
Complex & Intelligent Systems (2024) 10:4083–4101
https://doi.org/10.1007/s40747-024-01374-7

ORIG INAL ART ICLE

Flexible job-shop scheduling problemwith parallel batch machines
based on an enhancedmulti-population genetic algorithm

Lirui Xue1 · Shinan Zhao1 · Amin Mahmoudi2 ·Mohammad Reza Feylizadeh3

Received: 6 July 2023 / Accepted: 21 January 2024 / Published online: 2 March 2024
© The Author(s) 2024

Abstract
The flexible job-shop scheduling problem (FJSP) with parallel batch processing machine (PBM) is one of those long-standing
issues that needs cutting-edge approaches. It is a recent extension of standard flexible job shop scheduling problems. Despite
their wide application and prevalence in practical production, it seems that current research on these types of combinatorial
optimization problems remains limited and uninvestigated. More specifically, existing research mainly concentrates on the
flow shop scenarios in parallel batch machines for job shop scheduling but few literature emphasis on the flexible job shop
integration in these contexts. To directly address the above mentioned problems, this paper establishes an optimization
model considering parallel batch processing machines, aiming to minimize the maximum completion time in operating
and production environments. The proposed solution merges variable neighborhood search with multi-population genetic
algorithms, conducting a neighborhood search on the elite population to reduce the likelihood of falling into local optima.
Subsequently, its applicability was evaluated in computational experiments using real production scenarios from a partnering
enterprise and extended datasets. The findings from the analyses indicate that the enhanced algorithm can decrease the
objective value by as much as 15% compared to other standard algorithms. Importantly, the proposed approach effectively
resolves flexible job shop scheduling problems involving parallel batch processing machines. The contribution of the research
is providing substantial theoretical support for enterprise production scheduling.

Keywords Parallel batch-processing machines · Variable neighborhood search · Multi-population genetic algorithms

Introduction

“Production scheduling” is an integral component of pro-
duction management, impacting nearly all enterprises in the
manufacturing context. In 1954, renownedAmerican scholar

B Shinan Zhao
shinan89@just.edu.cn

Lirui Xue
liruiray@foxmail.com

Amin Mahmoudi
mahmoudi@seu.edu.cn

Mohammad Reza Feylizadeh
feylizadeh@iaushiraz.ac.ir

1 School of Economics and Management, Jiangsu University of
Science and Technology, Zhenjiang 212100, China

2 Department of Construction and Real Estate, School of Civil
Engineering, Southeast University, Nanjing 210096, China

3 Department of Industrial Engineering, Shiraz Branch, Islamic
Azad University, Shiraz, Iran

Johnson published the inaugural research paper on schedul-
ing problems, focusing on a small-scale assembly line model
with minimum total elapsed time [1]. Since then, research
on production scheduling has evolved and become one of
the most extensively studied topics in optimization prob-
lems [2]. At the dawn of the twentieth century, Vieira et al.
discussed the importance of scheduling in the performance
and productivity of manufacturing [3]. The authors intro-
duced an algorithm for rescheduling manufacturing systems
in response to abrupt changes and unexpected disruptions
during the production process. Mahmoodjanloo et al. high-
lighted reconfigurable machine tools (RMTs) for a group of
machines to satisfy manufacturing and production require-
ments. Authors applied RMTs to production scheduling
under the FJSP context [4].

Various factors increase the complexity of these prob-
lems: (1) Building the foundation and structure of standard
job-shop scheduling problems, and (2) multiple selectable
devices and flexibility in employing pieces of machine for
each operation [5, 6].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-024-01374-7&domain=pdf
http://orcid.org/0000-0002-1982-9324

4084 Complex & Intelligent Systems (2024) 10:4083–4101

The flexible job-shop scheduling problem with paral-
lel batch machines is an extension of the standard flexible
job-shop scheduling problem (FJSP). It integrates a paral-
lel batch processing machine to handle multiple tasks at the
same time and completes them simultaneously. The appli-
cation of parallel batch machines is inherently linked to
specific productionprocesses. For instance, in semiconductor
manufacturing, several single-piece production processes are
engaged, such as photolithography, metallization, and batch
processing (i.e., wet oxidation and etching).

In metal casting companies, the production process is
typically divided into several key stages. The initial stage
involves batch production processes such as forging and fur-
nace operations. Subsequent stages focus on single-piece
production, where machining is critical for final shaping and
molding. Jobs await processing in batches during the furnace
stage. These queued jobs are batched together and processed
collectively during this phase. Conversely, the single-piece
machining stage aligns more closely with standard flexible
production paradigms. As a result, the scheduling dilemma
intertwined with these stages presents considerable impli-
cations for industries, especially those in semiconductor
manufacturing and casting.

The flexible job shop scheduling problem with parallel
batchprocessingmachines has attractedwidespread attention
in the industry. However, most studies focus on the standard
flexible job-shop scheduling problem (FJSP) and there is a
lack of relevant research to address the FJSP considering
parallel batch processing machines. The nuanced coordi-
nation and integration requirements evident across multiple
processing stages in these scenarios can be regarded as prac-
tical illustrations of the flexible job-shop scheduling problem
with parallel batchmachines. Such instances are increasingly
being acknowledged as pervasive challenges in production
scheduling processes, underscoring their profound signifi-
cance in ongoing research endeavors.

In addressing the flexible job shop scheduling problem
incorporating parallel batch processing machines, this paper
establishes a model that extends the standard flexible job
shop problem (FJSP). To achieve this goal, we introduce a
batch allocation strategy based on immediate predecessor
operations, and devise a solution that merges two well-
known algorithms: variable neighborhood search (VNS)
algorithm and multi-swarm genetic algorithm. Furthermore,
the enhancements made to these methods and algorithms are
empirically tested using real-world data from an enterprise.
Computational experiments show that the proposed approach
effectively solves the scheduling problem in a flexible job
shop with parallel batch processing machines. Compared to
standard algorithms, the improved algorithm has increased
performance by 15%. These achievements offer consider-
able theoretical backing for practical production scheduling
in enterprises.

The main contributions of this study are listed below:
(1) Introduction of comprehensive scheduling of parallel

batch processing machines in a complex flexible job shop
environment.

The introduction of parallel batch processing machines in
a flexible job shop environment leads to the establishment
of an optimization model for the flexible job shop schedul-
ing problem involving these machines. Most existing studies
consider the issue of parallel batch processing machines in
an assembly line environment.

(2) Improvement in the combination of variable neigh-
borhood search algorithms and multi-population genetic
algorithms.

Previous research primarily combined variable neigh-
borhood search (VNS) algorithms with standard genetic
algorithms. This paper is the first to combineVNSwithmulti-
population genetic algorithms, aiming to solve the flexible
job shop scheduling problem with parallel batch process-
ingmachines. Concurrently, this hybrid algorithm introduces
the Hamming distance initialization method and an effective
immigration method.

(3) The proposition of the immediate preceding operation
batching method.

This method assigns batches according to the end time of
immediate preceding operations within compatible job clus-
ters, reducing the resource waste of parallel batch processing
machines.

The remainder of this article is organized as follows:
Research background and previous studies introduces pre-
vious work. Problem Description and Optimization Model
presents the model of the flexible job shop scheduling
problem with parallel batch processing machines. Solving
Method introduces the methods used for solving the model
and parts of optimization. Numerical studies validates the
approach through case studies, and the final section con-
cludes.

Research background and previous studies

Flexible job shop scheduling problem

The flexible job shop scheduling problem (FJSP) is a type
of combinatorial optimization problem with practical appli-
cation, first proposed by Brucker and Schlie [7]. The classic
job shop scheduling problem involves scheduling a group of
jobs, each with a designated machine. The FJSP becomes
a more complicated problem by adding multiple selectable
devices [8].

FJSP has been proven to be an NP-hard problem, and
there is extensive research on how to solve it [9]. The most
common solution methods include precise algorithms and
intelligent algorithms. Precise algorithms include branch and

123

Complex & Intelligent Systems (2024) 10:4083–4101 4085

bound methods, linear programming, etc. The advantage of
thesemethods is that they can provide the exact optimal solu-
tion. However, when the scale of the research object is large,
or the research problem is complex, especiallywhen the num-
ber of devices increases to a certain extent, the calculation
process becomes difficult [10]. Therefore, these methods are
usually used for specific problems.

Due to the limitations of precise algorithms, solutions
to FJSP are mostly sought using intelligent optimization
algorithms such as genetic algorithms and particle swarm
optimization to obtain approximate optimal solutions. Nouiri
et al. proposed an efficient distributed particle swarm opti-
mization algorithm to solve the FJSP problem to minimize
the maximum completion time [11]. The authors also val-
idated the effectiveness of the algorithm through multiple
standard datasets. Gao et al. focused on scheduling problems
in remanufacturing engineering [12]. They used a two-stage
artificial bee colony algorithm to solve the FJSP problem,
focusing on the flexible job rescheduling problem with new
job insertion.Marichelvam et al. improved the standard solu-
tionof the particle swarmalgorithmbycombining scheduling
rule heuristic algorithms and then combined the variable
neighborhood search algorithmwith the particle swarm algo-
rithm to solve the scheduling solution with the least time
consumption [13]. A solution was proposed by Jin et al. to
solve a flexible job shop scheduling problem with uncertain
processing order and non-parallel batch processors [5]. To
minimize the total flow time to the greatest extent, Nagano
et al. proposed an efficient constructive heuristicmethod [14].
Furthermore, an enhanced genetic algorithm was developed
based on an enhanced selection method to reduce the possi-
bility of early population maturity [15].

To sum up this sub-section, many studies focus on the
accuracy of the algorithm by improving selection, crossover,
etc. They also established different optimization models for
various objectives in the flexible job shop context.

FJSP with parallel batchmachines

Batch machines can be divided into parallel batch machines
and serial batchmachines. Serial batchmachines operate on a
first-come and first-served principle, so that they can execute
production tasks one by one and can only process one job unit
at a time. Parallel batch machines, in contrast, can handle
multiple jobs simultaneously, and the job processed in the
same batch have the same start and end times.

Many studies on batch processing machines mainly focus
on how to batch and schedule batches. Fowler et al. sum-
marized research on parallel batch processing, focusing
on the scheduling within parallel machines and batching
issues between compatible and incompatible job clusters
[16]. However, they paid limited attention to the flexible job
sequencing issues among non-parallel machines. Wu et al.

discussed scheduling problems of progressively deteriorat-
ing parallel machines under uncertain conditions, but their
focus remained primarily on the parallel machines [17]. A
scheduling method for parallel batch processing machines
with varying capacities was investigated by Jia et al. using
triangular fuzzy numbers under uncertain conditions [18].
Their emphasis was on the uncertainties of the manufac-
turing environment and the differing processing capabilities
and capacities of parallel batch processing. Zhang et al.
investigated the issue of parallel batch processing machines
in the context of cloud manufacturing, with a particular
emphasis on parallel machines [19]. Moreover, a collabo-
rative scheduling method was developed by Yuan et al. for
a two-stage casting production line, with a primary focus
on the coordination between the melting and casting pro-
cesses and mechanical processing [20]. Regarding flexible
production, most current research concentrates on flexible
flow shop scheduling problemswith parallel batchmachines.
For instance, Costa et al. [21] and Wang et al. [22] opti-
mized batching in flexible flow shops using optimization
algorithms. Furthermore, Vega et al. investigated a kind of
unrelated parallel machine scheduling problem [23].

There has been little discussion to date on the flexible
job shop scheduling problem with parallel batch machines.
Ham introduced a scheduling problem for the semiconductor
industry with varying priorities and parallel batch machines
[24]. In this research, they proposed a mixed-integer model
that focuses on solving priority and compatible job cluster
issues. Song et al. introduced amethod for solving these types
of problems using a discrete particle swarm algorithm [25].

Although there are fewstudies on this problem, theflexible
job shop scheduling problem with parallel batch machines
still exists in real-world enterprise production. Therefore, this
paper is looking forward to addressing this complex problem.

Problemdescription and optimizationmodel

This section starts with the problem description in problem
description, which is “the scheduling problem of a flexi-
ble job shop with existing parallel batch machines.” Then,
detailed comparisons and differences between this problem
and existing production scheduling and flexible production
will be provided. In the following sections, a planning model
for this problem will be established on the common flexible
job shop scheduling model.

Problem description

The flexible job shop scheduling problem with parallel batch
processing machines inherits all the complexities of the flex-
ible job shop scheduling problem [8]. To be more specific,
some operations use parallel batch processing machines as

123

4086 Complex & Intelligent Systems (2024) 10:4083–4101

M

M

M

M

M

M

M

M

M

M

M

M

1
st
 Step 2

nd
 Step 3

rd
 Step

J1 J2

J3 J4

Waiting queue

4
th

 Step

Parallel

Batch

Machine

Parallel

Batch

Machine

Parallel

Batch

Machine

M

J1

J2

J2

...

Jn

M

5
th

 Step

Fig. 1 A schematic flowchart of the production process in a flexible job shop with parallel batch machines.M � (Machines), Jn � (Job n)

machines or resources, which can process multiple jobs
simultaneously within their capacity. The operations in the
same batch on the parallel batch processing machine have
the same start and end processing times. The parallel batch
processing machine can only run one batch of operations in
one processing cycle. The goal is also to obtain a superior
production sequence and machine allocation, which raises
the issue of batch allocation. Simplifying this process can
yield potential outcome, as shown in the flowchart (Fig. 1).
This flowchart reflects the production situation of the flexible
job shop with parallel batch processors. In actual produc-
tion, there are usually multiple operations using multiple
parallel batch processingmachines. Therefore, the schematic
flowchart can reflect a part of the situation.

Optimizationmodel

Assumptions and symbols

To simplify the problem, the scheduling problem considered
in this paper is based on the following basic assumptions:

Assumption 1 Any job can be processed at time zero.

Assumption 2 The batch processing time is the maximum
processing time of the jobs included in the batch. Jobs cannot
be added or removed once batch processing begins.

Assumption 3 There is no intersection between single-
processing machine operations and parallel-processing
machine operations.

Assumption 4 Transit times between job locations are
neglected.

Assumption 5 There are no constraints regarding the
order/sequence of processing and operations of different
jobs. But there are constraints regarding the order of pro-
cessing between operations of the same job.

In this paper, the definitions of various symbols are listed
in Table 1.

Table 1 Various symbols used in this research

Symbols Definition

i,j � 1,2,…, n Operations

k,l � 1,2,…, n Jobs

m,n � 1,2,…, n Machines

b � 1,2,…, n Batches

Oki The ith operation of the kth job

Ski/Eki Start/end time of Oki

Tkim Processing time of Oki on mth machine

Bnb Set of bth batch operations on parallel
processing machine n

U Set of operations with parallel batch
processing machines

Cm Processing capacity of parallel processing
machines

Mki Set of optional machines for Oki

Dki Demand for processing capacity (∀i ∈ U)

Hki Equal to 1 if Oki is a parallel machine,
otherwise it is 0

Ykijl Equal to 1 if Oki is a precedent operation of
Okj , otherwise it is 0

Z1/Z2 Auxiliary variables, Ski/Eki multiplied by Ykij

Z3 Auxiliary variables, Dki multiplied by Pkibn

Decision variables:

Xkim �
{
1, Oki ∈ m
0, Others

(1)

Pkibn �
{
1, Oki processed on batch b of parallel n
0, Others

(2)

Mathematical model

The optimization goal sought in this paper is to minimize
the maximum completion time. That is, the most common

123

Complex & Intelligent Systems (2024) 10:4083–4101 4087

MakeSpan in scheduling problems, so that the production
process is completed as quickly as possible,which alignswith
the actual needs of enterprise production [26–28]. According
to the problem description, there are three types of con-
straints, namely (1) operation constraints: the same type
of job must complete the immediately preceding operation
before starting the next one; (2) machine processing capac-
ity constraints: non-parallel machines can only process one
job at the same time, and the number of jobs processed by
parallel machines at the same time cannot exceed its parallel
capacity; (3) batch constraints: i.e., the same job can only
be in one parallel machine batch, and the jobs in the same
batch in the parallel machine operations must start and end
processing at the same time.

In summary, the following mathematical model expres-
sions can be obtained:

Min(MakeSpan) � Min(Max(Eki)) (3)

S.T.

Z1 − Z2 > 0 (4)

Yi j + Y ji � 1∀k, i , j (5)

Ski ≥ 0, Eki > 0∀i , j (6)

Z3 ≤ Cm (7)

Eki � Ski + Tki∀k, i (8)

∑
i

Xkim � 1∀k, i , m (9)

Ski � Sl j , Ekj � El j∀i , j ∈ Bmb (10)

Pkiam + Pkibm + Pkian + Pkibn � 1∀a �� b, m �� n, k, i ∈ U
(11)

Equation 3 signifies the objective function, which aims
to minimize the duration between initiating production and
completing all tasks, commonly called MakeSpan. Equa-
tions 4 and 5 serve as processing order constraints, ensuring
that the same job gets produced according to the required
operations without repetition; Eq. 6 implies a time con-
straint; Eq. 7 tackles the processing capacity constraint of
parallel batch processing machines; Eq. 8 constitutes a pro-
cessing time constraint; Eq. 9 conveys that a process can be
performed on only one machine; Eq. 10 represents a batch
processing time constraint, indicating that operations in the
same batch have the same processing time; Eq. 11 stands as a

batch constraint, the same operation can only be arranged in
one batch. This model has undergone a linearization process
and three auxiliary variables Z1–Z3 are used for lineariza-
tion. More details can be found in Appendix A.

Solvingmethod

The flexible job shop scheduling problem with parallel batch
machines, an extension of the flexible job shop scheduling
problem that includes parallel batch machines, is classified
as an NP-Hard problem. Various solutions have been pro-
posed for such NP-hard problems, including deterministic
algorithms such as branch, bound, and backtracking [29].
Nevertheless, these methods may result in exponential com-
putation time, rendering them impractical and inefficient for
large-scale problems. As a heuristic algorithm, the Genetic
Algorithm simulates the evolution process of biological
species in nature, demonstrating commendable optimization
capabilities, and therefore is widely utilized [30]. However,
standard genetic algorithms still suffer from various issues,
such as premature convergence [31–33]. To address this, we
propose an enhanced multi-population Genetic Algorithm in
this paper, combining variable neighborhood search (VNS)
information for optimal individual selection. We enhance
inter-population diversity through a design method based
on Hamming distance similarity and introduce an "effective
immigrant" method to boost the algorithm’s performance.

Construction of fitness function

Fitness refers to measuring the quality of solutions in the
current population, corresponding to the current scheduling
problem, which serves as the basis for selection and evo-
lution. In the context of production scheduling problems, a
widely used approach for establishing fitness involves the
utilization of the reciprocal of the objective function, namely
MakeSpan, as demonstrated in Eq. 12.

s � 1

S
(12)

According to Eq. 12, as the difference in fitness within
the population decreases during the iterative process, it can
lead to a situation where individuals with better fitness are
less likely to be retained with a higher probability. Therefore,
changes are made to the fitness function to increase the diver-
sity within the population, thereby reducing the occurrence
of such phenomena. The fitness function is altered to map its
original values to the range [0,1], thereby amplifying its dif-
ferences, as shown in Eq. 13. Here, s’ represents the fitness
value of the current individual, while Min(S) and Max(S),
respectively, represent the minimum and maximum fitness

123

4088 Complex & Intelligent Systems (2024) 10:4083–4101

2 3 1 3 2 … Jnum*Nnum

O21

O31

O11

O32 OJnumNnum

O22

1 2 3 1 2 … Max(len (S))

OS

MS

Fig. 2 Encoding method linking codes with processing operations

of the current population.

s � s′ − Min(S)

Max(S) − Min(S)
(13)

Chromosome encoding and decoding

Considering the research problem, the entire algorithm opti-
mization process can be seen as solving two problems: the
sequence of job processing and the allocation of machines.
The grouping of jobs in the computational model is managed
according to the completion time of the immediately preced-
ing operation. A dual-layer encoding method is employed
for both, assuming there are Jnum jobs awaiting processing,
And each job must undergoNnum operations. Different oper-
ations correspond to the same or different machine groups
S as shown in Fig. 2. In this figure, the operation sequence
(OS) layer employs a job number encoding scheme, where
pending jobs are sequentially assigned distinct identifiers
based on the order that they are to be processed. If the same
identifier appears multiple times, then it represents differ-
ent operations for this corresponding job. For instance, when
a job with the identifier ‘2’ appears for the first time in the
encoding sequence, it represents operationO21; if it is the sec-
ond appearance, it refers to operation O22. On the machine
sequence (MS) layer, real-number encoding is further uti-
lized. Its range is [1, max(len(S))], which corresponds to the
maximum number of available machines in each machine
group. In the process of decoding, these values are then trans-
lated to the actual machine identifiers.

Decoding is one of the topics studied in this paper. For
problems involving parallel batch processing machines, a
decoding method based on queuing and insertion mecha-
nisms has been designed. The specific decoding steps are as
follows:

Step 1: Read the job encoding and machine in order, and
determine whether the operation corresponds to a parallel
batch processing machine. If so, place it in the parallel batch
processing queue; otherwise, place it in the regular queue.

Step 2: Place non-parallel batch processing in the process-
ing queue according to the machine encoding. When reading

Table 2 A simple example of the decoding method

Job Operation Available machines Requirements

1 1 2/4 N/A

2 1 10 units

3 2/3 N/A

2 1 3/4 N/A

2 2 N/A

3 1 10 units

3 1 2/3/4 N/A

2 1 10 units

3 2/4 N/A

4 1 2/3 N/A

2 1 10 units

3 3/4 N/A

the machine encoding, find the machine number in a cyclic
manner. For example, if the machine layer encoding is k, and
the current operation has m optional machine, choose the kth
optional machine when k < m, and choose the k − m + 1th
machine when k ≥ m).

Step 3: Merge the operations that include parallel batch
processing according to the processing order of the imme-
diately preceding operation, and allocate the machine in
batches according to the capacity of the parallel batch pro-
cessing machine.

To explain this process in detail, let us take an example of
4 jobs, 4 machines, and 3 operations (the machine numbers
are 1–3, and number 1 is a parallel batch processing machine
with a processing capacity of 20 units). The encoding is the
operation sequence layer (OS) [1, 3, 4, 2, 2, 4, 3, 1, 1, 2, 3, 4],
and the machine sequence layer [3, 3, 2, 1, 2, 3, 4, 4, 1, 3, 4,
2]. Table 2 presents the process information of this illustra-
tive example, including four jobs awaiting processing, their
respective operations, available equipment, and requirements
for parallel machine processing capabilities.

According to the process information and following steps
1–3 for decoding, we obtain the decoding result as shown
in Fig. 3. The processing order, except for the parallel batch
processingmachine numbered 1, is from left to right for other
operations, i.e., their processing order.

Fitness evaluation

In the model for fitness computation in genetic algorithms,
it is necessary to provide feedback on the corresponding fit-
ness according to the information of the operation layer and
the machine layer to carry out appropriate batch allocation
work for operations with parallel machines. To obtain the
fitness situation of the current solution, a calculation method

123

Complex & Intelligent Systems (2024) 10:4083–4101 4089

Fig. 3 A example of decoding process

simulating the production process is adopted here, and the
production process is simulated according to the decod-
ing result. This process first reads the operation layer and
machine layer in order, then determines the current machine
available time and the end time of the immediately preceding
operation of the current operation (if any), takes the larger
of the two values, and adds the processing time required for
the current operation to obtain the start and end time of the
operation processing, and updates the available time of the
machine.

For parallel machines, this paper uses the "immediate pre-
ceding operation batching method to batch and group tasks.
The method of immediate preceding operation batching first
marks the encoding of the operation processed by the parallel
batch processing machine (as marked in blue in Fig. 3), and
generates a waiting queue. When processing to the marked
operation machine, it first determines whether adding this
operation reaches the upper limit of the parallel machine
capacity and is not greater than the upper limit of the capac-
ity. If so, after adding this operation to the waiting queue, all
operations in the queue are simulated for the processing pro-
cess. Otherwise, check whether there are parallel machine
operations in future. If there are, put them into the waiting
queue; otherwise, start processing immediately.

Enhanced algorithm

Considering the fact that the standard genetic algorithm
(SGA) is prone to premature convergence, this paper
proposes an enhanced multi-population genetic algorithm
(MPGA) calculation method. This method enhances the
search capability of the algorithm by initializing with
Hamming distance and incorporating the idea of variable
neighborhood search. An effective immigrant operator is

introduced at the machine layer. The overall process of the
enhanced algorithm can be seen in Fig. 4.

Initialization method based on hamming distance

In the algorithm used in this paper, a multiple-group ini-
tialization method based on Hamming distance similarity
search with individual pre-selection assignment is adopted to
enhance the search capability.Hammingdistance is a calcula-
tion method to measure the degree of difference between two
equal-length strings, which was first proposed by Richard
Hamming, an American mathematician and the founder of
information theory, in the 1950s. Since then, it has been
widely used in many fields and domains. The Hamming dis-
tance between two individuals is calculated by first treating
each chromosome as a positional sequence. A heterogene-
ity operation is then performed, yielding a sum. This sum is
subtracted from the total length, resulting in the Hamming
distance. In Eq. 14, ’n’ represents the number of chromo-
somes, and ’SNi’ stands for the value of the chromosome at
the ’ith’ position.

Length(Sequence) −
(

n∑
i

(S1i ⊕ S2i)

)
(14)

Themulti-population initializationmethodbasedonHam-
ming distance similarity calculation first generates a rela-
tively large population N(N
 n) in a random manner, takes
out individuals in order as multi-dimensional vectors δ, and
then calculates δ with the remaining individuals γ(γ ∈ N,
γ /∈ δ) separately. The onewith the lowest similarity is placed
in another population, and so on, forming multiple popula-
tions. This process is shown in Fig. 5.

123

4090 Complex & Intelligent Systems (2024) 10:4083–4101

Fig. 4 The process of the
enhanced multi-population
genetic algorithm

Fig. 5 The multi-population initialization method based on Hamming distance

Crossover, mutation, and selection method

In terms of selection methods, the "roulette wheel" is used to
select individuals in the population. The principle of roulette
wheel selection is that the probability of an individual being
selected is related to its fitness. The better the fitness of the
individual, the greater the probability of being selected, as
shown in Eq. 14. In the Eq. 15, f (xi) represents the fitness of
the ‘i’ individual, n represents the number of all individuals
in the population, and pi represents the probability of the ‘i’

individual being selected.

Pi � f (xi)∑ j
n f (x j)

(15)

Regarding the crossover method, the operation layer uses
POX [34, 35]. The POX crossover method works by ran-
domly dividing the encoding set, J, into two groups: J1 and
J2. It then places chromosomes from each group into corre-
sponding positions to generate new individuals, C1 and C2.

123

Complex & Intelligent Systems (2024) 10:4083–4101 4091

Fig. 6 POX crossover

Fig. 7 Uniform crossover

Their fitness is calculated, and the one with higher fitness
is taken as the result of the crossover. Figure 6 shows an
example of a crossover, where the J1 set is {5, 8, 7, 51}, and

the J2 set is {24, 61, 14, 87}. The machine layer uses a uni-
form crossover operator. Figure 7 is an example of uniform
crossover,which is accomplished by calculating probabilities
one by one. Figure 8 is an example of a mutation. Mutation
uses swap mutation, where positions are randomly selected
for exchange. The operation layer and the machine layer use
the same mutation operator.

Effective immigrant operator

The immigrant operator in a standard multi-population
genetic algorithm typically replaces the worst individual in
one population directly with the best individual from another
population. However, due to the complexity of the flexible
job shop scheduling problem (FJSP), there are two parts
of the encoding, operation, and machine that need to be
migrated. How to avoid information loss caused by different
layer migrations or to prevent the population from evolving
in a worse direction is a problem that needs to be solved
when applying MPGA to FJSP. This paper adopts a method
of pre-validation of machine layer encoding for information
exchange. This method mainly verifies and matches the indi-
vidual to be migrated with the operation layer of the other
population before the machine layer individual migration,
confirms that it can bring improvement to the population,
then assigns the genes of the better individual to the worse
individual. The steps of this process are as follows:

Step 1—Search: In one population, identify the chro-
mosome with the poorest fitness, termed as the "worst
individual," and in another population, identify the chromo-
some with the optimal fitness, termed as the "best machine."
These two are chosen as targets for migration.

Step 2-Pre-validation:Discard the correspondingmachine
individual of the worse chromosome, use the best fitness
machine layer chromosome in another population as the oper-
ation layer of this operation layer, and calculate the fitness.

Step 3-Effective Immigration: Determine whether immi-
gration can improve the original population. If it can, accept
the new immigrant; otherwise, reject this immigration behav-
ior.

Fig. 8 Mutation

123

4092 Complex & Intelligent Systems (2024) 10:4083–4101

Fig. 9 Variable neighborhood
search

Neighborhood 1 2 3

……

K-2 K-1 K

Operations VNS

Machines VNS

Output result

No new solutions

discovered

New solutions

emerge

Best Individual in the

Current Population

Fig. 10 Best individual variable neighborhood search

This method can reduce the worse genes brought by the
immigration operation and avoid the possibility of the popu-
lation moving in a worse direction due to the machine layer
switch.

Best individual variable neighborhood search strategy

To further reduce the likelihood of the genetic algorithm
falling into local optima, this paper introduces the con-
cept of variable neighborhood search to perform secondary
optimization on the best individual in the elite population.
Variable neighborhood search can gradually improve the
advantages of the current solution by searching in different

neighborhoods. Combined with MPGA, it can search within
a larger range, enhancing the solution’s quality. The princi-
ple of the variable neighborhood search concept is shown
in Fig. 9. First, perturbation is used for searching within the
local neighborhood. When no better solution can be found
within the local neighborhood, it moves to the next neigh-
borhood. When the best solution is found within the local
neighborhood, it returns to the initial neighborhood.

It is worth noting that here, only the best individuals in
each generation and each population are searched, reducing
the computational demand.This strategyfirst performs avari-
able neighborhood search on the operation layer. After the
search is completed, the machine layer is searched without
changing it. This process is repeated until no better solutions
can be found in both the operation layer and the machine
layer, as shown in Fig. 10.

In the MPGA approach, the problem is transformed using
real number encoding, with the neighborhood structure being
discrete. This paper introduces a method of generating dif-
ferent neighborhoods through parallel chromosome shifting,
thereby expanding the search range. The neighborhood struc-
ture is depicted in Fig. 11.

After defining the neighborhood structure, it is neces-
sary to design a perturbation method to search within the
current neighborhood. Based on the neighborhood structure
designed in this study, the perturbation method of the neigh-
borhood adopts a non-equal exchangemethod. The operation
level and themachine level use the same neighborhood struc-
ture and perturbation strategy, the difference lies in their
different encodings. To begin with, the first chromosome in
the current neighborhood is selected as the exchange target
1, then a different chromosome from the queue is randomly
selected for exchange. Figure 12 shows this process using a
partial chromosome as an example.

The pseudocode for the entire Best Individual Variable
Neighborhood Search algorithm is shown in Algorithm
BVNS.

123

Complex & Intelligent Systems (2024) 10:4083–4101 4093

Algorithm BVNS: variable neighborhood search for the best individual

123

4094 Complex & Intelligent Systems (2024) 10:4083–4101

Fig. 11 Neighborhood structure Neighborhood 1

Neighborhood 2

Neighborhood 3

Fig. 12 Perturbation method

Within the current Neighborhood, the first

chromosome emerges as the initial target

selected for exchange.

Identical to the first chromosome,

cannot be selected.

Randomly select one,

assuming number 11 is chosen.

Numerical studies

Due to a lack of canonical instances addressing the flexi-
ble job-shop scheduling problem incorporating parallel batch
processing machines, the open-source dataset in [36] is pur-
posefully used for the standard flexible job-shop scheduling
(MK01-MK10). This dataset is a recognized benchmark and
spans various sizes and complexities of flexible job-shop
scheduling scenarios. In terms of themethodology in [37],we
augmented this dataset to ensure alignment with our research
objectives.

To ascertain the practical relevance and effectiveness of
our proposed methodology in real-world industrial settings,
we ventured beyond the confines of the modified dataset.
We examined a production scenario from a leading enter-
prise specializing in heavy industrial foundry and forging.
This conglomerate boasts an intricate production landscape,
encompassing sectors like steelmaking, forging, non-ferrous
metal casting, mechanical machining, heat treatment, and
holistic machinery manufacturing. Throughout its produc-
tion spectrum,myriadmachine alternatives andparallel batch
processing operations are evident, with several potentially
qualifying as parallel batch processing activities. Indeed,
many of their production pathways align with the nuances of
the flexible job-shop scheduling quandary when integrated
with parallel batch machinery. For our empirical analysis,
we opted for an authentic production sequence of a spe-
cific product category (the procedural route is delineated in
Appendix B). Our study incorporated two distinct product
archetypes, with the fourth operation contingent on parallel
batch processing machinery. Given the enterprise’s opera-
tional modalities, the parallel machinery’s throughput stands
at four units per batch, cumulating to a production demand

for 24 distinct products. This scenario served as our compu-
tational and analytical fulcrum. For a comprehensive insight
into the expanded dataset and the enterprise’s intrinsic pro-
duction modalities, one may refer to Appendices B and C,
respectively.

Experimental design

In the entirety of our numerical experimentation, we con-
ducted computational analyses onboth extendedopen-source
instances and real-world industrial production cases. We
made comparative evaluations of the following algorithms:
the standard variable neighborhoodmulti-population genetic
algorithm proposed in this paper, the standard genetic algo-
rithm, the standard multi-population genetic algorithm, the
enhanced multi-population genetic algorithm, as well as the
particle swarm optimization (PSO) algorithmwith its various
variants, and the novel dragonfly algorithm [38]. Notably,
both the particle swarm optimization and dragonfly algo-
rithms are typically tailored for continuous domain problems,
necessitating a discretization to be apt for the issue under our
study [39]. To achieve this discretization, for the PSO and
its variants and the dragonfly algorithm under comparison,
we adopted the ’Random Key’ [40] concept for encoding
discretization. For the multi-population component, as an
example, a dual populationmodel was employed: with a pop-
ulation size set at 100, and amaximum iteration count of 500.
The crossover andmutation rates for Population 1 were set at
0.6 and0.2 respectively,while those for Population 2were 0.8
and 0.05. The maximum iteration limit remained at 500.The
program corresponding to the algorithm in this paper runs on

123

Complex & Intelligent Systems (2024) 10:4083–4101 4095

Table 3 Calculated results of all
datasets Dataset Methods Min Max Avg SD

e-MK01 sGA 46 50 47.8 1.4

MPGA 45 48 46.1 0.94

PSO 58 63 58.9 1.51

VNSGA 44 46 45.1 0.83

QPSO 49 58 52.4 2.49

GA-PSO 48 54 50.4 1.68

DA 49 63 56.4 3.87

eMPGA 40 46 43 1.48

e-MK02 sGA 41 44 42.4 1.11

MPGA 35 39 36.6 1.17

PSO 42 47 44.7 1.48

VNSGA 38 40 38.5 0.67

QPSO 39 46 43.4 2.53

GA-PSO 40 44 41.9 1.24

DA 45 51 49.4 2.12

eMPGA 34 37 35.6 0.80

e-MK03 sGA 272 292 282 6.14

MPGA 276 287 281.6 2.90

PSO 309 355 335 13.99

VNSGA 259 270 266.2 3.12

QPSO 290 336 313.7 13.59

GA-PSO 265 317 291.5 14.59

DA 359 388 373.2 10.30

eMPGA 247 253 250 2.00

e-MK04 sGA 81 91 87.7 2.60

MPGA 78 96 81 2.60

PSO 90 98 93.7 2.32

VNSGA 82 86 84 1.41

QPSO 90 98 93.3 2.79

GA-PSO 81 92 87.4 3.29

DA 99 106 102.8 1.98

eMPGA 74 78 76.3 1.10

e-MK05 sGA 173 190 182 4.95

MPGA 173 183 178.3 3.34

PSO 186 218 194.7 9.10

VNSGA 171 179 174.3 2.64

QPSO 186 207 194.6 6.26

GA-PSO 171 195 180.6 6.84

DA 207 216 211.5 3.41

eMPGA 164 172 167.7 2.41

e-MK06 sGA 150 162 158.3 3.83

MPGA 115 127 118.6 4.05

PSO 161 180 168.7 6.05

VNSGA 161 180 131.6 3.72

QPSO 154 180 164.4 8.22

123

4096 Complex & Intelligent Systems (2024) 10:4083–4101

Table 3 (continued)
Dataset Methods Min Max Avg SD

GA-PSO 138 164 146.3 7.41

DA 187 199 191.6 4.05

eMPGA 111 119 116.1 2.80

e-MK07 sGA 150 162 158.3 3.83

MPGA 115 127 118.6 4.05

PSO 161 180 168.7 6.05

VNSGA 161 180 131.6 3.72

QPSO 154 180 164.4 8.22

GA-PSO 138 164 146.3 7.41

DA 187 199 191.6 4.05

eMPGA 111 119 116.1 2.80

e-MK08 sGA 489 518 506.8 9.04

MPGA 493 533 513.3 13.07

PSO 525 576 555.6 15.12

VNSGA 487 497 493.1 3.47

QPSO 528 570 543.3 11.77

GA-PSO 488 533 509.2 11.94

DA 586 603 592.6 6.15

eMPGA 479 482 479.3 0.90

e-MK09 sGA 422 471 446.5 17.00

MPGA 389 435 412.9 14.78

PSO 466 528 497.2 18.83

VNSGA 398 417 404.5 5.64

QPSO 450 504 484 18.37

GA-PSO 410 470 433.9 20.31

DA 537 558 549 7.52

eMPGA 360 379 371.8 5.54

e-MK10 sGA 395 417 405.4 6.96

MPGA 326 357 345.9 8.23

PSO 392 457 428 17.50

VNSGA 350 363 355.1 3.93

QPSO 412 445 427.9 10.08

GA-PSO 358 397 377.9 13.36

DA 467 492 479.4 8.30

eMPGA 334 347 338.5 3.85

a cloud host based on KVM virtualization, with a configu-
ration of 4vCPUs, 8 GB, and the operating system is 64-bit
Windows Server 2019, Standard.

Results

This study incorporated the concept of variable neighborhood
search (VNS) into the multi-population genetic algorithm,
implementing a secondary local search on the elite indi-
viduals during the iterative process, which enhances the

algorithm’s search capabilities. Additionally, an enhanced
initialization method was employed to increase the diversity
of the initial population. Tomitigate the potential influence of
parameters, two different parameter sets were used in com-
parison with the standard genetic algorithm, and the optimal
value from the two was selected for comparison. Each algo-
rithm was run 10 times, with all encoding and decoding
methods, other than the ones used for computation, adopted
from methods discussed earlier in this study. The average
values were taken from different runs.

123

Complex & Intelligent Systems (2024) 10:4083–4101 4097

Extended dataset comparative analysis

In our preliminary analysis, we delved into the extended
dataset, which inherently draws from a comprehensive open-
source benchmark encompassing a gamut of scenarios per-
tinent to flexible job-shop scheduling. Our augmentations to
this dataset were meticulously aligned with the contours of
our research premise.

Subsequent to exhaustive iterative simulations, we have
distilled the holistic computational outcomes as presented
in Table 2. Table 3 shows the detailed results of multiple
iterations, including the maximum (Max), minimum (Min),
average values (Avg), and the standard deviation across these
iterations (SD). A salient observation that merits attention is
the suboptimal performance of some nascent methodologies
in specific computational evaluations. The potential under-
pinnings of such anomalies will be dissected in the final
chapter of this discourse.

A perusal of the aggregated results underscores that the
methodology we proffer exhibits a palpable edge in a pre-
ponderance of scenarios within the extended dataset.

Empirical analysis on real-world production
sequences

The results delineated heretofore havebeenderived fromana-
lytical evaluations anchored in our meticulously augmented
open-source dataset. To rigorously substantiate the efficacy
and robustness of our propounded methodology within the
milieu of authentic industrial manufacturing paradigms, we
have embarked on a systematic scrutiny of two distinct
product manufacturing sequences extant within the selected
enterprise’s operational spectrum. The aggregated mean out-
comes, consequent to multiple iterative simulations, are
illustrated in Fig. 13.

The average results indicate that solving the problem
directly with DA exhibits relatively poor performance, with a
higher average value. Thepossible reasons for thiswill be dis-
cussed in the last section. The solution quality of the standard
particle swarmoptimization (PSO) is slightly superior toDA.
The multi-population genetic algorithm (MPGA) also shows
some improvement, but there remains a gap compared to
the enhanced multi-population genetic algorithm (eMPGA)
introduced in this study. This paper also explored the integra-
tion of VNS into sGA (GA + VNS) and the hybrid of genetic
algorithm and particle swarm optimization, but found limited
improvement, only slightly better than the standard GA.

The comparison of the results using different algorithms
is presented in Table 4. These results suggest that the meth-
ods used in this study can effectively solve the scheduling
problem of parallel batch machines in a flexible job-shop
setting. Compared to other algorithms, the enhanced popula-
tion genetic algorithm adopted in this research also presents

DA PSO QPSO GA MPGA GAPSO VNSGA eMPGA
0

500

1000

1500

2000

2500

3000

3500 3408 3351 3317
3121 3092 3057 3015

2847

Fig. 13 A comparison of average values for different algorithms

Table 4 Comparison of the results using different algorithms

Min Max Avg SD

GA 3090 3197 3120.6 29.39

MPGA 3006 3214 3092 68.67

PSO 3250 3454 3351 56.54

VNSGA 2994 3044 3015.3 17.02

QPSO 3234 3464 3317.8 68.19

GA-PSO 2964 3182 3057 53.58

DA 3281 3487 3408.5 67.45

eMPGA 2802 2870 2846.6 21.89

some level of advancement, yielding superior results for
this specific problem. Figure 14 depicts the Gantt chart of
the scheduling scheme obtained by the enhanced algorithm,
where M1–M9 represent different machines, with M9 being
the parallel batch machine.

Conclusion

As introduced earlier, many types of production, including
semiconductor manufacturing and forging, can be regarded
as the flexible job-shop scheduling problem with parallel
batch machines. Despite the real-world prevalence of this
problem in many enterprises, current research on flexible
job shop scheduling with parallel batch-processingmachines
remains relatively sparse. In addition, the integration of smart
technologies into all aspects of life is an important current
trend [41].

The flexible job shop scheduling problem with parallel
batch machines builds upon the foundation of flexible job
shop scheduling problemby incorporating parallelmachines.
This necessitates attention to not only the allocation of equip-
ment for different processes but also the batching issues
of parallel machines, thereby increasing the complexity
of problem-solving. This paper focuses on such problems,
establishing an optimization model based on the flexible

123

4098 Complex & Intelligent Systems (2024) 10:4083–4101

Fig. 14 The Gantt chart of the scheduling scheme via the enhanced algorithm

job shop scheduling problem, to minimize the maximum
completion time, otherwise known as MakeSpan. Given the
characteristics of these types of problems, we employed a
batch assignment method based on the immediate prede-
cessor operation, and designed an enhanced multi-swarm
genetic algorithm combined with neighborhood search via
initialization and migration modifications for problem-
solving. Computational experiments were conducted using
actual production cases from cooperative enterprises and
an expanded dataset. The results show that the method
proposed in this paper can effectively solve the flexible
job shop scheduling problem with parallel batch-processing
machines, and the enhanced algorithm demonstrates cer-
tain improvements compared to the standard algorithm.
These findings contribute to enhancing the production effi-
ciency of such enterprises, and the relevant research results
are expected to be applied in practical enterprise opera-
tions.

In conclusion, there are several interesting phenomena
uncovered in this research and many further studies can be
carried out in future. Particularly, certain advanced algo-
rithms such as the Dragonfly Algorithm can be intricate in
application due to an expansive parameter setup. The added
complexity of requiring specific transformations whenwork-
ing within discrete domains might potentially compromise
their problem-solving effectiveness. Thus, to optimally apply
these algorithms, it is very important to identify themost suit-
able parameter configurations and transformation techniques
in future research. Additionally, there are other facets in this
study that deserve comprehensive exploration. For instance,
the initialization method used in this research requires a
larger initial population for support,which increases the com-
putational load and impacts efficiency. Furthermore, changes

in migration methods may sometimes lead to an insuffi-
cient exchange of information among initial populations.
In future, the transportation time of materials between dif-
ferent equipment could be taken into account in future.
Last but not least, expanding the discussion on incompat-
ibilities could enhance the applicability of our developed
model.

Acknowledgements This research was funded by the National Nat-
ural Science Foundation (NSFC) of China (Grant Nos. 72001096,
72374088, 72101109, and 72001111), the “Belt and Road” Innova-
tive Talents Ex-change Foreign Experts Project of China (Grant No.
DL2023014010L), theResearch InitiationFundof JiangsuUniversity of
Science andTechnology (1042932005), and theGraduate Practice Inno-
vation Program Project of Jiangsu Province (Grant No. SJCX22_1884).

Data availability Thedata supporting thefindings of this study are avail-
able within the article and its supplementary materials.

Declarations

Conflict of interest The authors declare that they have no compet-
ing interests, financial or non-financial, that could influence the work
reported in this paper.

Open Access This article is licensed under aCreativeCommonsAttri-
bution 4.0 International License,which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecomm\penalty -\@M ons.org/licenses/by/4.0/

Complex & Intelligent Systems (2024) 10:4083–4101 4099

Appendix A: Linearized transformation

To linearize the model, auxiliary variables Z1, Z2, and Z3
need to adhere to the following constraints:

Z1 � Skj × Yki j (16)

Z2 � Eki × Yki j (17)

Z3 � Dki × Pkibn (18)

S.T.

Z1 ≤ Skjmax
Yki j (19)

Z1 ≥ Skjmin
Yki j (20)

Z1 ≤ Skj (21)

Z1 ≥ Skj − (1 − Yki j)Skjmax
(22)

Z2 ≤ Ekimax Yki j (23)

Z2 ≥ Skjmin
Yki j (24)

Z2 ≤ Eki (25)

Z2 ≥ Eki − (1 − Yki j)Ekimax (26)

Z3 ≤ Dkimax × Pkibm (27)

Z3 ≥ 0 (28)

Appendix B: Detailed production process

• It should be noted that some processes have been changed
for confidentiality purposes.

• PMP means Parallel Batch Machines processing.

Type of Jobs 1:

Operation Processing
time

Optional machine Demand for
PMP
capacity

1 80 M2,M3 N/A

2 85 M4,M5,M6,M7 N/A

3 60 M1 N/A

4 160 M9 10 units

5 80 M4,M5,M6,M7 N/A

6 30 M8 N/A

7 32 M1 N/A

8 100 M4,M5,M6,M7 N/A

9 50 M8 N/A

10 56 M2,M3 N/A

Type of Jobs 2:

Operation Processing
time

Optional machine Demand for
PMP
capacity

1 50 M1 N/A

2 100 M2,M3 N/A

3 50 M4,M5,M6,M7 N/A

4 160 M9 10 units

5 40 M8 N/A

6 60 M1 N/A

7 32 M3,M2 N/A

8 150 M4,M5,M6,M7 N/A

9 38 M8 N/A

10 56 M3,M2 N/A

Appendix C: ExtendedMK dataset

*PMP means Parallel Batch Machines processing.

123

4100 Complex & Intelligent Systems (2024) 10:4083–4101

MK01:

Jobs PMP operation PMP time Demand for PMP
capacity

1 3 10 10 units

2 N/A N/A N/A

3 N/A N/A N/A

4 N/A N/A N/A

5 4 10 10 units

6 3 10 10 units

7 5 10 10 units

8 6 10 10 units

9 5 10 10 units

10 N/A N/A N/A

The rest of the description is based on the table above and
the following data format is ‘Job-parallel machine Opera-
tion’:

MK03: 1-7,2-2,3-9,4-7,5-8,8-2,14-8,15-6
MK04: 1-8,2-3,3-3,4-2,5-5,6-8,7-4,8-5,9-10,10-3,11-415-2
MK05: 1-4,2-5,3-5,4-5,5-5,6-3,7-3,8-4,9-5,10-6,11-5,12-
5,13-5,14-6,15-4
MK06: 4-4,5-14 MK07:5-5,8-4
MK08: 1-9,2-8,3-12,7-11,9-9,10-9,18-10,20-10
MK09: 1-2,2-5,3-6,4-6,5-6,6-5,7-5,8-5,9-5,10-5,11-5,12-
5,13-5,14-9,15-9,16-13,17-9,18-10
MK10: 1-3,2-3,3-9,4-7,5-7,6-7,7-7,8-7,9-7,10-7,11-8,12-
2,13-6,14-5,15-5,16-5,17-5,18-5,19-5,20-5

References

1. Johnson SM (1954) Optimal two- and three-stage production
schedules with setup times included. Nav Res Logist 1:61–68.
https://doi.org/10.1002/nav.3800010110

2. Da Col G, Teppan EC (2022) Industrial-size job shop scheduling
with constraint programming. Oper Res Perspect 9:100249. https://
doi.org/10.1016/j.orp.2022.100249

3. Vieira GE, Herrmann JW, Lin E (2003) Rescheduling manufactur-
ing systems: a framework of strategies, policies, and methods. J
Sched 6:39–62

4. MahmoodjanlooM, Tavakkoli-MoghaddamR, Baboli A, Bozorgi-
Amiri A (2020) Flexible job shop scheduling problem with
reconfigurable machine tools: an improved differential evolution
algorithm. Appl Soft Comput 94:106416. https://doi.org/10.1016/
j.asoc.2020.106416

5. Jin L, ZhangC,WenX et al (2021)A neutrosophic set-basedTLBO
algorithm for the flexible job-shop scheduling problem with rout-
ing flexibility and uncertain processing times. Complex Intell Syst
7:2833–2853. https://doi.org/10.1007/s40747-021-00461-3

6. Dauzère-Pérès S,Ding J, ShenL, TamssaouetK (2023)Theflexible
job shop scheduling problem: a review. Eur J Oper Res. https://doi.
org/10.1016/j.ejor.2023.05.017

7. Brucker P, Schlie R (1990) Job-shop scheduling with multipurpose
machines. Computing

8. Ham A (2017) Flexible job shop scheduling problem for parallel
batch processingmachinewith compatible job families. ApplMath
Model 45:551–562

9. AlAqelG,LiX,GaoL (2019)Amodified iteratedgreedy algorithm
for flexible job shop scheduling problem. Chin J Mech Eng 32:21.
https://doi.org/10.1186/s10033-019-0337-7

10. Panwalkar SS, Iskander W (1977) A survey of scheduling rules.
Oper Res 25:45–61

11. Nouiri M, Bekrar A, Jemai A et al (2018) An effective and
distributed particle swarm optimization algorithm for flexible job-
shop scheduling problem J. Intell Manuf 29:603–615

12. Gao KZ, Suganthan PN, Chua TJ et al (2015) A two-stage artifi-
cial bee colony algorithm scheduling flexible job-shop scheduling
problem with new job insertion. Expert Syst Appl 42:7652–7663

13. Marichelvam M, Geetha M, Tosun Ö (2020) An improved particle
swarm optimization algorithm to solve hybrid flowshop scheduling
problems with the effect of human factors—a case study. Comput
Oper Res 114:104812

14. Nagano MS, Rossi FL, Martarelli NJ (2019) High-performing
heuristics to minimize flowtime in no-idle permutation flowshop.
Eng Optim 51:185–198

15. Teekeng W, Thammano A (2012) Modified genetic algorithm
for flexible job-shop scheduling problems. Proc Comput Sci
12:122–128

16. Fowler JW, Mönch L (2022) A survey of scheduling with parallel
batch (p-batch) processing. Eur J Oper Res 298:1–24. https://doi.
org/10.1016/j.ejor.2021.06.012

17. Wu X, Guo P, Wang Y,Wang Y (2022) Decomposition approaches
for parallel machine scheduling of step-deteriorating jobs to mini-
mize total tardiness and energy consumption. Complex Intell Syst
8:1339–1354. https://doi.org/10.1007/s40747-021-00601-9

18. Jia Z, Yan J, Leung JYT et al (2019) Ant colony optimization
algorithm for scheduling jobs with fuzzy processing time on par-
allel batch machines with different capacities. Appl Soft Comput
75:548–561. https://doi.org/10.1016/j.asoc.2018.11.027

19. Zhang H, Li K, Chu C, Jia Z (2022) Parallel batch processing
machines scheduling in cloud manufacturing for minimizing total
service completion time. Comput Oper Res 146:105899. https://
doi.org/10.1016/j.cor.2022.105899

20. Yuan X, Yang Y, Tan W, Yin B (2021) Two-stage collaborative
scheduling of casting production line based on hybrid parallel
chaotic optimization algorithm J. Hunan Univ (Natural Sciences)
48:161–169. https://doi.org/10.16339/j.cnki.hdxbzkb.2021.10.019

21. Costa A, Cappadonna FA, Fichera S (2014) A novel genetic algo-
rithm for the hybrid flow shop scheduling with parallel batching
and eligibility constraints. Int J Adv Manuf Technol 75:833–847

22. Wang I-L, Yang T, Chang Y-B (2012) Scheduling two-stage hybrid
flow shopswith parallel batch, release time, andmachine eligibility
constraints. J Intell Manuf 23:2271–2280

23. De La Vega J, Moreno A, Morabito R, Munari P (2023) A robust
optimization approach for the unrelated parallel machine schedul-
ing problem. TOP 31:31–66. https://doi.org/10.1007/s11750-021-
00621-1

24. Ham AM, Cakici E (2016) Flexible job shop scheduling problem
with parallel batch processing machines: MIP and CP approaches.
Comput Ind Eng 102:160–165. https://doi.org/10.1016/j.cie.2016.
11.001

25. SongL, LiuC, ShiH (2022)Discrete particle swarmalgorithmwith
Q-learning for solving flexible job shop scheduling problem with
parallel batch processing machine. J Phys Conf Ser 2303:012022.
https://doi.org/10.1088/1742-6596/2303/1/012022

123

https://doi.org/10.1002/nav.3800010110
https://doi.org/10.1016/j.orp.2022.100249
https://doi.org/10.1016/j.asoc.2020.106416
https://doi.org/10.1007/s40747-021-00461-3
https://doi.org/10.1016/j.ejor.2023.05.017
https://doi.org/10.1186/s10033-019-0337-7
https://doi.org/10.1016/j.ejor.2021.06.012
https://doi.org/10.1007/s40747-021-00601-9
https://doi.org/10.1016/j.asoc.2018.11.027
https://doi.org/10.1016/j.cor.2022.105899
https://doi.org/10.16339/j.cnki.hdxbzkb.2021.10.019
https://doi.org/10.1007/s11750-021-00621-1
https://doi.org/10.1016/j.cie.2016.11.001
https://doi.org/10.1088/1742-6596/2303/1/012022

Complex & Intelligent Systems (2024) 10:4083–4101 4101

26. Ahmadian MM, Khatami M, Salehipour A, Cheng TCE (2021)
Four decades of research on the open-shop scheduling problem to
minimize the makespan. Eur J Oper Res 295:399–426. https://doi.
org/10.1016/j.ejor.2021.03.026

27. Haddadzade M, Razfar MR, Zarandi MHF (2014) Integration of
process planning and job shop scheduling with stochastic process-
ing time. Int J Adv Manuf Technol 71:241–252. https://doi.org/10.
1007/s00170-013-5469-9

28. Liu T-K, Chen Y-P, Chou J-H (2014) Solving distributed and
flexible job-shop scheduling problems for a real-world fastener
manufacturer. IEEE Access 2:1598–1606. https://doi.org/10.1109/
ACCESS.2015.2388486

29. Introduction to branch and bound—data structures and algorithms
tutorial. https://www.geeksforgeeks.org/introduction-to-branch-
and-bound-data-structures-and-algorithms-tutorial/. Accessed 29
Mar 2023

30. Deep K, Thakur M (2007) A new crossover operator for real coded
genetic algorithms. Appl Math Comput 188:895–911

31. Katoch S, Chauhan SS, Kumar V (2021) A review on genetic
algorithm: past, present, and future. Multimed Tools Appl
80:8091–8126. https://doi.org/10.1007/s11042-020-10139-6

32. Deep K, Thakur M (2007) A new mutation operator for real coded
genetic algorithms. Appl Math Comput 193:211–230. https://doi.
org/10.1016/j.amc.2007.03.046

33. Tian X, Liu X (2021) Improved hybrid heuristic algorithm inspired
by tissue-like membrane system to solve job shop scheduling prob-
lem. Processes 9:219. https://doi.org/10.3390/pr9020219

34. Pezzella F, Morganti G, Ciaschetti G (2008) A genetic algorithm
for the flexible job-shop scheduling problem. Comput Oper Res
35:3202–3212. https://doi.org/10.1016/j.cor.2007.02.014

35. Zhang C, Rao Y, Li P (2008) An effective hybrid genetic algorithm
for the job shop scheduling problem. Int J Adv Manuf Technol
39:965–974. https://doi.org/10.1007/s00170-007-1354-8

36. Brandimarte P (1993) Routing and scheduling in a flexible job shop
by tabu search.AnnOperRes 41:157–183. https://doi.org/10.1007/
BF02023073

37. Liu R, Zhou L, Wang C et al (2020) Research on flexible job-
shop scheduling problem with parallel batch processing machines.
J Wuhan Univ Technol (Information &Management Engineering)
42:36–43

38. Meraihi Y, Ramdane-Cherif A, Acheli D,MahseurM (2020) Drag-
onfly algorithm: a comprehensive review and applications. Neural
Comput Appl 32:16625–16646. https://doi.org/10.1007/s00521-
020-04866-y

39. Li J (2021) Research and application of scheduling optimization
algorithms for fuzzy flexible job-shop. Master’s thesis, Jiangnan
University

40. SunL, Lin L,GenM,LiH (2019)Ahybrid cooperative coevolution
algorithm for fuzzy flexible job shop scheduling. IEEETrans Fuzzy
Syst 27:1008–1022

41. Hassan MA, Javed R, Farhatullah et al (2023) Intelligent trans-
portation systems in smart city: a systematic survey. In: 2023
international conference on robotics and automation in industry
(ICRAI), pp 1–9

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/j.ejor.2021.03.026
https://doi.org/10.1007/s00170-013-5469-9
https://doi.org/10.1109/ACCESS.2015.2388486
https://www.geeksforgeeks.org/introduction-to-branch-and-bound-data-structures-and-algorithms-tutorial/
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1016/j.amc.2007.03.046
https://doi.org/10.3390/pr9020219
https://doi.org/10.1016/j.cor.2007.02.014
https://doi.org/10.1007/s00170-007-1354-8
https://doi.org/10.1007/BF02023073
https://doi.org/10.1007/s00521-020-04866-y

	Flexible job-shop scheduling problem with parallel batch machines based on an enhanced multi-population genetic algorithm
	Abstract
	Introduction
	Research background and previous studies
	Flexible job shop scheduling problem
	FJSP with parallel batch machines

	Problem description and optimization model
	Problem description
	Optimization model
	Assumptions and symbols
	Mathematical model

	Solving method
	Construction of fitness function
	Chromosome encoding and decoding
	Fitness evaluation
	Enhanced algorithm
	Initialization method based on hamming distance
	Crossover, mutation, and selection method
	Effective immigrant operator
	Best individual variable neighborhood search strategy

	Numerical studies
	Experimental design

	Results
	Extended dataset comparative analysis
	Empirical analysis on real-world production sequences

	Conclusion
	Acknowledgements
	Appendix A: Linearized transformation
	Appendix B: Detailed production process
	Appendix C: Extended MK dataset
	References

