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scientific efforts are needed to support the clinician in can-
cer diagnosis, cancer classification, and the outcome prog-
nosis [2]. Gene expression in digital matrix format built 
from a DNA microarray sample obtained from transcribed 
DNA sequences in a high-density array on the side of a glass 
microscope. Also, microarray gene expression data consists 
of samples and features that employ classification efficiency 
to find the genomic biomarker [3]. The limitations of gene 
expression depend on a high level of noise due to a few 
dozen samples containing thousands of gene expressions 
that require the deletion of the irrelevant genes. Thus, many 
factors affected the classification accuracy of cancer gene 
expression such as memory requirements, generalization, 
and control for complexity.

Brain cancer is the most common fatal malignancy in 
children and adults, resulting in an incidence of 24,810 
cases in the United States in 2023 [4]. Nevertheless, the 
presence of cancer in the brain leads to the initial stages of 
diagnosis being much more challenging [5]. Based on the 
WHO classification [6], the most prevalent form of primary 
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Abstract
Leveraging deep learning (DL) approaches in genomics data has led to significant advances in cancer prediction. The 
continuous availability of gene expression datasets over the preceding years has made them one of the most accessible 
sources of genome-wide data, advancing cancer bioinformatics research and advanced prediction of cancer genomic data. 
To contribute to this topic, the proposed work is based on DL prediction in both convolutional neural network (CNN) 
and recurrent neural network (RNN) for five classes in brain cancer using gene expression data obtained from Curated 
Microarray Database (CuMiDa). This database is used for cancer classification and is publicly accessible on the official 
CuMiDa website. This paper implemented DL approaches using a One Dimensional-Convolutional Neural Network (1D-
CNN) followed by an RNN classifier with and without Bayesian hyperparameter optimization (BO). The accuracy of this 
hybrid model combination of (BO + 1D-CNN + RNN) produced the highest classification accuracy of 100% instead of the 
95% for the ML model in prior work and 90% for the (1D-CNN + RNN) algorithm considered in the paper. Therefore, 
the classification of brain cancer gene expression according to the hybrid model (BO + 1D-CNN + RNN) provides more 
accurate and useful assessments for patients with different types of brain cancers. Thus, gene expression data are used to 
create a DL classification-based- hybrid model that will hold senior promise in the treatment of brain cancer.

Keywords  Curated microarray database (CuMiDa) · Recurrent neural network (RNN) · One dimensional-convolutional 
neural network (1D-CNN) · Bayesian optimization (BO) · Classification of brain cancer genes

Received: 21 December 2023 / Accepted: 6 July 2024
© The Author(s) 2024

Leveraging hybrid 1D-CNN and RNN approach for classification of 
brain cancer gene expression

Heba M. Afify1,4  · Kamel K. Mohammed2,4 · Aboul Ella Hassanien3,4,5

1 3

http://orcid.org/0000-0002-6279-0883
http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-024-01555-4&domain=pdf&date_stamp=2024-7-22


Complex & Intelligent Systems

brain cancer among these is glioma. According to their mor-
phological appearance, gliomas are divided into several 
groups, including astrocytomas, oligodendrogliomas, epen-
dymomas, and glioblastomas [7].

There are many frameworks [8] for brain cancer classifi-
cation that are based on different types of databases such as 
magnetic resonance (MR) brain images, clinical data, and 
gene expression. The literature on brain cancer images is not 
accurate in classification research [9]. On the other hand, 
clinical data for brain cancer collected from the Surveil-
lance, Epidemiology, and End Results (SEER) has a high 
accuracy for brain cancer survivability only, but may not be 
suitable for classification tasks [10]. In view of gene expres-
sion, Li et al. [11] suggested a classification model for dif-
ferent types of gliomas and confirmed that gene expression 
data is not suitable for brain cancer survivability.

The complex characteristics underlie brain cancer that 
can result from oncogenes and tumor-suppressor genes that 
have undergone genetic alteration, and mutation in gene 
expression [12]. Naqvi et al. [13] confirmed that the expres-
sion variations of certain genes may be linked to a higher 
risk of developing brain cancer. Therefore, it is important 
to continue to promote the design of innovative surrogate 
classifications and criteria for bioinformatics approaches to 
early diagnosis in brain cancer research.

Recently, publicly available cancer genomics data 
has given a more detailed genetic understanding of brain 
cancer and those significant classes. Zhao et al. [14] pro-
posed a public resource for the brain cancer gene database 
(BCGene) which comprises 40 categories of brain cancer. 
Another research [15] used gene expression of glioblastoma 
as a predictive biomarker.

Based on gene expression data, machine learning (ML) 
has become a routine method for cancer prediction. DL is 
still relatively new for this purpose, therefore opinions on 
its effectiveness and usefulness are still divided [16]. Com-
pared with ML, DL is an end-to-end approach that automati-
cally extracts features from raw data without the need for 
preprocessing.

Although DL approaches have attained cutting-edge 
outcomes in cancer research and their implementation 
has become commonplace in the past years, few consider 
the use of cancer gene expression data in DL approaches 
because there is a lack of structure in gene expression data 
that makes it different from image or text [17]. Recently, 
CNN models have been applied for precise cancer-type 
prediction using gene expression data from The Cancer 
Genome Atlas (TCGA) [18].

Moreover, there are many attempts to create gene 
expression datasets such as inSilicodb [19], datamicro-
array [20], BioLab [21], and AROMA [22]. In one of the 
modern attempts, Feltes et al. [23] constructed the Curated 

Microarray Database (CuMiDa) which consists of 78 gene 
expression datasets including 13 different human cancer 
types, and applied it to ML techniques. Noteworthy, the 
CuMiDa is the best one because it provides more file down-
load options and cancer classification results using ML dif-
ferent approaches. This database is the first benchmark for 
cancer gene expression that serves as an important tool in 
the oncology community. Based on the analysis of CuMiDa, 
overexpression of the uncontrolled underlying mechanism 
is more closely associated with the tumorigenic process 
than underexpression of a specific gene cluster [24]. Also, 
re-analysis of gene expression data confirmed that there are 
unrecognized commonalities of gene expression among sev-
eral cancer types. On the other hand, the relevance aggrega-
tion process [25] can be used to address the biased and poor 
algorithms on tabular data using breast cancer gene expres-
sion extracted from CuMiDa. It can be used to ensure that 
the performance of the different classifiers may be regularly 
improved by the higher-rated features.

In this paper, the proposed model exploited DL approaches 
including 1D-CNN and RNN classifiers on CuMiDa brain 
cancer gene expression data. It is clear that none of the pre-
vious DL studies evaluated different CNN /RNN model con-
structions and their effect on the CuMiDa brain cancer gene 
expression data. Indeed, we trained five classes in CuMiDa 
brain cancer gene expression data to perform the best clas-
sification accuracy using two DL approaches and compared 
their results with those of ML approaches as in [23]. The 
major contributions of this work are based on the develop-
ment of RNN [26] and BO [27] hyperparameter with ID-
CNN structure [28] for the classification of five classes of 
brain cancer genes.

The novelty of the proposed model is the first challenge 
using the combination of two DL architectures which are 
CNN and RNN on CuMiDa brain cancer gene expression 
data. Then, the evaluation criteria were compared on the 
test database for both (BO + 1D-CNN + RNN) and (1D-
CNN + RNN) models to classify brain cancer categories. 
Also, the overall performance of the proposed model out-
performed the previous studies based on ML [23].

Related works

Microarray cancer data is now widely used in computa-
tional and biological research using ML approaches that 
can assist with the diagnosis and predict various diseases 
[23]. Although the best ML classifier for Microarray cancer 
data is still up for debate [29], some research indicates that 
support vector machine (SVM) and random forest (RF) are 
the two most compelling options [30]. The clustering tech-
niques are another application of ML on microarray data 
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by aiding in the identification of new information about a 
certain set of genes by autonomously classifying samples 
based on the expression of those genes based on certain 
similarity criteria [31].

Even though ML approaches are still being utilized in 
cancer research, it is becoming more difficult to locate fresh 
databases that offer a suitable standard of cancer-focused 
microarray databases to be used for comparing or evaluat-
ing ML algorithms. It was recently argued that the devel-
opment of bioinformatics depends on the appropriate use 
and construction of benchmarks for comparing the output of 
new tools [32]. However, the hybrid DL algorithm achieved 
a higher level of recognition accuracy compared with the 
existing techniques [33, 34].

As can be observed, all of the earlier gene expression 
datasets [19–22] were rather old and low-quality samples 
without any update while the latest one is CuMiDa which 
was released in 2019 with high-quality control and updates 
in different formats. Since all of the earlier datasets provided 
data that has already been carefully chosen and processed 
by the bioinformatics community, they do not provide a 
standard procedure for selecting and working with data sets 
[23]. Also, CuMiDa provided a public repository of cancer 
datasets only using most ML algorithms, making the CuM-
iDa database a useful addition to the existing databases.

Based on the recent microarray database [23], CuMiDa 
contains 13 cancer types and is applied to six ML strategies 
such as SVM, RF, k-nearest neighbors (k-NN), decision tree 
(DT), Naive Bayes (NB), and multilayer perceptron (MLP). 
We focused on dataset GSE50161 for brain cancer gene 
expression from CuMiDa with five classes, 54,676 genes, 
and 130 samples.

The comparison to existing ML methods on the CuMiDa 
brain cancer gene expression is presented to classify the 
five classes according to evaluation performance in terms 
of accuracy values [23]. The accuracy percentages in the 
testing process of six ML models were 95% for SVM, 82% 
for MLP, 81% for RF, 87% for KNN, and 85% for both DT 
and NB.

The weaknesses of previous studies were based on low 
classification accuracy using ML models, and each model 
required extensive preprocessing steps before being intro-
duced into the classification process.

On the other hand, the strength of our study relied on the 
use of DL algorithms on a state-of-the-art microarray data-
base to improve the accuracy of the classifier without any 
preprocessing steps. One advantage of our proposed model 
is to use the BO optimizer [27] to reduce the value of the 
model loss function by finding the optimal way to obtain the 
correct model parameters. The effectiveness of the proposed 
model was evaluated not only on the basis of accuracy but 
also on the basis of other performance standards.

Materials and methods

Proposed hybrid model

As shown in the graphical illustration in Fig.  1, we used 
a hybrid approach (1D-CNN + RNN) to classify the CuM-
iDa brain cancer-implicated genes [23]. The CuMiDa brain 
cancer dataset includes 4 distinct forms of brain cancer in 
addition to healthy tissue. Regarding this database, Ependy-
moma and glioblastoma are represented by 35%, and 26% 
of the whole database, respectively. All medulloblastoma, 
pilocytic astrocytoma, and normal are represented by 39% 
of the whole database.

The major steps of the proposed model include:

i.	 The input gene expression dataset is divided into train-
ing, validation, and testing by 80%, 5%, and 15% 
respectively.

ii.	 Bayesian model-based optimization is used to reduce 
the execution times of the objective function by using 
the optimal collection of hyperparameters to select the 
best classifier.

iii.	 The proposed hybrid model (1D-CNN + RNN) is 
applied through training and validation sets.

iv.	 The evaluation process was performed by using the test 
set that was classified using this best classifier.

v.	 The feedback process was adopted to run the results 
back to the BO for the best results.

CuMiDa brain cancer gene expression data

The CuMiDa [23] gene expression is an open resource that 
includes large-scale cancer microarray datasets curated 
from 30,000 Gene Expression Omnibus (GEO) studies.

As indicated in the CuMiDa, many classes had to be 
eliminated because they did not meet the minimal standard 
for ML approaches [24]. The CuMiDa dataset has an unbal-
ance of samples and ML algorithms performed much worse 
with fewer samples. All datasets were carefully adjusted to 
remove incorrect probes before being manually corrected 
for background, normalized, and sample quality analysis.

In this paper, we used the brain cancer gene expression 
data obtained from CuMiDa which consists of five classes 
including ependymoma, glioblastoma, medulloblastoma, 
pilocytic astrocytoma, and normal. The CuMiDa brain can-
cer is represented in a CSV file using 130 cells (samples) in 
rows and 54,678 features (genes) in columns. This CuMiDa 
brain cancer is divided into 46 cells from ependymoma, 34 
cells from glioblastoma, 22 cells from medulloblastoma, 15 
cells from pilocytic astrocytoma, and 13 cells from normal. 
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gets closer to the optimal solution with each hyperparameter 
choice. The BO approach is a useful tool for cancer gene 
expression rather than the previous optimizer techniques. 
However, it needs significant computational time to provide 
a better group of hyperparameters.

Using objective function evaluations as training data, the 
BO maintains an internal Gaussian process model of the 
objective function as shown in Fig. 2. The acquisition func-
tion assesses the “quality” of each point based on the poste-
rior distribution of the objective function [27].

For the hyperparameters tuning task, we used four 
parameters including Gated Recurrent Unit (GRU), fully 
connected layers (FC1, FC2), and bidirectional Long Short-
Term Memory (BiLSTM). The values of four hyperparam-
eters in the BO are shown in Table 2. We chose these four 
parameters because of the characteristics of our dataset 
which includes a time series with up to 50 iterations. Table 3 
lists four hyperparameters for 1–5 iterations during the tun-
ing task. Table 4 shows the best values for 15 iterations to 
optimize the learning process.

The function of GRU on gene expression [36] is based 
on the association between data at the beginning and finish 
of the spectral series. GRU has used the update gate and 
reset gate to selectively filter and memorize historical data. 

In this paper, this database was split into training, valida-
tion, and test sets as in Table 1.

According to previous ML results on CuMiDa brain 
cancer gene expression data [23], the highest accuracy was 
95% using the SVM classifier.

Bayesian optimization (BO)

The hyperparameters of each class in the database are opti-
mized using BO [27] that based on a probability model. It 
is utilized for cancer classification on gene expression data 
[35] to identify the optimal solution in less number of itera-
tions than random algorithms. By selecting hyperparame-
ters, the loss function is minimized by altering the network’s 
parameters during the training process. According to Koul 
et al. [35], using the BO approach to cancer gene expression 

Table 1  Database distribution of CuMiDa brain cancer gene expres-
sion
Database Size (cells* features) Percentage
Training 104*54,678 80%
Validation 6*54,678 5%
Test 20*54,678 15%
Total 130*54,678 100%

Fig. 1  Block diagram for classification of CuMiDa brain cancer gene expression data using proposed hybrid model (BO + 1D-CNN + RNN)
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The BiLSTM [37] is a sequential processing approach 
constructed out of two LSTMs, one of which accepts input 
in one direction and the other in the opposite. It is used to 
control the long-term dependency issues faced by RNNs. It 
successfully increases the amount of data that the network 
has access to, giving the algorithm greater context by using 
some gates. Instead of addressing each point in the sequence 
individually, LSTM can process whole sequences and store 
relevant information about earlier data points to aid in the 
processing of later data points.

The FC1 and FC2 have the same function which pro-
duces a temporal sequence of predicted parameters. The 
Eq. 5 of the FC layer [38] is depicted as follows.

dli =
∑

j
wl−1

ji

(
σ
(
hl−1
i

))
+ bl−1

i � (5)

Where w, σ, and hl−i
i are expressed as the weight of the ith 

node for layer l − 1 and the jth node for layer, nonlinear 
activation function, and bias, respectively.

This pilot study lists finding high-performance hyper-
parameter choices by using the BO method, along with its 
performance comparison without BO. Therefore, we take 
advantage of the selected four hyperparameters to refine the 
brain cancer classification model on CuMiDa gene expres-
sion data.

Hybrid model

In this paper, the hybrid model consists of 1D-CNN and 
RNN architecture with 18 layers. According to Fig. 1, the 
sequence layer, two 1D-CNN layers, two normalization lay-
ers, two Rectified Linear Unit (ReLU) layers, two BiLSTM 
layers, two dropout layers, average global, GRU layer, FC 
layers, softmax layer, and classification layer are utilized 
to classify brain cancer types extracted from CuMiDa gene 
expression data.

Initially, the output of the sequence layer is passed to 
the 1D-CNN layer and the output of the 1D-CNN layer is 
passed to the ReLU layer. The two ReLU layers help to stop 
the occurrence of the vanishing gradient” problem that fre-
quently occurs when using sigmoidal functions. Also, the 
ReLU layer pooled as much data as possible because the FC 

In this work, GRU offers a simpler network with equivalent 
performance to solve the issue of vanishing gradients and 
preserves the impact of long-term dependencies as shown 
in Eqs. 1–4.

zt = σ (Wzxt + Uzht−1 + bz) � (1)

rt = σ (Wrxt + Urht−1 + br)� (2)

h̃t = tanh(Whxt + Uh(ht−1 � rt) + bh)� (3)

ht = zt � ht−1 + (1− zt)� h̃t � (4)

Where zt is a vector used for update gate with weight matri-
ces Wz and Uz. While rt is the vector used for reset gate with 
weight matrices Wz and Uz. ⊙ stands for the element-wise 
multiplication and σ for the sigmoid function. The input at 
time step t is given by xt, the preceding hidden state by ht1, 
and trainable bias vectors by bz, br, and bh. The update gate 
determines if the hidden state is updated with a new hidden 
state

∼
ht, whereas the reset gate determines whether the pre-

vious hidden state ht1, is disregarded in this design.

Table 2  Selection of hyperparameters and training range using BO
Hyperparameters Initial value Final value Type
GRU 400 1000 int
FC1 50 500 int
BiLSTM 400 1000 int
FC2 50 500 int

Table 3  Four hyperparameters for 1–5 iterations during fine-tuning 
task
Iterations GRU FC1 BiLSTM FC2
1 467 460 561 299
2 481 140 443 369
3 771 66 433 75
4 490 252 880 183
5 850 159 546 128

Table 4  Best values for 15 iterations
Iterations GRU FC1 BiLSTM FC2
15 iterations 850 159 546 128

Fig. 2  Layout of BO structure
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simpler because it only has one convolutional layer and does 
not demand a specific order for the inputs. 1D-CNN consists 
of a vector input layer, convolutional layer, and FC layer.

In this model, the input for 1D-CNN is a sequence layer 
as shown in Fig. 1. The RNN is preprocessed using 1D-CNN 
to create shorter sequences of higher-level features from an 
input sequence.

Recurrent neural network (RNN)

RNN [26] is based on consecutive activities which provides 
a memory function that allows it to use previous observa-
tions to comprehend the present observation or forecast 
upcoming observations in an input sequence. RNN forms 
three layers including input, hidden, and output. Using a 
recurrent connection, the hidden layer receives both infor-
mation about its current inputs at time step t and details 
about its previous hidden state at time step t-1 as follows: 
h(t) = θ(xt, ht−1). Where θ is a non-linearity function such 
as tanh or sigmoid.

The RNN, in contrast to other kinds of neural networks, 
shares the same parameters throughout all phases, which 
reduces the number of parameters the networks require to 
learn. It is simple to train the RNN to produce the cancer 
classification accurately in sequential data [42]. RNN model 
[26] on gene expression data used to determine the tran-
scriptional target factor. In gene expression analysis, the 
RNN model provides some benefits because it increases 
model effectiveness by allowing the model to recognize 
and remember sequential feature information [43]. On the 
other hand, there are some drawbacks of RNN architecture 
related to gene expression analysis, including longer pro-
cessing times than CNNs and other comparable techniques. 
It leads to slower, more complicated training procedures and 
a worse capacity to capture relationships in larger genomic 
sequences than other neural networks.

Evaluation process

The effectiveness of the DL models’ design for various 
data sets is an essential problem. This study evaluates the 
effectiveness of the created methodology and other com-
parison methods by using five metrics including accuracy, 
sensitivity, specificity, precision, and F1-score as shown in 
Eqs. 6–10.

According to the literature [44, 45], the confusion matrix 
and these five performance metrics are popular in multiclass 
classification tasks.

Accuracy =

∑c
i=1

TPi+TNi
TPi+FNi+FPi+TNi

c
� (6)

layer can erase spatial characteristics and have an unfavor-
able impact on anticipated results.

Then, the output of the ReLU layer is passed to the 
normalization layer. The normalization layer can restrict 
the processed data to a certain range, thus eliminating the 
dimensional effect between each data point and facilitating 
the training of the model.

In the training process, the two dropout layers are used 
for preventing overfitting while two BiLSTM layers are 
used for learning representations. The dropout value was 
set to 0.25 as widely used in previous work [39] to solve 
the overfitting problem. The inclusion of the dropout layer 
in the 1D-CNN model successfully increases the model’s 
capacity for generalization and enhances the accuracy of 
cross-load learning. In this model, the output of the GRU 
layer is passed to the BiLSTM layer. Next, the dropout layer 
receives the output of the BiLSTM layer as in Fig. 1. The 
dropout layer is a mask that preserves the functionality of 
all neurons while removing some neurons’ contributions to 
the subsequent layer.

The FC layer is used to transform the sequential output 
into a fixed-length representation suitable for the classifica-
tion process. The FC layer is carried out by the classification 
of the training sets and test sets. Then, the outputs of FC are 
fed into the softmax layer and classification layer. Finally, 
the retrieved results from the classification process are sub-
sequently passed into the BO structure to improve the model 
performance.

Following the hybrid model, 1D-CNN and RNN archi-
tectures are employed, where manual feature selection that 
caused some information loss is not performed. It has been 
observed that the hybrid model yielded better results on a 
larger dataset than methods in the previous studies. There-
fore, the hybrid model is appropriate for the classification 
of CuMiDa brain cancer gene expression data. This is also 
demonstrated by the improved performance after BO opti-
mization in the hybrid model.

One dimensional- convolutional neural network (1D-CNN)

CNN is a DL model built primarily using convolutional fil-
ters. It consists of convolutional, pooling layers and addi-
tional regularization layers such as batch normalization or 
dropout layers. A CNN-based model for gene expression 
analysis was described by Xiao et al. [40] to classify can-
cer types with a precision of 98% when applied to three 
publicly available datasets. Elbashir et al. [41] suggested 
CNN architecture for breast cancer classification employing 
gene expression data with a precision of 98.76%. 1D-CNN 
model [28] is one type of CNN architecture that works well 
with time-series data and has shown a lot of promise for 
numerical classification tasks. The 1D-CNN is substantially 
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training and validation sets. The first hybrid model consists 
of (BO + 1D-CNN + RNN) while the second hybrid model 
consists of (1D-CNN + RNN) without BO structure.

Performance of CuMiDa brain cancer database in a 
hybrid model with/without BO

By using the (1D-CNN + RNN) model, the number of hidden 
layers is fixed in hyperparameters, where GRU, BiLSTM, 
FC1, and FC2 are 1000, 1000,100, and 50 respectively.

By using the (BO + 1D-CNN + RNN) model, the number 
of hidden layers changes in hyperparameters according to 
the BO structure to select the best values for hyperparame-
ters. Afterward, we test the output of the classification layer 
by using five metrics.

Based on the hyperparameters chosen, the classification 
results of the hybrid model (BO + 1D-CNN + RNN) are 
better than the existing ML model on the CuMiDa brain 
cancer database. Thus, we report the BO method substan-
tially influences classification success on the CuMiDa brain 
cancer database. This (BO + 1D-CNN + RNN) architecture 
outperforms the (1D-CNN + RNN) architecture during the 
training process as demonstrated in Figs. 4 and 5.

On the other hand, it was noted that the hybrid model 
(1D-CNN + RNN) performed poorly in the CuMiDa brain 
cancer database. Meanwhile, the hyperparameter optimiza-
tion values at various time steps were suitably changed to 
make sure that the final output model is more similar to the 
ideal model.

Comparison of CuMiDa performance with other 
models

In this work, we compare the performance of CuMiDa 
brain cancer gene expression against two hybrid models 
(BO + 1D-CNN + RNN) and (1D-CNN + RNN) in terms of 
accuracy, sensitivity, specificity, precision, and F1-score.

Table 5 lists the performance comparison of two hybrid 
architectures on test sets from the CuMiDa brain can-
cer database by using five metrics. Compared with them, 
the accuracy of the (BO + 1D-CNN + RNN) and (1D-
CNN + RNN) are improved by 100% and 90% respec-
tively. As depicted from the confusion matrix in Fig. 6, the 
accuracy of (BO + 1D-CNN + RNN) architecture on epen-
dymoma, glioblastoma, medulloblastoma, pilocytic astro-
cytoma, and normal cells extracted from the CuMiDa brain 
cancer database is achieved 100%.

On the other hand, we applied the hybrid model to 
another cancer type e.g. prostate cancer gene expression 
extracted from the CuMiDa database. The prostate cancer 
gene expression results were observed to be 83.3% accu-
racy, 90% sensitivity, 81.8% precision, and 85.7% F1-score. 

Sensitivity =

∑c
i=1

TPi
TPi+FNi

c
� (7)

Specificity =

∑c
i=1

TNi
TNi+FPi

c
� (8)

Precision =

∑c
i=1

TPi
TPi+FPi

c
� (9)

F1− score = 2
Precision ∗ Sensitivity
Precision+ Sensitivity

� (10)

Where C is five classes. TP stands for true positive for cor-
rectly diagnosed cancer cells, TN stands for true negative for 
correctly diagnosed normal cells, FN stands for false nega-
tive for incorrectly diagnosed normal cells and FP stands for 
false positive for erroneously diagnosed cancer cells.

Results

This study is representative of a hybrid model to aid in the 
classification of disease-related genomic data. Overall, there 
are certain restrictions on the gene expression database, but 
these can be circumvented by the DL model with proper 
hyperparameter adjustment using optimization.

This proposed model is the first combination of 
(BO + 1D-CNN + RNN) on five classes of CuMiDa brain 
cancer gene expression [23]. In this paper, CuMiDa brain 
cancer is divided into 80% of training sets, 15% of test sets, 
and 5% of validation sets. A matrix of gene expression val-
ues from the CuMiDa database, with each column denoting 
a feature and each row denoting a cell, serves as the model’s 
input. We applied the two hybrid architectures to the CuM-
iDa brain cancer database to classify the brain cancer types. 
For implementation, the suggested model was executed on 5 
GB RAM GPU and MATLAB 2022b software.

In the initial step, we used a BO [27] structure to thor-
oughly examine four hyperparameter combinations of the 
number of GRU-FC1-BiLSTM-FC2 layers. When dealing 
with sequence data, it is common to use GRU and BiLSTM 
to capture temporal dependencies and improve sequence 
processing with an RNN model [38]. We adjusted each 
hyperparameter separately while maintaining the values of 
the other hyperparameters among the tuning of hyperpa-
rameters. We assessed the performance change concerning 
the change in each hyperparameter by recurring the train-
ing process. The optimization result for the best values of 
hyperparameters at 15 iterations is shown in Fig. 3.

In the second step, we performed two hybrid mod-
els on the CuMiDa brain cancer database by using the 
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Discussion

The patients’ molecular profiles are extensively gen-
erated using gene expression technology. One of the 
major difficulties is creating new tools for gene expres-
sion interpretation, particularly in oncology. There is 
proof that genetic factors are associated with childhood 
and family-related cancers [46]. Only a small number 
of experimental studies have assessed DL approaches in 
gene expression analysis and contrasted them with cut-
ting-edge ML [47]. Although the DL approach has been 
successful in other fields, it hasn’t been fully investigated 
in gene expression cancer [48]. The problem of gene 
expression is based on the small number of samples but 
a large number of features [49]. Recently, the CuMiDa 
gene expression database has been enriched in diseases 

This means that the proposed model on prostate cancer gene 
expression achieved the best accuracy instead of ML results 
as computed in [23]. This indicates that there is generaliza-
tion of this hybrid model to any other cancer data.

To the best of our information, there is no DL model 
applied to the CuMiDa brain cancer gene expression data-
base. As aforementioned, we leveraged the CuMiDa brain 
cancer database (features, cells) learned from the previous 
ML models [23] to classify brain cancer genes based on a 
hybrid model that consists of RNN coupled with 1D-CNN 
and BO. The empirical results reveal the importance of the 
BO method in accurately classifying the CuMiDa brain can-
cer gene expression database.

Fig. 3  The relation between minimum objective and number of function evaluations for 15 iterations during the optimization process
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related to different types of cancer such as breast, brain, 
prostate, ovary, liver, bladder, lung, throat, renal, and 
leukemia.

The main concern with using a gene expression data-
base is high-dimensional data, repetitive features, and 
weekly irrelevant/uninformative features that lead to 
overfitting during the training process. This paper dis-
cusses a solution to this problem without selecting genes, 
which takes a lot of processing time to detect important 

Table 5  Comparison of classification performance between with and 
without BO on test sets from CuMiDa brain cancer gene expression 
database
Architectures Accu-

racy%
Sen-
sitiv-
ity%

Spec-
ific-
ity%

Preci-
sion%

F1-score
%

(BO + 1D-CNN + RNN) 100 100 100 100 100
(1D-CNN + RNN) 
without BO

90 91.52 97.70 86 86.16

ML model (SVM) [23] 95 - - - -

Fig. 5  Layout of training progress using (1D-CNN + RNN) architecture on CuMiDa brain cancer gene expression database

 

Fig. 4  Layout of training progress using (BO + 1D-CNN + RNN) architecture on CuMiDa brain cancer gene expression database
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the classification task are discretized in Table 5. The test 
results confirmed that the accuracy, sensitivity, specific-
ity, precision, and F1-score were achieved 100% using 
the proposed (BO + 1D-CNN + RNN) model on the CuM-
iDa brain cancer database. On the other hand, the accu-
racy, sensitivity, specificity, precision, and F1-score were 
achieved as 90%, 91.52%, 97.70%, 86%, and 86.16% 
respectively using the proposed (1D-CNN + RNN) model 
on CuMiDa brain cancer database as shown in Table 5.

In two experiments, the performance of two hybrid mod-
els was compared with 15% of test sets by running 100 
epochs with 15 batch sizes and 600 iterations using the 
Adam optimizer. It should be mentioned that the learning 
rate is set with a value of 0.001 during the training pro-
cess to improve model performance. For comparison with 
the previous model [23], the classification accuracy was 
95% using the SVM classifier on the CuMiDa brain can-
cer database as outlined in Table 5. Therefore, the proposed 
(BO + 1D-CNN + RNN) model is superior to the previ-
ous model [23] for classifying the CuMiDa brain cancer 
database.

It was noted that as the number of iterations increases, 
the training loss of the (BO + 1D-CNN + RNN) model 
decreases faster than that of the other (1D-CNN + RNN) 
model. Thus, the execution time is 4  min for the 
(BO + 1D-CNN + RNN) model and 12 min for the (1D-
CNN + RNN) model as shown in Figs. 4 and 5. Although 
the RNN model has a long execution time which leads to 
a slower and more complex training process, the RNN 
model with BO achieved faster time instead of just RNN.

It is observed that the work of hybrid models on gene 
expression databases is much less when compared to ML 

feature sets in a gene expression database. Also, another 
problem is that the gene expression database is applied to 
non-open access and incorrect data.

In this paper, the proposed model used the CuMiDa brain 
cancer gene expression database to distinguish four types 
of classes (ependymoma, glioblastoma, medulloblastoma, 
pilocytic astrocytoma) against the normal class. The number 
of samples in the CuMiDa brain cancer dataset is compara-
tively low for a DL-based model to train correctly without 
any overfitting problems. Also, this data has class imbalance 
problems. To handle these issues, we employed a hybrid 
model (BO + 1D-CNN + RNN) to achieve higher accuracy 
rather than the previous study based on an ML model on the 
same dataset [23].

For the optimization task, The BO [50] is implemented 
to find the best values of four selected hyperparameters 
including GRU, FC1, BiLSTM, and FC2 layers. GRU 
performs admirably while processing sequences [51]. In 
short, BiLSTM indicates that the input sequence flows 
backward in the additional LSTM layer. Following that, 
the outputs from the two LSTM layers are merged using 
a variety of techniques to convey information from both 
the past and the present [52].

For the hybrid model, the 1D-CNN network learns 
regional patterns sequentially. During sequence pro-
cessing, a 1D- CNN layer can compete with RNN at a 
significantly lower computing cost by detecting local pat-
terns in sequences. The RNN classifier can theoretically 
store information in any long sequences. However, it was 
restricted to a few steps of glancing back.

The results of applying the two hybrid models with 
and without BO on the CuMiDa brain cancer database for 

Fig. 6  Confusion matrix of (BO + 1D-CNN + RNN) architecture on test data extracted from CuMiDa brain cancer gene expression
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Conclusions

The applications of DL have multiplied recently in many 
areas of biological research. However, the use of the DL 
models on gene expression data remains a technological 
difficulty due to their extensive layers, functional com-
ponents, and operations. To overcome this challenge, we 
developed an RNN model by fusing it with BO + 1D-CNN 
architecture which aims to successfully classify the 
CuMiDa brain cancer database. We showed how the opti-
mization step can be used to improve the hybrid model 
performance. Finally, we anticipate that the hybrid model 
of (BO + 1D-CNN + RNN) will provide insight into the 
classification of other cancer types obtained from the 
gene expression database among DL models.
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