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Abstract
Anomaly detection poses a significant challenge in the industry and knowledge distillation constructed using a frozen teacher
network and a trainable student network is the prevailing approach for detecting suspicious regions. Forward and reverse
distillation are the main ways to achieve anomaly detection. To design an effective model and aggregate detection results,
we propose a dual-student knowledge distillation (DSKD) based on forward and reverse distillation. Taking advantage of the
priority of reverse distillation to obtain high-level representation, we combine a skip connection and an attention module to
build a reverse distillation student network that simultaneously focuses on high-level representation and low-level features.
DSKD uses a forward distillation network as an auxiliary to allow the student network to preferentially obtain the query image.
For different anomaly score maps obtained by the dual-student network, we use synthetic noise enhancement in combination
with image segmentation loss to adaptively learn the weight scores of individual maps. Empirical experiments conducted on
theMVTec dataset show that the proposedDSKDmethod achieves good performance on texture images as well as competitive
results on object images compared with other state-of-the-art methods. Meanwhile, ablation experiments and a visualization
analysis validate the contributions of each of the model’s components.

Keywords Anomaly detection · Knowledge distillation · Dual-student

Introduction

Anomaly detection is a critical process that involves deter-
mining whether a given sample deviates from the normal
distribution and detecting its unusual components, and it has
a wide range of applications in industrial control [12, 33],
product quality control [4, 43], and other fields [5, 22, 32].
Real-world datasets present challenges due to their charac-
teristics of widely varying distributions and the scarcity of
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anomalous samples, which result in limited prior knowledge
about an anomalous class. For single-class detection, such
as in singular value decomposition [17] and one-class SVM
[16], a feature is mapped to higher dimensions to increase
the characterizability of normal samples; however, this is
accompanied by relatively limited feature extraction capa-
bilities. In image-related fields, deep neural networks have
shown promising results. Methods like [37] extract latent
features that characterize the dataset while detecting objects.
However, over-parameterization often occurs for networks
trained only on normal samples, and how to apply the fea-
ture extraction capability of deep neural networks is a hot
topic [30, 31].

The teacher–student (T–S) architecture [41] is an impor-
tant part of anomaly detection, and for situations where only
normal samples can be observed, anomalies will be identified
by observing a teacher model trained with a large amount of
data and comparing it with a student model trained with nor-
mal samples. In contrast to the traditional T–S architecture
that pursues smaller student network parameters to achieve
fast inference, the T–S architecture for anomaly detection
exploits the inconsistency of different networks on the train-
ing data to detect anomalous samples. The teacher network’s
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parameters are typically trained on large datasets, such as
ImageNet [15], to obtain semantically strong descriptors.
Meanwhile, the student network takes normal samples as
input during training, compares its feature map with the
corresponding hierarchical teacher network’s map, and uses
the cosine similarity or mean squared error as loss. The
assumption of the T–S architecture is that the ability of the
teacher network to encode the images is transferred to the
student network as much as possible. The student network is
trained with normal samples by default, which differs from
the pre-trained teacher network especially when dealing with
anomaly images. Anomaly score maps result from compar-
ing the feature maps of the two networks.

Since the student network uses the teacher network as
the learning object, constructing the student network more
efficiently is a key concern for anomaly detection. Some
studies have approached the construction of different pre-
trained teacher models or distillation methods. For instance,
Xu et al. [46] proposes to use multiple teacher networks to
handle different detection objects while Deng and Li [14]
proposes to use reverse distillation to obtain comprehensive
representations of teacher networks. Jiang et al. [23] conduct
work based on [14] and introduce pixel-level and feature-
level masking to alleviate the overgeneralization problem.
Cao et al. [8] argues that increasing the knowledge of the
student network is an effective way to improve model recog-
nition. In previous studies, which have focused primarily on
guided learning of single student networks, including the use
of methods such as soft logit [46] and one-class embedding
[14]. Ma et al. [29] in showing the effectiveness of training
student networks using multiple pre-trained teacher models.
Since different distillation methods have various advantages,
it is beneficial to construct diverse student networks and
aggregate their score maps.

To construct student networks that effectively generate
recognition score maps, we adopt a dual-student approach
that leverages high-level and low-level representations and
performs subsequent aggregation. We propose a student net-
work architecture for anomaly detection based on a skip
connection and an attention mechanism based on reverse
distillation. The attention mechanism supporting the student
network determines which feature maps are more important
in the teacher’s hierarchy. In addition, we develop a forward
distillation student network that integrates the anomaly score
maps obtained from both students using synthetic noise. Our
main contributions are given below.

• We propose a novel multi-student knowledge distillation
framework for anomaly detection and localization named
DSKD. Through synthetic noise, DSKD aggregates the
scoremaps obtained from twodifferent student networks,
thus leading to a more powerful representation of learn-
ing.

• To further improve the efficiency and effectiveness of
anomaly detection and localization during reverse dis-
tillation, we propose a skip connection architecture to
help the student network obtain the information of the
layer corresponding to the teacher; moreover, an atten-
tion module is added to help the student recombine the
features.

The remainder of this paper is divided into five sections.
“Related work” presents related work on anomaly detection
and knowledge distillation. “Mythology” introduces our pro-
posed method. “Experimental results and analysis” presents
our experiments and analysis. A conclusion is given in “Con-
clusion”.

Related work

Anomaly detection

Anomaly detection, also known as outlier detection or nov-
elty detection, involves identifying samples that deviate from
the rest of the observations. In our work, we assume that a
model is trained using only normal samples, and since there
is no supervisory information fromother classes, the problem
is treated as novelty detection. Traditional methods such as
singular value decomposition and one-class SVM construct
a hypersphere or hyperplane to check whether outliers are far
from the hypersphere center. Deep learning-based methods
are also used in anomaly detection due to the effectiveness
of neural networks in feature extraction.

Methods based on autoencoders utilize reconstruction
error as a primary measure for judging sample abnormal-
ity. This approach has found wide application in various
domains such as video analysis [28], Internet of Things (IoT)
[48], and railway turnout inspection [9]. For instance, [6]
evaluates the application of an autoencoder for visual fault
detection and finds that there are deficiencies in the recon-
struction of high-frequency textures and small details using
a convolutional autoencoder combining l2 loss and the struc-
tural similarity index.Üzen et al. [40] combines a convolution
layer and swin transformer,where the former provides spatial
properties and the latter provides global semantic properties.
Meanwhile, [25] reduces false positives of an autoencoder
by contrastive learning of complex shapes, sizes, and colors
of the recruitment samples. In addition, skip connections are
widely used in autoencoders to help the model reconstruct
sharpness while preserving both high- and low-frequency
information [11].

GAN-basedmethods use normal samples to train amodel,
and then they compare the generator, discriminator, and
reconstructor for detection [45]. AnoGAN [36] uses nor-
mal data to train the model and compute the reconstruction
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errors between the generator and discriminator. Moreover,
GANomaly [2] uses latent vectors of generators and dis-
criminators to obtain an anomaly score. Skip-GANomaly
[3] combines reconstruction metrics and latent representa-
tions using skip connections to improve the underdetection
of small-scale anomalies in GANomaly. The discriminator
identifies deviations from the normal distribution by com-
paring the reconstructed image with the original, particularly
when the reconstruction is of poor quality. However, relying
solely on reconstruction errorsmeans that we do not fully uti-
lize the potential of a large dataset. To address this limitation,
a teacher–student (T–S) architecturewas introduced. Further-
more, it was found that skip connections majorly improve
anomaly detection as they provide high-frequency features
as well as relevant support for our network’s design.

Knowledge distillation

With the advent of deep learning, networks designed to
enhance classification accuracy have become increasingly
deep andwide, resulting in substantial computational require-
ments for both training and testing. Conventional knowledge
distillation is designed to give models a lighter architecture
and reduce inference time.Knowledge distillation techniques
involve leveraging a trained teacher network to transfer
knowledge to a student network through soft loss distilla-
tion, thereby offering the potential for real-time predictions.
Bergmann et al. [7] proposes a T–S network trained on large
datasets and normal samples; anomaly detection involves
processing external datasets by comparing the two networks.
To further improve the student network’s ability to recover
the original image, a denoising process [49] is introduced. It
trains the student network with an anomaly mask to recover
the original image using synthetic corrupted normal images.
Under the assumption that the teachermodel is underutilized,
a gradient-based adaptive anomaly localization approach
[35] based on the distillation of intermediate layer feature
maps is proposed. Maps are sufficiently distilled to simplify
the model and bypass the patching process. Tong et al. [39]
is similar to [50] in that they both introduce self-supervised
mask training for reinforcement learning of WideResNet50-
based single-class prototype models as well as employ a
feature diffusionmodule to identify large-area anomalies.Ma
et al. [29] argues that teacher networks with different struc-
tures or initial parameters provide features from different
perspectives and thus also supports the notion that construct-
ing reliable feature maps is important in T–S-based anomaly
detection.

Mythology

In anomaly detection, training data typically consists of only
normal images. A crucial aspect of generating anomaly score
maps involves constructing comparison networks based on
teacher networks. There is a need to improve the sensitiv-
ity of students to the semantics and details to achieve both
sample- and pixel-level anomaly detection. In our proposed
method, we employ a teacher network as an anchor point and
utilize distillation inmultiple directions to obtain two student
networks. Subsequently, we design a fusion network to com-
bine the anomaly score maps generated by these students.
The validity of our approach is demonstrated through both
semantic and pixel anomaly detection.

Problem definition

An important assumption for anomaly detection is that
anomalous samples are difficult to acquire or observe dur-
ing training. Consistent with the literature [14] on anomaly
detection, we let Lt = {L1

t , ..., L
n
t } be a normal sample

in the dataset that only appears in training, thereby allow-
ing the model to learn the normal distribution. Let Lq =
{L1

q , ..., L
n
q} denote the samples to be detected; this set con-

tains normal and abnormal data. Our goal is to construct a
model trained with Lt that correctly identify the samples
in Lq . Normal samples in Lt and Lq conform to the same
distribution, and samples outside of this distribution are con-
sidered anomalies. Taking the screw category of samples as
an example, the model trained with screw samples is only
used for detection within that category. Data that deviates
from the distribution of that category will be considered an
anomaly.

Network architecture

Figure1 shows our model architecture. Unlike those with
multiple teachers [29], our architecture uses only a pre-
trained teacher network E that extracts multi-scale repre-
sentations of normal samples. Since anomaly detection is
usually pixel-level mining, i.e., it is similar to image seg-
mentation, it is sensitive to both high-level and low-level
representation details. We propose to extract these represen-
tations using students Df and Dr. Dr uses reverse distillation
to obtain high-level representations while connecting E’s
previous feature maps to get different levels representations.
Meanwhile, we retain low-level representations using for-
ward distillation network Df and fuse the Df network with
the Dr network. In the inference stage, multi-scale anomaly
detection is performed using Dr and Df , separately, and a
unique anomaly map is obtained by each component of the
fused network.
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Since we focus on the network design of the student net-
work, for the teacher network we simply useWideResNet50:
it has more capacity and benefits less from input repetition.
The parameters of the teacher network are learned from the
ImageNet and are fixed. According to the network design
of WideResNet50, the teacher network is divided into four
network structures, with E1–E4 denoting the blocks from
largest to smallest. Correspondingly, the network structures
of Df and Dr, which we will explain in “Forward distillation
student network” and “Reverse distillation student network”,
respectively, are similar to those of the teacher’s blocks. The
adaptive fusion of Df and Dr is elaborated on in “Anomaly
score map fusion”.

Forward distillation student network

The teacher network learns about a diverse and large amount
of external data by pre-training, and the student network
focuses on the normal samples of the dataset during its learn-
ing process. We examine the inconsistencies between the
feature maps of the teacher and student networks to mine
anomaly sampleswith query data. Forward distillation inputs
images to the teacher and student network to obtain feature
maps zt and z f , respectively. By cosine similarity loss, keep-
ing zt and z f in the same direction, the student feature map
is kept numerically diverse. The loss is shown in Eq. (1).

loss = 1 − zt · z f

‖zt‖2 · ‖z f ‖2 (1)

‖zt‖2 and ‖z f ‖2 are l2-norms of zt and z f . In the design
of the Df network, we use a simple approach of directly
feeding data to the teacher and student.We expect the student
network to directly use the data to obtain a more detailed
feature map. At the same time, by not making additional
connections between the student and teacher, we prevent the
teacher from copying parameters to the student network and
hence keep the student network sensitive to anomalies.

In a prediction phase, the anomaly map calculates the
cosine similarity of each z f to the corresponding zt through
Eq. (1). Position-by-position difference results are recorded
and expanded to the original size by interpolation. In this
process, we return the first three anomaly maps to be fused
with the reverse distillation results.

Reverse distillation student network

While Df gives a superficial representation of an image, in
the case of anomalous samples being outside of the normal
distribution, the results of Df and E converges due to their
use of the same data. Deng and Li [14] uses reverse distil-
lation in both the training and prediction phases of the T–S
network to promote the preferential acquisition of seman-

tic knowledge to the student network. Inspired by this, we
introduce skip connections and an attention module and use
reverse distillation to improve the representation of feature
map details since knowledge is then distilled to a shallow
level.

Assume that the t-th block of the student network is Dt
r .

DSKDfirst uses different sizes of convolution kernels (conv1
and conv2) for feature extraction in the previous teacher layer.
We design different perceptual fields to obtain diverse fea-
ture results. The attention module inputs the results of conv1,
conv2 from Et , and Dt

r is obtained by connection with conv
from Dt+1

r .d Using an attention mechanism helps Dr elim-
inate redundant information and learn the features related
to the loss and the E’s previous feature map. The feature
computation in block Dt

r is shown in Eq. (2).

Dt
r < −conv(Dt+1

r ⊕ att(Dt+1
r , (conv1(E

t+1)

⊕conv2(E
t+1)))) (2)

Here, ⊕ denotes the connection, and the outermost convolu-
tion uses a 1 ∗ 1 convolution kernel. The stride for conv1
and conv2 is set to 2 to align with the input size of the
next block. Key features from semantic knowledge Dt+1

r
and teacher Et+1 are selected given to Dt

r to ensure that
important anomaly patterns are captured. The loss function
and anomaly score map generation are consistent with those
used in forward distillation.

Anomaly score map fusion

For the treatment of anomaly score maps at different scales,
methods such as [14] interpolate the results of small cosine
similarity scores and use multiplication or addition to fuse
them with large similarity scores, thus aggregating them into
a single detection result. However, in our approach employ-
ing multiple student networks, a key issue surfaces: which
anomaly score map from student nets is important. To solve
this problem, we add synthetic noise in some regions of the
image and regard this noise as anomaly mask M . The noise
is added using an external data source A in the anomaly-free
normal image In .

Ia = β(M � A) + (1 − β)(M � In) + (1 − M) � In , (3)

where� denotes the element-wisemultiplication operations.
β is opacity, which is regarded as data augmentation to
increase the diversity of the training set, and it is randomly
chosen between [0.15,1]. Such an injection of synthetic noise
is also mentioned in DeSTSeg [49]. DeSTSeg uses a simi-
lar dual-student network for encoding and decoding, but it
requires two residual blocks as a segmentation network; con-
versely, our work is more concerned with the aggregation of
network results. We use an external dataset [10] for A, take
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Fig. 1 Network architecture for DSKD. The realization represents the
direction of data flow and the dotted line represents the anomaly score.
The attentionmechanism is denoted as att . Input images are fed through
a teacher network and two student networks; the kernel sizes for conv1
and conv2 are 3 ∗ 3 and 7 ∗ 7, respectively. Feature comparison uses

cosine similarity to compare each position in feature maps E1 to E3,
providing a description of the inconsistency between the teacher net-
work and the student network. Final result is computed by an anomaly
score fusion network

the feature map of “Forward distillation student network”–
“Reverse distillation student network” as input, and introduce
dice loss [38] as the loss of the separating task. This loss is
shown in Eq. (4).

DL = 1 − 2
∑N

i=1 pi gi
∑N

i=1 p
2
i + ∑N

i=1 g
2
i

(4)

Here, pi is the prediction associated with the i th pixel and gi
is its ground truth. The advantage of using dice loss is that
we introduce a small percentage of syntheticmasks that show
an imbalanced distribution of semantic segmentation, which
is in accordance with the small proportion of faults in one
image. Dice loss focuses onmining foregroundmask regions
during training, and erroneous regions usually show range.
As a region-based loss, dice loss also focuses on the correla-
tion between the current and other pixel values. The anomaly
map fusion network uses a 1 ∗ 1 convolutional kernel size to
aggregate the anomaly score maps. Activation is performed
using relu and sigmoid functions to ensure that the results are
between 0 and 1. In order to preserve the overall image infor-
mation, the amount of added noise is typically restricted. We
use relu to suppress non-zero pixels from entering the sig-
moid, thereby reducing the likelihood of the network failing
to predict the background. We also note that using relu and
sigmoid is a common approach for applying Dice loss [19,

42], while softplus cause the prediction value to exceed one,
surpassing the mask value. For student’s results, cosine sim-
ilarity and interpolation are used to obtain anomaly score
maps with consistent scales, and the final detection map is
obtained using the trained fusion network. The process of
anomaly score map fusion is shown in Fig. 2.

Experimental results and analysis

Implementation details

The dataset used is MVTec [6], which focuses on indus-
trial inspections. It contains 15 categories of images divided
into two types: object and texture. We use 3629 images for
training (these are only normal samples), and 1725 images
for testing (these are both normal and abnormal samples).
All images are resized to 128 ∗ 128 and 256 ∗ 256, so that
we obtain results corresponding to images of different sizes.
To verify the effectiveness of our experiments on anomaly
detection for different datasets, we also conducted one-class
novelty detection in CIFAR10 [26] with the same settings
as RD4AD, images are resize to 32*32, and evaluation with
Sample AUROC.

For comparison with recently published results, the opti-
mizer settings were kept consistent with RD4AD [14], and
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Fig. 2 Network architecture for
anomaly score map fusion
network. The anomaly-free
image is given noise and is
trained by its mask

we set an Adam optimizer with β = (0.5, 0.999). The
learning rate is set to 0.005, and we train for 200 epochs
using an NVIDIA Tesla K40c and Intel(R) Xeon(R) E5-
2680 CPU@2.80 GHz. Our method uses WideResNet50 as
the teacher model with 68.8 M parameters. The forward-
distilled student network has the same number of parameters
as the teacher model, and the reverse-distilled student net-
work has 108M parameters. For comparison, the RD4AD
model using the same teacher network structure has 67.2 M
parameters for the BN layer and 24.9 M parameters for the
student network. The number of parameters of our proposed
method is about 1.58 times higher than that of RD4AD. This
also implies that while DSKD can be trained simultaneously
for both student networks, the training time is longer in the
reverse network compared to the RD4AD. It should be noted
that since the training phase only involves normal samples,
the optimal number of epochs is less likely to be observed for
comparison. For a fair and visual comparison, RD4AD is run
on the same machine and with the same number of epochs.
The result of the last epoch is used to construct the anomaly
score map with a Gaussian filter applied for smoothness.

We evaluate the proposed method in terms of anomaly
detection and anomaly localization. The receiver operating
characteristic curve of samples (SampleAUROC) reflects the
performance of the model in determining whether a sample
is anomalous.We define the maximum value in the abnormal
scoremap as SampleAUROC,which is also done inRD4AD.
AUCROC for pixel (Pixel AUROC) and per-region overlap
(PRO) reflect whether a pixel is judged as anomalous. Pixel
AUROC calculates anomalies pixel by pixel, while PRO
reduces the influence of overlapping anomalies. We compare
our method with MKD [35], GT [18], GANomaly (GN) [2],
Uninformed Student (US) [7], PSVDD [47], DAAD [20],
MetaFormer (MF) [44], PaDiM [13], CutPastee [27], and
RD4AD in the experiment ofMVTec. The comparisonmeth-
ods of one-class novelty detection areLSA [1],OCGAN[34],
HRN [21], DAAD and RD4AD. We analyze the advantages

and limitations of our approach in the widely used anomaly
detection dataset MVTec by evaluating semantic and pixel
anomaly detection.

Anomaly detection

Table 1 shows the results of anomaly detection using Sample
AUROC.Bold text in all tables in this paper indicates optimal
values.

FromTable 1, our proposedmethod achieves optimal aver-
age performance in texture images for different image sizes;
DSKD follows behind RD4AD and PaDIM only for carpet
and leather categories. Our method is valid for CIFAR10,
which performs random additive synthetic noise on natural
images to improve themetrics for one-class novelty detection
and AUROC has reach 86.5%.

We also observed variations in the class distributionwithin
the test set. When considering normal samples as nega-
tive samples and abnormal samples as positive samples, the
positive-to-negative ratio ranges from 0.6 to 5.4. The transis-
tor and pill categories are the smallest and largest categories,
respectively. DSKD achieves the optimal Sample AUROC
in both categories, thus showing that it is not much affected
by sample imbalance in its anomaly detection performance.
This finding also confirms that the anomaly score map fusion
network consistently detects suspicious analog defects dur-
ing training, and it effectively identifies normal samples that
have not been previously encountered.

Limitations While DSKD achieves the average optimal
performance for 128*128 images, the results for objects in
256*256 images are slightly worse than those obtained by
RD4AD. We believe this is related to the added external
data sources and the added locations. In texture images, the
added locations are all targets to be detectedwhile the objects
contain part of the background. The added data sources for
introducing synthetic noise are also textures and thus help
textures improve themetrics.Moreover, the increase in image

123



Complex & Intelligent Systems (2024) 10:4853–4865 4859

Table 1 Sample AUROC for MVTec

Image size 128 256

Category/ MKD RD4AD Ours GN US PSVDD DAAD MF PaDIM CutPast RD4AD Ours
method (ICPR21) (CVPR21) (CVPR22)

Textures

Carpet 79.3 99.2 98.7 69.9 91.6 92.9 86.6 94.0 99.8 93.9 98.9 99.2

Grid 78.0 95.7 96.1 70.8 81.0 94.6 95.7 85.9 96.7 100.0 100.0 100.0

Leather 95.1 100.0 99.2 84.2 88.2 90.9 86.2 99.2 100.0 100.0 100.0 100.0

Tile 91.6 99.4 99.9 79.4 99.1 97.8 88.2 99.0 98.1 94.6 99.3 99.7

Wood 94.3 98.8 99.4 83.4 97.7 96.5 98.2 99.2 99.2 99.1 99.2 99.7

Average 87.7 98.6 98.7 77.5 91.5 94.5 91.0 95.5 98.8 97.5 99.5 99.7

Objects

Bottle 99.4 100.0 100.0 89.2 99.0 98.6 97.6 99.1 99.9 98.2 100.0 100.0

Cable 89.2 97.1 99.7 75.7 86.2 90.3 84.4 97.1 92.7 81.2 95.0 99.4

Capsule 80.5 89.5 84.3 73.2 86.1 76.7 76.7 87.5 91.3 98.2 96.3 91.6

Hazelnut 98.4 99.8 100.0 78.5 93.1 92.0 92.1 99.4 92.0 98.3 99.9 100.0

Metal Nut 73.6 99.2 99.9 70.0 82.0 94.0 75.8 96.2 98.7 99.9 100.0 100.0

Pill 82.7 93.3 96.2 74.3 87.9 86.1 90.0 90.1 93.3 94.9 96.6 98.5

Screw 83.3 91.1 95.5 74.6 54.9 81.3 98.7 97.5 85.8 88.7 97.0 95.4

Toothbrush 92.2 90.3 89.4 65.3 95.3 100.0 99.2 100.0 96.1 99.4 99.5 95.6

Transistor 85.6 99.5 99.7 79.2 81.8 91.5 87.6 94.4 97.4 96.1 96.7 98.6

Zipper 93.2 94.3 94.0 74.5 91.9 97.9 85.9 98.6 90.3 99.9 98.5 98.4

Average 87.8 95.4 95.9 75.5 85.8 90.8 88.8 96.0 93.8 95.5 98.0 97.8

size does not necessarily improve the Sample AUROC; this
is evident for tile, screw, and transistor categories. Overall,
DSKD is competitive in Sample AUROC, especially for tex-
tures.

Anomaly localization

Tables 2 and 3 present the Pixel AUROC and PRO results.
The data in Tables 2 and 3 are similar in that DSKD achieves
the best average performance in all texture categories; espe-
cially for 128*128 images, it performs better than RD4AD
in all texture categories. For objects, although the results are
not as significant as for textures, DSKD performs better than
RD4AD in the bottle category. In terms of pixel AUROC,
the optimal metrics of 10 and 6 out of 15 are achieved in
the different sizes. Advantages in PRO come mainly with
128*128 images. By observing Tables 2 and 3, our proposed
method has good competitiveness in texture categories.

Limitations DSKD has the third highest average result in
PRO of all compared methods; moreover, its PRO is below
90 in transistor and metalnut categories. The location of
defects in both categories is highly variable. For instance,
transistor images have misplaced defects and metalnut
images have flip defects. These types of defects usually cover
the whole inspection area. DSKD is similar to [39] and it per-
forms well in locating small anomalies in structurally simple

samples but not so well in locating large anomalous regions
in object categories. We believe that the modeling of noise is
a factor. For objects with different-sized parts and possible
defects, we use the same noise simulation strategy to help
the model. Due to the lack of a priori knowledge of pos-
sible a priori faults, there is still room for improvement in
this noise simulation strategy for samples with a large range
of faults. To explore practical applications, we utilized the
Gamma distribution [24] for automatic threshold screening
and pixel-level anomaly detection in 128*128. The average
recall is 15.8% higher than the accuracy, which is acceptable
for recall-sensitive application.

Ablation study and visual analysis

Our proposed method introduces two key innovations: a
novel network structure and a result fusion technique. The
network structure includes a forward (Pos) and a reverse
(Res) student network. Tables 4 and 5 present three met-
rics corresponding to the use of the two student networks
for 128*128 images and 256*256 images, respectively. In
addition, we manually set the weighting of the two student
networks using a 1 : 3 labeled manual fusion (MaFu) func-
tion. Feature fusion using synthetic noise is labeled synthetic
fusion.
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Table 2 Pixel AUROC for MVTec

Image size 128 256

Category/method MKD RD4AD Ours SPADE PaDiM RIAD CutPaste RD4AD Ours

Textures

Carpet 95.6 98.0 98.6 97.5 99.1 96.3 98.3 98.9 99.1

Grid 91.8 97.0 97.7 93.7 97.3 98.8 97.5 98.9 99.2

Leather 98.1 99.0 99.1 97.6 97.6 99.4 99.5 99.4 99.3

Tile 82.8 92.6 94.3 87.4 94.1 89.1 90.5 95.6 96.4

Wood 84.8 92.2 94.9 88.5 94.9 85.8 95.5 95.4 95.8

Average 90.6 95.8 96.9 92.9 96.6 93.9 96.3 97.6 98.0

Objects

Bottle 96.3 98.3 98.7 98.4 98.3 98.4 97.6 98.7 98.9

Cable 82.4 97.8 97.3 97.2 96.7 84.2 90.0 97.3 98.1

Capsule 95.9 96.3 96.6 99.0 98.5 92.8 97.4 98.6 98.8

HazeInut 94.6 98.8 98.7 99.1 98.2 96.1 97.3 98.9 99.0

Metal Nut 86.4 96.6 96.1 98.1 97.2 92.5 93.1 97.3 96.8

Pill 89.6 97.0 97.7 96.5 95.7 95.7 95.7 98.3 97.8

Screw 96.0 98.1 98.8 98.9 98.5 98.8 96.7 99.6 98.8

Toothbrush 96.1 98.1 97.6 97.9 98.8 98.9 98.1 99.1 98.8

Transistor 79.6 97.7 97.4 94.1 97.5 87.7 93.0 93.0 92.0

Zipper 93.9 96.8 97.3 96.5 98.5 97.8 99.3 98.2 97.7

Average 91.1 97.6 97.6 97.6 97.8 94.3 95.8 97.9 97.7

Table 3 POC for MVTec Image size 128 256

Category/method RD4AD Ours US MF SPADE PaDiM RD4AD Ours

Textures

Carpet 95.5 96.2 87.9 87.8 94.7 96.2 96.9 97.3

Grid 92.2 93.8 95.2 86.5 86.7 94.6 96.8 97.5

Leather 98.6 98.6 94.5 95.9 97.2 97.8 99.1 99.0

Tile 85.1 86.5 94.6 88.1 75.9 86.0 90.3 92.3

Wood 81.9 84.5 91.1 84.8 87.4 91.1 90.7 92.1

Average 90.7 91.9 92.7 88.6 88.4 93.1 94.8 95.6

Objects

Bottle 94.7 95.4 93.1 88.8 95.5 94.8 96.6 96.3

Cable 90.5 90.1 81.8 93.7 90.9 88.8 91.0 92.6

Capsule 86.6 85.9 96.8 87.9 93.7 93.5 95.8 94.4

Hazelnut 89.6 88.7 96.5 88.6 95.4 92.6 95.5 95.5

Metal Nut 83.5 82.2 94.2 86.9 94.4 85.6 92.4 88.2

Pill 90.0 93.3 96.1 93.0 94.6 92.7 96.4 95.5

Screw 93.8 95.2 94.2 95.4 96.0 94.4 98.2 95.2

Toothbrush 86.5 83.4 93.3 87.7 93.5 93.1 94.2 93.2

Transistor 85.6 84.7 66.6 92.6 87.4 84.5 79.4 79.6

Zipper 91.9 92.8 95.1 93.6 92.6 95.9 95.6 94.3

Average 89.3 89.2 90.8 90.8 93.4 91.6 93.5 92.5
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Table 4 Metrics for forward distillation, reverse distillation, manual fusion and our method in 128 size

Evaluation metrics Sample AUROC Pixel AUROC Pixel AUPRO

Category/ Pos Res Manul Synthetic Pos Res Manul Synthetic Pos Res Manul Synthetic
method fusion fusion fusion fusion fusion fusion

Textures

Carpet 94.6 99.2 99.2 98.7 92.8 97.4 97.4 98.6 94.1 94.4 94.6 96.2

Grid 89.2 96.5 96.4 96.1 90.8 96.6 96.7 97.7 88.8 92.4 92.8 93.8

Leather 100.0 100.0 100.0 99.2 97.6 98.8 98.9 99.1 97.9 98.3 98.4 98.6

Tile 99.9 100.0 100.0 99.9 87.6 93.9 94.1 94.3 85.3 85.8 86.2 86.5

Wood 99.4 97.0 98.2 99.4 89.5 89.6 92.0 94.9 79.0 76.7 77.9 84.5

Average 92.2 98.5 98.8 98.7 91.2 95.3 95.8 96.9 82.9 89.5 90.0 91.9

Objects

Bottle 99.6 100.0 100.0 100.0 97.4 97.7 97.8 98.7 93.9 92.6 92.8 95.4

Cable 97.3 99.4 99.5 99.7 91.7 97.3 97.3 97.3 85.4 89.9 90.0 90.1

Capsule 72.4 91.9 93.2 84.3 90.6 96.8 98.0 96.6 63.3 89.4 92.8 85.9

Hazelnut 99.1 99.9 99.9 100.0 96.3 98.5 98.6 98.7 86.5 88.1 88.1 88.7

Metal Nut 99.2 99.5 99.5 99.9 95.1 95.9 95.9 96.1 78.5 81.0 80.9 82.2

Pill 95.0 95.4 95.6 96.2 97.4 97.7 97.7 97.7 93.2 90.9 91.2 93.3

Screw 77.8 83.3 85.0 95.5 87.3 96.6 97.6 98.8 66.8 89.7 92.2 95.2

Toothbrush 88.3 91.4 92.2 89.4 96.4 97.6 97.8 97.6 80.0 84.2 84.0 83.4

Transistor 100.0 99.8 99.8 99.7 98.0 98.0 97.9 97.4 83.2 85.6 85.3 84.7

Zipper 94.9 95.1 95.1 94.0 90.4 95.8 95.8 97.3 79.7 90.2 90.2 92.8

Average 92.4 95.6 96.0 95.9 94.1 97.2 97.4 97.6 81.1 88.2 88.8 89.2

Table 5 Metrics for forward distillation, reverse distillation, manual fusion and our method in 256 size

Evaluation metrics Sample AUROC Pixel AUROC Pixel AUPRO

Category/ Pos Res Manul Synthetic Pos Res Manul Synthetic Pos Res Manul Synthetic
method fusion fusion fusion fusion fusion fusion

Textures

Carpet 99.4 98.0 99.2 99.2 97.3 98.6 98.7 99.1 95.3 94.8 96.5 97.3

Grid 99.7 99.5 99.5 100.0 97.8 96.4 98.9 99.2 95.2 96.6 96.6 97.5

Leather 100.0 100.0 100.0 100.0 98.2 99.3 99.2 99.3 98.6 98.8 98.9 99.0

Tile 100.0 100.0 100.0 99.7 93.8 95.4 95.5 96.4 90.9 90.9 91.2 92.3

Wood 99.2 98.7 99.5 99.7 91.3 94.5 94.2 95.8 84.6 88.2 89.5 92.1

Average 99.7 99.2 99.6 99.7 95.7 96.8 97.3 98.0 92.9 93.9 94.5 95.6

Objects

Bottle 100.0 100.0 100.0 100.0 98.8 98.7 98.7 98.9 96.0 96.5 96.6 96.3

Cable 91.0 99.6 99.7 99.4 94.8 98.3 98.3 98.1 85.6 92.9 93.0 92.6

Capsule 44.2 98.3 98.8 91.6 75.4 98.7 98.9 98.8 61.5 95.7 96.1 94.4

Hazelnut 100.0 100.0 100.0 100.0 98.3 98.8 98.8 99.0 94.0 94.3 94.5 95.5

Metal Nut 88.8 100.0 99.1 100.0 93.9 96.8 93.1 96.8 72.7 86.8 90.7 88.2

Pill 95.9 97.8 98.0 98.5 98.2 98.4 98.3 97.8 90.8 95.5 95.6 95.5

Screw 83.5 96.7 92.9 95.4 86.0 99.3 98.3 98.8 55.1 98.0 93.0 95.2

Toothbrush 90.3 95.8 96.1 95.6 98.3 98.9 98.9 98.8 89.0 92.7 92.9 93.2

Transistor 99.8 99.1 99.1 98.6 96.5 93.6 93.1 92.0 79.8 80.8 90.7 79.6

Zipper 95.4 97.1 97.7 98.4 92.6 98.0 97.5 97.7 82.3 94.8 94.1 94.3

Average 88.9 98.4 98.1 97.8 93.3 98.0 97.4 97.7 80.7 92.8 93.7 92.5
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Fig. 3 Visualization results for MVTec, where the blue color represents pixels predicted as normal

Typically, the results of forward distillation are weaker
than those of reverse distillation. However, there are some
inconsistencies in the results for the bottle and transistor
categories, which highlights the necessity of incorporating
forward distillation in our DSKD approach. The metrics for
reverse distillation are also better with our method, thus
suggesting that our use of skip connections and an atten-
tion mechanism is effective. The pixel AUROC for manual
fusion is inconsistent across the two image sizes. By contrast,
DSKD with synthetic noise enhancement outperforms both
the unidirectional distillation approaches and manual fusion
in terms of pixel AUROC. It is shown that our proposed
approach achieves good improvement in anomaly localiza-
tion for dual-student networks.

In Fig. 3, we show the visualization results of forward
distillation, reverse distillation, RD4AD, and our proposed
method obtained on 15 categories with an image size of 256∗
256.

Our results reveal that forward distillation tends to identify
more defective regions, such as those in bottle and cable cate-
gories, comparedwith reverse distillation. This is also usually
true compared with the regions identified by RD4AD. How-
ever, forward distillation also has some false defect regions,
such as those seen in screw and metal nut categories. This
phenomenon is not seen in our method. Our method also
combines the advantages of forward and reverse distillation
to obtain better defect prediction regions ( see, for example,
transistor and wood categories). Compared with RD4AD,

our method has complete defect region prediction even in
the case of there being a high probability of defects.

Discussion

Why two student models with different distillation patterns
were applied Our dual-student training strategy uses normal
samples and their training can be run in parallel. In Table
5, the single-model student network performs inconsistently
across different categories. How to aggregate the two parts
of detection is a novel problem. The forward and reverse
distillation results in Fig. 3 are also inconsistent; in addition,
forward distillation is usually more sensitive to anomalous
regions than reverse distillation. Our model draws on the
advantages of both types of distillation.

Why we used synthetic noise for model integration When
employing multiple models, how to aggregate detection
results is a key question. For anomaly detection, texture
anomaly is an important component. We can combine the
existing texture dataset by Eq. (3). The data can be quickly
fused into the training process, and it only adds six 1*1
convolution parameters. This is acceptable for both training
and testing. According to Tables 1, 2 and 3, such synthetic
noise is helpful for detecting both texture-related anomalies
and object-related anomalies. Our proposed synthetic noise
enhances metrics and allows us to fuse results.
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Conclusion

In this paper, we present a novel approach for anomaly detec-
tion called dual-student knowledge distillation. A reverse
distillation network is constructed using skip connections
and an attention module, which helps the reverse distillation
network obtain detailed information and high-level repre-
sentations. In addition, we construct a forward distillation
network using a simple architecture. After combining the
two distillation results, we introduce synthetic noise to help
different abnormal score maps to adaptively assign weights.
Experimental results demonstrate that our approach achieves
state-of-the-art performance on the texture images from the
MVTec dataset while also obtaining competitive scores on
object images.

We believe that we can further improve object detection
by further combining the results of object segmentation with
noise to reduce the effect of noise on distinguishing an object
from its background. Also, during the training annotation
process, the region where the synthetic noise is added can
be determined by manual annotation, while no changes are
required during the inference process. Setting the probabil-
ity threshold in abnormal detection is another area for further
research since the high probability part of the model predic-
tion region can cover most of the real defect regions.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s40747-024-01412-
4.

Acknowledgements Kai Huang reports financial support was pro-
vided by Natural Science Foundation (3502Z202372018) of Xiamen,
China. Kai Huang reports financial support was provided by Depart-
ment of Education (JAT232012) of Fujian Province of China. Jian Mao
reports financial support was provided by Natural Science Foundation
(2023J01132745) of Fujian Province of China. Jian Mao reports finan-
cial support was provided by Xiamen Science and Technology Subsidy
Project (2023CXY0318).

Data Availability Dataset is available at locations cited in the reference
section.

Declarations

Conflict of interest The authors have no Conflict of interest to declare
that are relevant to the content of this article.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abati D, Porrello A, Calderara S et al (2019) Latent space autore-
gression for novelty detection. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (CVPR).
Long Beach, CA, USA, pp 481–490. https://doi.org/10.1109/cvpr.
2019.00057

2. Akcay S, Atapour-Abarghouei A, Breckon TP (2019) Ganomaly:
Semi-supervised anomaly detection via adversarial training. In:
ComputerVision-ACCV2018: 14thAsian conference on computer
vision, Perth, Australia, December 2–6, 2018, Revised Selected
Papers, Part III 14. Springer, pp 622–637. https://doi.org/10.1007/
978-3-030-20893-6_39

3. Akçay S, Atapour-Abarghouei A, Breckon TP (2019) Skip-
ganomaly: skip connected and adversarially trained encoder–
decoder anomaly detection. In: 2019 international joint conference
on neural networks (IJCNN). IEEE, pp 1–8. https://doi.org/10.
1109/ijcnn.2019.8851808

4. Alelaumi S, Wang H, Lu H et al (2020) A predictive abnormal-
ity detection model using ensemble learning in stencil printing
process. IEEE Trans Compon Packag Manuf Technol 10(9):1560–
1568. https://doi.org/10.1109/tcpmt.2020.3012501

5. Azad HK, Deepak A, Chakraborty C et al (2022) Improving query
expansion using pseudo-relevant web knowledge for information
retrieval. Pattern Recognit Lett 158:148–156. https://doi.org/10.
1016/j.patrec.2022.04.013

6. Bergmann P, FauserM, SattleggerD et al (2019)Mvtec ad—a com-
prehensive real-world dataset for unsupervised anomaly detection.
In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition (CVPR). Long Beach, CA, USA, pp 9592–
9600. https://doi.org/10.1109/cvpr.2019.00982

7. Bergmann P, Fauser M, Sattlegger D, et al (2020) Uninformed stu-
dents: student-teacher anomaly detectionwith discriminative latent
embeddings. In: Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition (CVPR). Seattle, WA, USA,
pp 4183–4192. https://doi.org/10.1109/cvpr42600.2020.00424

8. Cao Y, Wan Q, Shen W et al (2022) Informative knowledge
distillation for image anomaly segmentation. Knowl Based Syst
248(108):846. https://doi.org/10.1016/j.knosys.2022.108846

9. Chen C, Li X, Huang K et al (2023) A convolutional autoen-
coder based fault detection method for metro railway turnout.
CMES Comput Model Eng Sci. https://doi.org/10.32604/cmes.
2023.024033

10. Cimpoi M, Maji S, Kokkinos I et al (2014) Describing textures
in the wild. In: Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR). Columbus, OH, USA, pp
3606–3613. https://doi.org/10.1109/cvpr.2014.461

11. Collin AS, De Vleeschouwer C (2021) Improved anomaly detec-
tion by training an autoencoder with skip connections on images
corrupted with stain-shaped noise. In: 2020 25th international
conference on pattern recognition (ICPR). IEEE, pp 7915–7922.
https://doi.org/10.1109/icpr48806.2021.9412842

12. Das TK, Adepu S, Zhou J (2020) Anomaly detection in indus-
trial control systems using logical analysis of data. Comput Secur
96(101):935. https://doi.org/10.1016/j.cose.2020.101935

13. Defard T, Setkov A, Loesch A, et al (2021) Padim: a patch distribu-
tion modeling framework for anomaly detection and localization.
In: International conference on pattern recognition. Springer, pp
475–489. https://doi.org/10.1007/978-3-030-68799-1_35

123

https://doi.org/10.1007/s40747-024-01412-4
https://doi.org/10.1007/s40747-024-01412-4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/cvpr.2019.00057
https://doi.org/10.1109/cvpr.2019.00057
https://doi.org/10.1007/978-3-030-20893-6_39
https://doi.org/10.1007/978-3-030-20893-6_39
https://doi.org/10.1109/ijcnn.2019.8851808
https://doi.org/10.1109/ijcnn.2019.8851808
https://doi.org/10.1109/tcpmt.2020.3012501
https://doi.org/10.1016/j.patrec.2022.04.013
https://doi.org/10.1016/j.patrec.2022.04.013
https://doi.org/10.1109/cvpr.2019.00982
https://doi.org/10.1109/cvpr42600.2020.00424
https://doi.org/10.1016/j.knosys.2022.108846
https://doi.org/10.32604/cmes.2023.024033
https://doi.org/10.32604/cmes.2023.024033
https://doi.org/10.1109/cvpr.2014.461
https://doi.org/10.1109/icpr48806.2021.9412842
https://doi.org/10.1016/j.cose.2020.101935
https://doi.org/10.1007/978-3-030-68799-1_35


4864 Complex & Intelligent Systems (2024) 10:4853–4865

14. Deng H, Li X (2022) Anomaly detection via reverse distilla-
tion from one-class embedding. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (CVPR).
New Orleans, LA, USA, pp 9737–9746. https://doi.org/10.1109/
cvpr52688.2022.00951

15. Deng J, Dong W, Socher R, et al (2009) Imagenet: a large-scale
hierarchical image database. In: 2009 IEEE conference on com-
puter vision and pattern recognition. IEEE, pp 248–255. https://
doi.org/10.1109/cvpr.2009.5206848

16. Dong H, Peng D (2018) Research on abnormal detection of mod-
bustcp/ip protocol based on one-class svm. In: 2018 33rd Youth
academic annual conference of chinese association of automa-
tion (YAC). IEEE, pp 398–403. https://doi.org/10.1109/yac.2018.
8406407

17. Gogoi UR, Bhowmik MK, Bhattacharjee D et al (2018) Singular
value based characterization and analysis of thermal patches for
early breast abnormality detection. Australas Phys Eng Sci Med
41:861–879. https://doi.org/10.1007/s13246-018-0681-4

18. Golan I, El-Yaniv R (2018) Deep anomaly detection using geomet-
ric transformations. Adv Neural Inf Process Syst. https://doi.org/
10.1145/3429309.3429326

19. Gros C, Lemay A, Cohen-Adad J (2021) Softseg: advantages of
soft versus binary training for image segmentation. Med Image
Anal 71(102):038. https://doi.org/10.1016/j.media.2021.102038

20. Hou J, Zhang Y, Zhong Q et al (2021) Divide-and-assemble: learn-
ing block-wise memory for unsupervised anomaly detection. In:
Proceedings of the IEEE/CVF international conference on com-
puter vision (CVPR). Nashville, TN, USA, pp 8791–8800. https://
doi.org/10.1109/iccv48922.2021.00867

21. Hu W, Wang M, Qin Q et al (2020) Hrn: a holistic approach to
one class learning. Adv Neural Inf Process Syst 33:19111–19124.
https://doi.org/10.1007/978-981-4021-75-3_9

22. Hu Y (2020) Design and implementation of abnormal behavior
detection based on deep intelligent analysis algorithms in massive
video surveillance. J Grid Comput 18:227–237. https://doi.org/10.
1007/s10723-020-09506-2

23. JiangY, CaoY, ShenW (2023) Amasked reverse knowledge distil-
lationmethod incorporating global and local information for image
anomaly detection. Knowl Based Syst 280(110):982. https://doi.
org/10.1016/j.knosys.2023.110982

24. Kawaguchi Y, Imoto K, Koizumi Y, et al (2021) Description and
discussion on dcase 2021 challenge task 2: unsupervised anoma-
lous sound detection for machine condition monitoring under
domain shifted conditions. arXiv preprint arXiv:2106.04492

25. Kim D, Jeong D, Kim H et al (2022) Spatial contrastive learning
for anomaly detection and localization. IEEE Access 10:17366–
17376. https://doi.org/10.1109/access.2022.3149130

26. Krizhevsky A, Hinton G, et al (2009) Learning multiple layers of
features from tiny images

27. Li CL, Sohn K, Yoon J et al (2021) Cutpaste: self-supervised learn-
ing for anomaly detection and localization. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition
(CVPR). Nashville, TN, USA, pp 9664–9674. https://doi.org/10.
1109/cvprR46437.2021.00954

28. Li N, Chang F, Liu C (2020) Spatial-temporal cascade autoencoder
for video anomaly detection in crowded scenes. IEEE Trans Mul-
timed 23:203–215. https://doi.org/10.1109/tmm.2020.2984093

29. Ma Y, Jiang X, Guan N et al (2023) Anomaly detection based on
multi-teacher knowledge distillation. J Syst Archit 138(102):861.
https://doi.org/10.1016/j.sysarc.2023.102861

30. Mohamed AB, Abouhawwash M, Mahapatra B, et al (2022)
Responsible artificial intelligence based system to reduce green-
house gas emissions in 6g networks

31. Naseer S, Saleem Y, Khalid S et al (2018) Enhanced network
anomaly detection based on deep neural networks. IEEE Access
6:48231–48246. https://doi.org/10.1109/access.2018.2863036

32. Othman SB, Almalki FA, Chakraborty C et al (2022) Privacy-
preserving aware data aggregation for iot-based healthcare with
green computing technologies. Comput Electr Eng 101(108):025.
https://doi.org/10.1016/j.compeleceng.2022.108025

33. Peng Z, Song X, Song S et al (2023) Hysteresis quantified control
for switched reaction–diffusion systems and its application. Com-
plex Intell Syst 9(6):7451–7460. https://doi.org/10.1007/s40747-
023-01135-y

34. Perera P, Nallapati R, Xiang B (2019) Ocgan: one-class novelty
detection using gans with constrained latent representations. In:
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp 2898–2906. https://doi.org/10.1109/cvpr.
2019.00301

35. Salehi M, Sadjadi N, Baselizadeh S, et al (2021) Multiresolution
knowledge distillation for anomaly detection. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recog-
nition. pp 14902–14912. https://doi.org/10.1109/cvpr46437.2021.
01466

36. Schlegl T, Seeböck P, Waldstein SM, et al (2017) Unsupervised
anomaly detection with generative adversarial networks to guide
marker discovery. In: International conference on information pro-
cessing in medical imaging. Springer, pp 146–157. https://doi.org/
10.1007/978-3-319-59050-9_12

37. Shen L, Tao H, Ni Y et al (2023) Improved yolov3 model
with feature map cropping for multi-scale road object detection.
Meas Sci Technol 34(4):045406. https://doi.org/10.1088/1361-
6501/acb075

38. Sudre CH, Li W, Vercauteren T, et al (2017) Generalised dice
overlap as a deep learning loss function for highly unbalanced
segmentations. In: Deep learning in medical image analysis and
multimodal learning for clinical decision support: third interna-
tional workshop, DLMIA 2017, and 7th international workshop,
ML-CDS 2017, held in conjunction with MICCAI 2017, Québec
City, QC, Canada, September 14, Proceedings 3. Springer, pp 240–
248. https://doi.org/10.1007/978-3-319-67558-9_28

39. Tong G, Li Q, Song Y (2023) Two-stage reverse knowledge dis-
tillation incorporated and self-supervised masking strategy for
industrial anomaly detection. Knowl Based Syst 273(110):611.
https://doi.org/10.1016/j.knosys.2023.110611
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