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Abstract
High-quality printed circuit boards (PCBs) are essential components in modern electronic circuits. Nevertheless, most of
the existing methods for PCB surface defect detection neglect the fact that PCB surface defects in complex backgrounds
are prone to long-tailed data distributions, which in turn affects the effectiveness of defect detection. Additionally, most of
the existing methods ignore the intra-scale features of defects and do not utilize auxiliary supervision strategies to improve
the detection performance of the network. To tackle these issues, we propose a lightweight long-tailed data mining network
(LLM-Net) for identifying PCB surface defects. Firstly, the proposed Efficient Feature Fusion Network (EFFNet) is applied
to embed intra-scale feature associations and multi-scale features of defects into LLM-Net. Next, an auxiliary supervision
method with a soft label assignment strategy is designed to help LLM-Net learn more accurate defect features. Finally, the
issue of inadequate tail data detection is addressed by employing the devised Binary Cross-Entropy Loss RankMiningmethod
(BCE-LRM) to identify challenging samples. The performance of LLM-Net was evaluated on a homemade dataset of PCB
surface soldering defects, and the results show that LLM-Net achieves the best accuracy of mAP@0.5 for the evaluation
metric of the COCO dataset, and it has a real-time inference speed of 188 frames per second (FPS).

Keywords PCB defect detection · Object detection · EFFNet · Auxiliary supervision · BCE-LRM

Introduction

PCBs are widely applied in electronics, communications,
computers, security, medicine, industrial control, aerospace,
etc. [1] As the carrier of modern large-scale integrated cir-
cuits, the quality of PCBs is closely related to the operational
efficiency and safety of modern circuits. Unfortunately, PCB
in the manufacturing process by the environment and the
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influence of personal factors of technicians, resulting inweld-
ing spikes as shown in Fig. 1 aiguille, interconnect pad,
dissymmetry, holes, and solder residue of these five types
of common welding defects, the ensuing short circuit and
electrical fire and other hazards to PCB manufacturers and
userswill bring huge economic losses [2] and even casualties.
Detection of PCB defects is essential.

Traditional methods for PCB defect detection include
visual inspection, electrical testing [3], and Automatic Opti-
cal Inspection (AOI) [4]. Visual inspection by the operator
is subject to leakage and mistakes related to the subjec-
tive state of the operator [5]. The electrical test method is
incapable of detecting short-circuit defects and extensive
defects, and the AOI technology is affected by the working
environment, technical requirements, hardware equipment,
and other factors, which makes its adaptability insufficient.
Template matching technology [6] has been applied to PCB
surface defect detection with the development of image pro-
cessing technology. Unfortunately, there are still a large
number of targets that are incorrectly detected and over-
looked. Machine learning has been applied to PCB surface
defect detection [2, 7], but the characterization of defects
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Fig. 1 Common soldering
defects on the surface of PCBs

is cumbersome. The emergence of Convolutional Neural
Networks (CNNs) [8, 9] has provided new options for detect-
ing PCB surface defects. Related target detection algorithms
have also attempted to recognize PCB surface defects. For
instance, RAR-SSD [1] can acquire all the characteristics
of defects by applying multi-scale feature fusion, relying on
lightweight Receiving Field Block Modules (RFB-s) and an
attention mechanism to highlight the importance of differ-
ent features, which brings the problem of limited detection
accuracy while achieving lightweight defect detection. Fea-
ture fusion approaches, including TD-Net [10], TDD-Net
[11], improved Faster-RCNN [12], LDD-Net [13], and Edge
Multiscale Reverse Attention Network (EMRA-Net) [14],
emphasize the employment of multiscale feature fusion to
improve the detection accuracy of the algorithms at the cost
of huge memory consumption. Specifically, the five feature
inputs utilized for feature fusion in LDD-Net and the two-
stage approaches such as TDD-Net inevitably reduce the
inference speed of the algorithm. These methods especially
suffer from a lack of effective interaction with the in-scale
features of defects, which is important for defect detection
in complex contexts. Although the Focal Loss introduced
by the extended feature pyramid model [15] addresses the
imbalance between foreground and background, it ignores
the imbalance between defect classes.

In conclusion, many deep learning algorithms are not
suitable for application in real industrial sites due to the
large number of parameters and slow inference speed. Fur-
thermore, the majority of feature fusion approaches fail to
acknowledge the significance of intra-scale feature inter-
actions in the context of defects. However, the global
information of the in-scale features, in conjunctionwith long-

range dependencies, ismore effective in assisting the network
in the learning of PCB surface defect features in a complex
context. Existing methods often overlook the issue of severe
class imbalance in PCB surface defect detection, particu-
larly in industrial long-tailed data. Long-tailed data reduces
the detection accuracy of some defect categories that are at
the tail of the data, or worse, a large number of tailed cat-
egories is missed. Networks rarely employ the method of
auxiliary head supervision in the process of learning PCB
surface defects. Nevertheless, the method of auxiliary head
supervision allows more accurate defect feature information
to be provided to the algorithm, which helps the algorithm to
better identify PCB surface defects.

The main contributions to the problems in PCB table
defect detection are as follows:

(1) The proposed EFF-Net enables intra-scale feature
interaction and cross-scale feature fusion of defects, enabling
the network to efficiently fuse long-range dependencies of
PCB surface defect features in combination with multi-scale
feature information.

(2) The design of an auxiliary head supervision strategy
for the supervision of the middle layer network, which con-
sequently assists the network in achieving accurate learning
of PCB defect information.

(3) The designed BCE-LRM loss is utilized for mining
hard samples to achieve improved detection accuracy of tail
data in the defect data.

The paper is structured as follows: Section “Related
work” reviews the state-of-the-art methods for target defect
detection in recent years, Section “Proposed approaches”
describes our overall approach in detail, Section “Experi-
ment” experimentally validates the feasibility of the proposed
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method, and Section “Conclusion” summarizes the work
in this paper, highlighting our improvements and future
research directions.

Related work

As a practical application of the computer vision field in engi-
neering, the main task of defect detection is to localize and
classify defects in industrial products. For example, pixel
segmentation [16] is used to identify rail surface defects,
YOLO-attention [17] detects defects in wire arc additive
manufacturing, improved YOLOV4 [18] identifies surface
defects in aluminum strips, improved YOLOV5s [19, 20]
identifies small defects on the surface of ceramic tiles, and
SR-ResNetYOLO [21] detects defects on the surface of
gears. All these methods use multi-scale feature fusion to
improve the detection accuracy of the algorithms. The result-
ing large number of parameters as well as the memory
footprint pose difficulties for practical deployment. More to
the point, these methods only focus on the inter-layer rela-
tionship of defect features, ignoring the intra-scale feature
information capture of defects. For instance, SOD-YOLO
[22] did not try in a complex context when detecting small
target defects inwind turbine blades, andgenerative adversar-
ial networks [23] have deployment difficulties in identifying
surface defects in wood. PEI-YOLOv5 [24] did not address
the issues of intra-scale feature interaction and inter-class
sample imbalance when detecting fabric defects. The appli-
cation of a cumbersomemulti-scale feature fusionmodule for
the detection of steel surfaces [25] increased training time.

In addition to traditional CNN networks, Transformers
are beginning to be widely used in the field of defect detec-
tion. For example, DAT-Net [26] detects tool wear defects
without considering the inter-class imbalance of defects, and
DefectTR [27] detects defects in sewage pipe networks with
poor detection accuracy. For the detection of roller surface
defects, the multi-layer Transformer encoder used by the
Cas-VSwin transformer [28] results in huge computational
as well as parametric quantities. DefT [29] suffered from
slow inference when applied to the detection of industrial
surface defects. LSwin Transformer [30] did not implement
intra-scale feature interaction and cross-scale feature fusion
for the detection of steel surface defects. Swin-MFINet [31]
did not make full use of multiscale feature information when
performing the detection of surface defects on manufactured
materials. RDTor [32] performed the detection of PCB sur-
face defects where the intra-scale interaction of low-level
features is unnecessary because of the risk of duplication and
confusion with high-level feature interactions. At the same
time, all of the above approaches suffer from difficulties in
practical deployment, and the Transformer framework is usu-
ally accompanied by a huge amount of computation, which

makes it difficult to adapt to the high real-time as well as
high embeddedness requirements of the industry. Neverthe-
less, the Transformer framework is able to effectively encode
global information and efficiently learn the contextual infor-
mation of PCB surface defect features. Consequently, it helps
the algorithm to recognize PCB surface defects with variable
shapes and complex backgrounds.

PCB surface defect detection, as an important branch in
industrial defect detection, provides many inspection meth-
ods with exploratory significance and practice. Such as
improving the CIoU and feature pyramid based on YOLOV5
[33], a combination of lightweight YOLOX and positional
attention mechanism [34], adding a trunk feature layer in
YOLOV3 [35], YOLOV4-Tiny [36], YOLOV5 combined
with Transformer [37] and so on. These methods do not con-
sider the issue of inter-category imbalance of PCB surface
defects. As a result, it can be confusing to identify the tail
data categories in long-tailed data. The method of adding
a backbone feature layer in YOLOV3 increases the mem-
ory consumption and computational cost to a large extent,
and ignores the intra-layer representation of features, while
the long-range dependency of intra-layer representation and
global information is extremely important for PCB surface
defects detection in complex backgrounds. While few exist-
ing defect detection methods utilize auxiliary supervision
strategies, auxiliary supervision is extremely beneficial in
the training of lightweight networks. Auxiliary supervision is
typically effective in providingmore comprehensive and reli-
able abstracted semantic feature information for the detection
of PCB surface defects. It also helps the algorithm to more
accurately exclude large redundant features, thus achieving
the purpose of feature purification.

Proposed approaches

The LLM-Net network structure we constructed in Fig. 2
mainly consists of a backbone feature extraction network,
an efficient feature fusion network, and a detector. Inspired
by YOLOV5 and DETR [38]. We propose an Efficient Fea-
ture Fusion Network (EFFNet) by combining the encoder
simplification of DETR with the PAFPN network. Multi-
scale features are converted into image features utilizing
intra-scale feature interaction and cross-scale feature fusion.
Enables LLM-Net to efficiently fuse long-range dependen-
cies of PCB surface defect features with multi-scale feature
information. The proposed BCE-LRM results in better learn-
ing of hard samples by LLM-Net. The errors of LLM-Net
during the training process are reduced by our designed
assisted supervision strategy, which allows the network train-
ing time to be reduced. At the same time, it gives LLM-Net
a stronger ability to characterize PCB surface defects.
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Fig. 2 Architecture of LLM-Net, where, Efficient Hybrid Encoding Module (EHEM) is utilized to interact intra-scale features of PCB surface
defects in an attentional manner. The Efficient Feature Fusion Network ultimately achieves intra-scale feature interaction and cross-scale feature
fusion

An efficient feature fusion network

The feature fusion network proposed consists mainly of an
efficient hybrid encoding module (EHEM) and a multi-scale
feature fusion network. In particular, the EHEM module is
mainly responsible for interacting with the in-scale features
of PCB surface defects in an attentional manner to achieve
efficient embedding of global information about defects.
Multi-scale feature fusion network transforms the defect
feature maps into feature layers for predicting defects of dif-
ferent sizes, enabling the network to adapt to PCB surface
defects of different shapes and sizes.

Efficient hybrid encodingmodule

The deeper semantic features of PCB surface defects often
contain richer abstracted semantic information, and we
encode the deeper semantic features provided by the back-
bone feature network through an efficient hybrid encoding
module, which effectively exploits the semantic features of
defects. The abstracted feature information in such semantic
information is more beneficial for defect classification for
regression. To achieve efficient and accurate identification
of PCB surface defects, we simplified the encoder of DETR
by adopting a simple single-layer transform coding module.
The hybrid coding module constructed is shown in Fig. 5.

The efficient hybrid encoding module, with the scaled
dot product attention in Fig. 3 as its core, can improve the
encoding of the global information and learn the contex-
tual information of the PCB surface defect features to a
limited extent, which in turn assists the algorithm in detect-

Fig. 3 Scaled dot-product attention

ing PCB surface defects with variable shapes and complex
backgrounds. The attention input consists of the query, key
(of dimension K ), and value (of dimension V ), which are
described in Eq. (1).

Att(K , Q, V ) = Sof tmax

(
QKT

√
dk

)
V (1)

where the three matrices K (key), Q (query), and V (value)
are obtained by linear transformation, and dk gives the length
of K and Q. The Q matrix of the element is then dot-
multiplied by the K matrix of the other elements in the
sequence, establishing the dependence relationship between
one element and the others in the sequence. Following the
encoding of Eq. (1), a relationship is established between
the defective features on the PCB surface in terms of order
and spatial location. As a consequence, the ability of the
algorithm to extract the positional features of the defects is
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Fig. 4 Multi-head self attention

Fig. 5 Efficient hybrid encoding module

improved, and the ability of the algorithm to locate the defects
more accurately is enhanced.

The multi-head attention mechanism is obtained by splic-
ing the output of multiple parallel scaled dot product atten-
tion, as shown in Fig. 4. The multi-head attention module
achieves compensation between Q, K , and V through par-
allel processing, resulting in n sets of results with the same
number of heads after n (number of heads) linear transforma-
tions. The results provide sequence information on defects
and dependency information between elements. Not only are
they extremely helpful for the network to obtain contextual
information on defects on the PCB surface, but they are also
indispensable for the subsequent classification and prediction
of defects.

The efficient hybrid encoding module in Fig. 5 further
reduces computational redundancy based on the transform
encoder, which only performs in-scale interactions of fea-
tures on P5. We argue that applying the self-attention
operation to high-level featureswith richer semantic concepts
captures the connections between conceptual entities in PCB
defective images, which helps the subsequentmodules detect
and recognize defects in images. Simultaneously, due to the

absence of semantic concepts, interactions between low-level
features within the scale are unnecessary. Otherwise, there is
a risk of duplication and confusion with interactions between
high-level features.

Efficient feature fusion network

The backbone network outputs several feature layers. The P3
layer contains fine-grained features and location information
for recognizing subtle defects. The P4 layer contains more
abstract semantic features suitable for recognizing medium-
sized defects. The richest semantic features are found in
the P5 layer, which plays a crucial role in classifying and
recognizing defects. An efficient feature fusion network is
constructed by combining the proposed EHEMwith a multi-
scale feature fusion network. The EFF-Net processes the
deep semantic feature P5 with multi-head attention and
obtains thePCBsurface defect feature F5,which contains the
long-range dependencies and contextual information. Sub-
sequently, the F5 feature is utilized for cross-scalar feature
fusion, and at the same time, the information contained in F5
is transported to the other two scales of features. Ultimately,
EFF-Net accomplishes the embedding of multi-scale defect
context information and long-range dependencies, which in
turn effectively supports the detector in detecting and iden-
tifying defects in the image. Equation (2) characterizes our
efficient feature fusion network.

Q = K = V = Flattten (P5)

F5 = Reshape (Att (K , Q, V ))

{ f eat1, f eta2, f eat3} = EFF ({F3, F4, F5}) (2)

where Att represents the multi-head attention module,
{ f eat1, f eat2, f eat3} are the outputs of the efficient fea-
ture fusion network, Reshape and Flatten are inverse
processes to each other, and P5 is the high-level feature of
the backbone outputs. F3 and F4 are the shallow and mid-
dle outputs of the backbone network (equal to P3 and P4,
respectively, in Fig. 2). The efficient feature fusion network
is characterized by EFF .

Assisted supervision strategy

Deep supervision [39] is frequently employed as a means
in deep network training, and auxiliary heads are usually
added to the middle layer of the network to obtain the auxil-
iary supervision loss. To enhance the ability of the algorithm
to obtain more accurate feature information on PCB sur-
face defects, we designed the auxiliary supervision strategy.
The auxiliary head label assignment strategy is independent,
preventing the auxiliary head loss from affecting the main
detection head loss.Meanwhile, in the label assignment strat-
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Algorithm1:Pseudo-code ofAuxhead label assignment
strategy
Input: Prediction results P; Ground truth Targets.
Output: Index information indices; Anchor box information

anch.
1 Initialization: na ← 3,nt ← Number of targets,indices ←

list[],anch ← list[],anchor_t ←4.0,g ← 1.0
gain ← Tensor ([7,]), ai ← matri x [na,nt]
Targets ← Concat [(ai , Targets), dim = 2]
of f ← T ensor ([[0, 0], [1, 0], [0, 1], [-1, 0], [0, -1],]) * g

2 for i : num_anchors do
3 anchors ← anchors [i]

Update the elements of gain
t ← Targets ∗ 1.0
if nt > 0 then

4 r ← t (h, w) / anchors (h, w)
j ← max (r , 1/r ) < anchor_t
t ← t [ j]
gxy ← tcenter (x , y)
gxi ← gaincenter (x , y) − gxy
j , k ← ((gxy // 1.0 < g) ∩ (gxy > 1.0)). T
l, m ← ((gxi // 1.0 < g) ∩ (gxi > 1.0)). T
of f sets ← gxy + of f [ j]

5 else
6 t ← Targets [0]

of f sets ← 0

7 b, c ← t (xmin , ymin), t (xmax , ymax ), gxy ← tcenter (x , y)
ghw ← t (h, w), gi j ← (gxy - of f sets), a ← tclasses
Index information is added to the indices list.
Anchor frame information added to anch list.
end

8 return anch, indices

egy of the auxiliary head, we adopt the state-of-the-art soft
label assignment strategy. Efficiently avoids increasing the
error in the network learning process when using the origi-
nal hard labels, which in turn effectively helps the algorithm
to learn the defective features. The loss function employed
in the auxiliary head is the same as that of the main detection
head, which prevents the auxiliary head from ignoring hard
samples and also promotes the algorithm to converge faster
during the training process. Algorithm 1 presents the pseudo-
code for the core code of the label assignment strategy in the
auxiliary head.

The application of auxiliary heads greatly enhances
lightweight algorithms for learning fromPCBsurface defects
with variable morphology on long-tail datasets. Following
the fully supervised training of the mid-layer network, we
incorporate the supervised loss obtained from themain detec-
tion head and performbackpropagation and gradient updates.
The designed auxiliary supervision strategy combines hard
labeling with soft labeling to achieve a more effective defect
target allocation strategy. Additionally, the auxiliary super-
vision can quickly correct learning errors during the training
process for the lightweight defect detection network, result-

ing in more effective identification of PCB surface defects
by the lightweight algorithm. The auxiliary supervision strat-
egy is solely utilized during the training process and is not
involved in the predictive inference process. With this strat-
egy, the efficiency of the algorithm is ensured.

Boosting for hard samples

In industrial defect detection scenarios, severe imbalances
between categories seriously affect detector effectiveness in
detecting tail data. To effectively improve the detector perfor-
mance,wepropose ahard sampleminingmethodBCE-LRM,
which combines the binary cross-entropy loss. To enhance
detector performance effectively, we are inspired by the
Literature [40, 41] and propose a difficult sample mining
method BCE-LRM by combining the binary cross-entropy
loss. Unlike the Literature [40], the original LRM is only for
single-scale features, while in the proposed method, we uti-
lize theBCE-LRMfor all scales of features. Figure 6 presents
the proposed BCE-LRM strategy. Firstly, the loss of differ-
ent scale features is calculated for each mini-batch. Then,
the losses are ranked and stored in a vector. Next, the loss
values in the vector are ranked in descending order, and the
top β of the ranking is selected for each image. Finally, the

Fig. 6 BCE-LRM. First, the loss of different scale features is calculated
for each mini-batch. Then, the losses are ranked and stored in a vector.
Next, the loss values in the vector are ranked in descending order, and the
topβ of the ranking is selected for each image. Finally, the averaged loss
is obtained and utilized as the confidence loss for network prediction
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averaged loss is obtained and utilized as the confidence loss
for network prediction.

The algorithm prioritizes difficult samples with reduced
learning effect by the above loss ordering and loss selection,
enabling it to effectively learn the difficult samples in thePCB
surface defects. The sorting and selection of losses, in com-
parison to the original binary cross-entropy loss, is effective
in learning both bad and difficult samples. In contrast to the
Literature [41], we opted to avoid the application of the focal
loss in avoiding its neglect of easily detectable faulty cate-
gories. Additionally, considering that there are a few quality
PCB surface defect samples that have high intersection and
concurrency ratios but not high confidence levels, we have
avoided utilizing Varifocal Loss.

LRM is utilized for binary cross-entropy losses after fea-
ture mapping is complete, and only the losses are ranked and
selected in the training phase. Equation (3) characterizes the
binary cross-entropy loss.

σ (Pi ) = 1

1 + ePi

BCEWithLogitsLoss = 1

N

N∑
i=1

(yi · log(σ (Pi ))

+(1 − yi ) · log(1 − σ (Pi ))) (3)

where variable pi represents the probability of a defective
sample being classified as a positive example, while yi repre-
sents the true label of the defective sample, and N represents
the number of samples.

Equation (4) shows that the core of LRM is a binary mask
matrix called Mask. The defective feature mapping, Feat ,
obtained from prediction is multiplied with Mask to obtain a
new feature mapping by multiplying the elements. This new
defective feature mapping is mainly utilized to determine
whether the sample is a difficult sample or not.

Featout = Feat · Mask (4)

The binary parameters in Mask are not pre-set and are
determined by the final prediction result. When the elements
in the feature mapping belong to difficult samples, the ele-
ments in the mask Mask are set to 1 and the other elements
are set to 0. The backpropagation of the network is then car-
ried out, and the parameter updating is shown in Eq. (5).

ˆ∂Loss

∂ f ci, j
= mc

i, j · ˆ∂Loss

∂ f ci, j
=

⎧⎨
⎩
0 mc

i, j = 0
ˆ∂Loss

∂ f ci, j
mc

i, j = 1
(5)

where denotes the element in the faulty feature mapping f
(corresponding to Feat) with position (i , j) when the chan-
nel is c, and denotes the element in the mask Mask with

position (i , j) when the channel is c. With the mask Mask,
the algorithm successfully reduces the backpropagation of
simple samples and ensures that the algorithm learns diffi-
cult faulty samples.

Experiment

Dataset

Figure 7 shows the PCB surface defect acquisition system
that was built. The system comprises a strip light source,
an industrial camera, a conveyor belt, and a host computer.
The acquisition resolution of the industrial camera was set
to 3072×2048, and 300 PCB images were obtained, each
containing five types of common soldering defects: aiguille,
interconnect pad, dissymmetry, holes, and solder residue.
To prevent model overfitting during training, we captured
screenshots of the dataset using a fixed window size of
640×640 pixels. The step size of the screenshots was set
to 320-pixel units, resulting in 940 defect images. Table 1
shows the statistics of the various types of defects in the
dataset, and Table 2 displays the camera parameters at the
time of acquisition. To ensure a more rigorous verification
of the proposed method, we set up the dataset in MS-COCO
format.

Fig. 7 Diagram of the capture device

Table 1 The number of defects in various categories in the dataset

Defects classes Numberof de f ects

Aiguille 1697

Dissymmetry 507

Holes 1160

Interconnect pad 1228

Solder residue 705
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Table 2 The camera parameters during data collection

Parameter Value

Camera Model MV-CS060-10UC-PRO

Aperture F4

Focal Length 8 mm

Light Source Type Ring Light

Exposure Time 50,000 µs

Camera Resolution 3072 × 2048

Image Format .bmp

Pixel Type RGB 8

Table 3 Hyperparameter setting

Parameter Value

Batch Size 16

Epoch 300

Optimizer SGD

Initial learning rate 0.01

Momentum 0.937

Data augmentation Mosaic

Input size 640×640

Experimental preparation and parameter settings

The experimental models were executed on an Ubuntu 23.10
device equipped with torch2.0. The device had a 12th Gen
Intel(R) Core(TM) i7-12700F 2.10 GHz CPU, 32Gb RAM,
and an Nvidia GeForce RTX 4080 16Gb GPU. All models
were trained without using pre-training weights or freezing
the backbone training, ensuring fairness in the experiments.
The hyperparameter settings during training are displayed in
Table 3. To ensure data uniformity in the comparison, we
maintained the same image size for training, validation, and
testing. Additionally, all models were trained, tested, and
validated on an equal number of images.

Evaluationmetrics

Practical industrial field inspection aims to balance the num-
ber ofmodel parameters, inference speed, anddetection accu-
racy. Objective evaluation metrics such as Precision, Recall,
mAP@0.5, mAP@0.5:0.95, FPS, GFLOPs, and Parameters
are utilized to evaluate the performance of LLM-Net, and
the calculation methods of these evaluation metrics are as
follows.

Precision is the ratio of correctly predicted positive sam-
ples by LLM-Net to the total number of positive samples
predicted. Theprecision of the predictionsmadebyLLM-Net
is characterized by the following formula. The calculation
formula for precision is as follows.

Precision = T P

T P + FP
(6)

T P represents the number of correctly predicted positive
samples, while FP represents the number of negative sam-
ples that were incorrectly predicted as positive.

Recall is the ratio of correctly predicted positive samples
to the total number of actual positive samples in the LLM-Net
prediction samples. It characterizes the ability of LLM-Net
to identify all positive samples. The calculation formula for
the recall is as follows.

Recall = T P

T P + FN
(7)

FN denotes a positive sample that is incorrectly predicted
as a negative sample.

Themean average precision (mAP) represents the average
AP value for all categories. The AP value is the area under
the Precision-Recall curve, and a larger value indicates better
detection for a category.

AP =
∫ 1

0
P(R)dR

mAP =
∑N

i=1APi
N

(8)

Ablation experiment

Validation of the effectiveness of the proposed method on
baseline models

The purpose of the ablation experiments is to confirm the
effectiveness of the proposed auxiliary supervision strategy,
EFFNet, and BCE-LRM for PCB surface defect detection.
A series of experiments were conducted on a homemade
dataset, with a focus on the metric mAP@0.5 in the experi-
mental metrics. In the field of PCB surface defect detection,
accuracy is prioritized over speed when the frame rate meets
the field requirements. Therefore, FPS, GFLOPs, and Param-
eters are considered secondary.

We apply the YOLOV5-n model as a baseline to verify
the effects of the auxiliary supervision strategy, EFFNet, and
the algorithm after adopting the BCE-LRM on the PCB sur-
face defect detection accuracy (mAP@0.5, mAP@0.5:0.95),
FPS, GFLOPs, and Parameter, and the statistical results are
shown in Table 4. The auxiliary supervision strategy can
effectively reduce the error weights during the training pro-
cess, so that the algorithm focuses more on learning the
positive sample features of the PCB surface defects, which
leads to an improvement of 0.3% and 5.5% in the mAP@0.5
andmAP@0.5:0.95 of the baselinemodel, respectively.With
themixture of the auxiliary supervision strategy and EFFNet,
the algorithm effectively learns the refined feature informa-
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Table 4 Results of ablation
study

NO. Method mAP@0.5 (%) mAP@0.5:0.95 (%) Params (Mb) FPS GFLOPs

A YOLOv5-n 97.1 65.7 1.68 256 4.1

B A+AUX_head 97.4 71.2 2.87 169 6.8

C B+EFFNet 97.4 71.8 3.96 166 7.5

D B+BCE-LRM 97.9 71.1 2.87 166 6.8

E D+EFFNet 98.5 71.9 3.96 188 7.5

Fig. 8 Visualization results of heatmaps for the baseline model and LLM-Net, where a more reddish color indicates a higher probability of
recognition as a target, and conversely a more bluish color indicates a higher probability of recognition as a background

Table 5 The impact of different
loss functions on the model
accuracy

Losses mAP@0.5 (%) mAP@0.5:0.95 (%) Params (Mb) FPS GFLOPs

BCE 97.3 71.8 3.96 166 7.5

Focal Loss 94.1 68.0 3.96 188 7.5

Varifocal Loss 94.7 68.8 3.96 163 7.5

Slide Loss 97.3 71.3 3.96 181 7.5

BCE-LRM (ours) 98.5 71.9 3.96 188 7.5

tion of the defects as well as richer contextual information,
and the mAP@0.5 and mAP@0.5:0.95 of the algorithm
are improved by 0.3% and 6.1%, respectively, compared to
the baseline model. Finally, the employment of BCE-LRM
improved the ability of the algorithm to learn from hard sam-
ples, withmAP@0.5 andmAP@0.5:0.95 improving by 1.4%
and 6.2%, respectively, compared to the baseline model. The
algorithm that achieved the best accuracy was designated
LLM-Net, and the visualized heat map is shown in Fig. 8.
The closer the colors in the graph are to blue, the higher the
probability that this part is considered to be the background,
while the closer the colors are to red, the higher the probabil-
ity that this part is considered to be the target. From the figure,

we can see that our LLM-Net has a strong defect perception
capability and accurately identifies the location of defects.

Comparison of different loss functions

For the solution of difficult samples and sample imbal-
ance problems, there are also similar methods such as Focal
Loss, Varifocal Loss, Slide Loss, etc. as listed in Table 5.
For the difficult sample problem in PCB surface defects,
Focal Loss suppresses the prediction frames with high posi-
tional accuracy and low confidence and ignores the effect
of the intersection ratio, which degrades the performance of
the model. Thus, this caused the network accuracy metrics
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Table 6 Effect of auxiliary head
supervision position on model
performance

Method mAP@0.5 (%) mAP@0.5:0.95 (%) Params (Mb) FPS GFLOPs

(a) 97.3 69.7 2.78 117 4.9

(b) 97.1 69.7 3.97 181 7.6

(c) 98.5 71.9 3.96 188 7.5

Fig. 9 Various auxiliary head supervision schemes, where (a–c) correspond to the ‘Method’ column in Table 6

mAP@0.5 and mAP@0.5:0.95 to degrade to 94.1% cent and
68.0%, respectively. Varifocal Loss spends most of its effort
on the imbalance between the foreground and background
when performing loss compensation, and the imbalance
between the samples affects the detection effectiveness of the
model. Eventually, the network accuracy metrics mAP@0.5
and mAP@0.5:0.95 are degraded to 94.7% and 68.8%,
respectively. Slide Loss takes the average of the intersection
and concurrency ratios of the GT and prediction frames to
determine whether the target belongs to the difficult samples
or not, and emphasizes the boundary samples by weighting
them, but the method does not improve the network perfor-
mance much. Slide Loss merely managed to equal BCE in
the mAP@0.5 metric, but caused mAP@0.5:0.95 to degrade
to 71.2%. Usually, the hard samples have a large chance of
being missed, which will cause difficulties for the subse-
quent weighting of the slide loss. BCE-LRM ranks the loss of
samples and achieves the learning of difficult samples more
effectively, whichmakes the algorithm achieve the best accu-
racy of 98.5% for the mAP@0.5 metric. At the same time,
BCE-LRM is more friendly to most of the target detectors
and has a strong embedding ability.

Optimization of auxiliary supervision strategies

It was found that the auxiliary supervision strategy is effec-
tive in enhancing the performance of the algorithm. Three
experiments were conducted to determine the best approach
for this strategy, testing only the auxiliary head on LLM-Net.
The results of these experiments are presented inTable 6,with

the ‘Method’ column corresponding to the scheme number
in Fig. 9. The performance of the network without the aux-
iliary supervision strategy shows only a small improvement
compared to the baselinemodel.However,when the auxiliary
head supervises the output of the backbone, it learns the error
information of the shallow network. Consequently, the aux-
iliary head affects the prediction of the main detector head,
resulting in no effective improvement in the performance of
the network. The proposed scheme in this paper implements
auxiliary supervision in the middle layer of the network to
acquire more defective feature information, resulting in an
improved accuracy index mAP@0.5 of 98.5%. Additionally,
the combination of soft and hard labels enhances the adapt-
ability of the network to PCB surface defects.

Comparison with other algorithms

Quantitative comparison with previous methods

In real industrial scenarios, PCB surface defect detection not
only requires high accuracy and reasonable inference speed
but also needs to achieve strong quantization of the model.
Therefore, we compare the accuracy metrics (mAP@0.5,
mAP@0.5:0.95), FPS, GFLOPs, and Parameter of the net-
work, focusing on the accuracy metrics of the algorithm
and treating other metrics as secondary metrics. In Table
7, we comprehensively compare LLM-Net with 13 repre-
sentative current deep learning algorithms (SSD [42], Cen-
terNet [43], FastestDet [44], RetinaNet [45], YOLO-PCB
[33], SPD-Conv [46], YOLOV5-n [47], YOLOV7-Tiny [48],
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Table 7 Results compared to
other methods

Module mAP@0.5 (%) mAP@0.5:0.95 (%) Params (Mb) FPS GFLOPs

SSD [42] 76.7 41.5 21.14 91 274.9

CenterNet [43] 84.8 48.6 191.25 29 914.3

RetinaNet [45] 70.4 39.5 36.41 83 164.7

FastestDet [44] 74.7 43.4 0.90 441 0.8

YOLO-PCB [33] 66.9 40.4 8.50 83 20.1

SPD-Conv [46] 97.2 70.6 2.05 303 8.5

YOLOV5-n [47] 97.1 65.7 1.68 256 4.1

YOLOV7-Tiny [48] 94.9 61.9 5.74 400 13.1

YOLOV8-n [49] 93.7 69.9 2.87 370 8.1

CFPNet-n [50] 83.2 48.4 3.30 79 10.2

CFPNet-s [50] 87.8 52.6 13.14 54 40.0

YOLOX-n [51] 76.5 40.7 0.90 89 2.5

YOLOX-s [51] 88.5 54.2 8.94 68 26.8

LLM-Net 98.5 71.9 3.96 188 7.5

Fig. 10 Comprehensive performance comparison of each algorithm

YOLOV8-n [49], CFPNet-n [50], CFPNet-s [50], YOLOX-n
[51], and YOLOX-s [51]) in terms of performance.

Table 7 presents the results of the quantitative compari-
son between LLM-Net and other methods. The results show
that LLM-Net outperforms other methods significantly in
terms of the two indicators, mAP@0.5 and mAP@0.5:0.95.
Figure 10 demonstrates that LLM-Net is suitable for PCB
surface defect detection, with a focus on detection accu-
racy, despite not achieving the best performance in FPS and
Parameter indexes. CenterNet employs the heat map predic-
tion method in PCB surface defect detection, which leads
to its inability to detect defects under complex backgrounds
well. FastestDet improves detection speed while reducing
the number of parameters, at the cost of detection accuracy.
YOLO-PCB and YOLOV7-Tiny have the problem of insuf-

ficient learning of tail data in defect identification, which
leads to serious leakage. Despite adopting a more reason-
able means of downsampling, the feature information of
PCB surface defects is still severely lost after downsampling
by SPD-Conv. In defect detection, the decoupling head of
YOLOV8-n is incapable of accurately identifying the tail
data. The explicit visual center pyramid in CFPNet-n and
CFPNet-s is not sufficient to extract the feature informa-
tion of the defects. The huge computational volume makes
their actual deployment capability poor. The YOLOX-n and
YOLOX-s algorithms fail to consider the intra-scale feature
interaction of defective features and the cross-scale fea-
ture interaction simultaneously. This results in the loss of
global information about defects and long-range dependen-
cies, which in turn leads to suboptimal detection outcomes.
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Fig. 11 Visualization of detection results for each algorithm

LLM-Net achieves intra-scale feature interaction and cross-
scale feature fusion of PCB surface defects through EFF-Net,
which efficiently embeds the long-range dependencies of
PCB surface defect features and multi-scale feature infor-
mation. Applying the designed auxiliary head supervision
strategy assists in achieving accurate learning of PCB defect
information. Ultimately, LLM-Net achieved the best detec-
tion accuracy in several excellent performance algorithms
while holding an inference speed of 188FPS. The experi-
mental results show that LLM-Net is more suitable for PCB
surface defect identification.

Qualitative comparison with other approaches

Figure 11 shows the visualization of the detection results of
various methods. LLM-Net accurately identifies the long-
tailed data class (solder residue) and some subtle defects.
Intra-scale feature interaction and inter-scale feature fusion
provide LLM-Net with richer global information and long-
range dependencies. The introduction of multiscale feature
linkages can also help LLM-Net achieve more accurate
defect recognition in complex contexts. Compared to other
comparison algorithms, CenterNet is prone to leakage and
misdetection, particularly in identifying small defects such
as the solder residue defects in the second column of the
visualization result graph. Fastest-Det, despite utilizing a
lightweight backbone as well as a feature fusion network,
suffers from losing its powerful feature extraction capabil-
ity, resulting in a large number of missed targets. Excessive
attention can decrease the accuracy of the algorithm while
introducing false attention features. YOLOV7-Tiny has false

detections when identifying defects. SPD-Conv can identify
defects relatively accurately, while still failing to avoid false
detections. YOLOV8-n ignores the interaction of features
within the scale when extracting features, so it can identify
subtle defects with a high degree of accuracy. YOLO-PCB,
YOLOV7-Tiny, CFPNet-n, CFPNet-s, YOLOX-n, YOLOX-
s, and YOLOX-s all fail to detect the tail residue, which is
closely related to the fact that they do not consider mining
the tail data.

Conclusions

The current methods for improving defect recognition accu-
racy have some limitations. Firstly, they only utilize simple
feature fusion to improve defect recognition accuracy, which
results in large memory consumption while ignoring the
importance of intra-layer feature interaction; Secondly, they
neglect the long-tail problem in industrial data; Thirdly, most
of the methods ignore the utilization of an auxiliary super-
vision strategy for PCB surface defect recognition, which
can provide accurate defect feature information to the algo-
rithms; Fourthly, they ignore the importance of intra-layer
and inter-layer feature interaction to improve defect recog-
nition accuracy. This paper proposes an EFF-Net based on
YOLOV5-n to interact with both intra-layer and inter-layer
defect features, which achieves the global information of
defects as well as the embedding of long-range dependen-
cies. The algorithm is aided by an auxiliary supervision
method that utilizes a soft-label assignment strategy to extract
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more accurate defect features, and BCE-LRM is designed to
improve the detection effect of tail data.

Experiments were conducted to validate LLM-Net using
a dataset of PCB surface soldering defects that we collected.
The results demonstrate that LLM-Net has the highest detec-
tion accuracy and can perform real-time inference at 188
FPS. The visualization results indicate that LLM-Net has the
best detection performance and does not present any leakage
in randomly selected test images. Currently, we can detect
soldering defects on the surface of 5 classes of printed cir-
cuit boards in real–ime. However, in industrial scenarios, it
is crucial to ensure high detection efficiency. To improve the
efficiency of the deep learning method in such scenarios, it
is essential to enable defect detection based on tracking.
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