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Abstract
Myocardial infarction (MI) poses a significant clinical challenge, necessitating expeditious and precise detection to mitigate
potentially fatal outcomes. Current MI diagnosis predominantly relies on electrocardiography (ECG); however, it is fraught
with limitations, including inter-observer variability and a reliance on expert interpretation. This study introduces an automated
MI detection framework that capitalizes on hybrid signal processing methodologies and deterministic learning theory. The
initial step involves the extraction of the Shannon energy envelope (SEE) and its derivative from a single-lead ECG. Integration
of the SEE into the ECG’s phase portrait provides ameans to capture the underlying nonlinear system dynamics. Subsequently,
the application of fast and adaptive multivariate empirical mode decomposition (FA-MVEMD) yields discriminative features
originating from the most energetically dominant intrinsic mode components (IMFs) within the SEE. Profound dissimilarities
are discernible between ECG signals recorded from healthy subjects and those afflicted with MI. In the subsequent phase,
deterministic learning theory, implemented through neural networks, is employed to facilitate the classification of ECG signals
into two distinct groups. The method’s efficacy is meticulously evaluated using the PTB diagnostic ECG database, resulting
in a noteworthy average classification accuracy of 99.21% within a tenfold cross-validation framework. In summation, the
findings affirm that the proposed features not only complement conventional ECG attributes but also align closely with the
underlying dynamics of the ECG system, ultimately fortifying the automatic detection of MI. The imperative requirement
for early and accurate MI diagnosis is addressed through our approach, offering a robust and dependable means to fulfill this
pivotal clinical need.
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Introduction

Myocardial infarction (MI) manifests as an insufficiency of
oxygen supply to the cardiac muscle, typically instigated by
the occlusion of a coronary artery [1]. Swift interventions,
either percutaneous or surgical, are imperative to restore
coronary blood flow; failure to do so promptly may result
in irreversible damage and necrosis of myocardial tissue
[2]. Early identification and diagnosis of MI are paramount
to avert fatal outcomes. Electrocardiography (ECG) dis-
closes characteristic alterations in waveforms indicative of
MI [3]. Morphological analysis of ECG signals predom-
inantly hinges on waveform shapes, reflective of cardiac
activity. Deviations in the ECG waveform serve as potent
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indicators of MI. Given the noninvasive and cost-effective
attributes of ECG signals, they have become a prevalent diag-
nostic modality. However, manual scrutiny of ECG curves is
laborious and prone to errors, underscoring the urgent need
for automated anomaly detection systems inECG recordings.

Digital signal processing technology, hardware and arti-
ficial intelligence tools have enabled different recording,
analysis, and discrimination approaches to be proposed on
normal and abnormal ECG signals for MI detection. Broadly
speaking, the detection techniques encompass two funda-
mental phases: the initial separation of distinctive features
and subsequent classification based on these identified fea-
tures. Several MI-related features have been investigated
since 1980s, including triphenyltetrazolium chloride stain
[4], two-dimensional echocardiography [5], immunochemi-
cal assays for serial creatine Kinase MB (CK-MB) sampling
[6], serum concentrations of myoglobin [7], QT dispersion
[8], and phase-sensitive reconstruction of MR imaging [9].
Methods for extracting features to discriminate ECG signals
commonly involve various approaches. These include wave
shape functions [10, 11], Hermite functions [12], Hermite
polynomials [13], empirical mode decomposition (EMD)
[14], empirical wavelet transform (EWT) [15], tunable Q-
wavelet transform (TQWT) [16], ECG morphology [17],
higher-order cumulant features [18], and statistical met-
rics such as mean, standard deviation, and kurtosis [19,
20]. Various nonlinear methods have been proposed to ana-
lyze ECG signals and quantify their chaotic and nonlinear
characteristics, including recurrence quantification analy-
sis (RQA) [21], fractal dimension [22], and various forms
of entropy measures [23], etc. According to Mazaheri and
Khodadadi [24], ECG signals can be characterized by var-
ious morphologic features (P, Q, R, S, T, and U waves),
frequency domain attributes (power spectral density and
wavelet transform), and nonlinear parameters (fractal dimen-
sion, Lyapunov exponent, approximate entropy, and so on).
Metaheuristic optimization algorithms were employed to
eliminate useless and redundant features and decrease the
dimension of the feature space. The discrete wavelet trans-
form (DWT) in combination with nonlinear features was
implemented by Adam et al. [25] as a means to automat-
ically detect cardiovascular diseases (CVDs). The wavelet
was obtained by processing the DWT coefficients to extract
four nonlinear features, including fuzzy entropy, sample
entropy, fractal dimension, and signal energy. Recent stud-
ies have actively explored various digital signal processing
techniques for extracting discriminative features from ECG
signals for MI detection, including dual-Q tunable Q-factor
wavelet transformation (Dual-Q TQWT) [26], multi-scale
decomposition [27], and higher order tensor [28].

In terms of pattern classification, machine learning has
become popular, with algorithms ranging from relatively
simple XGBoost model [29] and stochastic gradient descent

[30], to more complex hybrid models [31]. The classifica-
tion of the extracted features is commonly achieved through
various methodologies, including k-nearest neighbor (KNN)
[32], support vector machine (SVM) [20], self-organizing
maps with learning vector quantization [33], decision trees
[34], naïve Bayes (NB) [35], random forest (RF) [36],
artificial neural networks (ANNs)[37], and linear discrim-
inants [17]. Deep learning has also emerged as a powerful
tool for automated MI detection from ECG signals [38–
40], utilizing end-to-end learning models like convolutional
neural networks (CNN) [41], long short-term memory net-
works (LSTM) [42], hybridCNN-LSTM[43], andgenerative
adversarial networks [44]. Tripathy et al. [45] applied the
Fourier–Bessel series expansion-based empirical wavelet
transform to decompose 12-lead ECG signals into nine sub-
band signals per lead. The subband signals were used to
calculate statistical features, including kurtosis, skewness,
and entropy. A deep neural network, specifically the deep
layer least-square support-vector machine, was then utilized
to detect myocardial infarction using the resulting feature
vector. 3-lead vector cardiography (VCG) synthesis and fea-
ture extraction were proposed by Chuang et al. [46]. The
morphological and temporal wave characteristics changes
induced byMI were recovered from the resulting VCG using
spline approximation. For MI detection, a classifier based
on an LSTM network was employed. An end-to-end convo-
lutional neural network (CNN) algorithm was utilized by
Acharya et al. [47] to detect normal and MI single-lead
ECG beats automatically. A key benefit of deep learning
is bypassing hand-crafted feature extraction and selection
stages required in classical machine learning algorithms.
However, challenges remain regarding interpretability, scal-
ability, and computational complexity [48]. Hence, finding
the right balance between feature engineering and end-to-
end learning is an open research question. Hybrid approaches
leveraging domain knowledge to extract meaningful repre-
sentations paired with deep neural networks show promise
moving forward. Overall, automation of MI detection from
ECG signals has made great strides by incorporating insights
from digital signal processing, nonlinear dynamics, and arti-
ficial intelligence. However, real-world clinical deployment
remains limited to date, warranting further multidisciplinary
innovations to unlock practical use.

The application of induced signals, exemplified by ECG
signals, to investigate the dynamic characteristics of biolog-
ical systems can reveal information about the complexity of
their nonlinear behavior [49]. Several studies have revealed
that ECG signals are generated from nonlinear systems [50–
55]. The analysis of Heart rate variability (HRV) entails
the examination of alterations in the temporal gaps between
successive ECG signals. A useful analytical tool for study-
ing how physiological conditions affect ECG profiles can
be developed by designing a dynamical model that gener-
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ates ECG signals with appropriate HRV spectra. Diagnostic
ECG signal processing devices can be evaluated using ECG
signals generated by the model, which possess a range of
properties. To model HRV accurately, nonlinear approaches
are necessary due to the nonlinear process of generating the
ECG signal from the electrical activity in the myocardium.
Zeeman’s important nonlinear dynamical equations for mod-
eling heartbeats were presented in 1972 [56, 57], which were
built upon theVan der Pol–Lienard equation [58]. Amodified
version of Zeeman’s nerve model was employed by Jafarnia-
Dabanloo et al. [59] to generateECGsignals. Byutilizing two
filtered Van-der Pol oscillators from the same family in an
incommensurate fractional order nonlinear model, Das et al.
[60] generated ECG-like signals. Abdalla et al. [55] put forth
the notion that the ECG signal’s extreme unpredictability,
nonstationarity, and nonlinearity can be harnessed by nonlin-
ear dynamics to quantify MI. Relying on the hypothesis that
nonlinear dynamics can be used to characterize the heartbeat
mechanism, a simple tool for nonlinear determinism can be
developed bymodeling and identifying the nonlinear features
of the ECG system. By analyzing the ECG system dynam-
ics, the occurrence of MI could be detected based on the
dissimilarity between normal and MI-related ECG signals.

The timely and accurate diagnosis of MI is imperative to
prevent permanent myocardial damage and reduce mortal-
ity. MI causes the death of cardiac tissue due to prolonged
ischemia. Early intervention to restore blood flow is cru-
cial for saving viable myocardium. Hence, the development
of automated techniques for detecting MI from ECG sig-
nals has considerable clinical value. This research presents a
novel MI detection algorithm that models the inherent non-
linear dynamics of ECG signals using a synergistic approach
of energy envelopes, empirical mode decomposition and
deterministic learning. In particular, this study is the first to
incorporate Shannon energy envelopes and fast multivariate
empirical mode decomposition for revealing abnormali-
ties in ECG system dynamics induced by infarction. The
proposed modeling methodology effectively quantifies dif-
ferences between normal and post-MI myocardial electrical
activity for automated diagnosis. By elucidating nonlinear
ECG signal properties, this research expands the theoretical
basis for reliable MI detection. From a translational perspec-
tive, our algorithm has the potential to assist clinicians in
rapid triaging of chest pain patients and acute MI identifi-
cation to enable prompt reperfusion therapy. The promising
accuracy achieved on benchmark ECG data underscores the
method’s clinical utility.

The key accomplishments of this work are presented
below:

• TheShannon energy technique is utilized to deriveECG’s
distinctive envelope as well as its derivative. By leverag-
ing the Shannon energy envelope (SEE), low-intensity

components are amplified while high-intensity compo-
nents are reduced. Conversely, the squared value method
provides a greater weight to high-intensity components,
resulting in difficulties detecting low-intensity compo-
nents. SEE emphasizes intermediate intensity compo-
nents while minimizing the others, which enhances the
representation of the differences between normal andMI-
related ECG signals.

• Scale-aligned intrinsic mode components are formed
through the decomposition of the (SEE employing fast
and adaptive multivariate Empirical Mode Decomposi-
tion (FA-MVEMD), yielding Intrinsic Mode Functions
(IMFs). Notably, the primary significance is attributed
to the first two extracted IMFs, as they encapsulate the
highest proportion of signal energy.

• Based on deterministic learning theory, nonlinear ECG
system dynamics can be modeled and identified.

• In separating normal from MI-related ECG signals,
a model that accounts for disparities in ECG system
dynamics results in a trustworthy classification.

The article structure is delineated as follows: in the next
section, we provide a comprehensive elucidation of the pro-
posed technique, encompassing the introduction of the ECG
dataset, the phase portrait of ECG, feature extraction and
selection, as well as the modeling and categorization meth-
ods. The subsequent section delineates the findings obtained
through experimentation. The implications of our results are
discussed in the penultimate section and the final section
serves as the concluding section, summarizing our research.

Methods

This section aims to present a novel algorithm for distinguish-
ing between MI-related and normal ECG recordings using
nonlinear ECG system dynamics, which involves two stages,
namely training and classification. The method involves the
implementation of the subsequent steps. The initial step
involves utilizing Shannon energy to retrieve the distin-
guishing envelope of the ECG signal and its corresponding
derivative. Then, the second step employs FA-MVEMD to
decompose the SEEof theECGsignal aswell as its derivative
into multiple intrinsic modes, which serve as characteris-
tic features. Ultimately, the neural networks are fed with
feature vectors for modeling, identifying, and classifying
between normal and abnormal ECG recordings to detect MI.
A flowchart depicting our method is demonstrated in Fig. 1.

ECG database

This investigation leverages the publicly accessible diag-
nostic ECG database from the Physiobank, curated by PTB
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Fig. 1 Using Shannon energy
envelope, FA-MVEMD, and
neural networks as the main
framework for binary
classification of ECG
recordings. a Training; b
classification

(Physikalisch-Technische Bundesanstalt) [61, 62]. Compris-
ing 549ECG records sourced from290 subjects, the database
encompasses 52 healthy controls (HC) and 148 individuals
diagnosed with myocardial infarction (MI). The participant
cohort exhibits a median age of 56, spanning an age range
from 17 to 87, with 51 participants identifying as female
(25.5%). The widely employed lead II signal, recognized in
the existing literature for its efficacy in classifying 12-lead

ECG signals [63–65], is integral to our examination of ECG
types. Specifically emphasizing single-lead (lead II) ECG
signals, our rationale is rooted in the anticipation that these
singular leads hold significant utility for fetal heart rate mon-
itoring and certain straightforward ambulatory monitoring
applications.

We opted for the PTB database since it contains a large
and well-organized collection of ECG recordings that are
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specifically related to MI. Given that our primary objec-
tive in this paper is to identify MI in ECGs, this database
provides an abundant source of data for our research. Res-
piration, body movement, and electrode impedance changes
createECGsignal interference at low frequencies (0−0.5Hz)
known as baseline wander, which can impair signal qual-
ity and introduce uncertainty into MI classification. As a
result, preprocessing is usually carried out to eliminate mul-
tiple noise types connected to the input signal. The American
Heart Association (AHA) guidelines for ECG standardiza-
tion and interpretation [66] recommend utilizing a high-pass
filter with a 0.05 Hz cutoff frequency for adults. A Butter-
worth bidirectional low-pass filter was employed in both
signals with cut-off frequencies of 45 Hz and 20 Hz to
reduce high-frequency noise. Table 1 furnishes comprehen-
sive information about the database, featuring 367 recordings
of MI in contrast to 78 recordings of normal cardiac activ-
ity. Normal recordings in this database are not equal to and
much less than MI recordings, indicating that the database is
unbalanced.

To mitigate the influence of prevalence bias, we under-
take the reconstruction of a balanced ECG database, wherein
an equitable distribution of normal and MI signals is estab-
lished, as elucidated in Table 1. It is noteworthy, however,
that this process may potentially result in a reduction in the
total number of raw recordings. To mitigate this concern and
avert significant loss of raw MI signals, the synthetic minor-
ity over-sampling technique (SMOTE) [67] is incorporated
in the database balancing process. Iterative search and selec-
tionmethods can be used in conjunctionwith SMOTE,which
is one of themost commonly used over-sampling techniques,
to synthetically sample the minority group [68–70]. Iteration
will continue until a sufficient number of observations have
been collected from the minority class.

Here’s a brief description of how the SMOTE algorithm
works. For further information, please consult Chawla et al.
[67].

• Required: Minority data are denoted as ∀yi ∈ Y , where
i = 1, 2, ..., M . In this context, M represents the num-
ber of minority instances, N signifies the percentage of
SMOTE, and κ denotes the number of nearest neighbors.

• for i = 1, 2, ..., M do
Search for κ nearest minority neighbors of yi
N̂ = �N/100�
while N̂ �= 0 do
Choose one of the κ closest neighbors, ȳ
Choose a random number γ ∈ [0, 1]
ŷ = yi + γ (ȳ − yi )
Append ŷ to �

N̂ = N̂ − 1
• Output: Synthetic data �

Table 1 delineates the balanced datasets achieved through
the application of the SMOTE algorithm.

Phase portrait of ECG signals

Considering the heart’s electrical activity over time, the out-
put of an ECG signal produces a near-periodic signal for a
particular duration. Consider the ECG time series, denoted
as y(t), and its first derivative, represented as ẏ(t) = dy(t)

dt .
In this context, “ d

dt ”signifies differentiation with respect to
the variable of time. To represent the temporal progression
of an ECG system in a visual format, it is possible to gen-
erate a “phase portrait”that reconstructs “the attractor”on a
two-dimensional graph. Researchers have been particularly
interested in predicting the trajectories, or the changes over
time, of biological systems, and they have designed special-
ized algorithms for characterizing the geometric structures
and dynamical properties [71]. A phase portrait serves as
an important analytical tool when dealing with non-linear
dynamic ECG systems, therefore it can be used to charac-
terize the dynamics of ECG recordings obtained from both
normal subjects and MI patients [72].

Visualizing themotionof theheartbeat in a two-dimensional
state-space is possible by employing the y(t)-ẏ(t) projection
of the phase portrait. Examples of ECG waveforms and their
matching two-dimensional phase portraits are shown inFig. 2
for both regular and MI-related ECG recordings.

Shannon energy envelope (SEE)

Known as Shannon energy envelopes, normalized aver-
age Shannon energy can be used to extract ECG signals’
envelopes. SEE is extracted in the following manner.

Let ς(t) symbolize the original signal. Through the nor-
malization procedure, the signal’s variance is adjusted to 1,
yielding the subsequent signals:

ςnorm(t) = ς(t)

| N
max
i=1

ς(i) |
. (1)

In this context, N represents the signal length, and ςnorm(t)
signifies its normalized amplitude.The calculationofςnorm(t),
integrating Shannon energy, is articulated as follows:

� = −ς2
norm(t)log(ς2

norm(t)). (2)

Consequently, the average Shannon energy is computed as
follows:

�a = − 1

N

N∑

i=1

ς2
norm(i)log(ς2

norm(i)). (3)
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Table 1 Quantities of raw recordings versus balanced recordings for PTB database

Item # Original recordings # Recordings after the selection and balancing process # Recordings after balancing using SMOTE

MI Normal MI Normal MI Normal

367 78 78 78 367 390

MI-to-normal ratio 367
78 = 4.71 78

78 = 1 367
390 = 0.94

Here, the symbol # denotes ‘Number of’

Fig. 2 Samples of lead II ECG signals (initial and denoised with But-
terworth filters) from normal (healthy control) subjects and MI patients
in the PTB database and their corresponding two-dimensional phase
portraits

In contrast to classical energy, Shannon energy accentu-
ates themedium [73]. The normalization of the chosen signal
using the equation presented below (4) results in a reduced
baseline, causing the signal to fall below the baseline:

�n = �a − ν

μ
. (4)

In this context, a Shannon energy envelope is referenced as
an energy envelope, denoted as SEE, the symbol ν denotes
the mean energy value �a , and μ as the standard deviation
of energy �a . The computation of Shannon energy leads
to the main peak being surrounded by small spikes. The
spikes make it difficult to detect the main peaks. The spike
is eliminated by converting Shannon energy into SEE [73].
Illustrations of the SEEderived fromboth theECGsignal and
its corresponding derivative for both individuals with normal
cardiac function and patients experiencing MI are presented
in Fig. 3.

The SEE provides a normalized average measure of
the signal’s energy content derived from Shannon entropy.
Specifically, the SEE emphasizes intermediate intensity
components while attenuating high and low-intensity com-
ponents. This selective amplification and attenuation help
reveal distinguishing morphological features that may indi-
cate underlying cardiac abnormalities. Compared to the
squared signal which weights higher intensities more heav-
ily, the SEE over-represents medium intensities, making it
well-suited for detecting subtler changes in ECGwaveforms.
Research shows SEE analysis enhances representation of
differences between normal and pathological ECG signals
related to arrhythmias and myocardial infarction compared
to traditional envelope extraction methods. Hence, applying
SEE to capture distinguishing envelopes of ECG signals and
their first derivatives as inputs for subsequent analysis is ben-
eficial.

FA-MVEMD

FA-MVEMD is a signal processing technique designed to
decompose complex signals into their IMFs efficiently. The
method extends the classical EMD [74] to multivariate sig-
nals and offers a fast and adaptive algorithm for signal
analysis.
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Fig. 3 SEE illustration: normal vs MI

The main steps of FA-MVEMD can be summarized as
follows:

1. Input signal representation: Consider amultivariate sig-
nal �(t) = [�1(t),�2(t), . . . ,�p(t)] with p channels.

2. Initialization: Assign a value hi to each channel, rep-
resenting the Hilbert transform filter. Determine where the
projected signal reaches its extreme points by transforming
these values into unit vectors.

3. Order statistics filtering: Identify the optimal window
size for statistical filtering based on the interval between
extremes in the signal.

4. Envelope curve calculation: Utilize order statistics fil-
ters to compute mean envelopes for each channel.

5. Projection and direction vectors: Using direction vec-
tors, project the signal onto the p-1 dimensional unit sphere.

6. Extrema identification and envelope computation: Iden-
tify extreme points of the projected signal, calculate multi-
variate envelope curves, and determine the average envelope.

7. IMF extraction: Extract the first IMF im f1(t) by sub-
tracting the average envelope from the original signal. Repeat
this process to obtain subsequent IMFs im f2(t), . . . , im fi (t).

8. Residual signal: Update the signal as �(t) = �(t) −
im fi (t) and continue the sifting process until a predetermined
number ofmodes is reached or all oscillatory components are
filtered out.

FA-MVEMD provides a set of IMFs that capture differ-
ent frequency components of the input signal, allowing for a
more detailed analysis. The adaptive nature of the algorithm
enhances its performance in handling diverse signals. Math-
ematically, the method involves operations such as Hilbert
transforms, order statistics filtering, and projection onto a
unit sphere, making it a comprehensive tool for multivariate
signal decomposition.

This description aims to provide a concise overview
of the FA-MVEMD algorithm, emphasizing its adaptabil-
ity and efficiency in decomposing multivariate signals. In
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Fig. 4 Samples of SEE of the ECG signal and its derivative, and their FA-MVEMD from normal subject and MI patient

this context, the collection {imfi (t)}Mi=1 encompasses M
scale-aligned intrinsic joint components. For a detailed
exposition of the FA-MVEMD algorithm, please refer to
Thirumalaisamy and Ansell [75]. Figure4 illustrates exam-
ples of the FA-MVEMD.

FA-MVEMD was chosen to decompose the SEE signals
because, compared to standard EMD, it can better process
multivariate data and maintain cross-channel information
critical for ECG analysis. FA-MVEMD also mitigates mode
mixing effects that impair IMF separation in single channel
EMD. Importantly, FA-MVEMD aligns common oscillation
modes across multiple input signals into matched IMFs. This
scale alignment property enables meaningful comparison of
the IMFs from the SEE of the raw ECG and its derivative to
identify correlated intrinsic components for feature extrac-
tion. This capability to synchronously analyze ECGvariables

motivated using FA-MVEMD. In summary, the combination
of SEE and FA-MVEMD forms an advantageous approach
for revealing pathological differences in ECG signals via
nonlinear feature extraction.

Feature extraction and selection

Following is a suggested extraction scheme formore efficient
features

(1)The investigation of theECGsignal and its correspond-
ing derivatives involves the computation of the SEE, denoted
as Y (t) = [SEEy(t), SEEẏ(t)]T .

(2) In the classification process, the direct application
of FA-MVEMD faces challenges due to the high feature
dimension. To mitigate this challenge, Pearson’s correlation
coefficient is employed to evaluate the correlation between
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Fig. 4 continued

the original subband signals and the initial six IMFs. The
IMF exhibiting the highest correlation coefficient is antic-
ipated to contain the greatest proportion of signal energy.
Notably, in this work, it is observed that im f1 and im f2 are
particularly rich in energetic content, playing a pivotal role
in conveying classification information. They are denoted as
predominant IMFs, detailed in Table 2. Subsequently, a fea-
ture vector is constructed using im f1 and im f2 of SEEy(t)

and SEEẏ(t). This leads to the formation of the feature vector
[im f1SEEy(t) , im f2SEEy(t) , im f1SEEẏ(t) , im f2SEEẏ(t)]T .

According to this study, the mean and standard deviation
(STD) of ECG features is assessed using an independent t
test, as detailed in Table 3. The significance threshold used
in the statistical analysis was 0.05, utilizing SPSS v25.0
(SPSS, Chicago, IL, USA). The findings show that the four
characteristics between the MI and regular ECG signals are

significantly different, suggesting that the dynamics of ECG
systems for the two groups differ significantly. SEE and FA-
MVEMD are used to evaluate ECG signals for the current
database and derive ECG system dynamics. As we’ve previ-
ously examined, there are clear differences in the dynamics of
normal and MI-related ECG signals, which are also evident
from Fig. 4.

In addition to using the independent t test to evaluate dif-
ferences in means of key features between normal and MI
groups, further robust statistical tests have been utilized to
validate the findings:

(1) The Mann–Whitney U test, a non-parametric assess-
ment for significant differences between independent groups,
has been performed on the 4 features. The null hypothesis of
similar distributions is rejected at p < 0.001 for all features,
corroborating the deviations revealed by the t test.
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Table 2 SEE intrinsic modes (FA-MVEMD) and derivatives: normal vs. MI

ECG class Correlation coefficients on average

im f1 im f2 im f3 im f4 im f5 im f6

SEEy(t) for normal ECG 0.3728 0.3390 0.2088 0.1387 0.0930 0.0143

SEEẏ(t) for normal ECG’s derivative 0.5305 0.4909 0.2545 0.1843 0.0964 0.0214

SEEy(t) for the ECG signals in MI 0.3999 0.3578 0.2274 0.1930 0.0505 0.0386

SEEẏ(t) for the derivative of MI ECG signals 0.5826 0.4159 0.2197 0.1168 0.0868 0.0456

Table 3 Descriptive statistics,
including the mean±STD, for
each intrinsic mode

Items Groups Group differences

Normal MI p-value

im f1SEEy(t) −0.037 ± 0.035 −0.089 ± 0.023 < 0.001

im f2SEEy(t) −0.058 ± 0.021 −0.048 ± 0.026 < 0.001

im f3SEEy(t) −0.028 ± 0.015 −0.024 ± 0.017 0.055

im f4SEEy(t) 0.039 ± 0.013 0.036 ± 0.021 0.104

im f5SEEy(t) −0.025 ± 0.011 −0.023 ± 0.012 0.176

im f6SEEy(t) 0.029 ± 0.017 0.025 ± 0.024 0.163

im f1SEEẏ(t) −0.097 ± 0.073 −0.037 ± 0.024 < 0.001

im f2SEEẏ(t) 0.020 ± 0.007 0.035 ± 0.026 < 0.001

im f3SEEẏ(t) −0.085 ± 0.061 −0.075 ± 0.064 0.207

im f4SEEẏ(t) −0.025 ± 0.03 −0.032 ± 0.04 0.081

im f5SEEẏ(t) 0.013 ± 0.04 0.02 ± 0.03 0.147

im f6SEEẏ(t) −0.0004 ± 0.0289 0.0005 ± 0.0288 0.803

Additionally, statistical analysis is performed on the original data

(2) For increased robustness against outliers and skewed
data, the distributions of each feature are evaluated using
1000 bootstrap replicates. The results confirm a statistically
significant difference (p < 0.01) between the groups across
the replicates. 95% bootstrap confidence intervals further
quantify the actual range of discrepancies.

(3) To determine whether the features correlate well and
distinctively separate between classes, the Bhattacharyya
distance, which measures the similarity of probability distri-
butions, is evaluated between: a) ECG signals from the same
class, and b) signals from differing classes. A significant dif-
ference (p < 0.001) suggests good within-class cohesion
and between-class separability of the features.

(4) Principal component analysis has been performed
to validate if the dimensionality of the feature set can be
reduced to fewer uncorrelated variables that maximize vari-
ance. While > 90% variance is indeed encompassed within
two components, an attempt to classify on these components
yields inferior accuracy, confirming the necessity of all 4
proposed features.

In summary, these more robust and in-depth statistical
analyses provide further validation of the effectiveness of
the features extracted using Shannon energy envelope and
FA-MVEMD in detecting pathological changes attributable

to MI based on ECG system dynamics. The findings are sig-
nificant even with stricter statistical criteria.

Training andmodelingmechanism based on
selected features

This section seeks to outline a modeling technique for non-
linear ECG system dynamics using ECG signals recorded
from normal subjects and MI patients.

We consider a nonlinear ECG system described by the
following equation:

ẋ = f (x; p) + g(x; p). (5)

Here, x = [x1, . . . , xn]T ∈ Rn represents both the fea-
tures of the ECG signal and the states of the system (5),
and p denotes a fixed system variable. The term f (x; p)
captures the unknown nonlinear dynamics of the ECG sys-
tem, while g(x; p) accounts for modeling uncertainty. The
general dynamics of the ECG system, denoted as 	(x; p),
is modeled and derived using deterministic learning theory
[76–78]. 	(x; p) := f (x; p) + g(x; p), where f (x; p) and
g(x; p) are interdependent.
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The initial phase involves the construction of conventional
radial basis function neural networks (RBFNNs), character-
ized by the following structure:

fnn(Z) =
N∑

i=1

wi si (Z) = WT S(Z). (6)

In this equation, the weight vector W in the neural network
with N nodes is denoted by W = [w1, ..., wN ]T ∈ RN ,
while the input vector is denoted by Z . The function S(Z)

is a Gaussian function given by S(Z) = [s1(‖ Z − μ1 ‖
), ..., sN (‖ Z − μN ‖)]T , where each si (‖ Z − μi ‖) =
exp[−(Z−μi )

T (Z−μi )

η2i
] is with distinct μi points in state space

and width vector ηi .
The second step is to use dynamical RBFNNs tomodel the

ECGsystemdynamicsφ(x; p) = [φ1(x; p), . . . , φn(x; p)]T :
˙̂x = −A(x̂ − x) + Ŵ T S(x) (7)

Here, x̂ = [x̂1, . . . , x̂n] represents the state vector of the
dynamical RBF neural networks, A = diag[a1, . . . , an] is
a diagonal matrix, with ai > 0 as design constants, and the
localized RBF neural networks Ŵ T S(x) = [Ŵ T

1 S1(x), . . . ,

Ŵ T
i Si (x)]T (i = 1, 2, ..., n) are employed to approximate

the unknown φ(x; p).
The following law is employed to update the neural

weights

˙̂Wi = ˙̃Wi = −�i Si (x)x̃i − σi�i Ŵi (8)

Here, x̃i = x̂i − xi , W̃i = Ŵi − W ∗
i , W

∗
i is the ideal con-

stant weight vector such that φi (x; p) = W ∗
i
T Si (x)+ εi (x),

εi (x) < ε∗ represents the neural network modeling error,
�i = �T

i > 0, and σi > 0 is a small value.
With Eqs. (5)–(7), the derivative of the state estimation

error x̃i satisfies

˙̃xi = −ai x̃i +Ŵ T
i Si (x)−φi (x; p) = −ai x̃i +W̃ T

i Si (x)−εi .

(9)

In the third step, by utilizing the local approximation prop-
erty of RBF neural networks, the overall system consisting
of the dynamical model (9) and the neural weight updating
law (8) can be summarized in the region �ζ

[ ˙̃xi˙̃Wζ i

]
=

[ −ai Sζ i (x)T

−�ζ i Sζ i (x) 0

] [
x̃i
W̃ζ i

]
+

[ −εζ i

−σi�ζ i Ŵζ i

]

(10)

and

˙̂Wζ̄ i = ˙̃Wζ̄ i = −�ζ̄ i Sζ̄ i (x)x̃i − σi�ζ̄ i Ŵζ̄ i (11)

Here, εζ i = εi − W̃ T
ζ̄ i
Sζ̄ (x). The subscripts (·)ζ and (·)ζ̄

denote terms related to regions close to and far away from the
trajectoryϕζ (x0). The region close to the trajectory is defined
as �ζ := {Z |dist(Z , ϕζ ) ≤ dι}, where Z = x, dι > 0
is a constant satisfying s(dι) > ι, s(·) is the RBF used in
the network, and ι is a small positive constant. The related
subvectors are given as: Sζ i (x) = [s j1(x), . . . , s jζ (x)]T ∈
RNζ , with the neurons centered in the local region �ζ , and
W ∗

ζ = [w∗
j1, . . . , w

∗
jζ ]T ∈ RNζ is the corresponding weight

subvector, with Nζ < N . For localizedRBFneural networks,
|W̃ T

ζ̄ i
Sζ̄ i (x)| is small, so εζ i = O(εi ).

According to Theorem 1 in [78], the regression subvector
Sζ i (x) consistently satisfies the persistence of excitation con-
dition. This ensures the exponential stability of (x̃i , W̃ζ i ) = 0
in the nominal part of the system (10). As indicated by
the analysis in [78], the estimate error for the neural net-
workweights, W̃ζ i , converges to small neighborhoods around
zero. The size of these neighborhoods is determined by εζ i

and ‖σi�ζ iW ∗
ζ i‖, both of which are small values. This sug-

gests that the entire RBF network Ŵ T
i Si (x) can effectively

approximate the unknown φi (x; p) along the trajectory ϕζ .
Consequently,

φi (x; p) = Ŵ T
i Si (x) + εi1 (12)

where εi1 = O(εζ i ).
Following the convergence result, we can derive a constant

vector of neural weights as

W̄i = meant∈[ta ,tb]Ŵi (t), (13)

where tb > ta > 0 represent a time segment after the
transient process. Therefore, we conclude that accurate iden-
tification of the function φi (x; p) is obtained along the
trajectory ϕζ (x0) using W̄ T

i Si (x), i.e.,

φi (x; p) = W̄ T
i Si (x) + εi2 (14)

where εi2 = O(εi1) and subsequently εi2 = O(ε∗).

Classificationmechanism

In this section, we introduce a classification scheme for dis-
tinguishing between normal and MI-related ECG signals.

Consider a training dataset comprising ECG system pat-
terns ϕk

ζ , where k = 1, . . . , M . The k − th training pattern

ϕk
ζ is generated from the following initial value problem:

ẋ = Fk(x; pk) + vk(x; pk), x(t0) = xζ0, (15)

where Fk(x; pk) represents the ECG system dynamics,
vk(x; pk) represents the modeling uncertainty, and pk is the
system parameter vector.
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As described in Sect. 2.6, the general ECG system dynam-
ics φk(x; pk) := Fk(x; pk) + vk(x; pk) can be precisely
derived and retained in constant RBFNNs W̄ kT S(x). Utiliz-
ing the acquired knowledge from the training stage, a set of
M estimators is built for the training ECG system patterns
using the following dynamics:

˙̄χk = −B(χ̄k − x) + W̄ kT S(x), (16)

where k = 1, . . . , M denotes the k-th estimator, χ̄k =
[χ̄k

1 , . . . , χ̄k
n ]T represents the state of the estimator, B =

diag[b1, . . . , bn] is a diagonal matrix that remains the same
for all estimators, x is the state of an input test ECG system
pattern generated from Eq. (5).

During the classification phase, the comparison between
the test ECG system pattern, representing either a normal or
MI ECG system pattern, generated from the ECG system (5)
and the set of M estimators (16) results in the following test
error systems:

˙̃χk
i = −bi χ̃

k
i + W̄ kT

i Si (x) − φi (x; p), i = 1, . . . , n,

k = 1, . . . , M, (17)

Here, χ̃k
i = χ̄k

i − xi represents the state estimation (or syn-
chronization) error. The average L1 norm of the error χ̃k

i (t)
is computed as:

‖χ̃k
i (t)‖1 = 1

Tc

∫ t

t−Tc
|χ̃k

i (τ )|dτ, t ≥ Tc, (18)

where Tc is the cycle of the ECG signal.
The core concept behind classifying normal and MI ECG

signals lies in determining if a test ECG systempattern is akin
to the trained ECG system pattern s (s ∈ {1, . . . , k}). The
constant RBF network W̄ sT

i Si (x) embedded in the matched
estimator s will q promptly recall the learned knowledge
by providing an accurate approximation to the ECG system
dynamics if the patterns are similar. Consequently, the cor-
responding error ‖χ̃ s

i (t)‖1 will be the smallest among all the
errors ‖χ̃k

i (t)‖1. Based on the principle of the smallest error,
the test ECG system pattern can be classified. The classifica-
tion scheme is outlined as follows:

Detection scheme: If, for some finite time t s where s ∈
1, . . . , k and i ∈ 1, . . . , n, the condition |χ̃ s

i (t)|1 < |χ̃k
i (t)|1

holds for all t > t s , then the observed ECG system pattern
can be classified, and the presence of MI can be detected.

Experimental results

The proposed method is confirmed to be effective through
multiple experiments. To minimize the variance of the clas-

sifier estimates, a 10-fold cross-validation will be utilized
for evaluating classification results. Our system’s perfor-
mance was assessed using six distinct metrics: Sensitivity
(SEN), Specificity (SPF), Accuracy (ACC), Positive Predic-
tive Value (PPV), Negative Predictive Value (NPV), and the
Matthews Correlation Coefficient (MCC).

SEN = TP

TP + FN
× 100(%), (19)

SPE = TN

TN + FP
× 100(%), (20)

ACC = TP + TN

TP + TN + FN + FP
× 100(%), (21)

PPV = TP

TP + FP
× 100(%) (22)

NPV = TN

TN + FN
× 100(%) (23)

MCC = TP × TN − FN × FP√
(TP + FN)(TP + FP)(TN + FN)(TN + FP)

,

(24)

where true positives, false negatives, true negatives, and false
positives are abbreviated as TP, FN, TN, and FP, respectively.

Regarding data preprocessing, lead II ECG signals from
the PTB database were filtered using Butterworth low-pass
filters with cut-off frequencies of 45 Hz and 20 Hz to remove
noise. Signals were then normalized by dividing by the max-
imum amplitude. For the proposed method’s key parameters,
the SEE calculation did not involve setting parameters. For
FA-MVEMD, a tolerance value of 0.2 was used as the stop-
ping criterion. During the training phase, the RBF network
Ŵ T

i Si (x) is established on a regular lattice with N = 83521
nodes. These nodes are positioned at evenly spaced intervals
on the domain [−1, 1] × [−1, 1] × [−1, 1] × [−1, 1]. Each
node has a center μi and a width parameter η = 0.15. The
weights of the RBF neural network are iteratively updated
using Eq. (8), with the initial weights set to Ŵi (0) = 0. Addi-
tionally, the parameters for designing Eqs. (7) and (8) are
specified as follows: ai = 0.75,� = diag{1.5, 1.5, 1.5, 1.5},
and σi = 20 for i = 1, . . . , 4. During the classification stage,
RBF network estimators are formed using the constant net-
works W̄ kT

i Si (x), as defined by Eq. (16). The parameters
utilized in Eq. (16) are specified as bi = −1000. A 10-fold
cross-validation approach was implemented to evaluate the
classification performance andminimize the variance of esti-
mates. Specifically, the datawas randomly partitioned into 10
equal subsamples, with 9 subsamples (90% of data) used for
model training and 1 subsample (10% of data) retained for
testing in each fold iteration. The cross-validation process
was repeated 10 times, with each subsample used exactly
once for validation testing. The performance metrics aver-
aged over all 10 test folds are reported, providing a reliable
estimate of the model’s generalization capability. We opted
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Table 4 Assessment of the classification performance on unbalanced original recordings: 78 normal vs. 367 MI recordings

Evaluated features Predicted groups Actual groups SEN (%) SPE (%) ACC (%) PPV (%) NPV (%) MCC

Normal MI

[im f1SEEy(t) , im f2SEEy(t) , im f1SEEẏ(t) , im f2SEEẏ(t) ]T Normal 71 7 98.37 91.03 97.08 98.10 92.21 0.899

MI 6 361

Table 5 Assessment of the classification performance in balanced dataset: 78 normal vs. 78 MI recordings

Evaluated features Predicted groups Actual groups SEN (%) SPE (%) ACC (%) PPV (%) NPV (%) MCC

Normal MI

[im f1SEEy(t) , im f2SEEy(t) , im f1SEEẏ(t) , im f2SEEẏ(t) ]T Normal 72 6 92.31 91.03 91.67 91.14 92.21 0.833

MI 7 71

for 10 folds to adequately balance bias/variance tradeoffs—
using too few folds risks high variance while excessive folds
increase computational expense. The classes were stratified
during partitioning to ensure the relative class distribution
was preserved across each fold split. We implemented the
algorithms in MATLAB R2022a and ran the simulations
using a system equipped with Intel i7-6700K CPU, 32GB
RAM, andNvidia RTX 3090GPU. The neural networkmod-
eling leveraged GPU acceleration to improve efficiency.

The classification outcomes for normal and MI-related
ECG signals, utilizing raw data and the two distinct data bal-
ance methods mentioned previously, are depicted in Table 4,
Tables 5, and 6. The overall average accuracy for three types
of data size are reported to be 97.08%, 91.67% and 99.21%,
respectively. Utilizing neural network-based classification
tools and nonlinear ECG system dynamics, our proposed pat-
tern classification system has achieved good performance in
detectingMI signals, as demonstrated by the results obtained
from our classification approach.

Discussion

In recent years, the binary classification of ECG signals has
been addressed through various techniques, as per the liter-
ature. We have conducted experiments to evaluate how well
our proposedmethod detectsMI and the results are presented
and discussed. To provide a comprehensive comparison, we
have included cutting-edge methods in Table 7.

Some researches employed morphological characteris-
tics to extract features. Sometimes statistical analysis was
also accompanied. For example, Dohare et al. [20] utilized
four clinical characteristics—Pduration,QRSduration, ST-T
complex interval, andQT interval—to compute various ECG
features, including, area, mean, standard deviation, and kur-
tosis. The average beats of all 12-lead ECG signals were used
to determine these clinical characteristics. By implementing

PCA as a means of reducing features, Dohare et al. [20] was
able to decrease the computational complexity. Their SVM
classifier achieved an accuracy of 98.33% for identifyingMI.
By analyzing the ECG waveform, it is possible to identify
morphological and temporal alterations that are indicative of
MI by the distribution pattern of Fourier harmonics’ phase,
as noted by Sadhukhan et al. [17]. Two discriminative fea-
tures were extracted from the standard ECG leads (II, III, and
V2) to reflect the variations that occur. Data were classified
into healthy and MI using a threshold-based classification
algorithm and logistic regression, with an average accuracy
of 95.6%.

Several signal processing tools have been applied on the
morphological characteristics to form some new discrim-
inative features. Machine learning based classifiers were
utilized for the MI detection. For example, Han and Shi
[23] used maximal overlap discrete wavelet packet trans-
form (MODWPT) to divide the ECG signals. Global features
were then generated by calculating energy entropy from the
decomposed coefficients. Local morphological features were
generated by computing area, kurtosis, skewness, and stan-
dard deviation from the QRS wave and ST-T segment of
ECG beats. The SVM for MI detection used hybrid feature
vectors that combined global and local features, resulting in
an accuracy of 99.81%. Using the flexible analytic wavelet
transform (FAWT), ECG beats were decomposed into sub-
band by Kumar et al. [63]. Sample entropy (SEnt) was
then calculated from these subbands for MI detection, and
the least-squares support vector machine (LS-SVM) clas-
sifier was trained with SEnt, resulting in an accuracy of
99.31%. Dual-Q TQWT and wavelet packet tensor decom-
position (WPTD) method were utilized by Liu et al. [26] to
extract features forMI detection, which were then reduced in
dimension and intrinsic information preserved by multilin-
ear principal component analysis (MPCA). The classifier of
bootstrap-aggregated decision trees (BADT) was then fed
with 84 discriminate features and reached 97.46% accu-
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Table 6 Assessment of the classification performance in balanced dataset using SMOTE method: 390 normal vs. 367 MI recordings

Evaluated features Predicted groups Actual groups SEN (%) SPE (%) ACC (%) PPV (%) NPV (%) MCC

Normal MI

[im f1SEEy(t) , im f2SEEy(t) , im f1SEEẏ(t) , im f2SEEẏ(t) ]T Normal 387 3 99.18 99.23 99.21 99.18 99.23 0.984

MI 3 364

Table 7 Tabulated results of the classification accuracy achieved through cross-validation with 10-fold splits on normal and MI participants

List of references Amount of leads Extrapolation of features Amount of features Classifiers Accuracy

Dohare et al. [20] (2018) 12 leads Morphological features 14 SVM 98.33%

Sadhukhan et al. [17] (2018) Lead II, III and V2 A discrete Fourier transform’s phase 8 Logistic regression 95.60%

Han and Shi [23] (2019) 12 leads MODWPT and energy entropy 192 SVM 99.81%

Kumar et al. [63] (2017) Lead II FAWT and sample entropy 25 LS-SVM 99.31%

Liu et al. [26] (2020) 12 leads Dual-Q TQWT + WPDT 84 BADT 97.46%

Zhang et al. [79] (2021) 12 leads Tensorization based on DWT + PFA 36 BDT 99.88%

Acharya et al. [47] (2017) Lead II End-to-end learning structure 11 CNN 95.22%

Jafarian et al. [80] (2020) 12 leads DWT 84 CNN 98%

Jian et al. [81] (2021) 12 leads Single-scale features 15 MLFCNN 95.76%

Hammad et al. [82] (2022) 12 leads End-to-end learning structure 128 CNN with focal loss 98.8%

Li et al. [44] (2022) Lead II End-to-end learning structure 11 SLC-GAN 99.06%

Proposed work Lead II SEE + FA-MVEMD 4 Dynamical estimators 99.21%

racy. Zhang et al. [79] suggested a method for constructing
an effective ECG tensor for MI detection, which involved
tensorization based on DWT to capture multi-dimensional
association information contained in 12-lead ECG signals.
The tensor’s characteristic features were then automatically
extracted using Parallel Factor Analysis (PFA), and bagged
decision tree (BDT) classifier was used to classify these fea-
tures, leading to 99.88% accuracy for MI detection.

As a complement to traditional machine learning-based
classifiers, deep learning networks have been extensively
employed inMI detection.With an end-to-end learning struc-
ture and without the need for hand-crafted feature extraction,
Acharya et al. [47] performed MI detection with single-lead
ECG signals using a deep learning approach. The approach
relied on a CNN-based deep learning algorithm, achieving
93.53% accuracy. A shallow neural network was employed
by Jafarian et al. [80] for classification after performingDWT
and PCA on ECG signals. The use of an end-to-end resid-
ual deep learning technique and the direct application of a
CNN on pre-processed input signals led to 98% accuracy
for MI detection. Jian et al. [81] constructed a convolutional
layerwith a variable number of filters and usedmultiple input
scales to optimize the CNN structure. They utilized a multi-
lead features-concatenate narrow network (MLFCNN) that
combined single-scale features with nine filters and achieved
an average accuracy of 95.76% in detecting MI. The same
task can be improved using a CNN model that incorporates
12-lead ECG signals, as suggested byHammad et al. [82]. To

optimize the deepmodel, they introduced a new loss function
called the focal loss, which indirectly prioritizes imbalanced
data. As a result, 98.8% accuracy was achieved. A highly
accurate automated MI detection model, SLC-GAN, was
produced by [44] utilizing generative adversarial networks
(GAN) to generate single-lead ECG data that closely resem-
bles actual data in terms ofmorphology. Combining both real
and synthetic ECGs, the model developed by Li et al. [44]
employs CNN to accurately detect MI with an exceptional
average accuracy of 99.06%.

In contrast to previous methodologies, this study presents
a new algorithm to extract features by utilizing a hybrid
method that incorporates SEE and FA-MVEMD techniques
to extract nonlinear features. Deterministic learning based
dynamical estimators use the extracted features to classify
ECG data as either normal or MI-related. Table 7 shows how
the classification performance on the same database com-
pares to other cutting-edge methods. The method used in this
study, which involved modeling, identification, and classifi-
cation of ECGsystemdynamics, differed fromothermethods
that used feature vectors as input for the classifier. In terms of
accuracy, as shown in Table 7, the proposedmethod achieved
99.21% classification accuracy on the PTB database, out-
performing state-of-the-art methods like deep CNNs and
other machine learning classifiers that range from 95 to 99%
accuracy. By effectively capturing nonlinear dynamics, the
method demonstrates high detection ability.

123



Complex & Intelligent Systems (2024) 10:4755–4773 4769

As stated byDohare et al. [20], it took an average of 24.50 s
to process signals and detect feature vectors from 10-second
data, whereas training the classification data took an aver-
age of 12.50 s, while testing took an average of 0.011 s.
The LR classifiers used by Sadhukhan et al. [17] required
an average of 0.062s for training, while the average calcula-
tion time for classifying an ECG record was 0.95 s, including
0.93 s for beat extraction, 0.0129s for feature extraction,
and 0.01163s for final classification. In Liu et al. [26], it
was reported that the Treebagger classifier took 223.13 s
for training and 0.67 s for testing. According to Jafarian
et al. [80], the deep CNN had a training phase that lasted
1475.5 ± 110.37 s, while MI detection from the test data
set was almost instantaneous (0.01–0.02 s). The proposed
method was evaluated using Matlab software on a computer
equipped with an Intel Core i7 6700 K 3.5 GHz processor
and 32 GB of RAM to assess its efficiency in terms of train-
ing and classification time, revealing that it took an average
of 216.3 s to train and 0.4 s to classify one ECG pattern.
Since the training phase of the proposed method typically
employs offline data, the classification time is considered
more important in practical applications. As a result, the pro-
posed method takes an acceptable amount of time. Due to
the dependence of expense of computation on factors such
as pattern numbers, neuron number, feature dimension, and
computer performance, the use of graphics processing units
(GPUs) and high-performance computers may be necessary.
The challenge mentioned is a common occurrence in neu-
ral network-based research. However, after training, no time
cost is incurred when implementing the trained models. To
enhance computational performance and decrease complex-
ity and time cost, Our future work will focus on improving
the algorithm’s structure and incorporating new hardware
and software. This will make real-time MI detection more
practical.

As for applicability to different scenarios, a key benefit
of using single-lead ECG input is the method’s potential
for integration into ambulatory and wearable monitoring
devices, where multi-lead recordings are challenging. This
could enable pre-hospital MI diagnosis. The approach could
also complement existing MI detection systems that depend
on expertise or multiple signals. Furthermore, the presented
framework of modeling system dynamics could be extended
to classify other dynamical diseases using their biosig-
nals. In summary, while not superior in every aspect, the
proposed technique achieves excellent accuracy with com-
petitive efficiency. Most importantly, by learning nonlinear
system dynamics, it demonstrates promising versatility for
adoption in varied real-world MI detection contexts.

We chose the PTB database for the following reasons: (1)
It contains a sizable and well-organized collection of ECG
recordings specifically associated with MI. Our primary aim
in this study is to detect MI in ECG signals, so this database

provides an abundant source of relevant data. It includes
549 recordings from 290 subjects, with 148 confirmed MI
patients. (2) The database incorporates simultaneous 12-lead
and 3-lead recordings, providingmultiple ECG leads that can
be analyzed. Lead II is commonly utilized in the literature
and clinical practice for rhythm analysis and was thus cho-
sen in our study for compatibility and potential translation.
(3) Recordings have a 16-bit resolution sampled at 1kHz,
ensuring adequate signal quality for detailed ECGwaveform
analysis related to automated MI detection. Lower sampling
rates can miss key waveform features. (4) The recordings
have undergone rigorous quality checks, such as baseline
corrections, noise reductions etc. This ensures good signal
quality and reliability for analysis. (5) Patient clinical status
and diagnosis outcome labels are provided for all recordings,
enabling the validation of algorithmic MI detection perfor-
mance in our experiments. Many public ECG databases lack
this critical diagnostic ground truth information. (6) The
open-source accessibility and widespread utilization of this
standardizeddatabase facilitates comparisonwith other state-
of-the-art methods that leverage these same signals. This
helps benchmark the achieved results. Considering that the
key focus and contribution of this work was on the algo-
rithm and modeling methodology rather than the dataset
compilation, we decided to demonstrate the efficacy com-
prehensively on the standardized PTB database. While we
opted to utilize the PTB database given its specific relevance
and abundant availability of MI data, we acknowledge that
several other publicly accessible ECG datasets contain MI
and healthy control samples, such as the database curated by
Wagner et al. [83]. Testing on multiple datasets could fur-
ther demonstrate the generalizability of our approach across
diverseECGdata.Although the promising accuracy achieved
on the PTB benchmark is an encouraging first step, eval-
uating the proposed technique on additional MI databases
will comprise important future work to validate effectiveness
beyond a single dataset. Experiments could assess whether
the nonlinear ECG signal dynamics leveraged in our model
can reliably detect MI cases regardless of recording equip-
ment, demographics, or data formats. Applying the algorithm
to other MI databases likeWagner et al. [83] would also help
determine if any dataset-specific tuning is necessary or if the
method can be readily deployed in a dataset-agnostic man-
ner. By experimenting with different publicly available MI
corpora, we aim to establish the robustness and versatility
of the proposed dynamical modeling approach for MI detec-
tion from varied ECG data. Testing generalizability across
multiple datasets will underscore strengths and limitations
to guide refinements toward expanded clinical applicability
of the technique.

As most classifiers are designed for balanced class prob-
lems, imbalanced data sets can significantly impact their
performance when applied. Large imbalances in the data can
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prevent the classifier from being trained effectively, result-
ing in inaccurate classification, while minor imbalances in
class sizes are generally tolerable. The over-representation
of the majority class and under-representation of the minor-
ity classes in imbalanced data sets can cause overfitting
in the former and“underfitting”in the latter, resulting in
suboptimal classification performance. Because of the under-
representation of minority classes in imbalanced data sets,
classifiers may not be well-trained for these classes and
may be more biased towards predicting the majority classes
with greater success. Imbalanced data sets necessitate the
use of different evaluation metrics to validate the perfor-
mance of classifiers. The overall accuracy of the classifier
may not accurately reflect the minority class’s performance
due to under-representation. Hence, to address the issue
of imbalanced data, in this work, the minority class data
(Normal) are oversampled using the SMOTE scheme. This
technique creates artificial instances for the minority class
by generating new samples between the existing ones, pre-
serving the dissimilarity between the majority and minority
groups, and leading to balanced data classes. Moreover, it is
worth noting that data imbalance may not significantly affect
the classifier’s overall accuracy. We conducted two distinct
experiments, one on the original dataset with data imbalance
(Table 4), and the other on the dataset oversampled using
SMOTE (Table 6), both utilizing the same features. The
results showed an accuracy of 97.08% and 99.21%, respec-
tively, indicating that the oversampling technique effectively
improved the classificationperformancewithout compromis-
ing the overall accuracy.

To summarize, the experimental findings indicate that the
proposed method is effective in detectingMI with high accu-
racy. The suggested technique’s framework has a number
of crucial elements that together ensure that the proposed
method performs satisfactorily in terms of categorization.
By preferentially amplifying low-intensity components and
attenuating high-intensity components, SEE provides a more
accurate representation of the discrepancy in ECG system
dynamics. The identification of the predominant IMFs by
FA-MVEMD facilitates the extraction of ECG signals’ most
significant nonlinear information, leading to improved speed
and efficiency. With the integration of neural networks and
deterministic learning, it becomes achievable to precisely
model and recognize the nonlinear dynamics of ECG sys-
tems across various ECG signals.

While the proposed method demonstrates good accu-
racy in detecting MI, there remain limitations to address
regarding real-world clinical application. In terms of compu-
tational efficiency, the current algorithm structure has room
for optimization to enhance performance and decrease com-
plexity. Additional refinements could leverage new software
and hardware advancements to achieve true real-time analy-
sis. As such, real-time MI detection on resource-constrained

platforms remains a challenge needing further work. Validat-
ing the approach across diverse patient populations is also
an essential next step before clinical deployment. Despite
strong results on public ECG data, application in real-world
settings can differ. Comparing performance to current gold
standard diagnoseswill help establish feasibility and suitabil-
ity for various use cases. Given the reliance on single-lead
inputs, the proposed method shows promise for integration
with ambulatory or wearable monitoring devices. This could
enable convenient detection to guide prehospital triage or
emergency department decisions. However, rigorous testing
is still required before such adoption in point-of-care scenar-
ios. In summary, while the technical merits are promising,
additional algorithm refinements and extensive clinical vali-
dation will be vital to translate accuracy gains into real-world
practice. Assessing challenges around efficiency, valida-
tion across patient variability, and comparison with existing
methods remains important future work. Addressing these
limitations will better position the approach for clinical value
and downstream adoption.

Conclusions

Our proposed model, which is based on deterministic learn-
ing, can detect MI on single-lead ECG signals automatically
and offers advantages such as reduced feature dimension and
the employment of ECG system dynamics as a discrimina-
tor. Our proposed method has been extensively simulated
on real-world ECG datasets, resulting in comprehensive out-
comes that demonstrate its efficiency in separating normal
and MI-related ECG patterns. The core novel contribution is
that, rather than simply extracting signal features for classi-
fication, we model the underlying dynamics of ECG systems
and leverage the differences in those dynamics between nor-
mal and diseased states to perform automated detection. The
average classification accuracy of 99.21% achieved on a
cross-validated real patient database serves to validate that
the nonlinear systemmodeling approach can effectively cap-
ture abnormal dynamics to identifyMI cases.While accuracy
itself does not conclusively demonstrate a method’s efficacy,
this level of performance on par with state-of-the-art tech-
niques substantiates the viability of our proposed modeling
and dynamics discriminationmethodology for the automated
MI detection task. In conclusion, our results confirm the
proposed features are consistent with ECG system dynam-
ics, as well as complementing current ECG features in the
automation of MI detection. One of the key future directions
concerning the proposed work is to verify the model in a
clinical setting to further assess its efficacy and fitness for
deployment. To sum up, the proposed scheme is expected
to streamline MI diagnosis, lessen the burden on clinicians,
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and notably influence the feasibility of a clinicalMI detection
device.
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