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Abstract
Object detection plays a vital role in remote sensing applications. Although object detection has achieved proud results in
natural images, these methods are difficult to be directly applied to remote sensing images. Remote sensing images often
have complex backgrounds and small objects, which results in a highly unbalanced distribution of foreground and complex
background information. In order to solve the above problems, this paper proposes a multi-head channel and spatial trans-
attention (MCSTA) module, which performs remote pixel interaction from the channel and spatial dimensions respectively to
complete the attention feature capture function. It is a plug-and-play module that can be easily embedded in any other natural
image object detection convolutional neural network, making it quickly applicable to remote sensing images. First, in order to
reduce computational complexity and improve feature richness, we use a special linear convolution to obtain three projection
features instead of the simple matrix multiplication transformation in Transformer. Second, we obtain trans-attention maps
in different dimensions in a manner similar to the self-attention mechanism to capture the interrelationships of features
in channels and spaces. In this process, we use a multi-head mechanism to perform parallel operations to improve speed.
Furthermore, in order to avoid large-scale matrix operations, we specially designed an attention blocking mode to reduce
computer memory usage and increase operation speed. Finally, we embedded the trans-attention module into YOLOv8, added
a new detection head and optimized the feature fusion method, thus designing a lightweight small object detection model
named TA-YOLO for remote sensing images. It has fewer parameters than the benchmark model YOLOv8, and its mAP
on the PASCAL VOC and VisDrone data sets increased by 1.3% and 6.2% respectively. The experimental results prove the
powerful function of the trans-attention module and the excellent performance of TA-YOLO.

Keywords Small object detection · Remote sensing images · Transformer · YOLOv8 · Convolutional neural network

Introduction

Object detection is a pivotal research area within com-
puter vision [1], finding applications in diverse domains like
autonomous driving, intelligentmonitoring, and remote sens-
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ing image analysis [2–6]. Nonetheless, challenges persist
due to intricate backgrounds, small object sizes, and occlu-
sions. As a result, small object detection has emerged as a
significant and intricate focus within this field [7]. Recent
years have witnessed remarkable progress in object detec-
tion through deep learning. While comprehensive datasets
like PASCAL VOC [8] and MS COCO [9] have facilitated
model development, a challenge persists.Manymodels excel
overall but struggle with detecting and recognizing small
objects. This limitation is particularly problematic in special-
ized contexts such as remote sensing, where UAV or satellite
images present unique complexities like dense small objects
against intricate backgrounds. Researchers in small object
detection [10–14] are addressing this issue by focusing on
remote sensing datasets. Although deeper networks offer bet-
ter feature extraction, they come with a higher parameter
count. Additionally, for small object tasks, higher image res-
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olution is crucial for accuracy. Yet, real-world deployment
on edge devices requires both accuracy and real-time perfor-
mance. Achieving small object detection using lightweight
models poses a significant challenge, but its practical value
and implications drive the pursuit. This study addresses these
challenges by investigating small object detection methods
on remote sensing datasets. Furthermore, we demonstrate the
efficacy of our approach on PASCAL VOC, showcasing its
performance not only for small objects but also for medium
and large object detection.

Presently, the YOLO series [15–22] of methods shines
among diverse object detection techniques, standing as the
most widely employed models in the industry. Over time,
the YOLO series has culminated in YOLOv8 [22], an
apex model that excels in both speed and accuracy, rev-
olutionizing industry-standard object detection practices.
Although YOLOv8 demonstrates noteworthy prowess on
the MS COCO dataset, it remains challenged in detecting
small objects and struggles to directly apply its model to
scenes teeming with such diminutive objects. Hence, our
study builds upon the YOLOv8 architecture. To start, we
observe that the detection heads responsible for loss calcula-
tion in YOLOv8 predominantly rely on deeply hierarchical
features, which, due to network oversampling, may forfeit
some local detail information, detrimentally affecting small
object detection.We ingeniously leverage shallower features,
introducing a novel detection head tailored for extremely
small objects. This augmentation facilitates the network’s
fusion of shallow local detail information while preserving
deep high-level semantic features. Additionally, the funda-
mental architecture of the Path Aggregation Network (PAN)
[23] underpinsYOLOv8, enabling feature transfer and fusion
across different levels. However, recurrent upsampling and
downsampling operations introduce variations in feature
fusion across the same level, leading to variable degrees of
information loss. In response, we harness the intrinsic fea-
tures of this layer within the backbone and employ residual
connections to mitigate lost features.

Crucially, small object detection invariably grapples with
the intricate challenge of an imbalanced distribution between
foreground and complex background information. Inspired
by the self-attention mechanism within Transformers [24],
we introduce a novel transformer-based multi-dimensional
attention feature extraction method, thereby crafting the
Multi-head Channel and Spatial Trans-Attention (MCSTA)
module. This module performs remote pixel interaction from
different dimensions to realize the attention feature capture
function. It is a plug-and-play module that can be easily
embedded in any other natural image object detection convo-
lutional neural network,making it suitable for remote sensing
images. In order to reduce computational complexity, reduce
memory usage, and improve feature richness, a special lin-
ear convolution is incorporated into the module, a block
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Fig. 1 Comparison of experimental results between TA-YOLO and
other methods on the VisDrone validation set

attentionmode is specially designed, and amulti-headmech-
anism is used for parallel operations. Based on the above
design, we redesigned the network of YOLOv8 and proposed
a lightweight small object detectionmodel namedTA-YOLO
for remote sensing images.

Our contribution can be summarized as follows :

• In order to solve the problem of extremely unbalanced
distribution of foreground and complex background
information in remote sensing images, we designed a
trans-attention module, which performs remote pixel
interaction from two dimensions of channel and space
to realize the attention feature capture function. It is also
a plug-and-play module that can quickly apply other nat-
ural image object detection methods to remote sensing
images.

• We used YOLOv8 as the baseline model and redesigned
it. Including embedding the trans-attention module,
adding a small object detection head, and optimiz-
ing the same-level feature fusion method. Therefore, a
lightweight small object detection model named TA-
YOLO for remote sensing images is proposed.

• Our TA-YOLO exhibits superior performance on the
remote sensing image dataset VisDrone [25] with a large
number of dense small objects, as shown in Fig. 1. Our
method achieves higher accuracy with fewer parameters
than YOLOv8. This is also a powerful performance of
the proposed trans-attention module to apply the natural
image object detectionmethod to remote sensing images.

The remainder of the paper is organized as follows:
“Related work” briefly describes related work. “Methodol-
ogy” focuses on TA-YOLO, including multi-level feature
fusion andMCSTAmodule. “Experiments” presents the data

123



Complex & Intelligent Systems (2024) 10:5459–5473 5461

set used in the experiment, the experimental results, and the
ablation experiments. Finally, “Conclusion” provides a sum-
mary and future prospects.

Related work

Object detection based on CNN

In recent years, the remarkable performance of convolutional
neural networks (CNNs) in computer vision has driven exten-
sive research in deep learning. CNN-based object detection
methods can be broadly classified into two categories: two-
stage andone-stage detectionmethods. The former employs a
RegionProposalNetwork (RPN) togenerate candidate object
boxes, followed by classification and localization. Examples
include RCNN [26], Fast R-CNN [27], Faster R-CNN [28],
andMask R-CNN [29], excelling in accuracy but with slower
speeds and more parameters.

In contrast, one-stage detection methods directly detect
objects in images, eliminating the need for candidate box
generation. Notable methods include the YOLO series,
MobileNet series [30–32], ShuffleNet series [33, 34], SSD
[35], RetinaNet [36], and EfficientNet [37], known for real-
time suitability. The YOLO series has garnered significant
attention. YOLOv1 [15] pioneered one-stage detection using
Grid Cells for bounding box and class prediction. Subse-
quent versions improved features, scales, and loss functions.
YOLOv4 [18] introduced CSPDarknet53, Spatial Attention
Module (SAM), PAN, and CIOU loss. YOLOv5 [19] refined
Spatial Pyramid Pooling Fusion (SPPF), diverse training,
and balanced loss weights. YOLOv6 [20] focused on effi-
ciency with EfficientRep Backbone and Rep-PAN. YOLOv7
[21] introduced Extended Efficient Layer Aggregation Net-
work (E-ELAN) and Reparameterized Convolution for fea-
ture extraction. YOLOv8 [22] advanced with the Compact
Context Fusion (C2f) module, Diagonal-Free Loss (DFL)
and CIOU Loss, and Task-Aligned Assigner. YOLOv8 is
undoubtedly outstanding. However, it still has major limita-
tions in the detection task of small objects.

Small object detection

Small object detection holds significant prominence and
poses substantial challenges in the field of computer vision.
Remote sensing image data is commonly employed to eval-
uate the performance of small object detection. Such images
often encompass diverse land features, making the targets
susceptible to interference from various similar features
like color, texture, and shape. Hu et al. [38] utilized a
coarse image pyramid and employed twice upsampled input

images for detecting small faces. Zheng et al. [39] developed
a multi-receptive field convolutional group representation
aggregation module to expand the receptive field, thor-
oughly capturing both the intrinsic features of targets and
the semantic relations with the surrounding environment,
thereby enhancing detection performance. Liu et al. [40]
increased the number of small object training examples by
downsizing large objects. D-SSD [41], C-SSD [42], F-SSD
[43], and ION [44] focused on constructing suitable context
features for small object detection. Furthermore, there are
studies utilizingGenerativeAdversarialNetworks (GANs) to
generate super-resolution features for small object detection,
such as [45] and [46]. However, larger input resolutions and
super-resolution methods incur higher computational costs,
rendering them unsuitable for lightweight detector designs.
Given the nature of small objects, networks often necessi-
tate intricate designs to effectively capture minute features.
The aforementionedmethods also encounter similar issues of
computational complexity.We observe a scarcity of attention
devoted to utilizing lightweight object detection frameworks
for small object detection tasks. In this paper, our objective
is accurate small object detection while maintaining lower
computational complexity.

Attentionmechanism

The Attention Mechanism enhances a model’s focus on
specific information or regions by adaptively assigning
weights to input elements. It finds application in tasks
across machine learning, such as natural language process-
ing, computer vision, and speech recognition. Addressing
unbalanced foreground-background distribution in object
detection, especially for small objects, highlights the signif-
icance of attention mechanisms.

The Recurrent Attention Model (RAM) [47] integrates
attention with deep neural networks. It iteratively selects
and emphasizes image regions, enhancing accuracy and effi-
ciency. SENet [48] introduces attention to convolutional
neural networks, learning channel importance with Squeeze-
and-Excitation modules. CBAM [49] combines channel and
spatial attention for feature enhancement, adapting to diverse
image features. Coordinate Attention [50] adds spatial rela-
tionship consideration to attention mechanisms, weighting
spatial positions for task relevance. Originally in Transform-
ers, the self-attention mechanism computes Query, Key, and
Value similarity-based weights for weighted pooling, captur-
ing global dependencies for long-range associations. Inspired
by this, we adopt its weight distribution and Multi-Head
mechanism to channel and spatial attention extraction.
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Methodology

Revisiting transformer

Transformer is a network based on self-attention mecha-
nisms. The input consists of query and key of dimension dk ,
and value of dimension dv . Multi-head attention is a mecha-
nism that involves employingmultiple distinct, learned linear
transformations to project the query, key, and value vectors
h times onto separate dimensions denoted as dq , dk , and dv .
Subsequently, attention operations are conducted in paral-
lel on each of these transformed versions of queries, keys,
and values. This orchestrated process results in h sets of out-
put values, each encompassing dv dimensions. Transformer
architecture further enhances this by amalgamating the out-
comes of different attention heads using learnable weights,
thereby fostering an adaptive linear aggregation of informa-
tion. Let q indexes a query element with feature xq ∈ R

C , k
indexes a key element with feature xk ∈ R

C , and v indexes a
value element with feature xv ∈ R

C , where C is the feature
dimension. During the actual operational phase, we simulta-
neously compute the attention function on a set of queries,
packed them into a matrix Q. The keys and values are packed
into matrices K and V in the same way. Then they can be
expressed as Xq ∈ R

dq ,Xk ∈ R
dk ,and Xv ∈ R

dv after being
projected h times. Then the multi-head attention feature is
calculated by

Multi Head(Xq , Xk, Xv)

= WO
C
h
i=1Attentioni (Xq , Xk, Xv),

(1)

Attentioni (Xq , Xk, Xv)

= WV
i XvSof tmax

(
WQ

i Xq(WK
i Xk)

T

√
dk

)
,

(2)

where C means matrix concatenation. The projections are
parameter matrices WQ

i ∈ R
C×dq , WK

i ∈ R
C×dk , WV

i ∈
R
C×dv , andWO

i ∈ R
hdv×C . h indexes parallel attention heads

and dq = dk = dv = C/h.

TA-YOLO

The overall structure of TA-YOLO proposed in this paper
is shown in Fig. 2. We have closely followed the archi-
tectural paradigm of YOLOv8, which similarly comprises
three core components: the backbone, neck, and head. In our
approach, the notations P2, P3, P4, P5 denote the feature
map levels resulting from downsampling the input image by
factors of 4, 8, 16, 32 respectively. These levels embody vary-
ing degrees of feature map granularity. Much like YOLOv8,
our TA-YOLO encompasses a range of models with diverse
scales, governed by the predetermined parameters w and n as

depicted in the figure. At the termination of the backbone, we
have seamlessly integrated the novel MCSTAmodule to bol-
ster the fundamental feature extractor’s capacity to capture
foreground features effectively. Concurrently, this module
has been strategically incorporated at the conclusion of each
feature level within the neck. This strategic placement serves
to further disentangle the foreground and background aspects
of the final feature representation.

To aptly address the detection of exceedingly diminutive
objects within remote sensing images, we have harnessed the
higher-resolution features from the P2 level and introduced
a specialized tiny object detection head. Furthermore, we’ve
implemented feature fusion between the original P3 and P4
layers in the backbone. This serves to counteract excessive
information loss stemming from the iterative upsampling
and downsampling processes. By infusing our pioneering
MCSTA module and optimizing the network structure, TA-
YOLO delivers commendable results across various object
sizes. Its efficacy extends beyond medium and large objects,
exhibiting superior performance in detecting small and even
minuscule objects. This comprehensive design augmentation
equips TA-YOLO to excel across a spectrum of object detec-
tion scenarios.

Improvement of multi-level feature fusion

The significance of multi-level feature fusion in small object
detection cannot be understated. In YOLOv8, object detec-
tion relies solely on features from three levels: P3, P4, and
P5.However,when dealingwith extremely small and densely
packed objects within remote sensing images, this approach
faces challenges. Features at the P2 level exhibit a higher
resolution, offering the network a valuable opportunity to
capture intricate texture details present in the image.Building
upon this insight, we have introduced a specialized detection
head aimed at detecting tiny objects. This innovative addi-
tion, depicted by the red dashed box in Fig. 2, enhances our
model’s ability to identify minuscule objects.

In the neck architecture, we have integrated the concept of
PAN,which operates through a sequence of Down-Up-Down
sampling (D-U-D) steps. In YOLOv8, the fusion of features
during the second round ofD-U-D is limited to the same-level
upsampling process. While this helps mitigate information
loss to some extent, it remains insufficient for particularly
small objects. To address this, we leverage the original fea-
tures from each level in the backbone. Utilizing residual
connections, we compensate for any lost features result-
ing from repeated upsampling and downsampling processes.
Fig. 2 illustrates this approach with red arrows. Notably, the
Concat operation at the P5 level amalgamates features pro-
cessed via SPPF. However, these features remain devoid of
repeated upsampling or downsampling. This strategic deci-
sion preserves the unique characteristics of these features,

123



Complex & Intelligent Systems (2024) 10:5459–5473 5463

640×640×3

MCSTA
C2f

Conv

C2f

Conv
Conv

C2f

Conv

C2f

Conv

C2f

Conv

C2f

Conv

C2f

Conv

C2f

Conv

SPPF

P2 P3 P4 P5

YOLO

Head

YOLO 

Head

YOLO 

Head

YOLO 

Head

MCSTA

MCSTA

MCSTA

MCSTA

Conv Concat

C2f

Conv Concat

C2f

Conv Concat

C2fTiny object

Small object

Medium object

Large object

YOLO 

Head
=

Conv Conv

Conv Conv

Conv2d

Conv2d

Bbox.

Loss

Cls.

Loss

YOLO 

Head
=

Conv Conv

Conv Conv

Conv2d

Conv2d

Bbox.

Loss

Cls.

Loss

Concat

C2f

Concat

C2f

Concat

C2f

Concat

C2f

Concat

C2f

Concat

C2f

= MaxPool2dConv ConvMaxPool2dMaxPool2d ConcatSPPF = MaxPool2dConv ConvMaxPool2dMaxPool2d ConcatSPPF

=Conv Conv2d BatchNorm2d SiLU=Conv Conv2d BatchNorm2d SiLU

MCSTA

C2f = Up Sample

=  Multi-head Channel and Spatial Trans-Attention (Our module)MCSTA

C2f == Origin Module in YOLOv8 = Up Sample

320×320×64×w

160×160×128×w 80×80×256×w 40×40×512×w 20×20×1024×w

×n

×n

×2n ×2n ×n

×n ×n

×n

×n

×n

Fig. 2 The overall structure of TA-YOLO. The red dotted box and arrow represent the new detection head and feature fusion method added
compared to YOLOv8, respectively. w and n are used to control the size of the network

preventing excessive fusion and subsequently promoting a
more lightweight model architecture.

Through these refined design choices, our model excels
in small object detection, benefiting from a comprehensive
multi-level feature fusion strategy that harnesses both high-
resolution features and precise information propagation.

MCSTAmodule

In the context of small object detection, grappling with
the highly imbalanced distribution between foreground and
complex background information becomes an unavoidable
challenge, particularly pronounced in remote sensing images.
This discrepancy presents a formidable obstacle for networks
to accurately discern the intricate details of exceedingly small
objects within vast-scale images.

To address this issue,we have innovated theMCSTAmod-
ule. This module serves a dual purpose: firstly, it enhances

the extraction of channel trans-attention features via the
MCTA submodule; secondly, it proceeds to extract spa-
tial trans-attention features through the MSTA submodule.
This sequential process culminates in the fusion of these
extracted features with the initial input, yielding a refined
and optimized feature representation. The MCSTA mod-
ule’s architectural blueprint is illustrated in Fig. 3, consisting
of the aforementioned MCTA and MSTA sub-modules. To
succinctly outline the MCSTA process: consider an input
denoted as Z , and the ensuing output as Z

′
. The MCSTA

module can be summarized as follows:

Z
′ = Z + Wmsta

2 (Wmcta
1 Z), (3)

where {Wmcta
1 ,Wmsta

2 } ∈ R
H×W×C represent the weight

parameters of the MCTA and MSTA modules, respectively.
The design of the residual structure can ensure that our
MSCTA module will not interfere with the follow-up results
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due to attention deviation or confusion during the feature
extraction process, and it also plays a supervisory role. By
enacting this sophisticated module, we bolster our model’s
ability to discern and highlight salient foreground features
amidst complex background contexts, thereby elevating its
proficiency in detecting small objects within the challenging
realm of remote sensing imagery.

The inception of the MCTA andMSTAmodules is deeply
rooted in the conceptual framework of self-attention, a
hallmark of the Transformer architecture. In a parallel tra-
jectory, we retain the fundamental components of query,
key, and value from Transformer, harnessing their power to
enable information focus and extraction. It’s important to
note that while our inspiration draws from Transformer, we
have tailored the design to cater to the unique attributes of
image data. Conventionally, the Transformer’s architecture
divides images into standardized patches, each subsequently
encoded with positional information for further processing.
In a departure from this approach, we’ve steered clear of
employing a block design. Instead, our module operates on
the entire image. This modification not only simplifies the
model’s complexity but also obviates the need for explicit
positional encoding. This streamlined strategy enhances effi-
ciency without compromising performance.

Our module’s adaptation of query, key, and value gen-
eration is distinct from Transformer’s methodology. We
derive these elements utilizing Ghost convolution [51], an
exceptionally lightweight convolutional technique. Ghost
convolution leverages linear transformations to eliminate
feature redundancies, yielding enriched features with min-
imal computational overhead. This streamlined procedure,
often referred to as a "cheap" operation, omits batch nor-
malization and non-linear activations. This design choice
optimally integrates ghost convolutions, emphasizing local-
ized contextual details, culminating in the computation of
feature covariances, which in turn generate comprehensive
global attention maps.

Intrinsically linked, the MCTA and MSTA modules serve
as embodiments of this adapted self-attention principle.
Through carefully orchestrated operations, these modules
deftly capture nuanced contextual cues, a subject we’ll delve
into further in the following elaboration.

MCTAmodule

As shown in Fig. 3, assuming an input feature X ∈ R
H×W×C

is given, it is generated through three Ghost convolutions to
generate query(Q), key(K), and value(V) projections, where
{Q, K , V } ∈ R

H×W×C . Then we reshape them to R
N×C ,

where N = H × W is the number of pixels. After that we
perform matrix multiplication between the transpose of Q
and K, and apply a softmax function to obtain the channel

trans-attention map A ∈ R
C×C :

a ji = exp(Qi · K j )∑C
i=1 exp(Qi · K j )

, (4)

where a ji measures the i th channel’s impact on the j th

channel. The more similar the feature representations of two
channels are, the greater the correlation between them. Then,
we perform matrix multiplication between features A and V,
and reshape the result into R

H×W×C . In order to speed up
model convergence, similar to the Transformer structure, we
also introduce Layer Normalization. The difference is that
our Layer Normalization is after the attention feature extrac-
tion, not before. This effect will be better, which has been
proven in Swin Transformer V2. To expedite convergence,
akin to Transformers, we incorporate Layer Normaliza-
tion. However, we place Layer Normalization post-attention
feature extraction, a distinction that has proven notably effec-
tive in Swin Transformer V2 [52]. Finally, we perform an
element-wise sum operation with X to obtain the final out-
put X ′ ∈ R

H×W×C :

X
′
j = X j +

C∑
i=1

(a ji Xi ), (5)

where X
′
j represents the features of the j th channel of X

′
.

Eq. 5 shows that the final feature of each channel is the
weighted sum of the features of all channels and the original
features, which illustrates the long-range semantic depen-
dencies between feature maps of different channels. Similar
to the multi-head self-attention in Transformer, we divide the
number of channels into ‘heads’ and compute the respective
attentionmaps in parallel. In practice, we realize it by reshap-

ing Q, K and V to R
H×W×C

′×h , where h = C/C
′
represent

the heads. Overall, the MCTA process is defined as:

X
′ = X + Norm[Ch

i=1Attentioni (Xq , Xk, Xv)], (6)

Attentioni (Xq , Xk, Xv)

= WV
i XvSof tmax

(
(WQ

i Xq))
TWK

i Xk

α

)
,

(7)

where {WQ
i ,WK

i ,WV
i } ∈ R

C×C respectively represent
the weight parameters of Ghost convolution on the three
branches. Xq = Xk = Xv = X is the different represen-
tation of the input features on the three branches. Here, α is
a learnable scaling parameter used to control the size of the
Q and K dot product before applying the softmax function.
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Fig. 3 Proposed MCSTA module. The two sub-modules extract channel trans-attention and spatial trans-attention respectively

MSTAmodule

MSTA follows a structure akin to MCTA, though with slight
variations in local details. When provided with an input fea-
ture Y ∈ R

H×W×C , the Q, K, and V projections are reshaped
to Y ∈ R

C×N , where N = H ×W . A spatial trans-attention
mapB ∈ R

N×N is generated using a similar operation. How-
ever, this approach comes at a considerable cost. Multiplying
the Q and K matrices results in a computational complexity
of O(H2W 2C), growing quadratically with spatial size. For
instance, given an input featuremapof size H = W = 100,B
becomes a sizable matrix R104×104 . This poses memory and
speed challenges when embedding the module into shallow
features, as evidenced by out-of-memory issues even with
our minimum parameter TA-YOLO model on an NVIDIA
GTX4090 GPU, even at batch size 1.

To address this, we segment the feature map into blocks
and compute attention within each block separately. Notably,
blocks cannot be too small, as excessively small blocks
limit attention capacity. Our TA-YOLO design carefully cus-
tomizes block divisions at each feature level, mapping each
block’s receptive field to encompass small andmedium-sized
objects. This enhances foreground information extraction for
small objects. Assuming m2 blocks divide the input feature
map, the Q and Kmatrix multiplication complexity becomes

O(m2(H/m)2(W/m)2C), substantially reducing computa-
tions. Furthermore, when H = W = 100 and m = 10, B ∈
R
m2×102×102 . Smaller matrices lend themselves to efficient

parallelization, capitalizing on optimized parallel computing
capabilities present in hardware devices like GPUs, thereby

enhancing performance. After that, B ∈ R
m2×N

′×N
′
:

b ji = exp(Qi · K j )∑N ′
i=1 exp(Qi · K j )

, (8)

where b ji measures the i th position’s impact on the j th

position. Here N
′ = HW/m2, and m2 represents the num-

ber of blocks. Like MCTA, we will get the final output
Y

′ ∈ R
H×W×C :

Y
′
j = Y j +

N
′∑

i=1

(b jiYi ), (9)

where Y
′
j represents the feature at the j th position of Y

′
. Eq. 9

shows that the final feature at each position is the weighted
sum of the features across all positions in the block and origi-
nal features. Therefore, it has a block-like view of the global
context and selectively captures contexts according to the
spatial trans-attention map. Its heads design and overall pro-
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cess are kept consistent with MCTA, so we won’t go into
details here.

Experiments

To thoroughly assess our proposed approach, we undertake
comprehensive experimentation on twodistinct datasets:Vis-
Drone [25] and PASCALVOC [8]. The former encompasses
drone vision data, abundant in small objects, while the latter
serves as an internationally recognized benchmark for object
detection, predominantly focusing on medium and large
objects. Our experimental findings reveal that our model
excels not only in detecting medium and large objects, but
also demonstrates remarkable efficacy in small object detec-
tion.

Datasets

The VisDrone dataset [25] was introduced by the AISKY-
EYE team from Tianjin University’s Machine Learning and
Data Mining Laboratory in China. Comprising 288 video
clips, this dataset encompasses 261,908 frames and 10,209
still images. It features a diverse range of scenarios and con-
ditions, including different locations, environments, objects,
densities, weather, and lighting conditions, captured using
multiple drones for varied scenes and missions. The dataset
is enriched with 10 categories, containing 6,471 training
data, 548 validation data, and 3190 test data samples. Out
of these, annotations are available for 1,610 test data sam-
ples. In contrast to conventional object detection datasets, the
VisDrone dataset often includes hundreds of small objects
within a single image, resulting in a substantial total of 2.6
million annotation boxes. Additionally, the dataset provides
significant attributes like scene visibility, object class, and
occlusion, enhancing its utility for diverse tasks.

The PASCAL VOC dataset [8], originally developed by
the Computer Vision group at the University of Oxford,
UK, is a well-known and widely employed general-purpose
dataset in the field of computer vision. Primarily designed
for tasks such as object detection, image segmentation, and
image classification, it encompasses 20 common object cate-
gories. Spanningmultiple years, theVOCdatasetwas created
for thePASCALVOCchallenge.Eachyear’s dataset contains
separate training, validation, and test sets. Notably, data from
the years 2007 and 2012 are frequently used. In contempo-
rary practice, the training and validation data from both years
are often combined into a unified training set, totaling 16,551
samples. Meanwhile, the test data from the year 2007 serves
as the validation or test set, comprising a total of 4952 sam-
ples.

The datasets exhibit notable differences in difficulty
stemming from their distinct data compositions. Table 1

Table 1 Comparison of the instance size distributions of two datasets

Datasets 10–50 Pixels 50–300 Pixels >300 Pixels

VisDrone 0.74 0.26 0

PASCAL VOC 0.14 0.61 0.25

illustrates this contrast, indicating that 74% of the VisDrone
dataset comprises small objects, whereas the PASCAL VOC
dataset predominantly contains medium and large objects,
accounting for 86%. To offer a visual representation of this
divergence, Fig. 4 showcases selected images from both
datasets.

Implementation details

The dataset division approach aligns with the methodology
outlined inDatasets. In our experimentation,wehave adopted
several widely recognized evaluation metrics, namely Preci-
sion (P), Recall (R), mean Average Precision (mAP), model
parameters (Params) and Giga Floating Point Operations Per
Second (GFLOPs) [9]. The mean Average Precision (mAP)
calculates the average of the average precision (AP) across
all categories. This calculation involves utilizing an Inter-
section over Union (IOU) threshold, with a threshold above
which indicating successful detection. We denote the results
achieved at an IOU threshold of 0.5 as mAP50. By vary-
ing the threshold from 0.5 to 0.95 with an incremental step
of 0.05, we compute the average of these values to obtain
mAP50:95 [9]. Our implementation is based onPyTorch,with
input sample sizes normalized to 640 × 640. The training
employs the SGD optimizer with an initial learning rate of
0.01, a momentum of 0.937, and a weight decay of 0.0005
to prevent overfitting. We set the batch size to 16 and the
maximum epochs to 500, incorporating early stopping with
a patience of 50. Remaining hyperparameters are kept con-
sistent with the default YOLOv8 settings. In order to ensure
a fair evaluation, all comparative and ablation experiments
exclude the use of pre-trained weights during training. Four
crucial parameters underpin our TA-YOLO architecture: h,
m, n, and w. Here, h represents the heads in the multi-head
mechanism, with distinct values 1, 2, 4, 8 considered at each
P2, P3, P4, P5 level.m = 8/h, its square dictating the number
of blocks in theMSTA. The parameter n signifies the number
of C2fmodule stacks, set at 1 for our study. Lastly, w governs
the generated model’s size, categorized into five sizes tiny,
n, s, o, m, each aligned with w values 0.1875, 0.25, 0.50,
0.652, 0.75, respectively. The loss function undergoes opti-
mization, incorporating DFL Loss in addition to CIOU Loss
for enhanced positioning. The comprehensive loss function
as follows:

Loss(all)= λ1Loss(bce)+ λ2Loss(ciou)+ λ3Loss(d f l), (10)
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PASCAL VOC

VisDrone

Fig. 4 Samples example of the two datasets

where Loss(bce) corresponds to the classification loss func-
tion, which encompasses Binary Cross-Entropy (BCE) Loss.
On the other hand, Loss(ciou) and Loss(d f l) jointly con-
tribute to form the localization loss function. The parameter λ
signifies aweighting factor used to quantify the loss. Notably,
specific constants, namely λ1, λ2, and λ3, are assigned values
of 0.5, 7.5, and 1.5, respectively, as per YOLOv8’s configu-
ration.

Experimental results

Our primary objective is to design a small object detection
model that excels in both speed and accuracy. Given this
focus, our experimental comparisons exclude larger models.
In the YOLO series, models are typically categorized into
five different sizes: n, s, m, l, x. The parameter volume of
the YOLOv8-l model has reached 43.7 million (M), so we
restrict our analysis to the first three sizes: n, s, m. To offer
a comprehensive performance assessment, we introduce two
additional small-scalemodels, resulting in a total of five sizes
for our TA-YOLO model: tiny, n, s, o, m.

Our model’s architecture builds upon YOLOv8, prompt-
ing a thorough comparisonwith each size variant ofYOLOv8
across the two datasets, as detailed in Tables 2, 3, and 4.
Observing these tables reveals notable enhancements in the
performance of our TA-YOLO model, achieved with a rela-
tively modest increase in parameters. By comparing the tiny
and o-sized models with the n and m sizes-where the param-
eters are closely matched-it becomes evident that TA-YOLO
outperformsYOLOv8while utilizing fewer parameters. This
optimization justifies our augmentation of the tiny and o
sizes.

Notably, TA-YOLO boasts superior speed and perfor-
mance compared to YOLOv8, which is visually demon-
strated in Fig. 1. On the PASCAL VOC dataset, our model

exhibits improvements of up to 1.3%. However, when eval-
uated on the validation and test sets of VisDrone, our model
achieves remarkable enhancements of up to 6.2% and 4.3%
respectively. These findings underscore the exceptional pro-
ficiency of our proposed TA-YOLO in small object detection
scenarios.

We have extended our comparative analysis beyond
YOLOv8 and evaluated our model against other existing
methods. As our research emphasizes small object detec-
tion, we exclusively employed the VisDrone dataset for these
comparisons. The results of these comparative experiments
are summarized in Table 5, which highlights the perfor-
mance of various methods. Notably, our model achieves a
compelling combination of minimal parameter quantity and
superior accuracy.

Within this context, it’s worth noting that, in addition to
the YOLOv7-tiny model, YOLOv7 stands out as having the
second lowest parameter count at 36.9M. Consequently, our
comparison focuses solely on the YOLOv7-tiny model from
the v7 series.

For a more visually intuitive presentation of the compar-
ison results, we’ve crafted Fig. 1, which juxtaposes the two
indicators- mAP50 and Params-from Table 5. This graphic
depiction offers a concise yet informative representation of
how our model outperforms other methods.

The depicted experimental outcomes aptly underscore
TA-YOLO’s commendable performance. In our pursuit to
delve into our model’s specific performance within the realm
of small object detection, we present the Precision-Recall
curves for each category on the VisDrone validation set,
as vividly illustrated in Fig. 5. These curves manifest the
outcomes achieved by setting the IOU threshold to 0.5, sub-
sequently yielding mAP through the integral area under each
curve.
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Table 2 Comparison of
experimental results on
PASCAL VOC

Methods P R mAP50 mAP50:95 Params (M) GFLOPs

YOLOv8-n [22] 0.810 0.733 0.806 0.599 3.2 8.9

YOLOv8-s [22] 0.818 0.756 0.833 0.634 11.2 28.8

YOLOv8-m [22] 0.818 0.790 0.854 0.670 25.9 79.3

TA-YOLO-tiny 0.782 0.743 0.807 (↑0.1%) 0.608 2.3 (↓0.9) 7.9 (↓1.0)
TA-YOLO-n 0.817 0.742 0.820 (↑1.3%) 0.624 3.8 (↑0.6) 14.1 (↑5.2)
TA-YOLO-s 0.836 0.774 0.845 (↑1.2%) 0.656 13.9 (↑2.7) 43.3 (↑14.5)
YA-YOLO-o 0.827 0.787 0.854 (↑0%) 0.663 21.4 (↓4.5) 64.6 (↓14.7)
TA-YOLO-m 0.838 0.795 0.862 (↑0.8%) 0.680 29.7 (↑3.8) 110.2 (↑30.9)

Table 3 Comparison of
experimental results on
VisDrone validation set

Methods P R mAP50 mAP50:95 Params (M) GFLOPs

YOLOv8-n [22] 0.450 0.338 0.339 0.196 3.2 8.9

YOLOv8-s [22] 0.528 0.386 0.406 0.242 11.2 28.8

YOLOv8-m [22] 0.556 0.416 0.433 0.265 25.9 79.3

TA-YOLO-tiny 0.485 0.349 0.365 (↑2.6%) 0.218 2.3 (↓0.9) 7.9 (↓1.0)
TA-YOLO-n 0.502 0.389 0.401 (↑6.2%) 0.241 3.8 (↑0.6) 14.1 (↑5.2)
TA-YOLO-s 0.539 0.443 0.454 (↑4.8%) 0.277 13.9 (↑2.7) 43.3 (↑14.5)
YA-YOLO-o 0.558 0.450 0.465 (↑3.2%) 0.286 21.4 (↓4.5) 64.6 (↓14.7)
TA-YOLO-m 0.583 0.466 0.488 (↑5.5%) 0.302 29.7 (↑3.8) 110.2 (↑30.9)

Table 4 Comparison of
experimental results on
VisDrone test set

Methods P R mAP50 mAP50:95 Params (M) GFLOPs

YOLOv8-n [22] 0.405 0.301 0.279 0.158 3.2 8.9

YOLOv8-s [22] 0.456 0.347 0.329 0.190 11.2 28.8

YOLOv8-m [22] 0.487 0.369 0.353 0.207 25.9 79.3

TA-YOLO-tiny 0.419 0.307 0.292 (↑1.3%) 0.165 2.3 (↓0.9) 7.9 (↓1.0)
TA-YOLO-n 0.427 0.341 0.316 (↑3.7%) 0.180 3.8 (↑0.6) 14.1 (↑5.2)
TA-YOLO-s 0.488 0.379 0.371 (↑4.2%) 0.214 13.9 (↑2.7) 43.3 (↑14.5)
YA-YOLO-o 0.501 0.388 0.377 (↑2.4%) 0.219 21.4 (↓4.5) 64.6 (↓14.7)
TA-YOLO-m 0.521 0.399 0.396 (↑4.3%) 0.231 29.7 (↑3.8) 110.2 (↑30.9)

Evidently, “car” emerges as the standout performer within
this ensemble, capturing the limelight with the highest accu-
racy. This is particularly noteworthy as “car” claims a
substantial share of the dataset. On the contrary, the cate-
gorywith the least representation-namely “Awning-tricycle”-
experiences the most challenging detection scenario due to
obstructions caused by aerial views and overhanging struc-
tures. Consequently, its accuracy is notably lower. The “bicy-
cle” category, with a relatively meager presence, presents
further complexities. This challenge arises from occlusions
caused by riders and the thin, elongated nature of bicycles
at a distance. These factors diminish the availability of dis-
cernible and significant features, especially when juxtaposed
against the prominence of people within the image. A visual
glimpse into these complexities is provided in the example
image of Fig. 4.

To provide a more direct and tangible perspective of
our method’s efficacy, we present the visual results of
detection on selected scenes from the VisDrone dataset
in Fig. 6. Evidently, YOLOv8 exhibits noticeable omis-
sions in detecting extremely small objects, particularly in
the distant background. The third scene, characterized by a
multitude of object categories and instances, presents an intri-
cate challenge exacerbated by occlusions. Notably, YOLOv8
struggles with the detection of pedestrians (indicated by the
red bounding box). In contrast, our model noticeably outper-
forms YOLOv8, demonstrating superior detection capability
even for small and occluded objects. This exemplifies our
model’s remarkable aptitude for capturing intricate details
and overcoming challenges posed by occlusions, leading to
enhanced performance in complex scenes.
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Table 5 Results on VisDrone
datasets

Methods mAPval
50 mAPval

50:95 mAPtest
50 mAPtest

50:95 Params (M) GFLOPs

YOLOv5-n [19] 0.337 0.194 0.278 0.156 2.5 7.2

YOLOv5-s [19] 0.401 0.239 0.328 0.189 9.1 24.1

YOLOv5-m [19] 0.430 0.263 0.352 0.205 25.1 64.4

YOLOv6-n [20] 0.325 0.188 0.275 0.158 4.7 11.1

YOLOv6-s [20] 0.372 0.220 0.313 0.180 18.5 44.2

YOLOv6-m [20] 0.417 0.251 0.356 0.211 34.9 82.2

YOLOv7-tiny [21] 0.307 0.182 0.268 0.151 6.0 13.7

YOLOv8-n [22] 0.339 0.196 0.279 0.158 3.2 8.9

YOLOv8-s [22] 0.406 0.242 0.329 0.190 11.2 28.8

YOLOv8-m [22] 0.433 0.265 0.353 0.207 25.9 79.3

TA-YOLO-tiny 0.365 0.218 0.292 0.165 2.3 7.9

TA-YOLO-n 0.401 0.241 0.316 0.180 3.8 14.1

TA-YOLO-s 0.454 0.277 0.371 0.214 13.9 43.3

TA-YOLO-o 0.465 0.286 0.377 0.219 21.4 64.6

TA-YOLO-m 0.488 0.302 0.396 0.231 29.7 110.2

Fig. 5 Precision-recall curve on
the VisDrone validation set

Table 6 Ablation experimental results on VisDrone validation set

Methods

Baseline P2 Head Fusion MCTA MSTA MCSTA P R mAP50 mAP50:95 Params (M)

� 0.450 0.338 0.339 0.196 3.2

� � 0.468 0.368 0.375(↑3.6%) 0.224 3.4

� � � 0.499 0.366 0.383(↑4.4%) 0.228 3.4

� � � � 0.494 0.381 0.389(↑5.0%) 0.233 3.5

� � � � 0.504 0.373 0.391(↑5.2%) 0.234 3.5

� � � � 0.502 0.389 0.401(↑6.2%) 0.241 3.8
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Fig. 6 The visualization results on VisDrone datasets. In a is the original image, in b is the result of YOLOv8-n, and in c is the result of the
proposed TA-YOLO-n. Different object categories in the figure are boxed in different colors

Ablation experiments

To validate the effectiveness of our proposed approach in the
context of small object detection, we conducted a series of
ablation experiments on the VisDrone validation set, utiliz-
ing YOLOv8-n as the baseline model. The comprehensive
results of these experiments are presented in Table 6. This
set of ablation experiments highlights the incremental effect
of each module or improvement we introduced, illustrating
the diverse degree of performance enhancement achieved.
The outcomes of these experiments unequivocally reaffirm
the efficacy of our method in elevating network performance
across the board.

Furthermore, to explore the impact of integrating the
MCSTA module at different network stages, we conducted
a series of experiments encompassing five configurations.
Initially, we incorporated the module solely in the back-

Table 7 Ablation experimental results on VisDrone validation set

Backbone P2 P3 P4 P5 mAP50 mAP50:95 Params (M)

� 0.389 0.232 3.3

� � 0.394 0.235 3.4

� � � 0.395 0.237 3.4

� � � � 0.398 0.238 3.5

� � � � � 0.401 0.241 3.8

bone, then sequentially added it to levels P2 through P5.
The experimental results are shown in Table 7. By analyzing
the outcomes of these experiments, a clear pattern emerged:
the optimal effect is attained by incorporating the module at
each stage. Remarkably, this module augmentation incurs a
marginal increase in parameters.
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Fig. 7 Grad-CAM visualization. a is the original image, b and c are the visualization results of removing the MCSTA module and adding it,
respectively

To provide a more visual understanding of the efficacy
of the MCSTA module, we employed the gradient-based
class activation map (Grad-CAM) method [53] to visualize
the targeted network layer. Fig. 7 exhibits the feature visu-
alization outcomes for the input detection head within the
P3 level. The enhancement afforded by the MCSTA module
becomes evident as the model captures a more comprehen-
sive range of foreground information, thereby mitigating
background interference while concurrently extracting finer-
grained details. This visualization reaffirms the module’s
contribution to refining the model’s feature extraction capa-
bilities.

Conclusion

This paper proposes a novel multidimensional attention
feature extraction module based on the Transformer archi-
tecture. This module not only accomplishes remote pixel
interactions from channel and spatial dimensions but also
integrates special linear convolutions, multi-head mecha-
nisms, and intricately designed block attention patterns,
enhancing the module’s performance. These design choices
not only enrich the module’s feature representation but also

significantly boost computational speed, ensuring high effi-
ciency and practicality.This plug-and-play module exhibits
strong versatility and can swiftly integrate into any nat-
ural image-based convolutional neural network for object
detection. Its remarkable adaptability particularly shines in
efficiently handling small objects within remote sensing
images, empowering it with robust detection capabilities
in the remote sensing domain. Moreover, owing to its
lightweight nature, it’s highly suitable for deployment on
edge devices, significantly enhancing practicality and con-
venience for real-world applications.

Further experimental results validate the superiority of
our model in object detection tasks, achieving superior per-
formance with fewer parameters. Particularly in scenarios
dealing with remote sensing images featuring small objects,
our model demonstrates clear advantages. This not only pro-
vides a new technical solution for remote sensing image
processing but also presents novel insights and possibilities
for applications demanding efficient and precise detection of
small-scale targets. In future research, we aim to apply this
module to other fields requiring high-resolution pixel-level
features, such as image segmentation and super-resolution
domains. By applying this module in these areas, we aim to
further explore and validate its feature capturing capabilities
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across diverse tasks and scenarios, laying a robust technical
foundation and support for broader applications.
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