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Abstract
Sketch face recognition has recently gained significant attention in the field of computer vision due to its ability to quickly
identify matched pairs of optical and sketch images. This technology has the potential to greatly improve the efficiency of law
enforcement agencies in criminal investigations. However, there are still challenges that need to be addressed in sketch face
recognition algorithms, such as modal differences and limited sample sizes. To overcome these issues, this study proposes
a Residual Serialized Cross Grouping Transformer (RSCGT), which contains a residual serialized module to reduce the
computation complexity, a two-layer Cross Grouping Transformer module that is capable of extracting modality-invariant
context features, a domain adaptive module to mitigate the impact of modal differences. Additionally, we introduce a meta-
learning training strategy to augment the generalization ability of this model. Experimental results demonstrate that the
RSCGT achieves high accuracy in sketch face recognition tasks, even with small-scale datasets.

Keywords Sketch face recognition · Small sample training · Residual serialized · Cross Grouping Transfromer

Introduction

Sketching is an artistic approach that utilizes fundamental
lines and shading to depict the structure, contours, and tex-
tures of a photograph. In the pursuit of enhancing the efficacy
of lawenforcement, the sketch face recognition algorithmhas
emerged as a powerful tool for associating optical images
with their corresponding sketches. This algorithm has exten-
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sive and enduring practical applications within the field of
criminal investigations, enabling effective identification and
tracking of criminals, ultimately contributing to the preser-
vation of social order and stability.

However, sketch face recognition algorithms still face
challenges such as modality differences and small sample
problems. Therefore, the research on high-accuracy sketch
face recognition algorithms holds significant practical impor-
tance. Firstly, optical images are captured using optical
devices and depict real scenes, providing a high degree of
realism and detail. On the other hand, sketch images areman-
ually drawn, exhibiting stronger expressiveness and artistic
qualities. These divergent representations give rise to modal-
ity differences between optical and sketch images, which
greatly impact the performance of sketched image recogni-
tion algorithms. Secondly, the sketched face datasets utilized
for algorithm research are often limited in size, making
the models susceptible to overfitting. Thus, the objective of
this study is to enhance the extraction of modality invari-
ant features between optical and sketch images, while also
improving the generalizability of the model.

To tackle the aforementioned challenges, numerous meth-
ods for sketch face recognition have been proposed. Tra-
ditionally, manual feature design has been the dominant
approach in this field. However, in recent years, deep learn-
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ing has gained popularity due to its remarkable performance.
In particular, Convolutional Neural Networks (CNNs) have
been widely adopted as the backbone network for fea-
ture extraction. These networks can automatically learn and
extract cross-modal consistent information, which is crucial
for accurate recognition. However, CNNs primarily function
as local feature extractors, posing difficulties in capturing
long-distance features and establishing global connections
among them. Consequently, extracting modality-invariant
semantic features becomes a challenging task.

Transformer [1], which utilizes a self-attention mecha-
nism, introduces a novel approach to address these lim-
itations. Unlike CNNs, Transformers have the ability to
attend to various positions within the input sequence during
the processing of each input. This enables them to cap-
ture dependencies between different positions effectively,
enhancing the model’s understanding of the overall context.
By employing this self-attention mechanism, Transformers
can overcome the constraints of CNNs in extracting solely
local features. Instead, they excel at capturing global con-
nections among features. As a result, Transformers can learn
comprehensive contextual relationships and emphasize the
significance of discriminative features in recognition tasks.

It should be noted that despite the advantages of Trans-
former architectures, such as the Vision Transformer (ViT)
[2], their computational complexity is often high. This can
present challenges when dealing with small-scale sketch-
face datasets, where computational and resource constraints
may make the direct application of Transformers unsuit-
able. Fortunately, a recent variant called Swin-Transformer
[3] has been developed to address these concerns. The
Swin-Transformer improves performance and adaptability
on smaller datasets by introducing certain modifications.
Specifically, it restricts self-attention to local regions and
establishes interactive connections between different regions
to effectively capture global connections. By adopting this
approach, the Swin-Transformer avoids the quadratic com-
plexity of the original Transformer model. It reduces the
number of tokens involved, enhancing performance and
improving adaptability on smaller samples.

However, it is important to note that these methods intro-
duce a certain level of redundancy when trying to obtain
global connections through local interactions. The two tokens
responsible for performing local self-attention calculations
may perform duplicate calculations, resulting in unnecessary
computational consumption. To address this issue, hybrid
models such as BoTNet [4] and Axial-ResNet [5] have
been developed. These hybrid models integrate the strengths
of both CNNs and Transformers. By effectively leveraging
CNN’s proficiency in handling high-dimensional image data
and the Transformer’s capability to capture global informa-
tion from features, these hybrid models offer a more efficient
solution. By combining these two techniques, these hybrid

models overcome the heightened complexity associated with
directly applying Transformer models to high-resolution
image embedding tasks. Consequently, in sketch face recog-
nition scenarios, hybridmodels prove to bemore suitable and
efficient options to consider.

To address the issue of excessive complexity in Trans-
former models for sketch face recognition, this paper pro-
poses a Residual Serialized Cross Grouping Transformer
(RSCGT), which contains a residual serialized module to
reduce the computational cost caused by high-dimensional
image embedding in Transformers, a two-layer Cross Group-
ing Transformer module to effectively captures contextual
connections among features, and a domain adaptive module
to handle the modality differences between sketch images
and optical images. In addition, we adopt an effective meta-
learning training strategy specifically designed for small
samples, preventing overfitting issues. The main contribu-
tions of our work can be summarized as follows:

1. We propose a novel residual serialized module that
reduces the computational cost of Transformer models
by efficiently embedding high-dimensional image fea-
tures.

2. We propose a computationally efficient Cross Grouping
Transformer module that captures contextual relation-
ships of features. The module divides the complex self-
attention process into two stages: grouping multi-head
self-attention and cross-group multi-head self-attention.
This approach enables the representation of global infor-
mation in lower-complexity features.

3. We adopt a domain adaptive module to address the
modality differences between sketch images and optical
images. Ourmodulemitigates the impact ofmodal differ-
ences on recognition performance, thereby enabling our
method to be applied to both sketch and optical images
for more comprehensive and accurate face recognition.

4. We conducted comprehensive experiments on three
sketch face recognition datasets, including UoM-SGFS,
CUFSF, and PRIP-VSGC, to evaluate the accuracy of
our approach. The experimental results demonstrate
consistent and significant improvements compared to
mainstream methods and indicate the efficacy of our
method in handling small sample data.

Related works

Sketch face recognitionmethods

Sketch face recognition methods have witnessed a tran-
sition from traditional hand-designed approaches to deep
learning methods due to the urgent demands and extensive
applications in the field of criminal investigation. With the
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introduction of new algorithms that yield improved results,
researchers have continuously pursued their research in this
area.

The traditional method of sketch face recognition pri-
marily relies on manual feature design to accomplish the
task. Klare et al. [6] introduced the Local Feature-based
Discriminant Analysis (LFDA) approach, which utilizes
Scale-Invariant Feature Transform (SIFT) descriptors [7] and
Multiscale Local Binary Patterns (MLBPs) [8] to represent
both sketch and optical images. Han et al. [9] introduced
Component-based Representation (CBR), which employs an
Active Shape Model (ASM) to automatically detect facial
landmarks and represent facial components using MLBPs.
The similarities of the features of each component are then
fused to match optical and sketch images. Bonnen et al. [10]
proposed a component-based framework for facial align-
ment and representation. This method employs ASM to
identify the location of facial landmarks, aligns components
using Procrustes analysis [11], and represents components
using MLBPs to achieve component-based facial alignment
and representation. However, these methods have limited
representational power in describing the highly nonlinear
relationships between cross-modal images and face chal-
lenges in improving recognition rates. Furthermore, these
methods cannot automatically learn and extract modality-
invariant features like CNNs.

With the rapid progress of deep learning, the effective-
ness of deep learning-based sketch face recognition methods
has surpassed that of traditional hand-designed approaches,
establishing itself as the dominant approach in this field. Cur-
rently, deep learning methods for sketch face recognition can
be categorized into two types: intra-modalmethods and inter-
modal methods.

Intra-modal methods refer to approaches that reduce
modality differences by transforming cross-modal images
into the target modality, followed by identity recognition
using a recognition model. Zhang et al. [12] designed an
end-to-end Fully Convolutional Network (FCN) to learn the
mapping relationship between optical images and sketch
images. By inference and learning, their method can generate
sketch images corresponding to optical images. While intra-
modal methods provide an intuitive way to obtain images
in the target modality, their performance heavily relies on
the quality of the synthesized images [13]. Moreover, intra-
modal methods face difficulties in capturing the nonlinear
relationship of modality transformations when the modality
discrepancy is significant.

The inter-modal methods reduce modality differences
by mapping cross-modal features to a common subspace.
These methods focus on learning classifiers that maximize
inter-class differences and minimize intra-class differences,
accomplishing identity recognition by extracting modality
invariant features. Wan et al. [14] proposed a sketch-based

face recognition method based on transfer learning. They
designed a three-channel CNN structure and used triplet
loss to learn discriminative features and reduce intra-class
differences. They also introduced a hard triplet sample selec-
tion strategy to increase the number of training samples
and accelerate model convergence. Gui et al. [15] pro-
posed a multi-modal recognition method, which leverages
feature-level knowledge distillation to achieve complemen-
tary advantages betweenTransformers andCNNs, enhancing
feature extraction capabilities. Cheraghi et al. [16] proposed
a coupled Sketch-Photo Net (SP-Net) that consists of two
branches, S-Net and P-Net, to learn discriminative features
between sketch and photo images. This method also utilized
contrast loss to discover coherent visual structures between
sketch and photo images.Guo et al. [17] proposed a deepmet-
ric learningmethod based onDomainAlignment Embedding
Network (DAEN). They designed a meta-learning training
set strategy to alleviate overfitting caused by small samples
and introduced a domain alignment embedding loss to guide
the feature embedding network in learning discriminative
features. However, these methods struggle to extract dis-
criminative features between cross-modal images when the
modality gap is large. Moreover, these CNN-based methods
also find it challenging to eliminate the negative impact of
semantic errors.

Vision transformer methods

Ever since the inception of the Transformer model by the
Google team in2017, it has becomea seminal andhighly pop-
ular paradigm in the realm of the natural language processing
(NLP) field. With its self-attention mechanism, Transformer
has achieved remarkable accomplishments, garnering con-
siderable attention from researchers. This has also led experts
in Computer Vision (CV) to explore its applicability in the
visual domain due to its exceptional modeling capabilities.
Transformer has witnessed rapid advancements in the CV
field, exhibiting superior performance compared to CNN-
based models in various CV tasks, especially when there
is substantial and high-quality data support. The Vision
Transformer (ViT) was proposed by Dosovitskiy et al for
image recognition which processes image patch sequences
by employing stacked Transformer encoders. The encoded
sequences are then passed through a classification head for
target classification. Although ViT has high complexity, it
achieves excellent results when trained with large datasets
compared to state-of-the-art (SOTA) CNNs. Chakravarthi et
al. [18] effectively extract emotional features from EEG sig-
nals and model the changes of these features over time by
combining CNN and LSTM, achieving accurate recognition
of emotions. Chen et al. [19] proposed the image Process-
ing Transformer (IPT) for low-level computer vision tasks.
IPT employs contrastive learning formodel training and opti-
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mization, leading to promising results in various benchmark
tests. The outstanding performance of Transformers in vari-
ous tasks has led researchers from different fields to conduct
in-depth research on Transformers.

The outstanding performance of Transformers in various
tasks has prompted researchers from different fields to con-
duct in-depth research on Transformers. The Transformer
model is a type of model based on a self-attention mech-
anism, which can establish global dependencies within a
sequence. However, unlike textual sequences, images are
two-dimensional structures and do not have a clear sequen-
tial relationship. Therefore, we need an efficient method to
serialize images into one-dimensional sequences to reduce
training costs.

In ViT, a commonly used method for image patching and
serialization was proposed. This method involves dividing
the feature map of an image into smaller image patches,
where the pixel features within each patch are concate-
nated in the dimensionality direction and mapped into visual
tokens. The resulting sequence obtained from this method
has a high number of tokens and dimensions. However,
since Transformers are sequence-to-sequence models, their
parameter count and computational complexity are closely
related to the number and dimensions of tokens. Therefore,
this serialization method is not suitable for the serialization
of high-resolution images as it would lead to a significant
increase in the number of tokens and computational demands.
Ying et al. [20] proposed a Graph Transformer that learns an
image’s node or graph representation to incorporate graph
structure information into the Transformer. However, due
to the lack of spatial order in graph nodes and the high
computational complexity of self-attention computation in
Transformers, graph convolutionTransformers are not adapt-
able to large graphswithmany nodes.Wu et al. [21] proposed
Visual Transformers (VT), which introduced a new method
for image serialization. Visual Transformers utilize tokens to
represent image feature maps as a variable number of visual
semantic labels. By adjusting the length of the embedding
sequence in the Transformer, the high computational com-
plexity of token modeling can be avoided. The VT module
is responsible for token generation, modeling, and reshaping
processes.

Proposedmethod

To address the aforementioned issues, in this section, we pro-
pose a novel sketch face recognition method (RSCGT) based
on the Transformer, which addresses the issue of adaptabil-
ity of Transformer models in the scenario of small sample
sizes of sketch face data. Instead of serializing images and
inputting them into the feature extraction method of the
Transformer model, we introduce a grouping strategy within

Algorithm 1 RSCGT model
Input: input Sample for meta-learning task Qt = {Pt , St } =

{p1, p2, . . . , pk , s1, s2, . . . , sk}
Output: output result
1: Initialize optimizer, iter T .
2: for i = 1 : T do
3: Extract image feature Xin(Xin ∈ Qt )

4: Serialized to Sequence T = R(Xin)

5: Position Encoding Tin = T + PE(T )

6: Grouped Sequence Ti = G(Tin, y)
7: Build Grouping Transformer
8: Cross-Grouped Sequence Ti to T

′
i

9: Build Cross Grouping Transformer
10: Loss.backward()
11: end for
12: return result

the Transformer to reduce the computational complexity
of the Transformer while maintaining global connections.
We first provide a brief introduction to our framework
in Sect.Overview, and then give a detailed description
of our model in Sect.Meta-learning training strategy to
Sect.Domain adaptive module.

Overview

Given an input sketch image X , our goal is to extract the
feature and Serialized by Residual Serialized module and
input the Sequence T toCrossGroupingTransformermodule
to correctly recognize the sketch.

The proposedRSCGTmodel is presented in Fig. 1. Firstly,
we introduce a Residual Serialized module to extract local
features of images. Then, we proposed novel a two-layer
Cross Grouping Transformer module to capture the global
connection of features and prevent excessive complexity in
Transformer models. Moreover, we proposed the improved
Feed Forward Neural Network (FFN) to balance the com-
putational cost between the self-attention layer and the FFN
[22], as well as to further reduce the number of parameters
in the model. To effectively train RSCGT and prevent model
overfitting, we employ ameta-learning training strategy [17],
which is especially efficient for small-sample scenarios.

We represent the RSCGT as f (·|w), wherew is the model
parameter. The optical image pi or the sketch image si
in the meta-task batch sample is passed through f (·|w) to
obtain the corresponding feature vector f (pi |w) or f (si |w),
respectively. we optimize the feature extraction network by
introducing domain alignment embedding loss [17] to con-
tinuously reduce the distance between f (pi/w) and f (si/w)

with the same label in space.
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Fig. 1 RSCGT. We propose a novel transformer (RSCGT), which includes residual serialized modules, a two-layer Cross Grouping Transformer
module, and a domain adaptation module

Meta-learning training strategy

To improve the generalization ability and the capability of
small sample training of themodel, we adopt ameta-learning
training strategy that is particularly effective for our model.
Given a training set Dtrain = {p1, p2, . . . , pN , s1, s2, . . . ,
sN }, where P = {pi }Ni=1 represents optical images and
S = {si }Ni=1 represents sketch images, i is the label of
the image, and there are a total of N pairs of training
samples. The meta-learning training strategy divides the
entire model’s training process into a series of small meta-
learning tasks. The model achieves the final sketch facial
recognition task by completing these meta-learning tasks. In
each meta-learning task, the strategy first randomly selects
K (K < N ) pairs of sketch and photo images from the
training set Dtrain and resets the labels of the selected sam-
ples to {1, 2, ..., K }. The query set Qt for the meta-learning
task is formed by the selected samples:Qt = {Pt , St } =
{p1, p2, . . . , pk, s1, s2, . . . , sk}Tt=1. In Qt , Pt serves as the
support set for photo images, St serves as the support set for
sketch images, and t = {1, 2, ..., T } indicates the number of
times the meta-learning task is executed.

Residual serializedmodule

For the CNN backbone in the hybrid model, we adopted a
residual network that supports model depth expansion, fol-
lowing the architecture of BoTNet [23]. The Transformer
module in our model consists of Multi-Head Self-Attention
(MHSA) and an improved Feed Forward Neural Net-
work (FFN), which contributes to a deeper network depth.
ResNet18 has achieved excellent performance in object
detection and face recognition tasks, so we utilized the
first four stages of ResNet18 as the serialized module of
RSCGT. Additionally, we adopt a two-layer Cross Group-
ing Transformer module and GeMpooling, while retaining
skip connections to support network depth expansion and
accelerate model training.

The image sample x(x ∈ Qt ) in the meta-learning task
is pre-trained to a size of 256 × 256, and the feature map
size changes after downsampling by the residual network are
shown in the output in Fig. 1. The input image is subjected to
the first four stages of CNNoutputting low-resolution feature
maps:

Xin = CNNs(x) (1)
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Transformer is a sequence-to-sequence model where we
serialize the low-resolution feature map pixel-by-pixel into
token sequences embedding in the Cross Grouping Trans-
former:

T = R(Xin) (2)

where R(·) is the reshaping operation and the feature map
Xin ∈ Rd×H×W is transformed into a visual token sequences
T ∈ RHW×d by the reshaping operation. The absolute posi-
tion encoding sequence [2] provides positional information
about the token in space. The embedding token sequences
are obtained by adding the positional encoding to the token
sequences as follows:

Tin = T + PE(T ) (3)

The embedding tokens Tin capture the contextual relation-
ships of the entire sequence through the grouping MHSA
and cross-group MHSA of the Cross Grouping Transformer,
which includes discriminative information between cross-
modal images. The modeled features are then filtered for
redundant information using GeMpooling operation [24],
and subsequently mapped to a common space through the
domain adaptationmodule to reduce themodality differences
between cross-modal image features.

Cross grouping transformer module

Transformer consists of two main modules: the Multi-Head
Self-Attention module and the FFN module. Transformer
utilizes MHSA to calculate global relationships between
embedding tokens. Due to the fact that MHSA performs self-
attention calculations within the global token scope, it incurs
a computational complexity that is quadratic in relation to the
number of tokens. To alleviate this issue, we propose a new
Transformer module called Cross Grouping Transformer, as
illustrated in Fig. 2.

The Cross Grouping Transformer consists of the group-
ing MHSAmodule, the cross-group MHSAmodule, and the
improved FFN module. In Cross Grouping Transformer, the
grouping MHSA avoids the global self-attention computa-
tion on all tokens by grouping the tokens. Each group of
tokens performs self-attention computation within the group,
reducing the computational complexity to a linear relation-
ship. The interaction between different groups is achieved
through the cross-group MHSA. It reorganizes the tokens
with the same relative position within the group in the group-
ing MHSA into a new group to perform cross-group MHSA
computation. This enables the Cross Grouping Transformer
to perform global self-attention computation on all tokens.

We define the form of grouping as a grouping strategy that
satisfies the condition where the number of tokens N(N =

H ×W ) is equal to the product of the number of groups and
the number of tokens within each group (number of groups
and the number of tokens within each group are greater than
1). Assuming that the token sequences are grouped accord-
ing to N = x × y in grouping MHSA, where x represents
the number of groups and y represents the number of tokens
within eachgroup. First,we input the sequenceT in toGroup-
ing Transformer and calculate theMHSAwithin each group,
with the grouping strategy, we only consider self-attention
in length y, resulting an in-group computation complexity
O(yNd). Based on the regrouping mechanism of cross-
group MHSA, we know that the number of groups and the
number of tokenswithin each group are y and x , respectively.
The grouping strategy can be represented as N = y × x .
We then calculate the cross-group self-attention in length
x , and the computational complexity of its self-attention
is O(xNd). Thereby, we transform the global multi-head
self-attention computation into two local self-attentions with
computation complexity O((x+ y)Nd), which is lower than
the complexity of O(xyNd) in the original Transformer.
Consequently, the Cross Grouping Transformer can capture
the global connections between embedding tokenswith lower
complexity.

(1) Grouping Multi-Head Self-Attention Mechanism The
groupingMHSAmechanism is illustrated in Fig. 2, where the
sequence of tokens with location encoding is divided into x
groups of token sequences with y tokens using the grouping
strategy N = x × y:

Ti = G(Tin, y) ∈ {T1, T2, . . . , Tx } (4)

where G(·, y) represents the grouping function that groups
the token sequences according to the number of tokens y. The
grouped token sequences Ti ∈ Ry×ds.t .i ∈ {1, 2, . . . , x},
represent x groups of token sequences that complete the
MHSA computation in parallel. This computation captures
the contextual connections between the tokens within the
groups. The groups of tokens linearly map the embedding
token sequences to the query matrix, key matrix, and value
matrix using the transfer matrices Wq

i ,Wk
i ,W v

i ∈ Rd×d/h :

Qi j , Ki j , Vi j = TiW
q
j , TiW

k
j , TiW

v
j ,

j ∈ {1, 2, . . . , h} (5)

The query matrix Qi j ∈ Ry×dq , key matrix Ki j ∈ Ry×dk ,
and value matrix Vi j ∈ Ry×dv are defined, where h is
the number of heads, with dq , dk , dv = d/h. The self-
attention matrix between intra-group tokens is obtained by
performing scaled dot-product attention on Qi j and Ki j . The
self-attentionmatrix is normalized using the so f tmax(·) and
then multiplied with Vi j , resulting in the single-head self-
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Fig. 2 Cross Grouping Transformer. We propose the Cross Grouping Transformer model, which reduces computational complexity by dividing
the token sequences into multiple groups and calculating multi-head self-attention through grouping strategies

attention modeling of intra-group tokens:

headi j = so f tmax

(
Qi j K T

i j√
dk

)
Vi j (6)

where headi j ∈ Ry×d/h represents the modeling results of
the j-th head of the i-th group in the grouping self-attention.
The modeling results of all single-head self-attention in each
group are concatenated in the token dimension to obtain the
MHSA modeling results of the group token sequences Ti :

GMSA(Ti ) = Concat(headi1, headi2,

. . . , headih)
(7)

where GMSA(Ti ) ∈ RHW×d/h represents the MHSA mod-
eling results of the i-th group of token sequences. By
concatenating the results of modeling self-attention on all
individual heads within each group in the direction of the
token dimension, we obtain the MHSA modeling results for
token sequences of the group Ti as follows:

Txy = Concat(GMSA(T1),GMSA(T2),

. . . ,GMSA(Tx ))
(8)

where Txy has contextual connections between tokens within
the same group, but lacks self-attention interaction between
tokens from different groups, preventing the establishment of
contextual connections between different groups and global
features.

(2) Cross-Group Multi-Head Self-Attention Mechanism
To overcome the shortcomings of grouping self-attention,

the Cross Grouping Transformer regroups the in-group mod-
eling tokens of the grouping MHSA output by combining
them in a cross-group Txy . Therefore, cross-group inter-
actions between the original grouped tokens are achieved
to capture the global connections among all tokens. The
cross-groupMHSA is shown in Fig. 2. According to the char-
acteristics of grouping and cross-group, the cross-group will
follow the grouping strategy of N = y × x . The grouping
results in a sequence of tokens with x tokens in group y:

T
′
i = G(Txy, x) ∈ {T ′

1, T
′
2, . . . , T

′
x } (9)

where grouping token sequences T
′
i ∈ Rx×ds.t .i ∈

{1, 2, . . . , y}, y grouped token sequences perform theMHSA
computation concurrently and the token sequences T

′
i are

mapped again to the new query matrix, key matrix, and value
matrix by Wq

i ,Wk
i ,W v

i in grouping MHSA:

Q
′
i j , K

′
i j , V

′
i j = T

′
i W

q
j , T

′
i W

k
j , T

′
i W

v
j ,

j ∈ {1, 2, . . . , h}
(10)

where query matrix Q
′
i j ∈ Rx×dq , the key matrix K

′
i j ∈

Rx×dk and the valuematrix V
′
i j ∈ Rx×dv . The transfer matrix

performs parameter sharing in both grouping MHSA and
cross-group MHSA to reduce the parameter pressure on the
model. Q

′
i j , K

′
i j , V

′
i j performs self-attention calculations to
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obtain the modeling results for single-headed self-attention
within the cross-group MHSA:

head
′
i j = so f tmax

(
Q

′
i j K

′T
i j√

dk

)
V

′
i j (11)

All single-headed self-attention modeling results within
the group are concatenated in the direction of the token
dimension to obtain the MHSA modeling results within the
group for the token sequences T

′
i :

GMAS(T
′
i ) = Concat(head

′
i1, head

′
i2,

. . . , head
′
i j )

(12)

The results of MHSA modeling of all groups are concate-
nated in the direction of the number of tokens, and the
position of tokens in space is changed due to tokens reorgani-
zation in cross-group MHSA modeling, so the concatenated
tokens should be reset by calibration. The calibrated token
sequences are then mapped by the parameter matrix W 0 ∈
Rd×d to obtain the cross-group MHSA modeling results:

Tyx = Correct(Concat(GMSA(T
′
1),

GMSA(T
′
2), . . . ,GMSA(T

′
y)))W

o
(13)

where Correct(·) is a calibration function to correct the
misaligned token sequences. Summing Tyx ∈ RHW×d and
embedding tokens to complete the jump connection. The
modeling output of the Cross Grouping Transformer self-
attentive layer is then obtained after layer normalization as
follows:

T
′ = Layer Normali zation(Tyx + Tin) (14)

As a result, the global information between the visual tokens
is available in T

′
obtained after grouping MHSA and cross-

group MHSA modeling.

(3) Improved Feed Forward Neural Network
The Feed Forward Neural Network in Transformer con-

sists of two linear layers. It first expands the dimension of the
input tokens by a factor of 4 and then reduces it back to the
original dimension by a factor of 4. When the dimension of
the tokens is large, the FFN consumes a significant amount
of computational resources. This is detrimental to the global
context modeling in Transformer, as the FFN does not par-
ticipate in the computation of global context and only maps
the modeling results from the self-attention layer. In order
to balance the computational cost between the self-attention
layer and the FFN, and further reduce the parameter count of
the model, the improved FFN in the Cross Grouping Trans-
former first reduces the dimension of the tokens by a factor

of 4 and then expands it by a factor of 4. The structure of the
improved FFN is shown in Fig. 2. The output of T

′
after the

FFN mapping is obtained.

FFN (T
′
) = σ(T

′
F1)F2 (15)

where F1 ∈ Rd×d/4, F2 ∈ Rd/4×d is the weight matrix and
σ(·) is the Relu activation function. FFN (T

′
) is added with

themodeling output of the self-attentive layer to complete the
jump connection and perform layer normalization. Finally, it
is added with the embedding token Tin to obtain the encoded
output of Cross Grouping Transformer:

Tout = Layer Normali zation(T
′ + FFN (T

′
)) + Tin

(16)

Domain adaptivemodule

In meta-learning tasks, K pairs of samples are randomly
selected as batch samples. The set of these K pairs of sam-
ples is the query set of the meta-task, denoted as Qt =
{p1, p2, . . . , pk, s1, s2, . . . , sk}. The optical images in Qt are
used as the optical image support set Pt = {p1, p2, . . . , pk},
and the sketch images in Qt are used as the sketch image
support set St = {s1, s2, . . . , sk}. The optical images pi (i ∈
{1, 2, . . . , k}) and sketch images si (i ∈ {1, 2, . . . , k}) in
Qt are extracted using RSCGT to obtain the optical image
feature vectors f (pi/w) and sketch image feature vec-
tors f (si/w). The domain alignment embedding loss uses
Euclidean distance tomeasure the distance between features.
The distance between the features of optical images in the
query set Qt and the features of sketch images in St , as well
as the distance between the features of sketch images in the
query set Qt and the features of optical images in Pt , can
be represented by the Euclidean distance between feature
vectors:

d(pi , si ) = || f (pi/w) − f (si/w)|| (17)

d(si , pi ) = || f (si/w) − f (pi/w)|| (18)

where ||·|| represents the Euclidean distance, the domain
alignment embedding loss increases the similarity between
images of the same label by reducing the negative Euclidean
distance on cross-domain features. For an optical image
pi or a sketch image si , the labels can be predicted by
the so f tmax(·) function on the negative Euclidean distance
between them and all the cross-domain images in the meta-
task:

P(sk/pi ) = exp(−d(pi , sk))∑k
j=1 exp(−d(pi , s j ))

(19)
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P(pk/si ) = exp(−d(si , pk))∑k
j=1 exp(−d(si , p j ))

(20)

where P(sk/pi ) represents the probability of pi and sk(k =
1, 2, . . . , k) being consistent. Similarly, P(pk/si ) represents
the probability of si and pk(k = 1, 2, . . . , k) being con-
sistent. When k = i , P(si/pi ) and P(pi/si ) represent the
probability of predicting the same label for pi and si in
the corresponding cross-domain image. A higher probabil-
ity indicates better recognition performance of the model for
that image. By summing the negative logarithm probabilities
P(si/pi ) for all-optical images in Qt , we obtain the align-
ment embedding loss for the optical images domain.

L ps = 1

k

k∑
i=1

−log(P(si/pi )) (21)

Similarly, the alignment embedding loss for the sketch
images domain is obtained by summing the negative log
probabilities P(si/pi ) overall sketch images in Qt :

Lsp = 1

k

k∑
i=1

−log(P(pi/si )) (22)

Finally, we obtain the domain alignment embedding loss:

L = L ps + Lsp (23)

Experiments

We introduce a novel sketch face recognition approach that
leverages Cross Grouping Transformer, aiming to rectify the
limited generalization capabilities ofTransformerswithin the
context of sketch face recognition where sample sizes are
constrained. In the experiments, we evaluate the performance
of our method on the normal sketches dataset, the forensics
dataset, and the small-scale dataset.

Dataset and setting

To verify the effectiveness of the proposed sketch face
recognition algorithm RSCGT, we conduct comparative
experiments on three datasets: the CUFSF dataset [25], the
UoM-SGFS dataset [26], and the small-scale PRIP-VSGC
dataset [26].

CUFSF dataset The CUFSF dataset is a publicly accessi-
ble collection of hand-drawn sketch face images paired with
optical images. It consists of optical images from 1194 sub-
jects sourced from the FERET database, each paired with a
hand-drawn sketch image. Compared to the synthetic sketch

Fig. 3 Sample of CUFSF dataset

images in the UoM-SGFS dataset, the hand-drawn sketch
images in the CUFSF dataset are more similar to real optical
images, with more accurate face structure and richer texture
information. We randomly selected 500 pairs of optical and
sketch images as the training datasets, and the remaining 694
sample pairs as testing datasets as S1.

UoM-SGFS dataset The UoM-SGFS dataset obtains crim-
inal investigation images and the scarcity of related image
information under real-world conditions. All sketches in the
datasets commonly used by law enforcement agencies, and
were produced under the supervision of law enforcement
professionals to simulate the face sketches that might be
generated in actual law enforcement scenarios. It consists
of two sets: UoM-SGFS Set A and UoM-SGFS Set B. Each
set contains 600 pairs of optical-sketch images. The optical
images are extracted from 600 subjects in the Color FERET
database, while the sketch images are synthetic and colored.
We created two datasets, S2 and S3, for Set A and Set B
respectively. In S2, we randomly selected 450 pairs of opti-
cal images and sketch images from UoM-SGFS Set A as the
training set. The test set is composed of both the probe set and
the gallery set. The probe set consists of sketch images from
the remaining 150 pairs of samples in the UoM-SGFS Set
A, while the gallery set includes an equal number of paired
optical images, as well as an additional 1521 optical images.
The additional optical images comprise 509 images from the
MEDS-II database, 199 images from the FEI database, and
813 images from the LFW database. S3 was set up in the
same way as S2.

PRIP-VSGC dataset The PRIP-VSGC dataset is a relatively
small collection of sketch face images, consisting of 123 pairs
of optical-sketch images. The optical images are sourced
from 123 subjects in the AR dataset, while the sketch images
are synthetic and generated using IdentityKit. The limited
number of samples in the PRIP-VSGC dataset poses chal-
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Table 1 Comparison results of
different methods on S1

Type Methods Rank-1

Traditional manual-based methods SIFT [7] 41.84

HOG 46.03

Intra-modal methods Fast-RSLCR [27] 75.94

Wan’s [28] 70.00

Inter-modal methods CDD [29] 69.28

PDT [30] 71.08

CMTDML [31] 83.86

CTMAN [24] 90.06

LWVT-ResNet18 [32] 92.95

RSCGT (Proposed method) 93.75

Bold highlights the most effective models or methods

Fig. 4 Sample of UoM-SGFS dataset

Fig. 5 Sample of PRIP-VSGC dataset

lenges in terms of supporting model training and recognition
tasks. For dataset S4, we randomly selected 48 sample pairs
for training and the remaining 75 sample pairs for testing.

In our experiments, all datasets were pre-processed using
MTCNN [33] for face detection and alignment. This pre-
processing step ensured that key facial information necessary
for recognition was preserved. Additionally, various data

augmentation techniques, such as image warping, padding,
random cropping, and horizontal flipping, were applied
during both the training and testing stages. These tech-
niques helped augment the dataset, increase its diversity, and
improve the robustness andgeneralizationof the trainedmod-
els.

Experiment details

RSCGT is implemented using the deep learning PyTorch
library, and the experiments require 10.9 GB of GPU mem-
ory. Several experiments were conducted to determine the
hyperparameters for each component of the model. These
include a batch sample size of 80 for each meta-learning task
and h = 8 of headcount for multi-headed self-attention.

For the parametric training of the RSCGT, the CNN is
initialized with the parameters of the first four stages of the
network of ResNet18 pre-trained on ImageNet. The two-
layer Cross Grouping Transformer and domain adaptation
modules are then trained from scratch. The model param-
eters are iteratively updated using the AdamW optimizer
[34], with an initial learning rate set to 0.00015, a momen-
tum of 0.1, a step size of 60, and optimizer parameters
(β1, β2, weight_decay) = (0.9, 0.999, 0.02). RSCGT is
trained for 80 epochs on datasets S1 and S4, while trained
for 100 epochs on S2 and S3. Each epoch consists of 100
meta-learning tasks. To ensure the reliability of the results
and account for experimental fluctuations, we evaluated
the model performance using a five-fold cross-validation
method.

Comparisons with SOTAmethods

To validate the superiority of the proposed method, we
compared our approach with other sketch face recognition
methods on the CUFSF dataset, the UoM-SGFS dataset, and
the small-scale PRIP-VSGC dataset.
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Table 2 Comparison results of different methods on S2

Methods Rank-1 Rank-10 Rank-50

DANN [35] 52.00 85.47 95.20

CDAN [36] 57.07 88.53 95.07

BSP+CDAN [37] 55.73 89.20 97.33

SP-Net [16] 45.20 79.60 91.47

DAEN [17] 68.53 92.40 97.47

LWVT-ResNet18 [32] 73.20 93.87 98.53

RSCGT (Proposed method) 77.60 94.53 99.07

Bold highlights the most effective models or methods

Table 3 Comparison results of different methods on S3

Methods Rank-1 Rank-10 Rank-50

DANN [35] 65.20 94.00 98.53

CDAN [36] 62.00 91.87 97.47

BSP+CDAN [37] 67.60 91.47 97.73

SP-Net [16] 50.93 83.07 93.20

DAEN [17] 74.00 95.20 99.07

LWVT-ResNet18 [32] 81.20 96.80 99.06

RSCGT (Proposed method) 86.00 97.33 98.93

Bold highlights the most effective models or methods

On the CUFSF dataset, we compared RSCGT against sev-
eral other algorithms including SIFT, HOG, Fast-RSLCR
[27], Wan’s [28], Cross Domain Descriptor (CDD) [29],
PrependedDomain Transformer (PDT) [30], Cross-modality
multi-task deep metric learning (CMTDML) [31], Cas-
caded transformation generation network (CTMAN) [24],
and LWVT-ResNet18 [32] as well as different sketch face
recognition algorithms. These models perform well on the
CUFSFdataset, sowe selected themost discriminativeRank-
1 for comparison. The results are presented in Table 1.
SIFT and HOG are traditional manual-based approaches
that are not very effective in extracting fixed and low-level
features for recognition. Fast-RSLCR and Wan’s are intra-
modal algorithms that perform poorly in synthetic image
recognition due to the challenges in articulating the mapping
relationships between cross-modal images and synthesizing
high-quality images.

CDD, CMTDML, CTMAN, and LWVT-ResNet18 are
inter-modal methods that perform well in extracting
modality-invariant features from cross-modal images. How-
ever, traditional CNN-based methods often struggle to
capture long-range dependencies, which can limit their effec-
tiveness in certain tasks. In comparison, our model enhances
global inter-image connections through the Cross Group-
ing Transformer while retaining the CNN framework. This
enables our model to effectively capture global relation-
ships between features to extract modality-invariant features.

Table 4 Comparison results of different methods on S4

Type Methods Rank-10

Traditional manual methods SSD [38] 45.30

Attribute [39] 53.10

Deep learning methods Transfer Learning [40] 52.00

DAEN [17] 63.20

LWVT-ResNet18 [32] 48.53

RSCGT (Proposed method) 64.27

Bold highlights the most effective models or methods

Additionally, the loss function optimized by the domain
adaptationmodule further reduces the influence ofmodal dif-
ferences. In the experiments, RSCGT achieved the highest
performance on theCUFSFdataset, outperforming theCNN-
based methods by at least 3.69% on rank-1 accuracy. This
demonstrates the effectiveness and superiority of RSCGT on
the CUFSF dataset.

On the UoM-SGFS dataset, RSCGT was compared with
SP-Net [16], Domain-Adversarial Neural Network (DANN)
[35], Conditional Domain Adversarial Network (CDAN)
[36], Balanced Similarity and Prediction Consistency plus
Conditional Domain Adversarial Network (BSP+CDAN)
[37], Domain Alignment Embedding Network (DAEN) [17]
and LWVT-ResNet18 [32]. The comparison results of differ-
ent methods on S2 and S3 are shown in Table 2 and Table 3.

Compared to S1, these models face more challenges in
testing on S2 and S3. Therefore, we compared the perfor-
mances in terms of Rank-1, Rank-10, and Rank-50. The
RSCGT model exhibited exceptional performance in the
sketch-based face recognition task. With a Rank-1 accuracy
of 77.60% on the S2 dataset, it outperformed the DANN,
CDAN, DSP+CDAN, SP-Net, and DAEN models, which
achieved accuracies of 52.00%, 57.07%, 55.73%, 45.20%,
and 68.53%. In the CNN-based sketch face recognition
method, DAEN achieved the highest score. It utilizes which
adopts the domain adaptive method and meta-learning train-
ing strategy to solve the small-sample problem, which can
effectively learn the correlation information between the
text and the image, and thus shows good accuracy in the
sketch face recognition task. RSCGT showed a 9.07% and
12% increase in accuracy on the S2 and S3 datasets. It is
demonstrated that using the ResNet18-like module as a fea-
ture extraction network, RSCGT can significantly enhance
training performance. Compared to the LWVT-ResNet18,
our model has a higher execution efficiency of the Trans-
former’s self-attentionmechanism and a lower overall model
complexity, achieving a 4.4% improvement in Rank-1 accu-
racy. It also proves that the discriminative features extracted
from the global information of the captured features by Cross
Grouping Transformer are more beneficial for sketch face
recognition.
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Table 5 Results of ablation
experiments with different
grouping strategies

Grouping Strategies S1 S2

Rank-1 Rank-10 Rank-50 Rank-1 Rank-10 Rank-50

(0, 0) 92.46 99.08 99.37 74.13 94.13 98.00

(16, 16) 93.75 99.16 99.42 77.60 94.53 99.07

(8, 32) 93.01 99.01 99.42 74.40 94.80 98.67

(4, 64) 93.23 98.96 99.42 75.47 94.53 98.80

Bold highlights the most effective models or methods

Table 6 Results of ablation
experiments with different FNN
structures

FFN Structures S1 S2

Rank-1 Rank-10 Rank-50 Rank-1 Rank-10 Rank-50

d f = 4d 91.56 98.83 99.24 71.60 93.60 98.93

d f = d 92.75 99.14 99.38 74.27 94.00 99.07

d f = d/4 93.75 99.16 99.42 77.60 94.53 99.07

Bold highlights the most effective models or methods

In the training of the small-sample dataset PRIP-VSGC,
due to the large amount of training data required by Trans-
former, traditional methods with lower data requirements
can achieve reasonable performance even with limited sam-
ple sizes. which are more suitable for solving small sample
problems. Consequently, our model compares with several
traditional methods, including Self Similarity Descriptor
(SSD) [38] and Attribute [39], and with deep learning
methods such as Transfer Learning [40], DAEN [17], and
LWVT-ResNet18 [32]. Considering the complexity and chal-
lenges of training small-sample datasets, we choose rank-10
as the benchmark for training results. Rank-10 better reflects
the performance of training results in specific contexts or sce-
narios, thereby avoiding the one-sidedness of over-focusing
on the highest accuracy or ignoring small differences.

The experimental results are shown in Table 4. From the
comparison results, the RSCGT can be better at extracting
modality invariant features and enhancing the recognition
rate. RSCGT outperformed other techniques in the Rank-
10 recognition rate in S4, improving by at least 1.07% and
up to 18.97%, demonstrating the superiority of our model.
In addition, due to the limitations of Transformers in small
sample training, the LVWT-ResNet18 model, which adopts
the Transformer framework, does not perform well on the
S4. RSCGT achieved the best performance on the small-
scale PRIP-VSGC dataset with only 48 pairs of samples,
demonstrating its adaptability on small datasets.

Ablation study

We perform the ablation study on the key factors in our
method:

(1) Effectiveness of grouping strategies: To test the efficacy
of grouping self-attention and cross-group self-attention
in Cross Grouping Transformer, we first use the self-
attention mechanism in Transformer for tests, followed
by Cross Grouping Transformer. Furthermore, for exper-
imentation with alternative grouping algorithms, we set
varying numbers of groups x and tokens y inside groups.

(2) Impact of hyper-parameters:To verify the adaptability of
the improved FFN network to sketch face recognition for
small sample scenes, we adapted the intermediate layer
dimension d f of FFN to different dimensions for experi-
ments, including the bottleneck structure of Transformer
(d f = 4d), the flat structure of Visual Transformer
(d f = d) and the improved FFN structure (d f = d/4).

The results of the ablation experiment (1) are shown in
Table 5. We discover that the Cross Grouping Transformer
achieves better recognition results on both datasets S1 and
S2 when using different grouping strategies than when using
the Transformer’s self-attentive mechanism (x, y) = (0, 0).
This result shows the efficiency of the Cross Grouping
Transformer. In particular, RSCGT gets the best recognition
performance when uniformly grouping (x, y) = (16, 16),
and the recognition accuracy ofRank-1 is enhanced by1.29%
on S1 and 3.47% on S2 when compared to Transformer. This
result proves the superiority of Cross Grouping Transformer.

The results of the ablation experiment (2) are shown in
Table 6.We found that the model achieved better recognition
results on datasets S1 and S2when the dimension of the inter-
mediate layer of FNN was decreased. We also discover that
compared with d f = 4d in Transformer and the commonly
used d f = d, the improved FFN (d f = d/4) achieves the
best results. Following the experiments, the improved FFN
enhanced the Rank-1 recognition accuracy by 2.19% and 1%
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for dataset S1 and 6% and 3.33% for dataset S2, respectively.
These experimental results demonstrate the effectiveness of
the improved FFN and show that the improved FFN structure
is more adaptable to the small sample scenario of sketch face
recognition.

Conclusion

In this paper, we propose a novel Residual Serialized Cross
Grouping Transformer (RSCGT) architecture to address the
issues of excessive complexity and modality differences in
Transformer models for sketch face recognition. A residual
serialized module is proposed to reduce the computational
cost of Transformer models by efficiently embedding high-
dimensional image features. A two-layer Cross Grouping
Transformer module is proposed to capture contextual rela-
tionships of features. We adopt a domain adaptive module to
handle the modality differences between sketch images and
optical images. Additionally, we adopt an effective meta-
learning training strategy specifically designed for small
samples to prevent overfitting issues.
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