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Abstract
Self-supervised monocular depth estimation has always attracted attention because it does not require ground truth data.
Designing a lightweight architecture capable of fast inference is crucial for deployment on mobile devices. The current
network effectively integrates Convolutional Neural Networks (CNN)with Transformers, achieving significant improvements
in accuracy. However, this advantage comes at the cost of an increase in model size and a significant reduction in inference
speed. In this study, we propose a network named Repmono, which includes LCKT module with a large convolutional kernel
and RepTM module based on the structural reparameterisation technique. With the combination of these two modules, our
network achieves both local and global feature extraction with a smaller number of parameters and significantly enhances
inference speed. Our network, with 2.31MB parameters, shows significant accuracy improvements over Monodepth2 in
experiments on the KITTI dataset. With uniform input dimensions, our network’s inference speed is 53.7% faster than R-
MSFM6, 60.1% faster than Monodepth2, and 81.1% faster than MonoVIT-small. Our code is available at https://github.com/
txc320382/Repmono.

Keywords Depth estimation · Large convolutional · Structural reparameterisation · Inference speed

Introduction

Depth estimation, as a fundamental task in the field of
computer vision, has been widely used in areas such as
autonomous driving [1], robot navigation [2, 3] and vir-
tual reality [4]. Depth estimation methods can primarily be
divided into two types: active ranging and passive rang-
ing. Active ranging relies on distance-measuring sensors to
acquire depth information. These sensors mainly include
costly LiDAR (Light Detection and Ranging) and Time-of-
Flight (ToF) cameras. Passive ranging techniques estimate
distances by calculating disparity. Against this backdrop,
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the robust capability of Convolutional Neural Networks
(CNNs) for image feature extraction has greatly facilitated
the advancement ofmonocular depth estimation technologies
based on deep learning [5]. In supervised monocular depth
estimation, the training process requires the use of accurate
ground truth depth data. However, in complex environments,
the unpredictability of these data makes their collection
particularly challenging. Self-supervised monocular depth
estimation methods employ synchronized stereo image pairs
or monocular videos for training. Although training with
monocular videos necessitates an additional pose estimation
network to calculate the camera’s motion, it requires only
a single camera for data collection. Therefore, the use of
monocular videos in self-supervised monocular depth esti-
mation remains widely adopted.

Visual Transformer, with its ability to model the global
sensory field, continues to make breakthroughs in the visual
domain [6], and the use of Transformer in self-supervised
depth estimation is also being attempted. For example,
MonoVIT [7] utilizes advanced Transformer block in its
encoder to achieve accurate prediction of fine-grained depth
features, overcoming the limited receptive field of CNNs.
However,multi-head self-attentionmodules inside theTrans-
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former make it difficult to achieve fast inference due to
its complex parallel operations. Comparing to using CNN
in the architecture, MT-SFMLearner [8] demonstrates that
using Transformer in the architecture has higher robust-
ness, but also brings higher parameters and lower inference
speed. Lite-Mono [9] introducesContinuousDilationConvo-
lution (CDC) module and Local–Global Feature Interaction
(LGFI)module to lighten the hybrid architecture of CNN and
Transformer, however it still retains the coremodule ofmulti-
head self-attention to capture global features. While several
studies have existed designing Transformer with CNN in a
self-supervised monocular depth estimation architecture, the
fast inference of the model is neglected in order to extract
rich details. We believe that using Transformer in the archi-
tecture of self-supervised monocular depth estimation will
affect the computational cost and inference speed. Pursu-
ing higher performance while bringing more computational
complexity and slower inference speed is an outcome we do
not wish to see, as it would limit the network’s capability in
practical applications [10, 11]. Exploring how to simultane-
ously achieve excellent performance and fast reasoning of
the network becomes the main focus of our research (Fig. 1).

In order to solve the above problems, this study designs
a lightweight and efficient self-supervised monocular depth
estimation using a pure CNN architecture. Drawing on the
idea of Mateformer [12], we design Large Convolution Ker-
nel Transformer (LCKT) module for multi-scale feature
extraction, starting with token mixing and channel mixing,
and enhance local information extraction through the use
of the simple yet efficient Senet [13] attention mechanism.
RepTMmodule proposed in this study reparameterizes deep
convolutions and achieves feature extraction of global infor-
mation and local details when used in conjunction with the
LCKT module, which effectively improves the inference
speed without sacrificing model performance. Our contribu-
tions in this paper can be summarized in the following three
aspects:

(1) We propose a self-supervisedmonocular deep estimation
network called Repmono, which is capable of high speed
inference while maintaining high performance.

(2) We carefully design LCKTmodule with a large convolu-
tional kernel and RepTM module based on the structural
reparameterization technique. Experiments show that the
LCKTmodule is able to achieve effective local and global

Fig. 1 Comparison of Monovit [7], Lite-Mono [9] and our pro-
posed Repmono. A MonoVIT [7] combines the VIT model with
self-supervised depth estimation. B Lite-Mono [9] introduces contin-

uous dilated convolution modules and local–global feature interaction
modules. C Repmono proposes a large convolutional kernel feature
extraction module and a reparameterized token mixer module
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feature extraction, and RepTM module is able to further
optimize the efficiency of the network while extracting
detailed features.

(3) Evaluations on the publicly available KITTI dataset [14]
show that our lightweight model has fewer parameters
and higher accuracy. We also explore the generalization
capability of our network architecture on the Make3D
dataset [15] and the DrivingStereo dataset [16], and our
model also exhibits better generalization performance
compared to other lightweight models.

Related work

Monocular depth estimation

Because different scales of 3D scenes can be inferred
from 2D images, depth estimation from a single image has
always been a challenging issue. Supervised depth estima-
tion utilizes real depth maps as supervision signals, enabling
accurate estimation of depth from a single RGB image.
Eigen et al. [17] applied deep networks to depth estimation
for the first time, using a multi-scale network structure to
extract global and local depth features of the input image.
Subsequent studies continuously improves deep networks
[18–20] to achieve better performance, but these studies
require ground truth data in the real world, which has been a
challenge. Garg et al. [21] implicitly learn depth by using
a reprojection of a stereo image, where the loss function
is a pixel based reconstruction loss, representing a novel
approach to view synthesis. Godard et al. [22] propose mon-
odepth based on this, incorporating left-right consistency loss
to ensure consistency in depth prediction between left and
right images. However the stereo images required for training
of such studies are also difficult to obtain. The above studies
try to get rid of ground truth data using new image recon-
struction loss techniques, but inevitably use stereo images
for self-supervised training, and thus self-supervised depth
estimation using exclusively unlabeled ground truth depths
during training is gradually becoming a viable alternative.
SFMLearner proposed by Zhou et al. [23], can learn both
depth and self-motion from consecutive frames of monocu-
lar video, but it cannot remove the loss introduced to dynamic
objects in consecutive frames. For the treatment of dynamic
objects, Vijayanarasimhan et al. [24] learn multiple object
masks in a deep network.Guizilini et al. [25] combine seman-
tic information with depth estimation information to reduce
the luminosity loss due to dynamic objects, and the GeoNet
model proposed by Zhichao Yin et al. [26] introduce optical
flow estimation to predict the sequence of images dynamic
objects in an image sequence. The above study chose to
include additional tasks in the deep network to minimize the
loss caused by dynamic objects, but this also increases the

parameters in the network model. Monodepth2 proposed by
Godard et al. [27] use an automatic masking loss to remove
dynamic objects that are at the same speed as the camera, and
a minimum reprojection loss is designed to deal with occlu-
sion that occurs in the front and back frames without the
need to use additional learning tasks. Therefore, the model
proposed in this study follows the self-supervised training
strategy based on Monodepth2 [27].

Network architecture for depth estimation

The network architecture in monocular depth estimation has
a significant impact on the final depth prediction results. Prior
to the application of Transformer to vision, most deep learn-
ing efforts on monocular depth estimation focused on the
design of CNN architectures such as Resnet [28], VGGnet
[23], HRnet [29] and Packnet [30]. These classical net-
works have achieved remarkable results in the application of
self-supervised monocular depth estimation tasks. However,
CNNmodels are limited by their finite receptive fields during
convolution operations. By introducing attention modules,
networks canmore effectively fuse features and extract depth
features. For example, the literature [31] improved feature
fusion capability by incorporating an attentionmodule, while
the literature [32] used self-attention to enhance semantic
features in a VGG [33] encoder. R-MSFM [34], a small
architecture that employs a feature modulation module to
learn multi-scale features, uses only the first three stages of
ResNet18 [28] as a backbone network in order to reduce the
number of model parameters. PydNet [35] designed an unsu-
pervised network capable of performing depth estimation on
the CPU, although with lower computational parameters, it
cannot achieve more accurate depth feature extraction. Fast-
Depth [36] model achieves fast inference through pruning
and optimization, but has limitations in dealing with the
details of depth estimation. Exploring how to achieve both
excellent performance and fast inference in the network has
become the main focus of our research.

The network architecture in monocular depth estimation
has a significant impact on the final depth prediction results.
Prior to the application of Transformer to vision, most deep
learning efforts on monocular depth estimation focused on
the design ofCNNarchitectures such asResnet [28],VGGnet
[23], HRnet [29] and Packnet [30]. But these models ignore
parameters and inference speed. R-MSFM [34] achieves
multi-scale feature learning through featuremodulationmod-
ules, which uses only the first three stages of ResNet18 [28]
as its backbone, offering high efficiencywhile lacking in deep
feature extraction. PydNet [35] designs an unsupervised net-
work capable of performing depth estimation on the CPU,
which cannot extract rich hierarchical features despite the
low number of parameters. FastDepth [36] model achieves
fast inference through pruning and optimization, but has
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limitations in dealing with the details of depth estimation.
The above network are continuously improving the accu-
racy of depth estimation models, however, CNN models are
unable to have a global receptive field when performing con-
volutional operations, thus making it difficult to retain to
specific detailed features. When Transformer is applied in
the visual domain, some studies put Transformer into the
network architecture to enhance the model performance. For
example, [31] uses self-attention to enhance semantic fea-
tures in a VGG encoder, and MT-SFMLearner [8] points out
that while Transformer-based deep estimation architectures
have better robustness compared to other CNNs, they hamper
operational efficiency. MonoVIT [7] combines convolution
with theTransformermodule to retainmore detailed features,
but with a higher parameter, The use of the core module of
MSHA in Lite-Mono [9] hinders the fast inference of the
model.

Structural reparameterisation techniques

The structure reparameterisation technique was initially pro-
posed and applied to VGG [33] architectures by Ding et al.
[29], and its core advantage lies in fully leveraging the net-
work performance while accelerating the inference speed
of the network architecture. To enhance network perfor-
mance, the network employs a multi-branch structure during
training, which includes a 3 × 3 convolution layer branch,
a 1 × 1 convolution layer branch, and an identity map-
ping branch. During inference, the network transforms these
multi-branches into a single-branch structure,where the iden-
tity mapping branch is treated as a 1 × 1 convolution, and
the 1×1 convolution can be transformed into a 3×3 convo-
lution by padding with zeros. Based on the linear additivity
of convolution, the resulting 3 × 3 convolution is obtained
by summing the three bias vectors. When trying to use Rep-
Conv [37] in different positions of the model architecture,
we observed that this method did not yield optimal network
performance, indicating that the proposed reparameterisa-
tion model is not directly suitable for architectures in the
field of depth estimation. Therefore, we have designed a new
reparameterisation module that integrates well with existing
state-of-the-art depth estimation architectures, which pro-
vides solution ideas for achieving high network performance
and efficient inference.

The structure reparameterisation technique was initially
proposed and applied to VGG [33] architectures by Ding et
al. [29], and its core advantage lies in fully leveraging the net-
work performance while accelerating the inference speed of
the network architecture. To enhance network performance,
the network adopts a multi-branch structure during training,
which includes a3×3convolution layer branch, a 1×1convo-
lution layer branch, and an identity mapping branch. During
inference, the network transforms these multi-branches into

a single-branch structure, where the identity mapping branch
is treated as a 1 × 1 convolution, and the 1 × 1 convolution
can be transformed into a 3× 3 convolution by padding with
zeros. But given the growth of model parameters, RepVGG
[37] is difficult to apply to different types of network architec-
tures.DBBet al. [38] explore six reparameterizationmethods
based on this foundation, which are able to improve the per-
formance of the network model but do not speed up the
inference of the model. [29] have used deep convolutions
combined with other pointwise convolutions to improve the
inference speed of models, reducing the overall number of
parameters, but also resulting in a decrease in overall network
performance. To the best of our knowledge, the aforemen-
tioned reparameterization models are not directly applicable
to the architectures in the field of depth estimation. Therefore,
we design a new reparameterization module that integrates
well with existing state-of-the-art depth estimation architec-
tures, providing a solution for achieving high-performance
networks and fast inference.

Proposed framework

Motivation for the design

The encoder in monocular depth estimation network archi-
tectures is continuously being improved. Current network
architectures focus more on the details of image depth esti-
mation,while also neglectingmodel size and inference speed.
Due to the limited receptive field of the CNN architecture, it
is difficult to effectively extract the global information from
image. Transformer architecture is known for its powerful
extraction of contextual information and also achieves high
accuracy, but its unique parallel structure increases model
size and limits speed. Mateformer [12] demonstrates the
importance of the network architecture in Transformer, and
points out that the self-attention module is not all that is
needed, testing the plausibility of this in various experiments.
Inspired by this, we attempt to design a framework specifi-
cally for monocular depth estimation, aiming to achieve both
high accuracy and high inference speed. Eventually,we adopt
the designed LCKT and RepTM on the encoder-decoder
architecture. In LCKT, we employ a large 7 × 7 convolu-
tional kernel to expand the receptive field. Our proposed
RepTM achieves spatial information fusion of token mixer
through deep convolution, and channel mixer achieves the
inter-channel information interaction through 1 × 1 dilated
convolution and 1 × 1 projection layer. Compared with
multi-head attention, LCKT combined with RepTM can also
capture both local and global features, and it is beneficial for
accelerating inference. The architecture details is described
in detail below.
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Fig. 2 Overview of our repmono framework. Repmono as a whole
is divided into two parts, DepthNet and PoseNet. The depth network
encoder uses a large convolutional kernel feature extraction module
and a reparameterized token mixer module to extract rich deep features

while speeding up inference. PoseNet uses the same as in previous
works [23, 31, 39] to estimate the pose between neighboring frames of
a monocular image

Deep network architecture

Depth encoder. The encoder-decoder architecture of Depth-
Net is able to extract features efficiently, as demonstrated in
previous work [23, 27]. As shown in Fig. 2, the proposed
architecture is divided into four stages. Except for the first
stage, all subsequent stages use the same modules. The input
image first enters Stage 1, where local features are extracted
through a 3 × 3 convolution with a stride of 2, generating
feature maps with dimensions H

2 × W
2 × C1. Stage 2 con-

sists of the downsampling layer, LCKTmodule, and RepTM
module. In this stage, the input consists of the concatenation
of the feature maps from the previous stage and the fea-
ture maps obtained by average pooling of the original image.
This structure aims to compensate for the spatial information
loss caused by downsampling, resulting in feature maps of
size H

4 × W
4 × C2. The third and fourth stages use the same

structure, and their inputs also receive feature maps obtained
by average pooling of the original image. The feature maps
H
8 ×W

8 ×C3 and H
16×W

16×C4 are generated by downsampling
the layers, respectively.

Large convolution kernel transformer (LCKT).As shown
in Fig. 3, the Transformer mainly consists of two parts. One
part is a tokenmixermodule basedon the self-attentionmech-
anism and the other part is a channel MLP module. Previous
research [12] found that performance competitive with the
original Transformer could still be maintained across mul-
tiple computer vision tasks by replacing the self-attention
mechanism in the token mixer with a simpler spatial pooling
operation. Therefore, they regarded the self-attention in the
token mixer as a specific token mixer, collectively referred to
as MetaFormer [12]. To accelerate the inference speed, we
replace the token mixer with a simple and efficient SENet
[13] module and use batch normalisation across the network
to improve stability. Especially in channel MLP module,
we introduce depthwise dilated convolution, inspired by the
design of the CDC module [9]. By using dilated convolu-
tions with different dilation rates in different stages, feature
multi-scale fusion is achieved. Dilated convolutions can be
defined by the formula:

y[a] =
W∑

w=1

x[a + r · k]h[w] (1)
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Fig. 3 LCKT design concept. The token mixer of LCKT is senet and the channel MLP module consists of 7 × 7 large convolution kernel depth
convolution, batch normalization module (BatchNorm), 1 × 1 point-by-point convolution and GELU activation function

where the input is x[a], h[w] is a filter of length k, and r
represents the dilation rate, without changing the size of the
convolution kernel when r=1. [31] proposes that using deep
large convolutions in the network is competitive with the
use of a self-attention variant, but leads to a modest increase
in inference. We change the initial convolution kernel from
3×3 to 7×7. Although dilated convolutions can increase the
receptive field through the dilation rates, their computation is
based on sparse sampling.After dilation, the convolution ker-
nel loses continuity, and the number of sparse samples after
dilation of a large convolutional kernel is significantly greater
than that of a small convolution kernels, whichmay affect the
continuity of information. In order to fuse the features effi-
ciently in the depth direction and considering the importance
of information continuity, we use point-by-point convolution
to perform convolution operation on each pixel of the feature
map, and then perform a weighted combination in the depth
direction. This design aims to work in tandemwith large ker-
nels to optimize model performance. Experimental results
show that using 7 × 7 large convolution kernel can signifi-
cantly improve the model performance. Compared to a 5×5
convolution, the average error decreases by 6.4%, and com-

pared to a 3 × 3 convolution, the average error decreases by
9.4%. This finding emphasizes the potential of using large
convolution kernels in improving model performance and
robustness.

Reparameterize token mixer (RepTM). As demonstrated
in Fig. 4, we replace the token mixer with elements from the
lightweight network MobileNet, particularly a 3 × 3 depth-
wise convolution and a batch normalisation (BatchNorm)
layer. The use of this depthwise convolution aims to facil-
itate the efficient fusion of spatial information within the
model. To enhance the flexibility and efficiency of themodel,
a residual branch and a branch combining 1 × 1 depthwise
convolution with BatchNorm layer are concurrently incor-
porated into the token mixer. According to the linearity of
convolution’s additivity formula:

Conv(x, ω1) + Conv(x, ω2) + Conv(x, ω3)

= Conv(x, (ω1 + ω2 + ω3)) (2)

Where denotes Conv(x, ω) the convolution operation with
input feature x , convolution kernel ω, where ω1, ω2 and
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Fig. 4 Equivalent diagram of RepTM module structure. Where the multi-branch structure during training is converted to a single-branch structure
during inference

ω3 are convolution kernels of the same size. This structural
parameterization design endows the network enhanced fea-
ture extraction capability during the training phase, while
the multi-branch structure can be converted into a single
3 × 3 depthwise convolution during the inference phase.
This conversion effectively reduces the computational and
storage costs introduced due to the parallel structure of the
network, thereby improving the computational efficiency
of the model during inference. For channel MLP module,
the design primarily uses two 1 × 1 convolutions coupled
with GELU activation function, facilitating inter-channel
information exchange and further boosting the model’s per-
formance.

Depth encoder. We use a bilinear upsampling technique to
increase the spatial dimensionality of the model, which is
consistent with the approach used in Lite-Mono [9], and inte-
grate the features of the three phases in the encoder through
a convolutional layer. After each upsampling block, we set
up the prediction header to output inverse depth maps at full
resolution, 12 resolution and

1
4 resolution for depth prediction

at different accuracy levels.

PoseNet. This study follows the framework established in
prior works [23, 31, 39], utilizing a pretrained lightweight

ResNet18 [28] to construct PoseNet. The system processes
spliced colour imagepairs [I , I ′] and accurately estimates the
6-degree-of-freedom relative pose between adjacent frames
by means of a three-layered convolutional bit-pose decoder.

Self-supervised learning

Our task is to infer a depth map from a single RGB image
alone in the absence of actual depth information. In this pro-
cess, a depth estimation network generates a depth map Dt

based on a given input image It . Simultaneously, the pose
estimation network handles temporally adjacent images,
computing the relative pose Tt−→t ′ from the target image
It to the source image It ′ (where t ′ is the previous or subse-
quent frame of t). The depth map Dt and the pose Tt−→t ′ are
used as supervised signals for efficient training and learning.

Photometric consistency loss. Following previous research
[23], we model the learning objective with the aim of mini-
mizing the image reconstruction loss Lp between the original
image It and the synthetic target image It ′ , Lp is defined:

Lp = min
t ′

F(It , It ′−→t ) (3)
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where F() in Eq. (3) represents the photometric reconstruc-
tion error, It ′−→t denotes the warp result from image It ′ to
image It .

It ′→t = It ′ 〈proj(Dt , Tt ′→t , K )〉 (4)

where proj() represents the two-dimensional coordinates
obtained by projecting the depth map Dt onto the image It ′ ,
where 〈〉 is the sampling operator, K is the image-identical
camera-internal reference matrix, and we sample the images
using differentiable bilinear [40] sampling.

F(Ia, Ib) = α

2
((1 − SSIM(Ia, Ib)) + (1 − α)‖Ia − Ib‖)

(5)

the original image is set to Ia , and the reconstructed image
obtained by Eq. (4) is set to Ib, F(Ia, Ib) represents the
weighted sum between the Structural Similarity Index Mea-
sure (SSIM) [41] and the intensity difference term, where α

is set to 0.85 empirically [27].

Minimumphotometric loss.For the occlusion phenomenon
in the source image, the minimum photometric loss [27] is
computed for each pixel among the losses between adjacent
frames in both forward and backward directions.

LSS(Is, It ) = min
i∈[−1,1] F(Ia, Ib) (6)

where Is denotes the previous or next frame of the target
image, i ∈ [−1, 1] indicates that the image range is forward
and backward neighboring frames.

Automatic mask. For dynamic objects in the image, auto-
matic mask [27] is used to filter them out, ensuring that the
objects are stationary relative to the camera. Here we denote
it by u.

u = min
i∈[−1,1] LSS(Is, It ) > min

i∈[−1,1] LSS(Ia, Ib) (7)

Smoothness loss. In addition, in order for the inverse depth
map not to shrink arbitrarily, an edge-aware smoothness loss
[27, 29] is utilized.

Lsmooth = |∂xd∗
t | · e−|∂x I | + |∂yd∗

t | · e−|∂y I | (8)

where ∂x is the gradient operator in the x direction, ∂y is the
gradient operator in the y direction, and d∗

t = dt
d̂t
denotes the

mean normalised inverse depth.

Final total loss.The final total loss L is composed of the total
image reconstruction loss uLSS(Is, It ) and the smoothness
loss λ · Lsmooth.

L = 1

3

3∑

i=1

(uLSS(Is, It ) + λ · Lsmooth) (9)

where u is the Automatic mask, LSS(Is, It ) is the minimum
luminosity loss, λ weights the smoothness term, we set it to
0.001, which are output from three sizes for final fusion to
full resolution.

Experiments

Datasets

KITTI.TheKITTI dataset [14] is a stereo vision dataset con-
taining 61 scenes, mainly used for stereo imaging studies. It
collects images with dimensions of 1242× 375, which were
captured by a stereo camera system on a LiDAR-equipped
vehicle. This study is based on previous studies in the field
[23, 27, 29] and uses the image segmentation scheme defined
by Eigen et al [17], which consists of 39,810 sets of monoc-
ular triple images used for training and 4,424 sets of images
used for validation. We evaluated the single-view depth per-
formance on a custom test [19] set, using both the original
LiDARdata (697 images in total) and themodified real labels
[42] (652 images in total).

Make3D. The Make3D dataset [15] contains mainly images
of outdoor environments and is often used to test the gener-
alisation ability of monocular depth estimation frameworks.
We tested the Repmono model using the same image prepro-
cessing steps and evaluation criteria as in [27].

DrivingStereo. The DrivingStereo dataset [16] is a large-
scale stereo dataset containing real-world driving scenes. The
dataset includes a variety of scenes, and the classification of
images under different weather scenarios is provided in the
official website, and each class of images consists of 500
frames. We use the DrivingStereo dataset containing four
types of image scenes: sunny, rainy, cloudy, and foggy. We
use this dataset to evaluate our generalization capability in
specific driving scenarios.

Implementation details

In our experiments, the model is implemented based on the
Pytorch framework and trained on a server equipped with an
NVIDIAA100. Both depth and pose networks are pretrained
on ImageNet [27, 34]. The model employs AdamW [34] as
the optimizer, with the training period set for 30 epochs, a
batch size of 20, and an initial learning rate of 0.0001. For
images with resolutions of 640 × 192 and 1024 × 320, the
model training was conducted on a single GPU with 40G
of memory. Training the network for 640× 192 images take
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Table 1 Comparison of Repmono with some recent representative methods on the KITTI benchmark using the Eigen split

Method Data Resolution Depth error Depth accuracy Model size
params (MB)

Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

GeoNet [26] M 640 × 192 0.149 1.060 5.567 0.226 0.796 0.935 0.975 31.6

DDVO [43] M 640 × 192 0.151 1.257 5.583 0.228 0.810 0.936 0.974 28.1

Struct2depth [44] M 640 × 192 0.141 1.026 5.291 0.215 0.816 0.945 0.979 66.8

SGDepth [45] M+Se 640 × 192 0.113 0.835 4.693 0.191 0.879 0.961 0.981 16.3

Monodepth2 [27] M 640 × 192 0.115 0.903 4.863 0.193 0.877 0.959 0.981 14.3

R-MSFM3 [46] M 640 × 192 0.114 0.815 4.712 0.193 0.876 0.959 0.981 3.5

R-MSFM6 [46] M 640 × 192 0.112 0.806 4.704 0.191 0.878 0.960 0.981 3.8

Lite-Mono-small [9] M 640 × 192 0.110 0.802 4.671 0.186 0.879 0.961 0.982 2.5

Repmono (ours) M 640 × 192 0.107 0.804 4.641 0.184 0.885 0.961 0.982 2.31

Monodepth2 [27] M* 640 × 192 0.132 1.044 5.142 0.210 0.845 0.948 0.977 14.3

R-MSFM3 [46] M* 640 × 192 0.128 0.965 5.019 0.207 0.853 0.951 0.977 3.5

Lite-Mono-small [9] M* 640 × 192 0.123 0.919 4.926 0.202 0.859 0.951 0.977 2.5

Repmono (ours) M* 640 × 192 0.123 0.946 5.017 0.209 0.851 0.947 0.978 2.31

Monodepth2 [27] M 1024 × 320 0.115 0.882 4.701 0.190 0.879 0.961 0.982 14.3

Sun [47] M 1024 × 320 0.110 0.791 4.557 0.184 0.887 0.964 0.983 –

R-MSFM3 [46] M 1024 × 320 0.112 0.773 4.581 0.189 0.879 0.960 0.982 3.5

R-MSFM6 [46] M 1024 × 320 0.108 0.748 4.470 0.185 0.889 0.963 0.982 3.8

HR-Depth [39] M 1024 × 320 0.106 0.755 4.472 0.181 0.892 0.966 0.984 14.7

Lite-Mono-small [9] M 1024 × 320 0.103 0.757 4.449 0.180 0.894 0.964 0.983 2.5

Repmono (ours) M 1024 × 320 0.103 0.731 4.446 0.178 0.893 0.984 0.983 2.31

The input image sizes are divided into 640×192 and 1024×320, with the best results underlined. For the performance metrics Abs Rel, Sq Rel,
RMSE and RMSE log lower is better, for δ1, δ2, δ3 higher result scores are better. In the “Data column”, “M”: monocular video, “M*”: monocular
without pretraining, “M+Se ”: monocular video + semantic segmentation, all models except M* are pretrained on ImageNet [34]. Depth estimation
is scaled using the median finger of the true laser information during testing

approximately 8h, while for 1024×320 images, it take about
12h and 30min. In our experiments, we use the same data
enhancement strategy as in previous studies [27]. For the
final evaluation of the model’s effectiveness, we use seven
metrics widely used in the field of depth estimation, includ-
ingAbsolute RelativeDifference(AbsRel), SquaredRelative
Difference(Sq Rel), Root Mean Square Error (RMSE), Root
MeanSquareLogarithmicError(RMSELog), aswell as three
accuracy metrics (δ1 < 1.25, δ2 < 1.252, δ3 < 1.253).

KITTI results

We compare our model with existing classic and lightweight
models. As shown in Table 1, we show the results of the
training method using monocular video (M) and untrained
monocular video (M*). For monocular videos (M), we use
two sizes: low resolution (640 × 192) and high resolution
(1024×320),while the untrainedmonocular videos are tested
only at 640 × 192 resolution. The low-resolution monocu-
lar video shows that the overall size of our model is only
2.31M, which is 85% less than Monodepth2 [27] model,
40% less than R-MSFM3 model, and 16% less than Lite-

Mono-small model. At the same time, our model surpasses
most models in the table in terms of depth accuracy and
matches the Lite-Mono-small [9] model, but exceeds Lite-
Mono-small [9] in δ1 accuracy. Figure5 provides a more
intuitive demonstration of the effectiveness of our proposed
solution in depth estimation. We select lightweight network
R-MSFM [46], classic network Monodepth2 with ResNet18
[28] encoder, and lightweight network Lite-Mono-small [9]
with an improved self-attention mechanism in the encoder
for comparison. By comparing, our solution performs bet-
ter in thin structure and low-light overlapping structures. For
example, in the first column of the depth map of the highway
signage, depth maps from other models show dragging and
incomplete structure issues in such thin structures, whereas
our model’s depth map performs better than other methods.
In the third column of the figure is poorly distinguished from
the background, our model successfully distinguishes the
shape of the figure and the background, which has always
been a challenging problem for monocular depth estima-
tion. Additionally, we achieve good results for reflective
glass structures. In the second column, unlike other mod-
els, our model does not exhibit depth blur or structure loss.
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In the fourth column of the depth map, our model has better
coherence for the car contours compared to other methods.
This is mainly attributed to our use of LCKT module with
a large convolutional kernel and RepTM module with repa-
rameterized structure. The large convolution kernel dilated
convolution of our LCKT module can obtain rich multi-
scale information, and the RepTM module can extract more
detailed features, ultimately enabling our solution to estimate
depth more accurately in fine details.

Make3D results

We test our model experimentally on Make3D dataset [15]
for generalisability, Our model was trained using 640×192
resolution images from the KITTI dataset [14], followed
by generalization tests on Make3D [15]. For fairness, we
not perform any fine-tuning on Make3D [15], and eval-
uation is carried out using the criteria proposed in [27].
Table 3 presents the comparison between Repmono and
other lightweight models, the comparison shows that Rep-
mono has the smallest number of parameters among all
lightweight models, and performs best in all four metrics.
Figure6 shows the superiority of our scheme and that our
model can model objects at different scales more accurately.
Figure5 specifically illustrates the advantages of Repmono
over other lightweight networks.We select objects at varying
distances in three categories of images for comparison. In the
third column, the grass represents objects at a relatively close
distance, in the first column, the large tree represents objects
at a medium distance, and in the second column, the small
tree represents objects at a relatively far distance. It can be
seen that for objects at different distances in the images, the
depth maps produced by Repmono exhibit the best object
integrity (Table 2).

DrivingStereo results

To evaluate the generalization capability of Repmono in
specific road scenarios, we test it under four weather con-
ditions from the DrivingStereo dataset [16]. We still choose
lightweight models for comparison, and all models are cho-
sen to be trained using 1024 × 320 resolution images from
the KITTI dataset [14], and then tested in sunny, cloudy,
foggy, and rainy road scenarios. For fairness, all models are
not fine-tuned. Table 3 shows the evaluation results of Rep-
mono and other lightweight models under the four weather
roads, and it can be seen that compared to other lightweight
models, Repmono has the best performancemetrics in sunny,
cloudy, and foggy days, although it has the smallest number
of parameters. Figure7 specifically shows the depth maps of
Repmono and other lightweight models in four weather sce-
narios. For close-range objects, Repmono’s effect in foggy
days is significantly better than that in rainy days, Repmono

has the best depth maps of medium-range objects in cloudy
scenarios, and it also has the best depth maps of long-range
objects in sunny scenarios.

Speed of reasoning

Testing the inference speed of lightweight architectures is
crucial.We conduct inference time test onNVIDIAA100 and
NVIDIA 1650 for our model and other lightweight models.
To ensure fairness in testing, we standardize the input dimen-
sions to (3, 640, 192) and omit the data preprocessing before
entering themodel. The inference time is defined as the dura-
tion from when the data enters the encoder to when it exits
the decoder. Themodel undergoes a “warm-up” phase before
GPU inference to transition it into aworking state, thus avoid-
ing errors that could arise if the GPU shifts into power-saving
mode during testing. In order to overcome the asynchronous
execution of theGPU that leads to inference errors, we set the
timer at the time when the GPU receives the data to start the
computation and synchronise theCPUand theGPUusing the
synchronize function of the pytorch library. The synchronize
function ensures that the computation between the CPU and
GPU is properly coordinated. According to the test results
in Figs. 7 and 8, our model demonstrates excellent infer-
ence performance on both GPU devices. On NVIDIA 1650,
when batch size is set to 1 and 2, our model exhibits the
fastest inference speed, 81% faster compared to Monovit-
small [7], 60% faster compared to Monodepth2-50 [27], and
27% faster compared to Lite-Mono-small [9]. On NVIDIA
A100, our model achieves the fastest inference speed when
the batch size is 8. At batch sizes 16 and 32, our model’s
inference speed is comparable to the lightweight network R-
MSFM3 [46], which demonstrates that our model maintains
a fast inference speed when dealing with larger throughput
(Fig. 9).

Ablation experiments onmodel structures

To evaluate the effectiveness of the model, we execute a
series of ablation experiments focused on validating the
importance of the LCKT module and RepTM module in
the architecture. These experiments are performed without
ImageNet [34] pre-training and tested on the KITTI dataset
[14] by implementing control variables in the model. From
our experiments, when only the LCKT module is used, there
is an approximate increase of 2MB parameters and about a
5 ms slowdown in inference speed compared to the baseline
model. However, there are improvements in keymetrics such
as Absolute Relative difference (Abs Rel), Squared Relative
difference (Sq Rel), and Root Mean Squared Error (RMSE).
When the model integrated both LCKT and RepTM mod-
ules, utilizing 7 × 7 convolutions for LCKT, the model’s
performance sees the most significant improvement. The
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Fig. 5 Qualitative results on the KITTI [14] Eigen Split. Comparing our model with some depth maps generated by Monodepth2 [27], R-MSFM3
[46], R-MSFM6 [46], and Lite-Mono-small [9], it can be seen that Repmono better predicts thin objects, reflective mirrors, and low discrimination
objects

Fig. 6 Qualitative results on the Make3D dataset [15]. Comparing Repmono with Monodepth2 [27] and R-MSFM3 [46], Repmono generalises
best

Table 2 Comparison of the
proposed Repmono with other
lightweight models on the
Make3D dataset [15]

Method Abs Rel Sq Rel RMSE RMSE log Params (MB)

DDVO [43] 0.387 4.720 8.09 0.204 28.1

Monodepth2 [27] 0.322 3.589 7.417 0.163 14.3

R-MSFM3 [46] 0.334 3.285 7.212 0.169 3.5

Repmono (ours) 0.313 3.114 7.062 0.153 2.31

The best results are underlined. Where all models are trained on KITTI [14] with an input image of 640 ×
192

model’s performance sees the most significant improvement:
the parameters is 2.31M, inference speed is 8.89 ms, Abs Rel
is reduced to 0.123, Sq Rel to 0.946, and RMSE to 5.017,
while exhibiting optimal performance on accuracy metrics
δ1 < 1.25, δ2 < 1.252, δ3 < 1.253. Comparing with

models using 3×3 and 5×5 convolutional kernels, although
inference speed is faster, they perform poorly on accuracy
metrics, validating the effectiveness of 7× 7 convolutions in
enhancing model performance. Overall, a robust balance is
achieved among model size, speed, and accuracy (Table 4).
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Table 3 Comparison of Repmono with other lightweight models on the DrivingStereo Dataset [16]

Weather Method Depth error Depth accuracy Params (MB)

Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

Rainy Monodepth2 0.238 3.328 11.231 0.308 0.622 0.864 0.958 14.3

R-MSFM6 0.231 2.986 10.632 0.291 0.646 0.865 0.964 3.5

Lite-mono-small 0.194 2.013 8.975 0.277 0.712 0.912 0.979 2.5

Repmono (ours) 0.212 2.231 8.893 0.263 0.703 0.907 0.969 2.31

Foggy Monodepth2 0.118 1.387 7.532 0.175 0.857 0.963 0.983 14.3

R-MSFM6 0.119 1.435 7.632 0.179 0.838 0.953 0.979 3.5

Lite-mono-small 0.105 1.242 7.201 0.163 0.878 0.969 0.986 2.5

Repmono (ours) 0.106 1.119 6.962 0.153 0.884 0.972 0.991 2.31

Cloudy Monodepth2 0.152 1.788 6.856 0.205 0.819 0.948 0.981 14.3

R-MSFM6 0.149 1.671 6.712 0.206 0.821 0.946 0.982 3.5

Lite-mono-small 0.139 1.532 6.421 0.196 0.832 0.951 0.984 2.5

Repmono (ours) 0.135 1.462 6.121 0.187 0.838 0.952 0.984 2.31

Sunny Monodepth2 0.142 1.671 6.639 0.214 0.819 0.947 0.979 14.3

R-MSFM6 0.151 1.721 7.094 0.248 0.812 0.942 0.978 3.5

Lite-mono-small 0.137 1.519 6.392 0.196 0.837 0.951 0.982 2.5

Repmono (ours) 0.131 1.479 6.216 0.192 0.839 0.952 0.982 2.31

The best results are underlined. Where all models are trained on KITTI [14] with an input image of 1024 × 320

Fig. 7 Qualitative results on the DrivingStereo Dataset [16]. Compared to other lightweight models, Repmono shows superior performance under
cloudy, foggy, and sunny conditions

Table 4 Model structure ablation experiments

Architecture Kernel size Params Speed Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

3×3 5×5 7×7 (M) (ms)

Baseline 0.12 3.16 0.156 1.281 5.323 0.221 0.834 0.940 0.973

Baseline+LCKT � × × 2.13 8.18 0.138 1.081 5.112 0.216 0.846 0.942 0.976

Baseline+LCKT × � × 2.15 8.32 0.134 1.009 5.151 0.211 0.839 0.945 0.977

Baseline+LCKT × × � 2.18 8.31 0.135 1.032 5.192 0.214 0.843 0.944 0.976

Baseline+LCKT+RepTM � × × 2.25 8.53 0.136 1.089 5.122 0.221 0.846 0.945 0.976

Baseline+LCKT+RepTM × � × 2.28 8.75 0.133 1.054 5.195 0.214 0.845 0.943 0.975

Baseline+LCKT+RepTM × × � 2.31 8.89 0.123 0.946 5.017 0.209 0.850 0.947 0.978

The best results are underlined. Where all models were trained on KITTI [14] with an input image of 640 × 192
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Fig. 8 Comparison of the
inference speed of different
models on 1650 device. It can be
seen that our model inference is
significantly faster than the
other models, and is fastest
when Batch size is set to 1 and 2

Fig. 9 Comparison of the
inference speed of different
models on A100 device. It can
be seen that the inference speed
of our model is not much
different from that of
Monodepth2 [27] and
R-MSFM3 [46], and is
significantly faster than that of
Monovit-small and
Monodepth-50, and is fastest
when Batch size is set to 8

123



Complex & Intelligent Systems

Conclusion

This paper introduces a lightweight self-supervised monocu-
lar depth estimationmodel namedRepmono, and its two sup-
porting modules, LCKT and RepTM. This approach effec-
tively combines large convolutions and reparameterization
structures, enabling Repmono to achieve high performance
and fast inference without relying on core Transformer
modules. Compared to the classical model Monodepth2,
Repmono reduces the number of parameters by 83.8% and
speeds up inference by 60.1%. Repmono alleviates the issues
of high complexity and slower inference speeds associated
with the use of Transformer structures in depth estimation
networks, although there is still room for improvement in the
network’s accuracy. Our approach is extensively tested on the
KITTI dataset to validate its effectiveness and demonstrated
good generalization on the Make3D dataset and Driving-
stereo dataset. We hope our proposed method can contribute
to the advancement of self-supervised monocular depth esti-
mation and inspire ideas for subsequent research.
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