
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(Papert 1996). For example, Papert (1980a) stresses this characteristic in the context of
Turtle geometry: “Each new idea in Turtle geometry opened new possibilities for action
and could therefore be experienced as a source of personal power” (p. 129). Second,
the idea of creativity has been connected to constructionism from its early days.
Girvan (2014) observes: ““A creative act is an instance of learning’ (Guilford 1950)
and throughout constructivist learning experiences there is evidence of learners
engaging in the construction of creative artefacts to explore, test and extend their
understanding” (p. 367).

Constructionist situations usually involve open projects that are often computer-
based, e.g., with the Turtle geometry microworld. For Papert (1980b), microworlds
involve objects “to think with” and “allow a human learner to exercise particular
powerful ideas or intellectual skills” (p. 204) through exploration and discovery in a
knowledge domain. As mentioned earlier, the concept of microworld has evolved over
time: A recent definition of microworld is provided by Mavrikis et al. (2008):

Mathematical microworlds belong to a particular genre of exploratory learning
environments (ELEs) that allow students to explore not only the structure of
accessible objects in the environment, but also construct their own objects and
explore the mathematical relationships between and within the objects, as well as
the representations that make them accessible. (p. 41)

Furthermore, Hoyles and Noss (2014) indicate that constructionism as a theoretical
framework should be categorized as a ‘framework for actions’, that is, “guiding
principles that would help you make decisions of the kind ‘what should I do next?’,
‘how does one piece of information relate to another piece of information?’” (8:04). In
line with their categorization of constructionism as a framework for action, its defining
characteristics can mainly be identified in stage 2 of the implementation model. Indeed,
the construction of shareable, meaningful objects and the student-centred characteristic
of the task is localised in the learning environment facilitated by the teacher (hence
stage 2). It is in this environment that the learner might reflectively engage in the
construction of products, and thereby learn, which crosses over from stage 2 to stage 3,
the student outcome stage. A learner’s sense of empowerment is also part of this latter
stage. In short, in addition to the characteristics mentioned above about the implemen-
tation, the specifics of the classroom tasks should be such that they prompt (or have the
intention to prompt — design stage 1) student learning and empowerment.

Methodology

Our exploratory case study addresses: How could a constructionist mathematics course
be described in order for stakeholders to endorse and support the implementation? The
case study method is well justified due to our focus on “how” and which contexts are
relevant to the phenomenon under study (Yin 2003). There are two main parts to this
study: 1) the characterization of the MICA course implementation as constructionist; 2)
the description of this constructionist innovation that enabled stakeholders to endorse it.
We examine this implementation using the three stages described in the previous
section. This analysis results in a documentation of the course implementation in the
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next section that is then analyzed by identifying: i) its constructionist characteristics in
the section after that, and ii) dominant elements used in the final formal course
description in relation to constructionism in the penultimate one.

For the design and adoption stage, two types of data were collected. First, a two-hour
informal interview was conducted in 2013 with Bill Ralph, the principal faculty
developer of the MICA courses. The aim was both to explore the ideas, intentions
and insights that led him to propose the MICA I-II-III courses and also to provide some
understanding of the course design intentions. Second, the official documents recording
the department’s adoption of the MICA courses were studied. These included: i) the
unpublished document proposing a new undergraduate program (i.e., the MICA
program) written by the departmental Task Force Committee (TFC) in 1999-2000;
ii) the Brock University Calendars since 2002 listing course descriptions; iii) the 2013—
14 course outlines by the MICA I-II teaching faculty. These documents are justifiable
as relevant sources due to the double role of faculty as decision makers for the
departmental adoption of the courses and as teachers of the courses themselves.
Relevant excerpts in these documents were selected and chronologically summarized
according to each MICA course.

The innovation implementation stage is addressed through a description of the
mathematics tasks within each of the courses. No data was additionally collected for
this stage as we three authors collectively have a profound knowledge of the MICA
courses and possess all course material. Indeed, Muller was Chair of the department
when the MICA program was developed; Buteau has taught MICA I since 2005, and
ever since then has been carrying out, with Muller, reflective work about MICA
courses; Marshall is a graduate from the MICA program who has worked as a teaching
assistant for the MICA I and MICA III courses, and who also joined Buteau and Muller
in 2010 in their reflective work on these courses. Based on our understanding of MICA
courses and building on these different perspectives in implementation (including
lecture notes, assignment guidelines, course outlines, attending computer lab sessions,
etc.), we describe the course tasks. Despite the fact that self-reports can be inaccurate
and misleading (Fullan and Pomfret 1977), we nonetheless claim that our diverse roles
on the MICA courses have contributed to the accuracy of the description as a kind of
triangulation method.

The student outcome stage is looked at through the students’ views of their MICA
course experience. For this part, we use data from a previous study (Buteau et al.
2014c, d). A voluntary and anonymous on-line survey was conducted during laboratory
sessions of the MICA I-II courses in March 2013. One of the questions asked
participants to describe the MICA courses to a fictitious student from another institu-
tion, and their responses provide insights into students’ own (learning) experiences and
views on the MICA courses. Students’ responses were examined with an emerging
theme approach. In total, 60 MICA students voluntarily participated in the study
distributed as follows: 27 MICA 1 students, 29 MICA II students, and 4 MICA teaching
assistants (all of whom were themselves former MICA students); 26 female and 34
male students; 23 mathematics majors, 25 future mathematics teachers, and 12 students
enrolled in other programs. This student sample represented 57 % of the MICA student
population and was broadly representative of the MICA I and MICA II demographic,
but with a slight numerical bias towards responses by male students and future
mathematics teachers.
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A History of Microworld-Based MICA Course Implementation:
from their Creation to the Student Experience

In this section, we present a documentation of the MICA course implementation: the
ground ideas that led to the courses in the first sub-section; the formal description of the
courses adopted by the department in the second; classroom implementation in the
third; the student learning experience in the last.

The Design: Leading to the Creation of the MICA I-II-III Courses — Why? How?
What?

The creation of the MICA I-II-1II courses evolved mainly from Bill Ralph’s outline and
recommendations, which were used by the Brock departmental TFC to develop a new
teaching and learning philosophy for the Department. The new core MICA courses
were designed, recommended, and first taught by him. As a mathematician, Ralph has
broad mathematical interests as demonstrated by his research in financial mathematics,
algebraic topology, mathematical arts, modelling and simulation where he often assists
researchers in other disciplines. He is also a person with great artistic talents (pianist,
visual artist). In his teaching, Ralph has an honest interest in his students’ success in
both life and mathematics. From a recent pragmatic publication (Ralph 2014), one can
gain access to his most current views of technology use in mathematics education,
where he proposes:

In a future that accommodates both the traditional and technological flavours of
mathematics, students might be encouraged to learn two complementary types of
knowledge: autonomous knowledge consisting of skills and memorized facts that
can be demonstrated without the assistance of technology, and linked knowledge
that is contingent upon access to expert systems. (p. 22; emphasis in original)

Ralph lists some of the mathematics education tasks that will need to be included for
students to develop their expertise in linked knowledge. This list includes, among
others, “Using expert systems to explore concepts and perform calculations” and
“Writing and using computer programs to build models, create simulations and inves-
tigate mathematical problems” (p. 22) which, as we will see in the following, have
served to shaped the MICA courses.

When asked in a two-hour interview about why he came to create the MICA
courses, Ralph identified two important influences: external reality and his personal
experiences. First and foremost, ‘external reality’ meant the decreasing number of
mathematics majors at Brock University, a concern for many university mathematics
departments at the turn of this century. As well, Ralph was aware that most of Brock’s
mathematics majors were not pursuing graduate studies, but entering the work force. At
the time, he felt that the atmosphere and the degree of collegiality in the mathematics
department were such that major changes would be seriously considered. He foresaw
the opportunities offered by this changing environment and was given a half-year
course release by the Chair to develop and recommend a reform of program(s) for
mathematics majors, a task he took very seriously. These recommendations led to the
creation of the sequence of core MICA I-III courses.
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In the area of his personal experiences, Ralph mentioned that he had previously
taken a 3-year leave of absence from 1995 to 1998 to design and implement, with a
professional team, his Journey Through Calculus software (Ralph 1999). This experi-
ence caused him to rethink ideas concerning mathematics education at the undergrad-
uate level in a technological era. He had taught undergraduate mathematics with digital
technologies since the late 1980s. In addition, for many years he had volunteered and
worked with individual mathematically talented school students from the Niagara
Region. These students had completed the Ontario school mathematics curriculum
well ahead of the usual schedule, and teachers turned to the mathematics department for
assistance in continuing to engage them in mathematics. Ralph looked for creative
projects for the students to investigate and came up with new ways to present
mathematical ideas. He found that these students, many of whom had a programming
background, became completely immersed in their learning when they programmed an
exploration of a mathematical concept or application and then communicated their
understanding visually through an interface. He was pleasantly surprised by their
engagement and enthusiasm, and also by the amount of time they were willing to
devote to their tasks.

Ralph said that one of his priorities was always to structure his teaching environ-
ments so that students would have fun and be engaged when they learned to do
mathematics. He found that students could have fun and be engaged in different
situations, for example, when they felt they were being creative, working in self-
selected projects, achieving in tasks independently, or discovering an unexpected result.
When Ralph tutored a mathematically talented school student, he offered some flexi-
bility for the individual to choose an area of mathematical interest, and he supported the
student’s aptitude to program as a means to creatively explore mathematical concepts
and applications. These experiences, together with his research experience, contributed
to an evolution of his view that programming be an integral part of numeracy.

In developing the MICA courses, Ralph commented that he aimed at re-creating the
individual experience of his gifted students in a mathematics class. He wanted students
to be creative and personally involved so that each one could claim: “T did something
related to me”. He envisioned a classroom rich with discussion and interaction with
classmates, faculty and technology. Ralph envisaged a MICA terminal degree that
would meet the needs of a great majority of our mathematics students who do not
continue into graduate studies — a terminal degree that would provide a rich experience
for exploring and using mathematics in wide-ranging work environments. The MICA
program would include developing a capacity for programming and gaining experience
in experimentation, simulation and modelling. This, together with elements of the
elaborated teaching philosophy, is actually how he described the MICA courses. As
will be seen in the next sub-section, this was reflected in the new program proposal,
including the innovative core MICA I-II-1II courses, submitted to the department in
2000 by the TFC, of which Ralph was Chair.

The Adoption of the MICA Courses
When creating the MICA program in 1999-2000, the departmental TFC proposed a
Teaching Philosophy that included the statement, “To encourage creativity, the three

MICA courses will challenge students with difficult projects that require them to
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develop their own strategies for handling complex real-world mathematics problems.”
This evolved into a more concrete statement as found in the current MICA program
description:

students [in MICA I-II courses] will confront problems from pure and applied
mathematics that require experimental and heuristic approaches. In dealing with
such problems, students will be expected to develop their own strategies and
make their own choices about the best combination of mathematics and comput-
ing required in finding solutions. (Brock calendar 2014)

From this, individual MICA course proposals were detailed in the program plan that,
in turn, led to short course description summaries in a format required by the institution,
and that are currently still in use for MICA I and MICA 1I courses. We provide details
for each course.

The MICA T half-year course was initially proposed as “the first in a sequence of
three courses that emphasize the creative application of mathematics to solving prob-
lems using computers”. Its proposed course objectives are:

the primary goal of the MICA course sequence is to help students apply math-
ematical concepts by using computers to creatively explore solutions to mathe-
matical problems. The second goal is to help students build a portfolio of
techniques which they are confident in applying to a diverse range of mathemat-
ical problems that may or may not have exact solution.

This description is not specific to the MICA I course, but rather provides information
about the overall viewpoint of the MICA courses. However, a detailed list of mathe-
matical topics, together with specific planned computer programs, and a list of mini-
mum skills, were presented. The mathematical topics are found, in part, in the official
course description in Brock calendar (2014), unchanged since 2001: “Exploration of
ideas and problems in algebra, differential equations and dynamical systems using
computers. Topics include number theory, integers mod p, roots of equations, fractals,
predator—prey models and the discrete logistic equation for population growth”. For
many years, the course syllabus distributed to students has declared the following
course philosophy:

This course will encourage you to be creative in using computers to explore
mathematical problems and communicate mathematical ideas. The lectures will
offer you interesting mathematical problems and points of view and it will be
largely up to you to choose how to explore these problems and communicate
what you find.

The full year MICA II course was proposed by the TFC as “Applications of
mathematics including simulation and modelling. This course is the second of the three
MICA courses that focus on the connections between mathematics and technology.”
The course objectives provide insights into the course: “Mathematical models of all
types; theory and application. Students will be expected to do at least two major
projects that demonstrate creative application of the course content. One of the projects
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must use current data from research at the university”, with a suggested textbook on
mathematical modelling (Mooney and Swift 1999). Similar to the MICA I course, the
TFC presented a detailed description that has been summarized in the institutional
format:

Theory and application of mathematical models; discrete dynamical systems;
time series and their application to the prediction of weather and sunspots;
Markov chains; empirical models using interpolation and regression; continuous
stochastic models; simulation of normal, exponential and chi-square random
variables; queuing models and simulations, use of a computer algebra system.
(Brock calendar 2014)

The objectives listed in one of the two MICA II teaching faculty’s 201314 course
syllabus provides additional insight into the nature of the course: “The main objective
of this course is to learn basic methods of mathematical modelling and of ‘experimental
mathematics’. Computational and algorithmic methods and use of computers simula-
tions will be strongly emphasized. Topics include: working with data, discrete deter-
ministic dynamics, ...”. The other faculty’s 2013—14 course syllabus lists examples of
microworld-type projects that each student is to create during the course; for example,
“Simulate battles between armies. (Stochastic Processes and Differential Equations)”
and “Zoom in on bifurcations in chaotic systems. (Discrete Dynamical Systems)”.

As for the full-year MICA III course, it was proposed by the TFC as “Advanced
applications of mathematics including modelling and simulation. This course com-
pletes the mathematics/ technology sequence begun in MICA”, with similar objectives
as for MICA 1I, but with mention of the “Study of advanced mathematical problems”,
and with a suggested textbook on advanced mathematical modelling (Mesterton-
Gibbons 1995). The MICA 1II official description summary, from 2001 to 2009,
reflects the proposed course: “Advanced applications of mathematics involving com-
puters. Topics may include deterministic models; equilibrium; optimal control; proba-
bilistic models; [...]”. This original course content was, however, never taught (cf.
issues of ‘fidelity’ — see Fullan and Pomfret 1977). The content was instead modified
by the two faculty who taught the course to be in line with their own mathematical
interests. Some students questioned the core relevance of this course to their program of
study. In 2008-09, the departmental curriculum committee raised the issue of having
this course, as presently taught, classified as a ‘MICA’ course, since it was very
content-driven (i.e., about partial differential equations), and debated whether this
course should remain a core course. The Department decided to keep the course content
as it was presently taught, but to split the full-year core course into two one-semester
elective courses. In other words, the course, as presently taught, was not perceived as a
‘MICA’ course. The description of these two elective courses, now called Applied
Mathematics with Maple and Partial Differential Equations in C++, can be found in
the Brock calendar (2014).

Implementation: the Mathematical Microworld Tasks in MICA Courses

As mentioned in the introduction, in the three-term MICA course sequence students
learn to design, program and use interactive digital environments in order to investigate
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a mathematics conjecture, theorem, concept or real-world situation, which we called
‘exploratory objects’ (Muller et al. 2009). Mavrikis et al.’s (2008) view of microworlds
maps closely onto our perception of exploratory objects in the Brock MICA courses:
MICA students construct (i.e., design and code) digital environments to explore
mathematics concepts and their relationships represented in diverse forms (in the code
and in the interface). This activity of creating and using mathematical microworlds is
central to the MICA courses (Buteau et al. 2014b) and is well reflected in each MICA
course’s evaluation scheme that assigns some 78 % of the total grade to microworld
projects. In the following, we focus on a description of the course implementation
around student microworld activity.

The MICA course format for each term is two hours of lecture and two hours of
computer laboratory sessions weekly. In the first-year MICA course, students learn to
program (in VB.NET) and to create and use the mathematics microworlds (i.e.,
exploratory objects). Whereas lectures provide the mathematical content, the laboratory
sessions, complemented by four individual microworld projects, have been carefully
designed to support students’ learning of programming for their creation and use of
mathematics microworlds (Buteau and Muller 2014). In the full second-year MICA
course, students create and use mathematics microworlds in relation to a broad range of
topics through ten individual microworld projects. VB.NET is a programming language
similar to C++. It is used in MICA courses through Visual Studio, a development
environment which in particular enables easy design of graphical interfaces through its
drag-and-drop functionality. Since VB.NET contains basic mathematics functions but
no mathematical symbolic or graphical package as found in a CAS, the programming
of mathematics (including graphical and visual representations) is therefore at the core
of the MICA student microworld activity.

Among the 14 individual microworlds that MICA students construct over the three
terms, 11 projects are assigned through guidelines provided to students. For example,
each first-year MICA student usually creates a microworld to explore the dynamical
system based on a cubic equation involving two parameters and then uses it to describe
its behaviour (Fig. la). Also, each second-year MICA student usually creates a
microworld that involves the process of cellular automata to simulate epidemics, in
order to examine the effects of inoculation on the spread of epidemics, as well as the
associated cost (Fig. 1b). In short, the mathematics content covered in the MICA I
course has remained more or less unchanged since 2001, whereas the content in MICA
IT courses has evolved both over the years and according to the instructor’s
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Fig. 1 Screen shots of two assigned microworlds by student Ramona (Buteau et al. 2014b)
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mathematics interests. It includes topics that lead students to “do things with a
computer that would be impossible without it” (Healy and Kynigos 2010, p. 65); for
example, discrete and continuous dynamical systems, RSA encryption; Markov chains,
Buffon’s needle problem and Monte Carlo integration, the Lotka-Volterra predator—
prey model, Lanchester’s equation for simulation of battles, modelling of traffic light
synchronization, statistical applications to the stock market — see Buteau et al. (2014b)
for an example of the complete mathematics curriculum covered in MICA courses by
the 2011-12 cohort.

The other three microworld projects are on a topic individually selected by the
students themselves: they are completely open projects and these may be done in pairs.
For example, MICA students Matthew and Kylie wondered if it were better to walk or
run in the rain (Fig. 2a), while Adam investigated the bounded area, as the exponent
increases, of the iterative complex function defining the Mandelbrot set (Fig. 2b). The
creation and use of microworlds is done only in part during laboratory sessions, and
mostly outside classroom time as assignments.

In short, for each of his/her microworld projects, a student starts from scratch (no
interface; no code), builds an exploratory learning environment (interface and code for
functionalities) and uses it to conduct a certain mathematical investigation that s/he
summarizes in a written report (including any findings). Based on insightful observa-
tions, a preliminary task analysis led us to detail the MICA student’s process of creating
and using a mathematics microworld as a sequence of steps and cycle (Buteau and
Muller 2010); see Fig. 3. In Buteau and Muller (2014), we exemplify the process based
on a thorough examination of Adam’s microworld (Fig. 2b) and his written report, as
well as an informal interview with Adam:

Adam Profetto, enrolled in MICA II course, was interested in investigating the
Mandelbrot set. His initial aim was to visualise the set and its self-similarities,
together with its related Julia Set. Since the Mandelbrot Set is defined by use of a
recursive quadratic polynomial, Adam set his investigation to consider also
higher degree polynomials (Step 1). As mentioned in the Special Thanks and
Credit section of his Exploratory Object, Adam researched his topic by use of a
textbook (Step 2). He developed his Exploratory Object to visualise sets

» . »
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Fig. 2 To the /eft, Matthew and Kylie’s real-world situation microworld: “Is it better to walk or run in the
rain?”; to the right, Adam’s pure mathematics microworld about the bounded area of the iterative complex
function defining the Mandelbrot set as the exponent increases. a Matthew and Kylie’s real-world situation
microworld; b Adam’s pure mathematics microworld
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Fig. 3 MICA student’s development process model of a microworld for an investigation of a mathematical
concept, conjecture, or application (Buteau and Muller 2010; Marshall and Buteau 2014)

(overview) and to graphically explore the similarities through a manual zoom-in
access: with the mouse or with manually entered complex plane coordi-
nates. The related Julia Sets are displayed through a mouse-click on a
point in the Mandelbrot set (Steps 3—4). Adam writes, “[This Exploratory
Object project] opened up a world of interest for me and pushed my
programming and patience to the max.” Adam mentioned in an informal
discussion that whilst exploring graphically the Mandelbrot Set with a
systematic increase of the integer exponent parameter (Step 5), he became
intrigued as to how it affected the area of the bounded regions defined by
the sets. He thereafter extended his Exploratory Object (Refining cycle) to
systematically calculate the area of the bounded regions, as the exponent
increases, by repeating a Monte Carlo Integration approximation method.
Adam chose to have the results represented in a two-dimensional graph in
Observations and Findings section of his Exploratory Object. Adam
proudly describes his findings in this section:

Firstly, the area of the Mandelbrot Set was found to be Pi/2!! This is amazing....
This is where the magic starts to happen. As the exponent n is increased the areas
of the generated regions will also start to increase. However, shortly after, they
start to converge back to a fixed value. Can you guess what that fixed value is?
Yes, that’s right. Pi/2!!

His excitement was utmost after he searched on the Web about this result but said
he could not find evidence of it as a known result. Adam (Profetto) therefore
summarised this result as ‘Profetto’s Conjecture’ not only in his written report,
but also in his Exploratory Object (Step [7]). (pp. 171-2)

We argue that this model (Fig. 3) indirectly provides some insight into a student’s

potential engagement in the mathematical task when creating and using his/her micro-
world as part of the MICA courses. See Buteau et al. (submitted) for a detailed
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discussion of a MICA student’s mathematics learning experience throughout her 14
microworld projects over a period of 16 months.

The Student Outcome: Students’ Views on their Learning Experience in MICA
Courses

The MICA I-II student and teaching assistant participants (n=60) indirectly gave us
their views on their learning experience in the MICA courses through a survey (Buteau
et al. 2014b, d). The main idea that dominates their responses to the open question
about how they would describe the MICA courses is to learn (to do) mathematics with
programming/technology/computing, which, as such, stresses the non-content-driven
characteristic of the MICA courses. This is illustrated in the following selected six
participants’ responses:

[Student A] It is a math course that provides you the tools necessary to begin
exploring mathematical concepts using technology. It is incredibly interesting and
very hands-on.

[Student B] The courses teach you how to use an interactive programming
environment [...] and allows you to use it to investigate different mathematical
theorems and concepts. It is very effective because it allows you to make your
own program to be able to see how this concept works, and play around with it to
reach a further understanding of the concept.

[Student C] You create programs that use [mathematical] concepts and bring
them to life to create a more concrete understanding of math and what it
accomplishes.

[Student D] It involves learning programming language to run mathematical
simulations. In addition, it is also very beneficial to future teachers as it provides
a unique opportunity to visually express math concepts and engage student
learning.

[Student E] You take real life math problems and write a program on the
computer to react [to] the said problem. You use your program to graph and
simulate the problems.

[Student F] Overall, these courses are meant to provide students with both the
tools and the mindset to tackle a wide variety of mathematical problems effi-
ciently, through the use of modern computer softwares.

Many participants also alluded to the fact that their programming and use of
mathematics microworlds enhanced or made more concrete their understanding of
mathematics concepts (e.g., Students B and C). For example, Student B suggests
engaging in articulating relationships involved in the investigated concepts, which
Noss and Hoyles (1996, p. 54) associate with the process of mathematics learning.
Students also acknowledge engaging in exploring, investigating and simulating
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mathematics concepts and real-world situations (e.g., Students A, B, D, E, and F),
which we interpret as an indication that the students view having developed the skills
and procedures to engage in this kind of mathematical work.

The Implicit Constructionist Nature of MICA Courses

As mentioned in the Introduction, the MICA courses did not evolve out of the
constructionist movement (Harel and Papert 1991). Nevertheless, we argue that the
MICA courses can be categorized as constructionist.

In MICA courses, students construct (or make) at least 14 microworlds (i.e., digital
objects that are shareable) during their undergraduate studies, with the aim of investi-
gating a mathematical concept, theorem, conjecture or application. As part of their
microworld projects, students sum up their mathematical investigations in a written
report. This could be interpreted as aiming at prompting students to engage consciously
in their construction (or at least to be reflective post-construction and use). These
microworld projects being the central tasks of the MICA courses indicates that it is
‘intended’ that students learn mathematics by making. In particular, the model shown in
Fig. 3 suggests that a MICA student might engage in constructing, changing, extending
and exploring the rules and relationships of a microworld itself through succinct
feedback. This is what Healy and Kynigos (2010, p. 64) refer to as “a kind of learning,
which characterises the constructionist perspective of Papert et al. (Papert 1991; Kafai
and Resnick 1996)”.

MICA courses involve open computer-based projects, as constructionist situations
often do (Papert 1991). In particular, the implementation of the three original micro-
world projects for which students independently determine their topics provide oppor-
tunities for students to engage in an exploration meaningful to them (see Fig. 2).
Furthermore, the departmental TFC document suggests that the department seriously
considered the idea of engaging in projects meaningful to others. For example, in the
description of MICA 1I, it states: “One of the [two major] projects must use current data
from research at the university”, pointing to projects meaningful to the home university
community. We also suggest that the overall mathematics content of MICA I-1I courses,
which has been carefully selected to be amenable to learning mathematics by creating
and using microworlds, supports this constructionist principle. In short, this suggests
that the department has implemented a learning environment through the MICA
courses that provides an opportunity for, and encourages students to engage in, the
constructionist learning of mathematics.

Students have described their experience in MICA courses not only in terms of the
making of mathematics microworlds, but also suggesting a perceived ‘tangible’ math-
ematics; e.g., “[it is] very hands-on” and “[you] create programs that use [mathemat-
ical] concepts and bring them to life”. Furthermore, all the student comments cited in
the previous section express a sense of empowerment. For example, Student B appears
to have reached a certain fluency in creating microworlds and thereby feels confident
enough to learn mathematics on his/her own with the help with his/her self-generated
microworld. The student also indicates appreciation of this intellectual independence by
using the expression “it is very effective”. We add that results of our preliminary
empirical study (Buteau et al. 2014d) about competencies developed through the MICA
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courses suggest that students perceive developing, to some greater or lesser extent,
fifteen of them. These include the following: i) self-motivation to learn/do mathematics;
ii) engagement in the process of mathematics research; iii) learning/doing mathematics
independently.

We suggest that this trio provides further indication that the students perceive being
empowered through their MICA course experience. However, for some students, their
engagement in MICA courses does not seem to provide an empowering constructionist
experience, as was underscored by a small number of our survey participants. For
example, a student indicated: “I was not able to self-motivate myself. Sometimes I was
not even able to understand these mathematical models because I was too focused on
getting the code right. It was a very stressful course.” For this student, and for a few
others, the evolving programming requirements throughout the courses were such that
they prevented them from engaging fully with the mathematics.

Looking at the early course development, we suggest that, in fact, these courses
intended to meet what can be described as constructionist principles. First, we
postulate that Ralph might have observed his tutored individual gifted school
students experiencing constructionist learning of mathematics. Indeed, Ralph’s
experience could be related to what Papert (1980a) had observed with kids
working with LOGO Turtle: “I have seen children engaged in animated conversa-
tions about their own personal knowledge as they try to capture it in a program to
make a Turtle carry out an action that they themselves know very well how to do”
(p. 28). Papert further commented: “the child is learning technical knowledge as a
means to get to a creative and personally defined end. There will be a product.
And the teacher as well as the child can be genuinely excited by it” (p. 134).
Second, Ralph mentioned that he aimed at recreating the individual experience of
his gifted students in the MICA mathematics class. Not only does ‘learning
mathematics by making’ seem to have been an explicit intention by Ralph when
designing the MICA courses, but also the engagement in meaningful projects, for
example wishing that each student in the class could express: ‘I did something
related to me’. In addition, he indicated that he envisioned a ‘non-traditional’
classroom to implement the paradigm he had in mind. This need for a different
teaching paradigm when integrating mathematics microworlds into the classroom
was mentioned, for example by Papert: “the relationship of the teacher to learner is
very different: the teacher introduces the learner to the microworld in which
discoveries will be made, rather than to the discovery itself” (1980b, p. 209).

The ‘Form’ of Constructionist Innovation Adopted by the Stakeholders

When the MICA courses were created and adopted, Ralph not only provided a vision,
but also the necessary leadership to implement it. At that time, the mathematics
department was: i) experiencing a substantial decrease in student enrolments; ii)
collegial in its approaches and interactions; iii) led by an empowering Chair. Also,
many of the faculty were seeing the benefits of using appropriate technology in learning
of mathematics. In this section, we examine the dominant elements defining MICA
courses used by the department (i.c., the stakeholders) to describe the intended,
implicitly constructionist, implementation formally.
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The adopted description of MICA courses involved: i) pragmatic pedagogical
aspects; ii) intended learning outcomes; iii) aspects of the philosophy concerned with
the courses. Three dominant elements seem to prevail throughout the formal docu-
ments, all of which are explicitly or implicitly connected to constructionism. First and
foremost, the MICA courses contain individual student mathematics projects involving
and requiring engagement with programming technology, thus is implicitly related to
‘learning by making’. For example, the departmental TFC explicitly mentions open
projects (e.g., for the MICA II course): “Students will be expected to do at least two
major projects that demonstrate creative application of the course content”. A detailed
list of specific planned computer programs, aligned with mathematical topics, was also
provided, highlighting explicitly planned student microworld projects.

A second dominant element that occurs is in the context of student outcomes: the
idea of empowering students described in pragmatic ways. For example, in the teaching
philosophy, one reads: “students will be expected to develop their own strategies and
make their own choices [... for] finding solutions”. It also indicates, with a more direct
approach, that the goal “is to help students build a portfolio of techniques which they
are confident in applying to a diverse range of mathematical problems”. In the MICA 1
course syllabus, the idea of empowering and engaging students in mathematics
learning/doing is stressed again, also pointing to a different pedagogy: “This course
will encourage you to be creative [...] and it will be largely up to you to choose how to
explore”.

A third dominant idea in the MICA course descriptions is creativity, a
concept connected to constructionism. The departmental TFC document stresses
numerous times the importance of creativity in many different forms. For
example, in the departmental teaching philosophy: “To encourage creativity”,
and in the MICA 1 description: “apply mathematical concepts by using com-
puters to creatively explore solutions to mathematical problems”. This emphasis
on creativity could be interpreted to suggest an implicit aim by the department
to have students learn in a constructivist way, a connection between the creative
process and constructivist theories of learning mentioned by Girvan (2014).
And this aim is specifically to be achieved as students (learn to) design,
program and use mathematics microworlds. In this context, this seems to
indicate that the department implicitly viewed students, in MICA courses,
learning through an approach different from a usual instructional approach.
Also, although not as strongly present, part of the course description included
the explicit indication of prompting students to engage in meaningful projects
in the context of the university research community: “One of the [two MICA II
major| projects must use current data from research at the university”.

In short, we have summarized the dominant elements in the formal description of
MICA courses, all of which can be connected to constructionism, to provide a clear
sense of both the ‘what’ (students learn (to do) mathematics by programming and using
microworlds) and the ‘why’ (aiming at empowering students), as well as an indication
of ‘how’ (implicitly aiming at student learning by explicitly valuing and encouraging
creativity and engaging in projects meaningful to the community). However, Ralph
(2014) underlines that MICA is only one of many possible examples of university
courses that can provide opportunities for students to develop what he called their
linked knowledge. He proposes that:
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Linked knowledge would revolve around Technology Assisted Problem Solving
and Information Retrieval or TAPSIR for short. TAPSIR pedagogy is in its
infancy and is so different from traditional teaching that most of us, including
myself, are nervous about handling its implementation. (p. 22)

He concludes with a number of recommendations, including:

Develop pilot projects for the exploration of TAPSIR pedagogy in mathematics.
At each grade level and in university, develop a mathematics curriculum for Linked
Knowledge which would consist of skills and information that require the use of
computers, smart phones, the internet, etc.

3. In several different contexts, students should learn to write sequences of instruc-
tions for computer programs to execute. (p. 23)

N —

Concluding Remarks

The Brock department of mathematics and statistics created, adopted, and since 2001
implemented a sequence of novel technology-rich mathematics core courses for all its
majors and future mathematics teachers. As part of the revised program, these MICA
courses defined the core syllabus, together with algebra, calculus, differential equations,
probability and statistics. Although the use of digital technology in the latter traditional
courses was encouraged, when appropriate, their curricula were not significantly
changed. On the other hand, in the MICA courses, the mathematics curriculum is
driven by the technology as we have described in this article. In order to be adopted by
the department, this required many discussions among colleagues about the role of
(programming) technology in mathematics education, and how it would affect a
mathematics curriculum and pedagogy (Buteau and Muller 2014).

In this article, we examined the formal MICA course description adopted by the
department. The process of adoption of such innovative core courses by a whole
department, and their sustained implementation, involved much more than mere course
descriptions and the leadership over the long run of their main designer(s). For
example, Jarvis et al. (2014) point to the fact that sustained implementation integrating
technology at the university departmental level, including its adoption, is grounded in a
combination of many factors, including “a dedicated core group led by a committed
advocate in a position of influence/power; a strong and shared incentive for change;
[...] an administration which supports creative pedagogical reform and well-considered
risk-taking” (p. 117).

This process of design and adoption of the MICA courses took place outside a
mathematics education research context or purpose. In particular, this meant that these
courses were not explicitly intended to be of constructionist nature. However, by using
Fullan and Pomfret’s (1977) model of the complete process of innovation implemen-
tation, one that separates the design and adoption stage from the implementation and
student outcome stages wherein constructionism principles could subsequently be
identified, we were able to establish that the MICA courses provide a learning
environment that aims to prompt students to engage in a constructionist learning of
mathematics. This is in line with the Kynigos (2012) statement that:
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Constructionism takes on board the notion that meanings are in any way gener-
ated to some extent outside the control of a teacher or the sequencing of an
activity. In designing educational activities therefore didactical intervention can at
most aim to help. (pp. 16-17)

We have not directly examined whether or not students actually do experi-
ence constructionist learning of mathematics, although our survey data suggests
that it is the case for at least some students. In fact, a recent study, examining
the students’ engagement in the design and use of mathematics microworlds
throughout their 14 projects over 16 months (Buteau et al. submitted), provides
further insight into how the students’ mathematical knowledge grew alongside
their microworld tools (cf. Hoyles 1993). The foci of our studies have thus far
been on individual experiences and have not included interaction between peers.
As such, we have not yet examined how students negotiate mathematical ideas
among themselves as they share their in-progress or completed microworld
artefacts — an important aspect of constructionism.

Kynigos (2012) asserts that, “A mathematics designed with a constructionist
agenda in mind can only become part of school mathematics if the associated
practices are given legitimacy by the various stakeholders involved” (p. 12). The
examination of the Brock University case brought forth three main elements that
led to legitimize, for members of a university mathematics department, a construc-
tionist course implementation in the adoption stage. These are:

i) students learn (to do) mathematics by programming and conducting their own
mathematical explorations;

if) an explicit aim of empowering students articulated in pragmatic ways (e.g., support
“students [to] build a portfolio of techniques which they are confident in applying
to a diverse range of mathematical problems”);

iii) an implicit acknowledgement of intended student constructionist learning, e.g.,
through the explicit role of the instructor to foster and value students’ creativity in
mathematical work.

These, we argue, provide an alternative means to portray constructionism in
university mathematics education concretely, bringing together student experi-
ences and pedagogy. The legitimacy of the practices adopted and implemented
in the MICA courses since 2001 is now strengthened by the position of a
broader community of stakeholders. Indeed, the Society for Industrial and
Applied Mathematics (SIAM 2012) indicates that programming and computer
skills are the most important technical skills that new mathematician hires take
to their jobs. Furthermore, the European Mathematical Society (EMS 2011)
states that, “Together with theory and experimentation, a third pillar of scientific inquiry
of complex systems has emerged in the form of a combination of modeling, simulation,
optimization and visualization” (p. 2).
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