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Abstract The technology-enhanced development of very young children’s mathemat-
ical abilities, apart from some notable exceptions, does not seem to have yet raised a lot
of interest within the mathematics education community. This article focuses on the
educational potential offered by certain software applications (apps) that exploit
affordances of multi-touch devices for fostering preschoolers’ development of num-
ber-sense. We introduce theoretical elements derived from recent research in develop-
mental and cognitive psychology, neuroscience, and mathematics education, that concur
in defining the aspects of number sense that we will be investigating in relation to
specific multi-touch interactions. Our specific research goal is to analyze the multi-touch
potential of two apps for fostering preschoolers’ development of those aspects of
number sense. The study is based on the analysis of children’s interactions with these
apps in the context of a sequence of activities centered on the use of the iPad, carried out
in a public preschool in Northern Italy. The specific issue addressed and the perspective
adopted position this study at the crossroads between different research fields.

Keywords Multi-touch technology . Number sense . Representation of quantities
through fingers . iPad applications . Preschoolers’ stable schemes

Introduction and Rationale

Recent advances in the fields of technology and computer science have opened a great
number of possibilities in terms of the types of interactions that users can have with the
various available devices. In particular, the mouse and keyboard, once essential
interfaces, are no longer necessary for interacting with software: the advent of
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interactive whiteboards, touch tables, tablets, and smartphones has offered the possi-
bility of acting directly on screens through pens or simply fingers. These devices
recognize as different inputs a variety of single-finger and multi-finger touch gestures
as well as voice inputs (when speech recognition software is installed). Of course these
new possibilities for software can, and may we add, should, have implications for
educators, be they teachers, parents, researchers, or software designers.

In this article we focus on the educational potential offered by certain software
applications (apps) that exploit multi-touch affordances for fostering preschoolers’ (age
4–5) development of number-sense.

Tablets, and in particular iPads, have appropriate dimensions for fostering young
children’s touch-interactions, and there is a great variety of apps developed for such
technologies’ operating systems. However, most of these apps are presented in the form
of games or quizzes, proposed as closed interactions, mostly designed for repeating
number facts, and that only support input from a single-finger touch, as if it were the
old fashioned mouse click, drag, or single taps on the keyboard. In general, input is
expected as a choice among possible Banswers^, or as a Btyping in^ of the answer (the
finger is used to tap on virtual keys). So typical apps of this nature do not take
advantage of many of the new opportunities offered by multi-touch technology, and
in particular by the affordance of recognizing a variety of touch gestures, possibly
executed simultaneously. There are notable exceptions, such as software developed by
Sinclair and Jackiw (2011) or by Ladel and Kortenkamp (2009, 2011) that propose
mostly open-ended interactions with virtual manipulatives, and some other apps that,
even offering only closed conversing-type interactions (Sedig and Sumner 2006), are
designed to foster children’s perception of numerosity1 (from 1 to 10) and of particular
ways of using fingers to represent such numerosities (Sinclair and Baccaglini-Frank
2015). We will focus on the experiences of a group of preschool children in contexts of
this second type.

Since we are interested in analyzing particular types of multi-touch interactions with
respect to aspects of number-sense that they may foster, two important problems that
we need to address are: 1) what this type of knowledge for very young children can
look like, and 2) how it can be Bobserved^. Once we will have proposed a theoretical
background that addresses these issues, we will be able to discuss what exploiting the
potential offered by multi-touch technology for developing number-sense in young
children might mean, and we will be able to analyze under this light findings that
emerged from the experiences we offered the preschoolers in our study.

Conceptual Framework

While extensively studied in cognitive psychology, the development of very young
children’s mathematical abilities seems not to have raised a lot of interest within the
mathematics education community (some notable exceptions are Clements and Sarama
2007; Sinclair and Moss 2012; English and Mulligan 2013; Perry and Dockett 2013).

1 BNumerosity^ is taken from the literature in cognitive psychology and neuroscience; it is used in the context
of perceiving, elaborating or representing the quantity of a set of objects.
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We think that one reason could be related to the difficulties in attesting the
emergence of mathematical knowledge when very young children (pre-kindergarten,
ages 3–5) are involved. In fact, when addressing the issue of preschool children’s
development of mathematical abilities, one of the challenges is to accordingly re-
conceive mathematical knowledge itself.

Number-Sense: An Elusive Notion

The notion of number-sense can be considered a Bboundary object^ (Cobb et al. 2003;
Star and Griesemer 1989), in the sense that it is at once a Bcommon-sense^ notion and a
yet-emergent notion in cognitive science and in mathematics education. Being at the
intersection of different fields, boundary objects have the potential of serving as
vehicles to communicate and convey meaning across different communities, even if
different communities can define and interpret them in different ways.

In this respect, there is no monolithic interpretation of the notion of number-sense
across the communities of cognitive scientists and of mathematics educators, and not
even within the community of mathematics educators alone. This is well depicted, for
example, by Berch’s words (2005): Bnumber sense reputedly constitutes an awareness,
intuition, recognition, knowledge, skill, ability, desire, feel, expectation, process, con-
ceptual structure, or mental number line^ (ibid. p. 333).

Despite this heterogeneity, there seems to be a certain consensus about some features
of the notion of number-sense which have important implications for mathematics
education.

The development of number-sense is seen as a necessary condition for learning
formal arithmetic at the early elementary level (Griffin et al. 1994; Sowder 1992; Slavit
1998; NCTM 2000) and it is critical to early algebraic reasoning, in particular when it is
considered at the heart of perceiving the Bstructure^ of number (Mulligan and
Mitchelmore 2013).

In particular, literature from the fields of neuroscience, developmental psychology,
and mathematics education indicate that using fingers for counting and representing
numbers (Brissiaud 1992; Ladel and Kortenkamp 2011), but also in more basic ways
(Butterworth 1999, 2005; Noël 2005; Gracia-Bafalluy and Noël 2008), can have a
positive effect on the development of numerical abilities and of number-sense. It is
agreed upon across fields that both formal and informal instruction can enhance
number-sense development prior to entering school.

We will consider number-sense according to the broader meanings advanced for the
construct within the field of mathematics education, and we will accept its being based
on certain Bcomponent abilities^, as has been hypothesized in cognitive psychology. In
the following paragraphs we introduce theoretical components that concur in defining
the aspects of number sense that we will be investigating in relation to specific multi-
touch interactions.

Fingers and the Development of Numerical Abilities

Research in neuroscience has shown that there is a neurofunctional link between fingers
and number processing. For example, Butterworth (1999, 2005) has hypothesized that
numerical representations and processes are supported by several component abilities:
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the innate ability to recognize small numerosities without counting (subitizing), fine
motor ability (for example, finger tapping), and the ability to mentally represent one’s
fingers (finger gnosia). According to this hypothesis, it is through our fingers that we
construct concrete and abstract representations of number, number words, and number
symbols. He states explicitly that:

BWithout the ability to attach number representations to the neural representations
of fingers and hands in their normal locations, the numbers themselves will never
have a normal representation in the brain.^ (Butterworth 1999, pp. 249–250).

Such hypothesis is supported by later research. In a study by Penner-Wilger and
colleagues, (Penner-Wilger et al. 2007) each component ability was found to be a
significant unique predictor of number system knowledge, which in turn was related to
calculation skill.

Noël has also obtained results that support such hypothesis (2005), and, with Gracia-
Bafalluy, she has in addition demonstrated, how consistent use of fingers positively
affects the formation of number-sense and thus also the development of calculation
skills (Gracia-Bafalluy and Noël 2008).

Other researchers have suggested that finger-based counting may facilitate the
establishment of number practices (Andres et al. 2007; Sato et al. 2007; Thompson
et al. 2004; Domahs et al. 2012; Lafay et al. 2013).

From an educational point of view, literature has recognized five principles as
necessary for children to master for developing number-sense (Gelman and Gallistel
1978); these are a) the one-one-principle that relates every single object to exactly one
numeral; b) the stable-order principle prescribing the correct order of numbers; c) the
last-word rule that assigns the last said numeral not to the last counted object, but to the
quantity as a whole; d) the principle of abstraction, according to which objects of any
nature, also abstract, can be counted; e) and the order in which the objects are counted
does not matter.

We believe that through the use of fingers for dealing with quantities children can
start developing the needed mastery of these principles. Comparing the quantities of
two collections of objects or representing a certain quantity with fingers can be done
without using numbers directly, but by establishing one-to-one correspondences be-
tween objects or between objects and fingers. Margolinas and Wosniak (2012) stress
the importance for developing number sense of considering quantities independently of
numbers. These processes are intertwined with development of the so-called Bfinger
symbol sets^ (Brissiaud 1992) that is the representation of numbers and numbers
operations and relations through finger gestures.

Such form of representation of quantities by some children can be established early
and in parallel to the development of the mental number line – another fundamental
representation of number that is developed through exposure to number (Dehaene
2001; Zorzi et al. 2002), in Western cultures (see, for ex., Nunez 2011) – as an
autonomous type of numerical representation. Finger strategies may foster the learning
of the decompositions of all numbers up to 10 in a way that can be utilized for addition
and subtraction. Learning decompositions (especially of 5 and 10) in this way allows
the child to develop a nonverbal-symbolic representation of the fact that Btwo parts
make a whole^, that is the complementarity of two numbers with respect to a given
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number. This is the foundation of what Resnick et al. (1991) coined as the part-whole
concept. Part-whole knowledge also seems to be important for becoming aware of
structure in numbers (Mulligan 2011; Mulligan and Mitchelmore 2013) and for early
arithmetic problem solving, and it can be developed as early as 4 to 5 years of age
(Sophian and McCorgray 2009).

Embodied Cognition and the Notion of Body Syntonicity

The importance of the role attributed to the use of fingers in the development of
number-sense by the quoted literature is highly resonant with the frame of embodied
cognition developed by Gallese and Lakoff (2005), which has a growing influence in
mathematics education research (Arzarello et al. 2007; Nemirovsky 2003; de Freitas
and Sinclair 2013; Radford 2014). Within this perspective doing, touching, moving and
seeing are essential components of mathematical thinking processes – from the initial
phases of the conceptual development to the most advanced learning processes.
Radford et al. (2005), for example, write: Bsensorimotor activity is not merely a stage
of development that fades away in more advanced stages, but rather is thoroughly
present in thinking and conceptualizing.^ (ibid., p 114).

We find hypotheses like that of Butterworth, highlighting the necessity of linking the
representation of numbers to the neural representations of fingers, to be completely in
line with the embodied cognition approach. Moreover, we believe that such approach
overcomes some of the rigid boundaries across confining disciplines such as cognitive
psychology and mathematics education, in our case.

When considering the use of digital artefacts – and specifically of microworlds – in
mathematics education, this approach reminds us of the notions of body and ego
syntonicity originally developed by Papert (1980). According to these notions, the
potential of microworlds relies on the possibility for children to relate the behavior of
the microworld objects with their sense and knowledge about their own bodies (body
syntonicity), and to attribute intentions to these objects in ways coherent with their own
intentions, goals and desires (ego syntonicity) (Healy and Kynigos 2009).

The Notion of Scheme

The perspective depicted so-far while putting forwards the importance of the role of the
individuals’ bodily actions in conceptualization, risks leaving in the shadow the link
between these actions and the individual’s goals and intentions in a given situation, and
certain characteristics of the situation itself. We think that the notion of scheme as
developed by Vergnaud (1990, 2009) helps to frame all these components coherently.

Elaborating on the Piagetian notion of Bscheme^, Vergnaud characterizes it as an
invariant organization of the activity for a given class of situations.2 More precisely, a
scheme comprises: expectations of the goals and effects which can be achieved through
action in given situations, rules of action that allow generating a sequence of actions to
achieve the anticipated goals in given situations, operational invariants, and inferences

2 We use the term situation after Vergnaud (1990, p.151): «toute situation peut être ramenée à une
combinaison de relation de base avec des données connues et des inconnues, lesquelles correspondent à
autant de questions possibles.».

Digit Exp Math Educ (2015) 1:7–27 11



that allow to derive the expectations from the information and the system of operational
invariants available for the subject.

Even though all the components of a scheme are important, operational invariants
have a prominent role. They consist of the implicit knowledge which structures the
whole scheme: they drive the identification of the situation and of its relevant aspects,
and allow selecting suitable goals and inferring the rules for generating appropriate
sequences of actions for achieving those goals.

We do not wish to enter a debate on the fundamental core assumptions underlying
embodied cognition on the one hand and Vergnaud’s theory of knowledge and con-
ceptual development on the other hand, and on their compatibility. However we are
aware that the notion of scheme might be seen as being in opposition to the embodied
cognition approach, if the former notion is assumed to suggest the Bexistence of a
mind^ behind the perceptuo-motor activity, or the idea that Bperceptuo-motor activity
functions as input and output for the ‘mental’ realm^ (Nemirovsky and Ferrara 2009,
p.161; Healy and Kynigos 2009). We note that other colleagues have insightfully
combined notions of Vergnaud’s theory with an embodied cognition perspective into
their own research (Abrahamson & Howison 2010; Arzarello et al. 2007; Charoenying
et al. 2012). We, too, believe that the two perspectives provide useful analytical tools
which can be combined to describe crucial cognitive aspects of students’ interactions
with digital artifacts.

Research Questions

Given the theoretical components we have introduced, and certain methodological
constraints we will describe in Methodology section, we chose particular aspects of
number-sense with respect to which we advanced the following working hypothesis:

Multi-touch technology has the potential to foster important aspects of children’s
development of number-sense, including the ability to use fingers to represent
numbers in an analogical format. We will call this the multi-touch potential.

The Baspects of number-sense^ that we took into consideration in our analyses
include component abilities, as suggested by the cognitive psychology and neurosci-
ence literature, some of the counting principles and recognizing parts of a whole
(possibly without subitizing), suggested within the mathematics education literature;
and the ability to match numbers of fingers (not instantaneously) to a number of
objects, without counting. Although not very advanced from a mathematical point of
view, this ability seems to be an important stepping stone for quickly representing
numbers with fingers. Table 1 shows the specific sub-aspects of the main categories
listed above.

Our specific research goal was to analyze the multi-touch potential of two apps for
fostering preschoolers’ development of number-sense, by

& investigating the schemes that children develop in their interactions with the
software, and in particular how they use their fingers;

& attempting to relate the schemes enacted to the development of number-sense.

12 Digit Exp Math Educ (2015) 1:7–27



Methodology

The study is based on the results of a sequence of activities centered on the use of
different apps3 for the iPad, carried out in a public preschool in Northern Italy over a
time period of 2 weeks.

The sequence was enacted by a pre-service preschool teacher - an undergraduate
student of Department of Education at the University of Modena and Reggio Emilia - as
part of her mandatory internship. Hence the design of the sequence of activities had to
fulfill a number of constraints imposed by the training agreement between the
Department of Education and the hosting school, that concerned the amount of time
devoted to the activities with technologies, the organization of the activities over time,
the number of iPads available, the amount of time for children to use the iPads and the
kind of activities they could accomplish, and the choice of the apps.More specifically we
could use only already published, free or very cheap apps, easy for children to become
familiar with, and presenting a strongly structured environment allowing primarily
closed conversing-type interactions (Sedig and Sumner 2006; Sinclair and Baccaglini-
Frank 2015). The apps used in the studywere chosen and built into the activities protocol
by the first author; they will be described in Description of the Apps Used section.

On the one hand such constraints can appear as strongly limiting factors for a
research study; on the other hand they represent typical features present in Italian
pre-schools when new activities are proposed either by the regular teachers or by pre-
service teachers that have permission to enter the classrooms. Since an underlying aim
of this study was to impact on mathematics teaching practice, we chose to respect and
incorporate such constraints.

The sequence of activities was carried out in a class of 25 children, between the ages
of 4 and 5 (6 of them were foreign children who did not speak Italian). The children
were introduced to the 3 apps during 2 initial free-play sessions (2 h); then for 2 weeks,
every day, they had sessions of about 25 min, working in groups of 5 children at a time
with an iPad per group. Therefore each child spent a total of about 50 min interacting

3 The study involved the use of three apps, but we will be analyzing results obtained from two of them.

Table 1 Aspects of number-sense we took into consideration for investigating the multitouch potential of
some apps

Aspects of number sense Multiple fingers tapping Simultaneous

Sequential

Subitizing Simple

Double subitizing

Recognizing parts of a whole

One-to-one correspondence

Approximate estimation Small quantities (1–5)

Large quantities (5–10)

Counting principles - One-one
- Stable order
- Cardinality
- Order-irrelevance
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directly with the apps. When not interacting with the apps the children watched their
classmates work, and, if prompted by the pre-service teacher, helped them through
verbal or gestural utterances.

The pre-service teacher attended all the group sessions, but intervened only to call
each child within the group when it was his/her turn to interact with the iPad; to draw
the children’s attention to their classmate’s work with the iPad, or to ask them to help
their classmate. The pre-service teacher was accompanied by a second student of the
Department of Education who video-recorded the children’s interactions with the iPad.

Video Analysis

The analysis of schemes enacted by the children when interacting with the apps raises
the crucial methodological issue of how schemes can be inferred from observation.

In this respect, the leading idea is to look for regularities in the children’s behaviors
across a number of situations. Bourmaud (2006, p.41), after Zanarelli (2003), stresses
the need of investigating the following dimensions of the activity: the regularities of the
sequences of subject’s actions, the existence of possible different choices for the
subject’s actions, the effects of the actions on the situation at stake and their efficiency.
At the same time, he points out that even if the schemes can be inferred by the
observation of the activity, they are difficult to verbalize. This is consistent with
Lagrange’s remark: Bbeing adaptive mental constructs, schemes cannot be entirely
described in a rational form^ (1999, p.58). Also for this reason, the current state of
development of our research suggests us to be cautious with respect to the possibility of
describing children’s schemes, and the conclusions that can be drawn from our
analyses.

The analysis of the videos was, therefore, aimed at identifying and describing the
situations which the children faced when interacting with the apps, and the stable
recurring strategies which children enacted in those situations, that is the possible
Bregularities^ in the children’s behavior evoked above.

Coming back to the idea of scheme, stable recurring strategies could be related, to
some extent, to the operational invariants. The description of the operational invariants
is of crucial importance in the analysis of schemes, in fact it is the concept of
operational invariant which allows to capture the essence of the scheme: «c’est le
concept d’invariant opératoire qui permet de faire le lien entre la forme opératoire et la
forme predicative de la connaissance, justement parce qu’il s’agit de la composante
épistemique du schème, celle qui soutient en dernier ressort l’organisation de l’activité»
(Vergnaud 2005, p.129).

Description of the Apps Used

We have mentioned previously that the design of the sequence of the activity for this
study had to fulfill several constraints, influencing also the choice of the apps.

In fact, due to those, we could not propose the use of some very interesting apps
which exploit the potential of multi-touch screens in innovative ways, offering open-
ended environments that allow a wide range of possible interactions (Sinclair and
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Baccaglini-Frank 2015). For example, the app TouchCounts, developed by Sinclair and
Jackiw (2011), offers the possibility to create quantities and interact with them, through
manipulative interactions (Sedig and Sumner 2006) and encourages the user to asso-
ciate specific gestures to numerical manipulation, thus promoting children’s meaning-
making (Goldin-Meadow 2004).

Within our constraints, we identified two apps which seemed to have some potential
for fostering the development of children’s number-sense, addressing some the aspects
of number-sense with respect to which we set out to investigate the software’s potential.
They are: Ladybug Count4 and Fingu.5

Ladybug Count (Finger Mode)

The following description refers to the Bfinger mode^ of the environment.
The layout of this app is the top view of a ladybug sitting on a leaf, and the aim of

each playing turn is to make the ladybug walk off the leaf. This happens when the child
places on the screen (in any position) as many fingers as the dots that are on the
ladybug’s back. Given a certain number, the dots appear on the ladybug's back always
in the same pattern. As each finger is placed on the screen one of the dots on the
ladybug’s back is highlighted (Fig. 1), and the iPad makes a Bpop^ sound. When all the
dots are highlighted there is a feedback sound which precedes the announcement of the
number of dots that were on the ladybug’s back. At this time the ladybug walks off the
screen and a new one appears. This process repeats as long as the child wants to play.

If the child places more fingers on the screen than the dots on the ladybug’s back, all
the dots become highlighted, but the ladybug does not walk off the leaf and a voice
says: BOops!^. If the child places on the screen fewer fingers than the dots on the
ladybug’s back, only a number of dots corresponding to the fingers on the screen is
highlighted and nothing else happens. This app will be referred to as LBC.

Fingu

The layout of this environment (Barendregt et al. 2012) looks like a room in
which different kinds of floating fruits appear. The objects appear in one group or
in two groups that float independently, but within each group the arrangement of
the objects remains unvaried. The child has to place on the screen, simultaneously,
as many fingers as the objects that are floating within a given amount of time
(Fig. 2a and b).

If s/he succeeds s/he receives a positive feedback from the system consisting in
an auditory signal and few dancing happy animations. Otherwise, if the number of
fingers is incorrect or time elapses, a negative feedback is given through a
different auditory signal and the appearance of sad animations. Then the child
can play the next round, until s/he looses or passes the level. The game provides
statistics on the performance of the child for each level attempted. This app will be
referred to as F.

4 https://itunes.apple.com/us/app/ladybug-count/id443930696?mt=8
5 https://itunes.apple.com/en/app/fingu/id449815506?mt=8
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Results

In general only a few children exhibited performances without mistakes in LBC, and all
children found F to be challenging. No child, however, was ever discouraged and
wanted to leave her group: frequently weaker children were helped by classmates who
proposed strategies and solutions verbally, without ever touching the iPad (this was an
explicit rule enforced by the researchers).

Fig. 1 View of the LBC screen
with a player that set three fingers
on the screen

Fig. 2 a View of the screen of F
with two groups of floating fruits
in fixed arrangements, and b view
of the screen of F after the player
has set five fingers on the screen,
simultaneously
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The video recordings show different strategies that the children seemed to adopt for
playing with LBC and F.

We present recurring strategies that appeared during the children’s interactions with
LBC and F.

Children’s Strategies Emerging from the Interaction with LBC

While the general aim of children’s action was always the same, the differences in the
numbers of dots on the back of the ladybug seemed to generate different situations for
the children, which could correspond to different specific strategies. In fact, as we will
show, while some children developed general strategies others developed strategies that
were sensitive to the number of dots to Bcount^.

Furthermore, even if we could in principle distinguish between more and less
efficient strategies, the link between efficient/not-efficient strategies and success/
failure is not a straightforward one. In fact, on the one hand, due to the fact that LBC
is not timed and allows children to carry out as many trials as they want, even those
strategies which we might recognize as Bnot-efficient^, in the end led children to
success. On the other hand, children could fail to enact properly Befficient^ strategies,
because, for instance, they would fail to properly touch the screen, thus not giving the
desired input, or fail to correctly count up dots or fingers.

Children’s General Strategies in LBC

We start by describing the general strategies enacted by children, that is the strategies
whose enactment is not apparently linked to a Bsmall^ or Blarge^ number of dots on the
ladybug’s back.

& A common strategy consisted in exploiting the symmetry of arrangement of the
dots on the ladybug’s back. In fact, the back is divided in two halves and the dots
are always arranged symmetrically upon it: when the number of dots is even, they
are arranged symmetrically on the 2 halves of the back of the ladybug; when the
number of dots is odd, 1 or 3 dots are arranged along the wing line, in the center of
the ladybug’s back, and the remaining ones are arranged symmetrically on the 2
wings. Children who developed this strategy, seemed to recognize the symmetry of
the configuration of the dots and placed their fingers on the screen, reproducing the
same arrangement (general-arrangement, abbreviated g-arr) with their hands. This
strategy was enacted mainly with even numbers of dots, but two children also
repeatedly attempted to use it with an odd number of dots.

& Another strategy (general-bunches, abbreviated g-bun) sees children placing fin-
gers on the screen in small bunches at first (2 or 3 at a time) and then one at the time
to reach the appropriate numerosity. Children do not explicitly count the dots, but
seem to estimate that there are more than few.

& The previous strategies, and other ones we will describe later, do not involve
children’s explicit verbal counting. In some cases, seemingly, after recognizing
the small number of dots (see the following s1-seq and s1-sim) or the special
arrangement (g-arr), the children could give directly the correct input on the screen.
But when the number of dots increased or special configurations were not
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perceived, such automatism did not seem to occur: children relied on verbal
counting to manage the represented numerosity. In these cases children verbally
counted the dots on the ladybug’s back (pointing at them one-by-one with an index
finger) and then counted their fingers (lifting them one-by-one sequentially), and
placed the fingers raised, simultaneously, on the screen (general-counting-simulta-
neously, abbreviated g-count-sim).

& A different strategy relying on explicit counting consisted in verbally counting the
dots on the ladybug’s back and in placing one finger at the time on the screen as s/
he says the number-words (general-counting-sequentially, abbreviated g-count-
seq).

& Another strategy which involved counting, but which cannot function (unless
the number of dots is equal to 1) is an attempt to count the dots one at the time
and then try to tap the screen with the same finger or different fingers that
number of times, but without leaving the fingers on the screen (general-
counting-lifting, abbreviated g-count-lift). Even if this is a failing strategy,
some children made several unsuccessful attempts before discarding it and
trying something different. That is a paradigmatic example testifying general
resistance of children’s own strategies.

& Finally, in few cases, children attempted strategies in which they would place their
fingers either simultaneously or sequentially in an apparently Brandom^ way. By
writing Brandom^ we do not mean that children place their fingers in a way which
is random from their perspective, but in which we, as observers, could not
recognize any clear relation between children’s actions and the number of dots
displayed, or any intention of the child to place on the screen a number of fingers
equal to the number of dots.

Children’s Specific Strategies in LBC

We now describe the strategies that were sensitive to the number of dots to Bcount^.
The first class of specific situations is characterized by the presence of a very small

number of dots: 1 to 3.

& The most common strategy (specific-small-quantities-simultaneously, abbreviated
s1-sim) enacted in this class of situations seems to involve the rapid recognition of
small numerosities by children through subitizing. In fact, children who used this
strategy seemed to perceive the number of dots and place the same number of
fingers on the screen simultaneously. The fingers were placed randomly on the
screen. This strategy was not accompanied by verbal utterances. Though seemingly
quite trivial to be enacted, the strategy requires the development of the crucial
component abilities and it can be related to several of Gelman and Gallistel’s
principles (1978) as we will show in Table 2; in fact, it can be seen as the bodily
enactment of these principles.

& Another strategy (specific-small-quantities-sequentially, abbreviated s1-seq)
consisted of placing fingers on the screen sequentially starting from one finger
until the ladybug left the leaf. With respect to the former, this strategy did not need
the child to either initially recognize the exact number of dots or reach a
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sophisticated mental representation of his/her fingers. In this sense the enactment of
the strategy might suggest a less mature development of the child’s number-sense.
However without a deeper analysis we advocate much caution before drawing this
kind of conclusion.

The second class of situations is characterized by the presence of a high number
of dots: 7 to 10. In several cases the children reacted to the appearance of the
ladybug with a high number of dots through verbal expressions such as: BHow
many!^ BThat’s a lot!^. This allowed us to infer that the situations were different
for them.

& One of the strategies (specific-large-quantities-sequentially, abbreviated s2-
seq) enacted to face this class of situations was analogous to s1-seq: the child
placed his/her fingers on the screen sequentially starting from one finger until
the ladybug left the leaf. S2-seq and s1-seq can be considered from the adult’s
point of view as the same strategy because in principle they do not seem to
depend on any anticipation of the numerosity of the dots, and indeed we have
given nearly the same description for both. However they were not the same
strategy for the children. In fact only one child used both; one child used s1-
seq with small numerosities and other strategies with larger numerosities, and
five children used s2-seq with large numerosities but other strategies with
smaller numerosities.

& A further strategy (specific-large-quantities-forwards, abbreviated s2-for) can
be described as follows: the child recognized Bmany^ dots and started placing
all the fingers of one hand, to then adjust the number by placing other fingers
sequentially until the ladybug walked away. This strategy does not necessarily
involve counting the actual number of dots, but estimating that it is greater
than five. Besides other principles already mentioned, this strategy sees, in a
sense, the bodily counterpart of a sort of sophisticated Bcounting-on^ principle,
though less sophisticated than one in which the number labels are also
pronounced verbally.

& However the most common strategy in this class of situations (specific-large-
quantities-backwards, abbreviated s2-back) saw the child placing all his/her fingers
on the screen and then possibly removing fingers one at time until the ladybug left
the leaf. This strategy starts with the recognition of the situation of there being
Bmany^ dots on the screen. Its enactment can be considered a sort of bodily
counterpart of the of Bcounting backwards^ principle. However, as noted above,
to only enact this with the hands can be considered much less sophisticated than
also pronouncing the number labels verbally.

Children’s Strategies in LBC and Aspects of Number-Sense

The above description should highlight the fact that the different strategies can be
related to the different aspects of number-sense which we have set out to explore.
Table 2 below shows more clearly the relationship which can be established between
children’s strategies and these aspects of number-sense.
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Children’s Strategies Emerging from the Interaction With F

A priori it could seem reasonable to distinguish situations in F on the basis of the
number of floating objects displayed or on the number of the groups of floating objects,
and to foresee that children use different strategies accordingly. Indeed the analysis of
videos showed that children elaborated strategies which they used regularly in every
situation: the first strategy which was successful in a few cases, became the dominant
one despite possible successive failures.

To select the exact number of fingers and place them simultaneously on the screen
within a limited amount of time was a source of difficulties for most children: it
requires the development of advanced fine motor abilities. Also for this reason, we
think, children tended to stick with the first strategy which appeared to be effective
even if it worked only in very few initial cases. It is worthwhile noticing that due to the
difficulties mentioned above, some children obtained positive (or negative) feedback
from the system even trying and placing (not properly) the wrong (right) number of
fingers on the screen.

& Children recognized the number of objects (be they in a single group or in two
ones) without verbally counting and tried to place on the screen the corresponding
number of fingers either of a same hand (1-hand-simultaneously, abbreviated 1 h-
sim) or of two hands (2-hands-simultaneously, abbreviated 2hs-sim) simultaneous-
ly. As mentioned above, whether the children used one or two hands did not depend
on the number of groups of floating objects. In many cases children tried to place
their fingers as close as possible to the floating objects, so as to Bcatch^ them, or to
reproduce with their finger the same spatial arrangement of the floating objects.

& Some children, after recognizing (and saying explicitly) or counting up the fruits,
tried to place their fingers sequentially, not fast enough for the software to recognize
all the touches (sequentially, abbreviated seq). In this case they obtained negative
feedback. Nevertheless, children enacted this strategy repeatedly, also for higher
numbers of objects, before abandoning it.

& While the strategies described above entail the children’s immediate recognition of
the number of objects, or at least the clear effort by children of recognizing the
number of objects, a few children enacted strategies which did not pass through the
recognition of numerosities. These children placed a bunch of fingers of a same
hand (1-hand-catch, abbreviated 1 h-catch) or of two hands (2-hands-catch, abbre-
viated 2hs-catch) on the screen around the floating objects to try to Bcatch^ them,
without any apparent attention to their numerosity. Once again children used one or
two hands regardless the number of groups of floating objects.

& Finally, a few children quickly counted the floating objects and then placed their
fingers on the screen simultaneously (counting, abbreviated count). Even if in
principle this strategy is highly effective, it did not always lead to success: pressed
by the time constraints some children failed to count correctly or to place their
fingers properly on the screen.

For the sake of clarity, we tried to distinguish the various strategies as clearly as
possible, and even if it is true that most children tended to keep enacting the same
strategy, nevertheless in some cases the interactions would have to be described in a
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less clear-cut way than the above description may suggest. That is the case, for instance,
with Andrea. Andrea’s most used strategy is 2hs-sim; but when he was pressed by his
classmates sitting next to him shouting Bhurry up!^, he would start raising his fingers
and trying to form the right number using both hands, but then he ended up dropping
his hands, as if he were trying to catch the objects regardless of their number (as in 2hs-
catch strategy). We interpret behaviors like this as being representative of a cognitive
conflict going on between at least two different strategies: the seemingly spontaneous
and intuitive 2hs-catch (since there are frequently two bunches of fruits floating) and (at
least one of) the two strategies 2hs-sim or count, possibly constructed products of the
child’s cultural exposure to counting and analogical number recognition and represen-
tation practices. In fact, it might be the case that an inhibitory control needs to be
exercised over the more intuitive catching strategies in order to carry out a strategy
correctly related to numerosity. Such inhibitory control may dissolve when too many
conflicting and/or time-pressing stimuli concur.

Children’s Strategies in F and Aspects of Number-Sense

Even if F inhibits, intentionally or not, some strategies which can be related to the
development of some aspects of number-sense (for instance, counting or sequential
finger tapping), and it triggers the development of fewer strategies than LBC, never-
theless many of the strategies developed by children can be still related to important
aspects of number-sense, as shown in Table 3.

Synthesis and Conclusions

The analyses presented in the previous sections highlight the stable recurring strategies
which children developed and enacted while interacting with two apps that exploit the
multitouch potential through a variety of different situations. The classifications of
strategies presented were mostly based on the way the children’s fingers touched the
screen and not on possible ways in which they might have obtained information from
the screen; a different perspective could of course lead to different classifications.
Anyway, as argued, the stability and regularity of these strategies suggest that they
can be related to operational invariants of schemes which children are developing, that
is to the implicit knowledge which structures and drives the behavior of young children
when they interact with these apps.

A crucial component of these strategies, and of the underlying implicit knowl-
edge at stake, consists in children’s particular uses of their fingers and, specifi-
cally, in their ability to use fingers to represent numbers in an analogical format,
an ability considered crucial in the development of number-sense. Our analyses
point out possible links between the observed strategies and important aspects of
number-sense, as acknowledged in the fields of mathematics education, cognitive
and developmental psychology and neuroscience. These are: subitizing, approxi-
mate estimation of quantities, fine-motor ability, establishing one-to-one corre-
spondence between fingers and objects (possibly independently of numbers),
recognizing parts of a whole, mastering basic and sophisticated counting
principles.
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Our findings and their discussion confirm the hypothesis that multi-touch technol-
ogy has the potential to foster important aspects of children’s development of number-
sense.

It is worthwhile noticing that the apps used in the sequence of activities have
different characteristics which foster the development of various aspects of number-
sense. For instance LBC may encourage the use of strategies based on explicit
counting, or on a first approximate estimation of quantities followed by successive
adjustments. On the contrary, F, being timed and requiring simultaneous finger touches,
inhibits explicit counting and successive adjustments, it seems to be more functional to
the development of strategies triggering the representation of numbers with fingers and
the ability to subitize (possibly two small quantities simultaneously). In a sense, we
could say that the two apps have the potential of playing complementary roles in the
development of children’s number-sense. However a more thorough analysis reveals
that the different strategies, which can be developed interacting with each app alone,
promote the development of different aspects of number-sense. An interesting and
unexpected finding was that F also seems to have the potential of fostering inhibitory
control over a spontaneous urge of Bcapturing^ the floating fruits. This may be of
particular interest to some researchers because of the new recent hypotheses advanced
about the cognitive roots of dyscalculia, which seem to be visual-spatial memory and
inhibitory control (Szucs et al. 2013).

These considerations have important consequences from an educational point of
view. If an educator’s intention is that of promoting the development of number-sense
(or at least of its aspects considered here), and decides to use apps similar to the ones
illustrated here, s/he will have to explicitly promote the elaboration and enactment of
different strategies by the same child. In fact, as we pointed out, children tend to rely on
very few (possibly just one) strategies and using a variety of different strategies does
not appear to be a spontaneous process for them. Neither does it seem spontaneous for
children to reflect on their own strategies, to question them, to wonder why they work
or fail, to relate them to other children’s strategies. This is of crucial importance if we
consider the finding that children can fail to properly enact Befficient^ strategies; for
instance, failing to touch the screen properly, thus not giving the desired input, or
receiving positive feedback sometimes even when enacting a Bnon-efficient^ strategy.
Thus emerges the need of an explicit well-designed didactical intervention of the
teacher to orchestrate a more complete learning process.

Along these lines we note that there are other apps that seemingly withhold a
multitouch potential with respect to developing number-sense similar to the ones
analyzed. Moreover, there are other apps that propose different types of multitouch
interactions, for example with animated virtual manipulatives, and that therefore may
exploit the multitouch potential in different ways.

Overall, we hope to have contributed to shedding light onto some of the new
frontiers that multi-touch technology has opened in educational terms. We hope that
our framework and consequent analyses will be useful at two levels: 1) for helping
recognize apps for young children with high multi-touch potential with respect to the
development of number-sense; 2) as a tool of analysis for observing the development of
number-sense in young children through their interactions with similar apps.

Taking another step back to see a broader picture, through this study we have
addressed the issue of children’s development of number-sense, capitalizing on recent
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advances developmental and cognitive psychology, and neuroscience. No need to say
that mathematics education and these disciplines address different research problems,
from different perspectives, and they rely on different scientific paradigms; so commu-
nication between them is not always easy. Notwithstanding, we think that in many
cases, as in this one, there is the possibility of identifying boundary objects, lying at
intersecting areas between these research fields, that have the potential of triggering
fruitful interactions and even collaborations between them. In order for this collabora-
tion to actually become fruitful more research at the crossroads is necessary.
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