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Abstract
Traffic prediction is crucial to the intelligent transportation system. However, accurate traffic prediction still faces challenges.
It is difficult to extract dynamic spatial–temporal correlations of traffic flow and capture the specific traffic pattern for each sub-
region. In this paper, a temporal attention recurrent graph convolutional neural network (TARGCN) is proposed to address these
issues. The proposed TARGCN model fuses a node-embedded graph convolutional (Emb-GCN) layer, a gated recurrent unit
(GRU) layer, and a temporal attention (TA) layer into a framework to exploit both dynamic spatial correlations between traffic
nodes and temporal dependencies between time slices. In the Emb-GCN layer, node embedding matrix and node parameter
learning techniques are employed to extract spatial correlations between traffic nodes at a fine-grained level and learn the
specific traffic pattern for each node. Following this, a series of gated recurrent units are stacked as a GRU layer to capture
spatial and temporal features from the traffic flow of adjacent nodes in the past few time slices simultaneously. Furthermore, an
attention layer is applied in the temporal dimension to extend the receptive field of GRU. The combination of the Emb-GCN,
GRU, and the TA layer facilitates the proposed framework exploiting not only the spatial–temporal dependencies but also the
degree of interconnectedness between traffic nodes, which benefits the prediction a lot. Experiments on public traffic datasets
PEMSD4 and PEMSD8 demonstrate the effectiveness of the proposed method. Compared with state-of-the-art baselines, it
achieves 4.62% and 5.78% on PEMS03, 3.08% and 0.37% on PEMSD4, and 5.08% and 0.28% on PEMSD8 superiority on
average. Especially for long-term prediction, prediction results for the 60-min interval show the proposed method presents a
more notable advantage over compared benchmarks. The implementation on Pytorch is publicly available at https://github.
com/csust-sonie/TARGCN.

Keywords Intelligent transportation · Traffic prediction · Deep learning · Graph convolutional neural network

Introduction

Many countries havemade great efforts to develop intelligent
transportation systems (ITS) in recent years. Accurate traffic
flow prediction which helps to optimize traffic resources and
make decisions is an important component of ITS. However,
this task is still challenging. Firstly, traffic prediction relies on
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the volatility anduncertainty in the trafficflow in the temporal
dimension. Secondly, there are very complicated dependen-
cies in the spatial dimension among traffic network nodes and
vehicles. The staggered temporal and spatial dependencies
make it very difficult to exploit the spatial–temporal depen-
dencies in the traffic flow.

The traffic flow can be considered as a sequence of
data continuously recorded by the deployed sensors for
a fixed duration. Initially, traffic flow prediction was per-
formed using time series analysis-based methods such as
historical average (HA), autoregressive integrated moving
average(ARIMA) [1], and vector autoregressive (VAR) [2].
These methods just took the temporal dependencies in traf-
fic flow into account while ignoring the spatial correlations.
This defect makes these time series analysis-based models
perform less well in practice. To acquire the spatial–temporal
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dependencies in traffic flow, traditional machine learning-
based methods are applied to this research area, such as
support vector regression(SVR) [3] and k-nearest neigh-
bor(KNN) [4]. These traditional machine learning-based
methods generally can achieve better prediction than time
series analysis-basedmethods. However, traditionalmachine
learning-based methods can not exploit the spatial–tempo-
ral correlations in high-dimensional traffic data sufficiently.
In addition, the prediction accuracy of such methods relies
heavily on expertise and experience in the field.

Recently, deep learning techniques have been intro-
duced to traffic flow prediction tasks to exploit the implicit
spatial–temporal correlations in traffic flow. Convolutional
neural networks (CNN)-based prediction models [5–7] can
exploit the spatial–temporal correlation in traffic flow. How-
ever, their rasterization in the spatial dimension destroys the
real spatial structure, which results in the inability to learn
the complete spatial dependencies. From the mathematics
perspective, the road network is a typical kind of graph-
structured data. Graph convolutional neural networks (GCN)
pose a natural advantage in processing graph-structured data
and multi-graph learning is also a hot topic at the moment.
Therefore, GCN-based models [8–11] have been proposed
for traffic prediction. They typically combine GCNs with
recurrent neural networks (RNN) or CNN to model spa-
tial–temporal correlations in traffic flow. These deep fusion
frameworks can model the spatial–temporal dependencies in
traffic flow and improve prediction significantly.

Yet, there are disadvantages to theseGCN-basedmethods.
Firstly, these methods employed GCN to capture the spatial
dependencies in the traffic flow. The node in a traffic network
aggregates information based on the degree of interconnec-
tion of adjacent nodes with itself [10]. Therefore, the weight
of the interaction of each traffic node is particularly impor-
tant. However, the degree of interconnection between nodes
in a road network is dynamic. Spatial correlations cannot be
modeled based on the geographical distances between iso-
lated traffic nodes. Moreover, it is difficult for CNN or RNN
fusion-based models to learn the long-term dependencies in
traffic data [12, 13]. Meanwhile, most deep learning mod-
els employ parameter-sharing mechanisms that learn shared
traffic patterns between nodes only. In fact, traffic nodes have
different traffic patterns. Each traffic node is impacted by
points of interest (POI) and other surrounding environments
in actual traffic networks [14]. Figure 1 shows an example of
the evolution of the traffic flow at three different traffic nodes
over three days. Node A may be on the road to the suburbs
where it has a relatively low traffic flow. The traffic flow at
node B is consistently high during the day and it is probably
located on the main road connecting two cities. The traffic
flow of node C which may be located on a road connecting
two industrial areas has a typical morning peak and evening

peak. This example suggests different traffic network envi-
ronment leads to different traffic patterns.

To address the issues mentioned above, this paper
proposes a traffic flow prediction method, called tempo-
ral attention recurrent graph convolutional neural network
(TARGCN). The proposed method comprises a node-
embedded graph convolutional (Emb-GCN) layer to capture
spatial dependencies, a gated recurrent unit (GRU) layer
to acquire local temporal dependencies, and a temporal
attention (TA) layer to exploit global nonlocal temporal cor-
relations.

The proposed TARGCN is structurally more similar to the
RNN-based predictionmethods. But, it is different frommost
of the existing methods. First of all, a new temporal atten-
tion layer is employed to extend the receptive field of GRU.
This enables the proposedmodel to capture long-term depen-
dencies in the traffic flow. Moreover, the proposed method
applies a node embeddingmatrix plus a predefined adjacency
matrix strategy to model the dynamic correlations between
traffic nodes. This node embedding strategy facilitates the
proposed method to learn specific traffic patterns for each
traffic node. Furthermore, the proposed Emb-GCN layer can
fit the adjacency matrix between traffic nodes based on the
data adaptively. This allows the model to be more advanta-
geous when the predefined adjacency matrix is not provided
or an inaccurate predefined adjacency matrix is provided.
The highlights and main contributions of this paper are as
follows:

(1) In this paper, an embedding Emb-GCN layer, a series of
gated recurrent units, and a TA layer are proposed to be
fused in a network for traffic flowprediction. This fusion
framework enables the proposed model to exploit both
dynamic spatial correlations between traffic nodes and
temporal dependencies between time slices sufficiently.

(2) An Emb-GCN block is proposed to capture the spa-
tial correlation of traffic flow at a fine-grained level.
Node embedding matrix and node parameter learning
techniques are applied in Emb-GCN to learn the spe-
cific traffic pattern of each traffic node. In addition,
the spatial feature matrices learned from the predefined
adjacency matrix are filtered with a gating mechanism.
This makes the model extract the accurate correlations
between nodes from the predefined adjacency matrix as
much as possible but discards the inaccurate correla-
tions.

(3) A series of GRU cells are stacked as a GRU layer to
extract traffic patterns from the traffic flow of adja-
cent nodes in the past few time slices, which enables
the model to capture both temporal and spatial corre-
lations simultaneously. Furthermore, an attention layer
is applied in the temporal dimension to extend the
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Fig. 1 Traffic nodes have various traffic patterns. The traffic flow level of node A is at a low state for a long time. On the contrary, the traffic flow
at node B has been at a high level. Node C has a distinct morning peak and evening peak traffic flow

receptive field of GRU. It facilitates the model to cap-
ture not only the local dependencies between adjacent
time slices but also long-range nonlocal dependencies
between nonadjacent time slices. This strategy enhances
the ability of the proposed method for long-time predic-
tion.

(4) We conducted experiments on three publicly available
datasets, PEMS03, PEMSD4, and PEMSD8. Experi-
mental results verify the effectiveness of the proposed
model. The proposedmethod presents remarkable supe-
riority over state-of-the-art baselines, especially for
long-term prediction tasks. Moreover, the implemen-
tation of the proposed model is published on Pytorch
at https://github.com/csust-sonie/TARGCN for further
evaluation.

Thepaper is organized as follows. InSect. “Relatedwork”,
the works related to traffic flow prediction are reviewed. In
Sect. “Methodology”, basic definitions are introduced and
the traffic flow prediction problem is formulated first. Then,
the proposed TARGCN model is discussed in detail in this
section, too. In Sect. “Experiments”, the proposed method is
evaluated on three public traffic datasets, and ablation exper-
iments are performed. In Sect. “Conclusion”, the paper is
summarized and some limitations of the proposed method
are discussed.

Related work

Traffic prediction is a fundamental and challenging problem
for the intelligent transportation system. Traffic prediction
methods can be basically divided into time series analysis-
based methods, traditional machine learning-based methods,
anddeep learning-basedmethods.Time series analysis-based
methods treat traffic data as time series data. Williams et al.
[1] regressed the lagged values of a smooth time series aswell

as the values of the random error term and the lagged values.
Lu et al. [2] proposed an extension of the autoregressive (AR)
model considering linear correlations between multiple time
series. This type ofmethod generally assumes that traffic flow
is linear evolution and can only handle smooth sequence data.
They do not exploit the internal spatial correlations of traf-
fic data and cannot reflect the non-linearity and uncertainty
of traffic data. Traditional machine learning-based meth-
ods no longer assume a linear variation in traffic evolution.
Wu et al. [3] proposed a regression method for sequence
data using the support vector machine. Van Lint et al. [4]
proposed a regression model using the k-neighborhood algo-
rithm, which took the weighted average of k-neighbor nodes
as the prediction result. These methods can acquire complex
dependencies after the addition of manually processed fea-
tures. They achieved better prediction results than time series
analysis-based methods. However, since prediction models
are handcrafted, predefined, and fixed, their performance
relies on domain knowledge heavily.

In the last few years, deep learning techniques have been
introduced to traffic prediction tasks to achievemore accurate
predictions. Zhang et al. [6] developed a depth model called
ST-ResNet for urban traffic flow prediction based on ResNet
[15]. Lin et al. [16] considered point of interest (POI) and
crowdmovement patterns in the predictionmodel and applied
CNN to acquire spatial–temporal correlations for predicting
crowdflows.Yao et al. [17] argued that the periodicity of traf-
fic flow was not strictly periodic but subject to some offsets.
For this reason, they proposed a periodicity through the atten-
tionmechanism tomodel the periodicity offset and combined
LSTM and CNN to exploit the spatial–temporal correlations.
Zhang et al. [18] modeled the flow patterns between edges
separately in the urban flow prediction model. Those CNN-
based models process the traffic network into rasterized cells
to acquire the temporal dependencies to predict future traf-
fic flow. However, rasterization destroys the spatial topology
of the road network and fails to exploit the realistic spatial
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dependencies of the traffic network. Applying graph convo-
lutional neural networks to exploit the spatial correlation of
traffic data can avoid this drawback. Zhao et al. [8] proposed
a T-GCN model combining gated recurrent unit (GRU) and
graph convolutional neural network (GCN) to capture tempo-
ral correlation and spatial correlation, respectively. However,
the degree of interconnection between traffic nodes is time-
varying, so the static adjacency matrix cannot represent the
degree of connection between traffic nodes dynamically. Yu
et al. [19] employed two gated convolution layers and a
GCN layer to construct an ST-Conv block to capture the
spatial–temporal correlation in traffic flow. Geng et al. [20]
developed a multi-graph convolutional neural network for
traffic prediction employing multiple graphs to encode dif-
ferent features of the traffic network. Defferrard et al. [21]
and Kipf et al. [22] applied the spectral graph neural network
to exploit the spatial dependencies between traffic nodes.
Yanguang et al. [9] defines spatial correlation as a diffusion
process and defines the traffic network as a directed graph.

Recently, the attention mechanism has been introduced
into traffic prediction for long-term correlation extraction.
Guo et al. [11] and Zheng et al. [23] applied attention mech-
anisms to generate a dynamic adjacency matrix to exploit
spatial correlations in traffic flow. The attention mechanism
was also applied in the temporal dimension to calculate
the degree of association between individual time slices. In
addition, traffic data are artificially processed into data with
explicit periodicity in [11, 24] designed local spatial–tem-
poral graphs to extract the spatial–temporal dependencies
of the traffic data simultaneously. Li et al. [25] improved
the local spatial–temporal graph in [24]. It applied dynamic
time warping (DTW) to calculate the similarity between
time series. However, these methods rely on a predefined
static road network adjacency matrix. And their parameter-
sharing mechanism makes them only acquire the shared
traffic pattern of all nodes.Bai et al. [10] proposed an adaptive
parameter learning module with an adaptive graph genera-
tion module to learn specific traffic patterns for each node. It
utilized a GRU module to acquire temporal correlations, but
theoretical and empirical evidence shows that theGRU is dif-
ficult to learn to store information for long sequences [26, 27]
because of its limited receptivefield.Guo et al. [14] employed
spectral clustering methods to construct regional micro and
macro graphs for the traffic network. The dilated convolution
was applied to increase the temporal receptive field in this
model, too. However, the spectral clustering method cannot
divide the traffic nodes accurately. The ratio of macro and
micro graphs needs to be adjusted artificially. The manual
adjustment error scheme limits the potential of the model
[28].

Most recently, Jiang et al. [29] presented a traffic
delay-aware feature transformation prediction model named
PDFormer to exploit the time delay in spatial information

propagation. Ji et al. [30] introduced a novel spatio-temporal
self-supervised learning framework (ST-SSL) to enhance the
representation of traffic patterns. Our previouswork [31] pro-
posed the multi-scale spatiotemporal network (MSSTN) to
extract and fuse multi-scale spatiotemporal features. Zeng
et al. [32] applied the spatial–temporal transformer to cap-
ture spatio-temporal correlations using a dynamic graph.

In this paper, a traffic prediction method fusing the node-
embedded GCN with a GRU to acquire spatial–temporal
correlations is proposed. In addition, a TA layer is employed
to extend the receptive field and exploit the global temporal
correlations.

Methodology

Problem definition

Traffic Network: In the proposed model, the traffic network
is defined as an undirected graph G � (V , E , A), where
V denotes the set of nodes in the traffic network. |V | � N
denotes the number of nodes, where each node represents a
traffic data collection device. E denotes the set of edges in
the traffic network, A denotes the adjacency matrix of G.

Traffic SignalMatrix: The traffic signal matrix of the traffic
network G at time slice t is denoted as Xt � (

xt , 1, xt , 2, . . . ,
xt , N

) ∈ RN×C , where xt , i ∈ RC denotes the feature vector
(a collection of variables of interest) of node i at time t and
C denotes the number of features, and the features include
traffic flow, speed, and road occupancy.

Traffic Prediction problem formulation:Given a historical
spatial–temporal traffic signal matrix X � (X1, X2, . . . ,
Xh) ∈ Rh×N×C over the past h time slices and a traffic
network graphG � (V , E , A). The goal of traffic prediction
is to build a model f ( · ) that aims to predict the traffic signal
matrixYpre � (Xt+1, Xt+2, . . . , Xt+T ′) ∈ RT ′×N×C over
the next T ′ time slices.

Attention Mechanism: The attention mechanism is a
method to model the dependencies between a collection of
values and the target under a query by adaptively assigning
to each value in the collection a weight that is determined by
the query and keys associated with them.

The self-attentionmechanism is a special expression of the
attention mechanism. The key, query, and value in the self-
attention mechanism are obtained by a linear transformation
of the input vector. So self-attention is better at capturing the
internal correlation of data. It is defined as (1).

Att(Q, K , V ) � so f tmax

(
WqQ · (WkK )T√

dm

)

V (1)
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where Wq , Wk are learnable matrices, Q, K , V and dm are
query, key, value, and their dimension respectively.

Architecture of the proposedmethod

The proposed TARGCNmodel consists of a node-embedded
GCN layer, a series of GRUs, a TA layer, and sequentially a
convolutional layer as illustrated in Fig. 2. It employs node
embedding to generate a dynamic adjacency matrix in the
spatial dimension which models the dynamic associations
between nodes adaptively. Following this layer, a series of
GRUs is applied to model local temporal correlations in the
temporal dimension. Then, global long-range temporal cor-
relations are exploited by a TA layer.

Initially, the original traffic flow matrix at time t Xt ∈
RN×din is merged with the initial hidden state Ht−1 ∈
RN×dh . It is then fed into the graph convolutional neural
network layer along with the initialized node embedding
matrix Ead j ∈ RN×de to obtain the spatial correlation matrix
at time t X ′

t ∈ RN×(din+dh ). After that, the hidden state is
updated by passing X ′

t ∈ RN×(din+dh ) through the reset gate
and the updating gate in GRU. Then, X ′

t ∈ RN×(din+dh ) of
Th time slices are concatenated as X ′ ∈ RN×(din+dh)×Th ,
and temporal position embedding is added for X ′. Finally,
the concatenated spatial correlation matrixX ′ exploits the
global temporal correlations through the TA layer and the
final prediction values are acquired by the 1D convolution
layer. Where N denotes the number of nodes, din , dh , and
de denote the input dimension, hidden dimension, and node
embedding dimension, respectively. And Th is set to 12 in
this work to predict the traffic flow in the next hour.

Spatial correlationmodeling

The proposed model employs a spatial domain graph con-
volutional neural network to capture spatial correlations at a
fine granularity. It can be defined as (2).

GCN (A, X) � σ
(
IN + D− 1

2 AD− 1
2

)
XW + b (2)

where A ∈ RN×N is the adjacent matrix of the traffic graph,
D is the degree matrix of A. X ∈ RN×C is the traffic signal
matrix. W ∈ Rc×c′

and b ∈ Rc′
are learnable parameters. σ

denotes a nonlinear activation function.
For the adjacent matrix, existing works mainly utilize

the geographic distances between traffic nodes or similarity
functions to model it dynamically. However, the predefined
adjacency matrix is normally calculated from the geograph-
ical distance between traffic nodes, but the node association
expressed by this predefined adjacency matrix is inaccurate.
Figure 3 is a schematic diagram of a section of the road net-
work structure, the orange points represent different traffic

nodes. The red gradient area represents the degree of asso-
ciation between node v1 and other nodes in the predefined
adjacency matrix, the darker the red means the association is
stronger. It can be seen from Fig. 3 that v1 is more closely
associated with v5 than v1 is with v2. But in reality, v1 and
v2 are more closely correlated, and even v1 and v4, which
are very far apart, are more strongly correlated than v1 and
v5. Therefore, the predefined adjacency matrix obtained by
geographic distance calculation alone is inaccurate, but the
manual design of the predefined adjacency matrix requires
a specific design for each region with the expertise of the
relevant domain and lacks generalization performance. Just
calculating the similarity between sequence data to repre-
sent the adjacencymatrix generally cannot capture the spatial
correlations fully, which may result in considerable biases.
So, the proposed model applies a learnable node embedding
matrix Ead j ∈ RN×de to infer hidden interconnection from
the traffic flow automatically. Each row of Ead j represents
the embedding vector of one traffic node. Then, the spatial
dependencies between every individual node are inferred by
multiplying Ead j and ET

ad j , which is the transpose matrix
of Ead j . Where N denotes the number of nodes and de
represents the embedding dimension of Ead j . In addition,

D− 1
2 AD− 1

2 is calculated as a whole as (3) to reduce compu-
tational resources.

Ã � D− 1
2 AD− 1

2 � so f tmax
(
Relu

(
Ead j · ET

ad j

))
(3)

where so f tmax( · ) and Relu( · ) represent nonlinear activa-
tion functions, Ã ∈ RN×N is applied to the graph convolution
operation. Ead j will be updated continuously during train-
ing automatically. Then, the graph convolution operation is
formulated as (4).

GCN
(
Ã, X

) � (
IN + Ã

)
XW + b (4)

From another perspective, since the predefined adjacency
matrix generally contains prior experiences, it can still reflect
the inherent correlation between certain traffic nodes. There-
fore, the predefined adjacencymatrix should not be discarded
in the predictionmodel completely. In ICGRRN[33], the pre-
defined adjacency matrix is added to the dynamic adjacency
matrix of the embedding matrix fit as the parameter of the
graph convolution operation. Different from ICGRRN [33],
the proposed TARGCN puts the predefined adjacencymatrix
and the dynamic adjacency matrix into separate graph con-
volution operations. The result of the predefined adjacency
matrix is further processed using a gating mechanism and a
linear layer. Then, it is summed with the learned embedding
matrix. This process reduces the impact of inaccurate data in
the predefined adjacency matrix.

As shown in (5), a parameterα is set in the proposedmodel
to control the weight of the predefined adjacency matrix.
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Fig. 2 TARGCN architecture. A
series of GRUs embedded with
GCN is applied to exploit spatial
and local temporal correlations.
And, a TA layer is employed to
acquire the global temporal
correlations. Moreover, a
residual connection is applied
between the temporal position
layer and the TA layer

Fig. 3 Road network structure
diagram. The degree of
correlation between nodes in the
road network that are
geographically nearby is not
always strong

1

5 4

3

When α � 0, it means no predefined adjacency matrix is
applied. Specifically, a gate mechanism is applied in the pro-
posed model to enable Emb-GCN to discard the insignificant
information in the predefined adjacency matrix.

GCNsd
(
Ã, X

) � α ∗ sigmoid(Xs) � Xs + GCN ( Ã, X )
(5)

Xs � Ws · GCN
(
so f tmax

(
Apre), X

)
+ bs (6)

Apre
i , j �

{
0, distance(i , j) > 1

τ

1/distance(i , j), distance(i , j) ≤ 1
τ

(7)

wheredistance(i , j) is the distance betweennode i andnode
j . τ ∈ (0, 0.1) is an artificial threshold. When the distance
between node i and node j is greater than 1/τ , these two
nodes are considered to be uncorrelated with each other. And
Ws and bs are learnable parameters.

The GCN operation can be regarded as aggregating the
features of neighbor nodes into the central node, where all
nodes share the parameter matrix W and b. This parameter-
sharing mechanism makes the model can only learn similar
traffic patterns for all nodes. In reality, nodes of different
geographical locations in the traffic network will be influ-
enced by their surrounding environment differently.Adjacent
node sets or even each node poses its own specific traffic
mode. So, a specific parameter is given for each node in this
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Fig. 4 GRU structure diagram, TARGCN employs multiple GRUs connected in series to capture the local temporal correlation of traffic flow. The
left part illustrates the overall structure of the GRU layer, and the implementation details between individual GRU units are shown on the right

work. This forces each node in the traffic network to learn
a specific traffic pattern. Specifically, two learnable matri-
ces WE ∈ RN×din×dout and BE ∈ RN×dout are embedded
in the model to assign parameters to each node. However,
when N is large, WE and BE will also become very large.
To reduce the number of parameters, two smaller matrices
we ∈ Rdw×din×dout and be ∈ Rdw×dout are employed in the
proposed model to construct WE and BE , where dw is the
embedding dimension of the same size as in the node embed-
ding matrix Ead j , and dw 	 N . Each row of WE and BE

represents a specific weight and bias of a node, respectively.
They can be expressed as (8) and (9).

WE � Ead j · we, BE � Ead j · be (8)

GCN
(
Ã, X

) � (
IN + Ã

)
XWE + BE (9)

Temporal correlationmodeling

Compared with RNN, GRU enhances the ability for
sequence-dependent modeling further. The proposed model
considers employing multiple stacked GRUs to exploit local
temporal correlations in the temporal dimension. Each GRU
cell blends the flow of the corresponding time slice and the
output state of its previous cell to extract temporal features.
Figure 4. shows the overall structure of the proposed GRU
layer and the implementation details between the GRU cells.
Given the traffic flows of the last T ′ time slices to predict
the flow of the t-th time slice, we stack T ′ GRU cells as a
GRU layer. Firstly, a hidden state Ht−T ′ is initialized and
then pushed into the first GRU cell with the traffic flow of
the time slice t − T ′ + 1, that is Xt−T ′+1. Then, the out-
put of this cell Ht−T ′+1 and the traffic flow of the second

time slice Xt−T ′+2 are input into the second GRU cell, and
so on. Sequentially, the last cell outputs the state Ht as the
temporal features extracting by thewhole GRU layer. Specif-
ically, eachGRUcell can be formulated as (10). Note that, we
replace the standard matrix multiplication in GRU with the
graph convolution operation in (10). This operation enables
GRU to acquire both spatial correlation and local temporal
correlation. The number of historical time slices applied for
prediction T ′ is set to 64 in this work, just as other state-of-
the-art methods. So, there are 64GRU cells in the GRU layer.

zt � σ (GCNsd
(
Ã, Xt ||Ht−1)

)
,

r t � σ (GCNsd
(
Ã, Xt ||Ht−1)

)
,

ht � tanh(GCNsd ( Ã, Xt ||(r t � Ht−1))),

Ht � zt � Ht−1 +
(
1 − zt

) � ht . (10)

where || denotes the union operation, Xt and Ht denote the
traffic flow and hidden state at time t respectively, � rep-
resents the Hadamard product, σ( · ) denotes the sigmoid
activation function. zt and r t are reset gate and update gate
at time t , respectively.

After the GRU layer, a self-attention module as shown in
Fig. 5 is followed to capture the correlation degree between
individual time slices in the time dimension in the pro-
posed method. This structure extends the receptive field and
makes up the deficiency of GRU in exploiting long time
series temporal correlations, In this module, the temporal
position embedding is first added for the input. And then
multiple temporal attention operations are performed with
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Fig. 5 The structure of the TA layer

each layer connected with residuals. Note that, we calculate
the attention scores in the temporal dimension after trans-
forming the output of GRU to query, key, and value by
convolution operations. Different from the traditional self-
attention mechanism, we substitute the linear transformation
on the query and key with 1D convolution here. Since the
convolution operation can acquire semantic information in
the context, this substitution enables the proposed model
to exploit the global nonlocal temporal correlation between
nonadjacent time slices. The attention score is defined as fol-
lows.

Att(Q, K , V ) � so f tmax

(
Qc(Q) · Kc(K )T√

d

)

Vl (V )

(11)

Qc(Q) � Conv(Q) (12)

Kc(K ) � Conv(K )

Vl (V ) � Linear (V )

where Q, K , V , and d are the query, key, value, and their
dimensions, respectively.Conv(·) and Linear (·) denote con-
volution operation and linear transformation, respectively.
Qc(Q) and Kc(K ) represent the query vector and key vector
after the convolution operation, respectively,Vl (V ) is a vector
of values that have been linearly transformed. d denotes the
features dimension of traffic flow. In the convolution opera-
tion, the convolution kernel size is set to 3 in this work.

Since the attention function treats each position equally
in the self-attention mechanism, the sequential dependencies

in the traffic flow are normally discarded in the calculation
process [13]. However, the order information is crucial to the
task of modeling time-series data because there is a stronger
correlation between data at closer distances. For example, the
traffic flow at 9:00 am is more instrumental for predicting the
traffic flow at 9:30 am than that at 8:00 am. To address this
issue,we append the temporal position code from the original
data as (13). Specifically, we append a position code etp for
the time slice t as (14) to identify the position of Ht [i , : ] for
i-th feature in the whole sequence Ht . The TA layer can be
expressed as (15).

Ht ′[i , :] � Ht [i , :] + etp (13)

etp �
{
sin(t/(1000)2i/d ), t � 0, 2, 4, . . .

cos(t/(1000)2i/d ), t � 1, 3, 5, . . .
(14)

YT A � Relu
(
Linear

(
Att

(
H ′
t , H

′
t , H

′
t

)))
+ H ′

t (15)

where sin(·), cos(·), Relu(·) represent sine, cosine, and the
rectified linear unit function, respectively. d is the number of
features.

Following the TA layer, a 1D convolutional module is
employed as the prediction layer. Note that, to reduce the
error accumulation caused by predicting one time slice each
time, the prediction layer is designed to infer the predicted
values for the next 12 time slices at one time in the proposed
framework.

In summary, the proposedmodel includes threemainmod-
ules, an Emb-GCN layer, a GRU layer, and a TA layer. In
Emb-GCN, the adjacency matrix of the traffic network is
dynamically modeled by an embedding matrix. Meanwhile,
the parameter learning matrices are applied to learn specific
traffic patterns for each node. In the GRU layer, a graph con-
volution operation is utilized instead of matrix multiplication
to exploit spatial correlations and local temporal correlations.
Then, a TA layer with a temporal location embedding mod-
ule is employed to exploit global temporal correlation and a
1D convolutional layer is utilized as a prediction layer. The
improved GRU and TA layer enables the model to effec-
tively exploit the spatial–temporal correlation in traffic flow.
In addition, a 1D convolutional layer for one-time inference
of prediction results avoids error accumulation.

Experiments

Datasets

The proposed model is evaluated on three public traffic
datasets PEMS03, PEMSD4, and PEMSD8 as shown in
Table 1. All of them are real freeway traffic flows in Cali-
fornia collected by the Caltrans Performance Measurement
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Table 1 Experiment datasets

Datasets Nodes Samples Time range

PEMS03 358 26,208 01/09/2018–30/11/2018

PEMSD4 307 16,992 01/01/2018–28/02/2018

PEMSD8 170 17,856 01/07/2016–31/08/2016

System (PEMS) [34] in real-time every 30 s. The traffic data
is aggregated into 5 min, which means 288 traffic data points
per day. The Nodes field in Table 1 represents the number
of nodes in the dataset, where each node represents a sensor
used to collect traffic data in the real world. The Samples
field in Table 1 indicates the number of data points collected
at each node, and the Time Range field indicates the period
over which the dataset was collected.

(1) PEMS03: This dataset contains traffic flow data
from 358 traffic collection nodes for the months
01/09/2018–30/11/2018. Note that, there are some very
small values in the PEMS03 dataset. They may cause
the MAPE indicator to be abnormally large. To address
this issue, the flow rate values less than 10 are set to 0
in the experiments.

(2) PEMSD4: This dataset contains traffic flow data from
307 traffic collection nodes for the months 01/01/2018-
28/02/2018.

(3) PEMSD8: This dataset contains traffic flow data from
170 traffic collection nodes for twomonths 01/07/2016-
31/08/2016.

The traffic networks in these two datasets are defined
as undirected graphs. The traffic data contains three char-
acteristics: traffic flow, speed, and road occupancy. In the
experiment, traffic flow is the prediction target while traffic
speed and road occupancy will not be involved in the model
training. The traffic flow data set is divided into training sets,
validation sets, and test sets according to 6:2:2. The target of
the proposed model is to predict the traffic flow for the next
12 time slices using the historical traffic flow in the last 12
time slices.

Baselinemethods

The proposed TARGCNmodel is compared with the follow-
ing baseline methods:

(1) VAR [2]: Vector autoregression is a time series model
that portrays pairwise correlations between multiple
time series.

(2) DCRNN [9]: The diffusion convolutional recurrent
neural network employs diffusion graph convolutional

networks and GRU based on seq2seq to predict traffic
graph series data.

(3) STGCN [19]: This method employs ChebNet in the
spatial dimension and 2D convolutional networks in
the temporal dimension to model the correlations in
spatial–temporal graph data.

(4) ASTGCN [11]: This is an attention-based spatial–tem-
poral graph convolutional network which employs
spatial attention and temporal attention mechanisms
to model spatial–temporal dependencies.

(5) STSGCN [24]: This spatial–temporal synchronous
graph convolutional network proposes a local spa-
tial–temporal graph to model spatial–temporal corre-
lations.

(6) AGCRN [10]: The adaptive graph convolutional recur-
rent network utilizes a GCN with data-adaptive graph
generation in the spatial dimension. In this model,
the temporal and spatial correlations are captured by
embedding the GCN into the GRU.

(7) STGMN [35]: A 1D-CNN based on channel attention
mechanism and “inception” structure is proposed to
extract temporal correlation. An interpretable multi-
graph gated graph convolution framework is proposed
to extract the spatial correlation.

(8) IGCRRN [33]: An improved Graph Convolution Res-
Recurrent Network for spatial–temporal dependence
capturing and traffic flow prediction.

(9) MAGRN [36]: A multi-scale attention-based graph
convolutional recurrent network framework for multi-
scale feature extraction and dual attentionmechanisms
for traffic flow prediction.

(10) SLTTCN [37]: A convolution network model that
employs spatial linear transformers to aggregate spatial
information and bidirectional temporal convolution
networks to capture temporal dependencies in traffic
flow g.

Experimental settings

In the experiments, the MAE, RMSE, and MAPE are
employed as evaluation metrics. They are defined as
(16)–(18).

MAE � 1

N

N∑

i�1

∣∣Yi − Ŷi
∣∣ (16)

RMSE �
(
1

N

N∑

i�1

(
Yi − Ŷi

)2
)1/2

(17)

MAPE � 100%

N

N∑

i�1

∣∣(Yi − Ŷi )/Yi
∣∣ (18)
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Table 2 Hyperparameter settings in TARGCN

Hyperparameter Node Embedding
Dimension

Number of GRUs Number of TA layers Batch size epoch Initial learning rate α

PEMS03 10 64 2 64 150 0.003 1

PEMSD4 10 64 2 64 200 0.003 1

PEMSD8 2 64 2 64 300 0.003 1

where N denotes the number of samples, and Yi and Ŷi
denote the ground truth and the prediction of the i-th sample,
respectively. Note that, all these three metrics are prediction
error evaluation indicators. Smaller values mean better pre-
dictions.

The proposed model is implemented on the PyTorch 1.9.1
deep learning framework with one NVIDIA Tesla P100-
PCIE 16GB card. The mean absolute error is utilized as the
loss function. Adam is employed as the optimizer. The learn-
ing rate is initialized to 0.003 and decayed during training.
The detailed hyperparameter settings are listed in Table 2.
All the flow data are normalized by employing standard nor-
malization methods first before they are input to the neural
network during the training phase. And during the inference
phase, the predicted values are recovered to the actual flows
by the mean and standard deviation of the flow recorded in
advance.

Note that, the node embedding dimensions are selected
based on the number of nodes in the dataset. They are selected
in [2, 4, 6, 8] for PEMSD8 with less number of nodes, and
[8, 10, 12, 16] for PEMS03 and PEMSD4 with more number
of nodes. The number of GRUs, the number of TA layers,
the batch size, and The initial learning rate are chosen in [32,
64, 128], [1, 2, 3, 4], [16, 32, 64], and [0.01, 0.005, 0.003,
0.001], respectively. A learning rate decay strategy is set up
so that the learning rate decreases as the epoch increases.

Experiment results

Table 3 lists average prediction errors over 12 prediction steps
in the next hour in terms of various metrics for all compared
methods. All results of the proposed method are averaged
over three experiments. Results of other methods come from
their papers unless they open their source codes. It should
be noted that the prediction errors of IGCRRN [33] on the
PEMS03 are omitted from the table because there are nei-
ther source codes publicly available for it nor experimental
results on thePEMS03dataset in the original paper.As shown
in the table, the VAR [2] model considers spatial–temporal
correlations among multiple time series, but it is representa-
tion ability to model dynamic spatial–temporal correlations
is weak. Thus, the prediction performance of this method is
limited.

The deep learning-based methods present an enormous
advantage over the traditional methods. This demonstrates
the superiority of deep learning techniques in extracting non-
linear and dynamic dependencies of traffic flow. The deep
learning-based methods ASTGCN and STSGCN applied
1D-CNN and GCN to exploit temporal and spatial corre-
lation. It is difficult to exploit long-term temporal correlation
due to the limitation of CNN by the size of the convolu-
tional kernel. STGCN employs TCN to expand its receptive
field in the temporal dimension. But TCN still requires a
stack of O(logk(Th)) convolutional layers to connect any
two positions in the sequence, where k is the convolution
kernel size [13]. Therefore, it is still difficult for TCN to
exploit the long-term temporal correlation of traffic data
[12]. DCRNNandAGCRNare both traffic predictionmodels
based on GRU and GCN. The parameter-sharing mechanism
makes DCRNN learn only the shared traffic patterns of all
nodes, resulting in a much higher prediction error than the
proposed TARGCN, especially for long-term predictions.
STGMN applied a channel-focused multi-resolution CNN
and an interpretablemulti-graph framework to exploit tempo-
ral correlation and spatial correlation, respectively. IGCRRN
employs an embedding matrix combined with a predefined
adjacency matrix to fit the dynamic adjacency matrix in the
spatial dimension and an LSTM module to capture tempo-
ral correlation. The performance improvement of TARGCN
over ICGRRN may primarily result from the construction
method of the embeddingmatrix and theTA layer. Thematrix
embedding of TARGCN allows for more fine-grained learn-
ing of traffic patterns of traffic nodes, and the TA layer further
captures the global temporal correlationwith attentionmech-
anisms.

As illustrated in Table 3, the proposed TARGCN achieves
the best average prediction among all compared methods
both on PEMS03 and PEMSD8. On PEMSD4, the pro-
posed method is slightly inferior to MAGRN and SLTTCN
in terms of RMSE and IGCRRN in terms of MAPE. Still,
it achieves the best MAE among all methods. These results
demonstrate the advantages over other state-of-the-art traffic
prediction methods. Prediction improvements mainly stem
from more efficient extraction of spatial–temporal features
in the traffic flow. In the spatial dimension, TARGCN applies
the node embeddingmatrix and node parameter learning into
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the graph convolutional network to construct the Emb-GCN
module for exploiting spatial correlations. In the Emb-GCN
module, a gate mechanism is designed to filter the inaccu-
rate parts of the predefined adjacency matrix to reduce the
perturbation of the model caused by inaccurate data. The
Emb-GCN module enables TARGCN to fit the traffic adja-
cency matrix well and acquire specific traffic patterns for
each node. The GRU exploits temporal correlation in the
traffic flow by updating the hidden states continuously in the
temporal dimension. It calculates the temporal correlation
between two distant time slices requiring all the time slices
between them. However, in this process, the gate mecha-
nism makes GRU discard certain information resulting in
incomplete long-term temporal correlation. Therefore, with
the increase of the prediction interval, the ability of GRU
to capture temporal correlation becomes weaker. In contrast,
the TA layer first adds a temporal location embedding to the
traffic flow recording the order information of the data. Then,
it employs the attention mechanism to calculate the correla-
tion degree between individual time slices. Employing the
attention mechanism to calculate the degree of intercorre-
lation between two slices is not affected by the other time
slices, so the captured long-term temporal correlation ismore
complete. The proposed TARGCN captures spatial–tempo-
ral correlation by GRU embedded with GCN. Moreover, the
model employs a TA layer to capture the global temporal
correlation, which exploits the spatial–temporal correlation
of traffic flow more adequately than other methods do.

Figure 6 illustrates curves in terms of error metrics for
all methods for 12 perdition intervals. As seen in Fig. 6,
all the machine learning methods, including SVR and deep
learning-based methods achieve satisfactory prediction for
the 5-min prediction task. For short-term intervals, especially
ultra-short-term intervals, traffic flow is highly temporal-
dependent. Therefore, methods exploiting temporal depen-
dencies in traffic flow, even time series analysis-based
methods can make good predictions. However, as the pre-
diction interval increases, nonlinearity and uncertainty are
growing. Data-driven methods become more advantageous
than fixedmodel-basedmethods.Meanwhile, the traffic node
is increasingly impacted by its adjacent nodes. Spatial cor-
relations play a more and more important role in traffic
evolution. From ten-minute prediction, methods begin to
exhibit differentiation in prediction accuracy. Deep learning-
based methods, especially methods taking both temporal and
spatial correlations into account start to stand out. The pro-
posed method utilizes a graph convolution operation in GRU
to exploit spatial correlations and local temporal correla-
tions. Besides, a TA layer is employed to extract long-term
temporal correlations. It naturally makes more competitive
perdition than other methods. It outperforms other methods
in terms of most metrics for ten-minute prediction except
slightly behind AGCRN in terms of RMSE on PEMSD4.
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Fig. 6 Prediction error curves for various intervals on PEMSD4 and PEMSD8

For 30-min and longer predictions, it exceeds all baseline
methods in terms of all metrics, and the superiority is sig-
nificant over most methods. Only the gap between AGCRN
and the proposed model is smaller in terms of some metrics.
Moreover, it can be observed that the curves of the proposed
TARGCNare gentler than comparedmethods. In general, the
longer the prediction intervals, the more difficult the predic-
tion task is. The prediction accuracy of all models degrades
with the interval increase. It can be observed from Fig. 6 that
the proposedmodel performs less prediction accuracy degra-
dation than other state-of-the-art baselines with the interval
increase. This demonstrates that the proposed method takes
full advantage of the spatial correlation of the road network
and further models the long-term temporal correlation with
a temporal self-attention mechanism, which leads to a more
accurate result for long-term prediction.

Figure 7 shows the comparison of predicted values and
actual values for four traffic nodes over four days in the 60-
min prediction task. The prediction details are illustrated
more intuitively. As presented in Fig. 7, the traffic of all

nodes presents obvious periodicity by day. However, there
exist large differences in the traffic patterns for nodes and
periods. There are two traffic peaks for the 115th node of
PEMS03. One is between 4:00 am and 5:00 am. Another one
comes at about noon. However, the other two nodes just have
one traffic peek. Moreover, the peaks for these two nodes
are different in shape. Even traffic peaks of the 127th node
of PEMSD8 are totally different in shape between day and
day as shown in Fig. 7c. Despite these challenges, it can be
observed that the proposed TARGCN simulates the real traf-
fic flow of nodes with different traffic patterns evolution very
well. Compared with the state-of-the-art prediction method
AGCRN [10], its prediction curves are closer to the ground
truth in most cases. Even there occur occasionally instan-
taneous dramatic changes without any portent in the actual
traffic. The predictions do not deviate from the real trends.
This demonstrates the robustness of the proposed method to
the noise flow in the traffic. For some aperiodic flow changes
lasting a longer duration, the proposed method also makes
a good prediction. That is, the proposed method captures
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(a) The 115th node of PEMS03

(b) The 85th node of PEMSD4

(c) The 127th node of PEMSD8

Fig. 7 Visualization of 60-min predictions on PEMS03, PEMSD4, and PEMSD8

the traffic changes of the connected nodes for the predicting
node and makes correct inferences. This shows the proposed
method extracts the spatial–temporal features in the road net-
work effectively.

Ablation experiments

Ablation experiments are performed on the PEMSD8 dataset
to verify the effectiveness of each module in TARGCN.

(1) TARGCN-linear: A linear layer is applied to replace the
learning parameter matrices we and be for each node in
this ablation model. This experiment is to verify the
inadequacy of the parameter-sharing mechanism in the
traffic prediction task.

(2) TARGCN-SA: This ablation model applies an attention
mechanism combined with a static adjacency matrix
to generate the dynamic adjacency matrix. It is to
investigate the effectiveness of the node embedding in
TARGCN.

123



Complex & Intelligent Systems

(3) TARGCN-noTA:Thismodel removes theTA layer from
the original TARGCN model. It is to verify the effec-
tiveness of the TA layer.

(4) TARGCN-noGate: This experiment removes the gating
mechanism from the Emb-GCN. The purpose of this
controlled experiment is to verify that the gatingmecha-
nismeffectively utilizes the predefined adjacencymatrix
to obtain better prediction performance of the proposed
model.

The results of the ablation experiments are illustrated in
Table 4 and Fig. 8. As shown in Table 4 and Fig. 8, TARGCN
achieves the best prediction, then followed by TARGCN-
noGate, TARGCN-noTA, TARGCN-SA, and TARGCN-
linear. The TARGCN-linear model employs a parameter-
sharing mechanism that makes the model learn shared traffic
patterns for all traffic nodes. This parameter-sharing mech-
anism results in most nodes not being assigned accurate
parameters and the limited prediction accuracy of the model.
By contrast, TARGCN and TARGCN-noTA learn specific
parameters for each node, so they make much better predic-
tions than TARGCN-linear.

TARGCN-SA combines the self-attention mechanism
with a predefined adjacencymatrix to capture spatial correla-
tions. First of all, the single self-attention mechanism cannot
extract spatial correlations fully. Secondly, since the prede-
fined adjacency matrix is obtained by calculating the static
geographical distance between nodes, it does not represent
degrees of dynamic correlations between nodes accurately.
In the training process, the inaccurate predefined adjacency
matrix repeatedly participates in the calculation, which leads
to accumulative errors. In TARGCN and TARGCN-noTA,
the learnable node embedding matrices are employed to
model dynamic adjacency matrices, which benefits predic-
tion.

As illustrated in Table 4 and Fig. 8, predictions of
sTARGCN are better than those of TARGCN-noGate. This
validate the effectiveness of the gating mechanism. Specifi-
cally, the data in the predefined adjacency matrix that differ
significantly from the actual correlations have a negative
impact. The gating mechanism can effectively reduce the
negative effects of such inaccurate correlations, so that the
TARGCN can utilize the accurate information in the pre-
defined adjacency matrix without being severely perturbed,
thus achieving the best prediction performance.

To more intuitively evaluate the performance of methods,
predicted traffic flows at the 127th node of PEMSD8 for
TARGCN and TARGCN-noTA are presented in Fig. 9. It can
be seen fromFig. 9 that forTARGCN, although the prediction
deviation increases slightlywith the increase of the prediction
interval, the predicted value is always well attached to the
ground truth. The red circle area in Fig. 9 shows that there
exists a relatively large margin from the ground truth for

TARGCN-noTA. And the prediction error enlarges with the
increase of the prediction interval more significantly than
TARGCN does. This verifies that the TA layer employed in
the proposed method remedies the disadvantage of GRU for
long-term prediction and guarantees the prediction is steady.

Complexity

To evaluate the efficiency and complexity of the pro-
posed model, an experimental assessment is conducted
on the parameters of all comparative baselines and the
TARGCN model. Table 5 presents the parameter quantities
for TARGCN and other state-of-the-art deep-learning traf-
fic prediction methods. As shown in Table 5, all models
except STSGCN have fewer than one million parameters.
STGCN and DCRNN have relatively fewer parameters, each
with less than 300,000. This is because both models leverage
graph convolutional networks to capture spatial correlations
and combine them with temporal convolutional networks
and gated recurrent units to capture temporal correlations.
Their relatively simple architectures are suitable for light
traffic networks with fewer nodes. STSGCN, on the other
hand, significantly increases the parameter count to 2 million
due to its spatial–temporal synchronous graph convolu-
tion layer, which incorporates neighboring spatial–temporal
features to construct a spatial–temporal adjacency matrix.
Despite achieving high prediction accuracy, its complex-
ity and efficiency are considerably affected. The proposed
TARGCN, alongwith baselinemethodsASTGCN,AGCRN,
and STGMN, all have parameter counts below one mil-
lion. These models are well-suited for complex traffic net-
works and can meet real-time prediction requirements. Most
existing deep learning-based traffic prediction methods are
considerably smaller in scale compared to natural language
processing and vision models. These baseline methods are
generally capable of being trained within the required time-
frame using limited GPU and memory resources, achieving
real-time prediction.

Conclusion

This paper proposed a deep learning-based model TARGCN
for traffic flow prediction. The TARGCN model fuses an
Emb-GCN layer, a series of gated recurrent units, and a
TA layer in a framework to exploit both dynamic spatial
correlations between traffic nodes and temporal dependen-
cies between time slices. The Emb-GCN layer is applied to
extract the spatial correlation of traffic flow at a fine-grained
level. Node embedding matrix and node parameter learning
techniques are combined in this layer to learn the specific
traffic pattern for each traffic node. A GRU layer stacked by
a series of GRU cells is followed to extract traffic patterns
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Table 4 Results of ablation experiments

Methods TARGCN-linear TARGCN-SA TARGCN-noTA TARGCN-noGate TARGCN
(proposed)

Dataset Metrics

PeMSD8 MAE 17.36 17.22 15.74 15.46 15.14

RMSE 27.91 27.26 25.22 24.88 24.62

MAPE (%) 11.46 10.79 10.15 10.04 9.90

Fig. 8 Components analysis for ablation experiments

from the traffic flow of adjacent nodes in the past few time
slices. This layer facilitates the model to capture both tem-
poral and spatial correlations simultaneously. Subsequently,
an attention layer is employed in the temporal dimension to
extend the receptive field of GRU. This strategy enhances
the ability of the proposed method for long-time prediction.
Finally, a prediction layer using a 1D convolutional neu-
ral network is utilized to generate the predicted values. The
fusion framework not only can fit the degree of intercon-
nectedness between traffic nodes by traffic flow adaptively
but also capture the specific traffic pattern for each node.
This makes the model achieve promising prediction accu-
racy. Experiments on real-world traffic datasets demonstrate
the advantage of TARGCN over compared state-of-the-art
methods. Comparisons on average prediction errors indicate
that the proposed method is basically superior to other meth-
ods. Especially for long-time predictions of 30 and 60 min,
it exhibits a remarkable margin from the compared meth-
ods. Moreover, the effectiveness of each component of the
proposed model is verified by the ablation experiments.

Still, the proposed TARGCN has some limitations and
shortcomings. First of all, the model predicts the future flow
from purely the historical flow while other factors, espe-
cially the weather, are not taken into account. This leads to
the deficiency of robustness of the model. Although weather
changes can reflect the changes in flow, this change transmis-

sion will be delayed. This results in a decline in the accuracy
of the model over a period of time. The main reason we
have not taken the weather into account is the difficulty of
obtaining accurate real-time weather conditions. Inaccura-
cies of weather conditions, both past and future, may result
in bad predictions. Alignment and multi-modal fusion for
the weather and traffic data is also an open problem in the
field. Actually, some works fusing the weather factor into the
model did not achieve better predictions. In future work, we
are more likely to consider a multi-stream style combined
with rough weather conditions to improve prediction accu-
racy under variable weather conditions. Another weakness
of the proposed model is its structure is based on RNN and
a series of GRU cells in the GRU layer are sequentially con-
nected which limits its ability to be parallelized. Since the
proposed model requires to be retrained when the road net-
work environment or traffic pattern changes, the serialization
of the kernel calculationwill affect the real-time performance
of the system. Moreover, the proposed model applied the
GRU fusion-based network and the learned adjacent matrix
to make it more suitable for the freeway graph-based net-
work pattern. This makes the model not advantageous on
other types of road networks. Exploiting spatial–temporal
dependencies between multi-adjacent nodes in the traffic to
improve the adaptability to the grid-based road network for
the model is another focus of our future work.
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Fig. 9 Predicted traffic flows for
the 127th node of PEMSD8 in
24 h for TARGCN and
TARGCN-noTA

(a) 15-minute prediction

(b) 30-minute prediction

(c) 60-minute prediction

Table 5 Number of parameters
of methods Methods STGCN DCRNN ASTGCN STSGCN AGCRN IGCRRN STGMN Proposed

Number
of
parame-
ters

211,596 149,057 450,031 2,024,445 748,810 – 525,294 446,778
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