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Abstract
The detection of anomalies in high-dimensional time-series has always played a crucial role in the domain of system security.
Recently, with rapid advancements in transformer model and graph neural network (GNN) technologies, spatiotemporal
modeling approaches for anomaly detection tasks have been greatly improved. However, most methods focus on optimizing
upstream time-series prediction tasks by leveraging joint spatiotemporal features. Through experiments, we found that this
modeling approach not only risks the loss of some original anomaly information during data preprocessing, but also focuses on
optimizing the performance of the upstream prediction task and does not directly enhance the performance of the downstream
detection task. We propose a spatiotemporal anomaly detection model that incorporates an improved attention mechanism
in the process of temporal modeling. We adopt a heterogeneous graph contrastive learning approach in spatio modeling to
compensate for the representation of anomalous behavioral information, thereby guiding themodel through thorough training.
Through validation on two widely used real-world datasets, we demonstrate that our model outperforms baseline methods.
We also explore the impact of multivariate time-series prediction tasks on the detection task, and visualize the reasons behind
the benefits gained by our model.

Keywords Anomaly detection · Multivariate time-series · Spatiotemporal · Abnormal information expression · Graph
contrastive learning

Introduction

The detection of anomalies in multivariate time-series data
based on spatiotemporal modeling is an emerging research
field, aiming to capture spatiotemporal dependencies from
massive multivariate time-series data and achieve more
sensitive anomaly detection through richer feature represen-
tations. In the real world, spatiotemporal data are present in
various domains, including industry, transportation, meteo-
rology, and finance [1]. These not only exhibit the character-
istics of time-series, but encompass diverse aspects such as
physical properties and spatial–topological structures, and
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are multivariate, with high dimensionality and complexity.
Hence, to perform automatic anomaly detection on these
massive spatiotemporal data can enhance the efficiency and
accuracy of data analysis, effectively reducing the risk of
accidents in practical industrial production processes, and
holding significant economic and safety value [2–4].

Despite the comprehensive consideration of data features
from a dual perspective, it is still challenging to sensi-
tively detect anomalies frommassive amounts ofmultivariate
time-series data through spatiotemporal modeling. Through
experimental analysis, we believe that this is primarily due
to a lack of sufficient abnormal behavior information in the
deepmodeling process to guide the model for training. There
are two aspects. First, from the data characteristics, in an
actual production process, the system is often reliable, so
data of anomalous moments are scarce and hidden under a
large amount of normal data, and the model must be trained
in unsupervised conditions because of expensive labeling [5,
6]. Second, from the modeling perspective, serial decompo-
sition or normalization of data during temporal modeling can
reduce distribution differences in the time dimension [7, 8],
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which can effectively improvemainstream prediction perfor-
mance. However, similar operations may not apply when the
downstream task is anomaly detection, because some of the
already sparse anomalous behavior information is lost, reduc-
ing the acuity of the model for anomalous moment capture.
Spatial-dependency modeling can compensate for the learn-
ing of anomalous behavior information, providing a feasible
path. However, in practice, the lack of a priori knowledge of
physical features that can be translated into effective spatio
constraints, such as patterns of influence between features,
makes it difficult for the model to obtain adequate represen-
tations of anomalous behavioral information.

With its outstanding performance in sequence modeling
and prediction tasks, numerous anomaly detection methods
based on Transformer [9] have been proposed in recent years
[10, 11]. Wiederer incorporated an external attention mecha-
nism on top of self-attention to model the correlation among
multivariate time-series, and proposed a regularization-based
method to constrain model parameters and prevent overfit-
ting [12]. Su focused on key issues in the prediction process,
including the choice of feature embedding, impact of model
depth and width, and combination of attention mechanisms
and convolutional layers [13]. Anomaly Transformer lever-
aged the differences between abnormal time points and their
local and global contexts to derive a distinguishable detection
principle [14]. Some studies have deeply modeled the spatio
dependencies among multivariate variables. GDN learns the
correlation graph among features without prior knowledge,
and utilizes graph neural networks to model the information
flow between feature nodes, helping with anomaly detec-
tion by predicting the future behavior of features [15]. GTA
combines Transformer and GNN in a hierarchical attention
mechanism that considers the correlations between spa-
tiotemporal features [16].Han further advances this approach
by integrating sparse self-encoders with graph neural net-
works, orchestrating a collaborative optimization of both the
reconstruction and prediction tasks [17]. TranAD introduces
a model for anomaly detection and diagnosis, leveraging a
profound transformer network. This network integrates an
attention-based sequence encoder, facilitating swift compre-
hension of overarching temporal patterns in the data [18].
The above literature models spatiotemporal features sepa-
rately, obtaining future feature behavior expressions through
prediction-based approaches, and conducts anomaly detec-
tion based on expression differences. However, the modeling
process overlooks the impact of preprocessing methods like
normalization on the loss of abnormal behavioral informa-
tion, and there is still room for improvement in the modeling
of spatio correlations between features and exploration of
spatio constraints to strengthen model inference.

We propose an enhanced abnormal information expres-
sion spatiotemporal model for anomaly detection in mul-
tivariate time-series (EAIE-AD), which is capable of end-
to-end anomaly detection under unsupervised training con-
ditions. Our model performs simultaneous deep temporal
modeling in a parallel manner. Through experiments, we
have found that while Transformer and its variants have
demonstrated strongmodeling capabilities in prediction tasks
through optimizing the mean squared error (MSE) and mean
absolute error (MAE), this goal does not directly yield the
final anomaly detection effect (as shown in Table 4). Hence,
our goal in the prediction phase is not to optimize these
metrics all the time, but to be able to learn more valid rep-
resentations of anomalous behavior information. Hence, we
focus on the non-stationary information in the original data
but potentially lost due to normalization, and improve upon
the work of non-stationary Transformer [19] by simplifying
its model structure and modifying the object of action of the
attention mechanism; in the spatio module, we learn the fea-
ture association graph of multivariate time-series data, and
expand the homogeneous graph to a heterogeneous graph
based on a GDN [15], which can more finely simulate the
physical characteristics of the features, and on the graph
structure, using two contrast learning strategies to find bene-
ficial spatio constraints to strengthen our learning ability for
the representation of anomalous behavior information. The
contributions made by our model are summarized as follows:

(1) We propose an end-to-end spatiotemporal anomaly
detection model that can simultaneously model feature tem-
poral dependencies and spatio correlations in depth through
a parallel architecture and guide the full training of themodel
under unsupervised conditions by enhancing abnormal infor-
mation expression.

(2) In the temporal dimension, we compensate for the
effective modeling of the inherent unsteadiness information
in the original data, and mitigate the loss of anomalous infor-
mation by improving the execution objects of the attention
mechanism; in the spatio dimension, we use graph neural
networks and contrast learning to model the physical proper-
ties of feature behaviors, from which we extract the hidden
expression of anomalous behavior information in the spatio
topology.

(3) We achieve state-of-the-art anomaly detection results
on multiple datasets, with the F1-scores reaching 0.82 and
0.59 on the SWaT and WADI datasets, respectively. Then,
we conduct adequate ablation experiments and data visual-
ization. Finally, we enhance the interpretability of the model
by exploring the impact of upstreammultivariate timing pre-
diction tasks on downstream anomaly detection tasks.
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Related work

Time-series anomaly detection

The classical methods employed in multivariate time-series
data anomaly detection tasks are primarily reconstruction-
[20, 21] or prediction-based [22, 23], which can, respectively,
compress data representation or model temporal correlation
[24]. In addition, dimensionality-reduction methods, such as
principal component analysis (PCA), singular value decom-
position (SVD), and autoencoder (AE), as commonly used in
machine learning, have been shown to be effective in assist-
ing anomaly detection. In PCA, anomalies are defined as data
points that deviate from the normal data space [25]; in SVD,
anomalies are defined as high-dimensional data that have not
been reconstructed [26]; AE detects anomalies by learning
a self-encoder from the data, where the reconstruction error
of anomalous data is usually greater than that of normal data
[27].

With the high dimensionality of data, by being able to
automatically learn its features and better model nonlinear
relationships, researchers have turned their attention to deep
learning for anomaly detection [28, 29]. Chen proposed an
anomaly detection method for multivariate temporal data,
using a variational autoencoder (VAE) model to learn the
latent representation of the data, and reconstruction error and
theKullback–Leibler (KL) scatter of the latent representation
as anomaly metrics [30]. Kong proposed a long short-term
memory (LSTM)-based method, using an attention mecha-
nism to assignweights to temporal features [31]. Transformer
with an attentionmechanism as its structural core has enabled
a breakthrough in deep time-series prediction. Its point-to-
point attention mechanism is suitable for modeling temporal
dependencies in time-series, and stackable codecs are con-
ducive to capturing and aggregating temporal features at
different time scales. Hence, Transformer-based improved
anomaly detection methods have been proposed. Jeong
proposed a self-supervised learning method that uses the
transformer model to learn a representation of multivariate
time-series data, and uses the distance of the representation to
measure the degree of anomalies of data points [32].Wiederer
used Transformer to explore the variability of the association
between anomalous moments and local and global moments,
deriving a sensitive differentiation principle [12].

While Transformer can well model the relationships
between moments, information transfer between features at
any moment is also important for learning anomalous behav-
ior. The spatio topology formed by this information transfer
is in a non-Euclidean space, and this spatio dependence is
difficult to model with conventional neural networks due to
the sparsity of the structure [33, 34].

Anomaly detection based on spatiotemporal
modeling

Graph neural networks can address the limitations of non-
Euclidean space-dependent modeling, handling the relation-
ships between features and enabling end-to-end learningwith
good robustness [35, 36], and hence are receiving increas-
ing attention in anomaly detection. GGC-LSTM combines
the advantages of graph convolutional neural networks and
long short-term memory (LSTM) networks, which can con-
sider both graph structure and time-series information [37].
Zhao used a deep graph convolutional neural network that
can adaptively learn the relationships between time-series
data with high computational efficiency [38]. GTA model
spatiotemporal dependency for multivariate sensor features
in IoT systems in a tandem fashion and enhancesmodel infer-
ence efficiency through a hierarchical attention mechanism
[16].

Deng proposed a general framework for spatiotemporal
modeling anomaly detection network (GDN) [15], which has
received attention for its excellent results on several realis-
tic datasets. GDN learns a spatial-association graph between
sensor features in the absence of a priori knowledge, uses
an attention mechanism for information transfer and mes-
sage updating on the graph structure, and assists the learned
information in the temporal prediction task, which can more
sensitively capture deviations in the future behavior of sen-
sors and improve detection performance. However, there is
room for improvement. In the temporal sequence prediction
process, the model adopts a traditional normalization strat-
egy, ignoring the expression of inherent unsteadiness in the
data, which can be useful in learning behavior patterns at
anomalousmoments. The feature relationship graph is homo-
geneous, and cannot well describe physical characteristics in
realistic scenarios. We propose an end-to-end spatiotempo-
ral anomaly detection model, which can enhance abnormal
information expression through modeling spatiotemporal
dependency to guide the full training of the model.

Methods

Wedescribe our proposedmodel. Figure 1 shows a high-level
overview of EAIE-AD, with an end-to-end spatiotemporal
model that incorporates temporal and spatio dependency.

Problem formulation

Assume a collection ofmultivariate time-series data obtained
from d features at Ttrain time stamps, denoted as S � {

S1,
. . . , STtrain

}
, i ∈ {1, ..., Ttrain}, Si ∈ R

d . Our model is
trained in an unsupervised manner. The training and valida-
tion datasets consist of normal data, while the test dataset has
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Fig. 1 Model framework

both normal and abnormal data. We seek to acquire knowl-
edge about the behavior of the features through the training
set and identify any anomalous time stamps within the test
set, assigning a label to each time step in the test set, where
0 and 1 denote normal and abnormal, respectively.

Temporal dependencymodeling

Our goal is to predict the behavior of features through
time-series modeling. While Transformer is popular for
temporal prediction due to its powerful long-time-series
modeling capability, for downstream anomaly detection, to
learn enough validly expressed anomalous behavior informa-
tion is more important than realizing small values of MSE
and MAE in prediction. Usually, non-stationary information
can imply more abnormal behavior expressions, but in the
traditional Transformer input, due to operations such as nor-
malization, the input loses some non-stationary information,
and may bring about data over-stationarity problems and
reduce the performance of the attention mechanism.

The result, if not normalized, is a nonuniform feature scale
and more noisy points, reducing prediction performance.
Therefore, we compensate for the normalization informa-
tion and optimize the object of attention. We first slice the
original input data S in the form of a sliding window. For
any moment sample St , we intercept the time window series
whose historical series length is w to get X � [X1, . . . ,

Xw]T � [
St , St−1, . . . , St−w+1

]T , X ∈ R
w×d , t ≥ w. For

each time window X , we normalize to obtain X ′ � [
X ′
1, . . . ,

X ′
w

]T , where

(1)

μx � 1

w

w∑

i�1

Xi , σ 2
x � 1

w

w∑

i�1

(Xi − μx )
2, X ′

i

� 1

σx
� (Xi − μx ) f ori ∈ {1, . . . , w} ,

where μx , σX ∈ R
d , and � denotes the element-wise prod-

uct. At this point, for uniform characteristic scales, we use
the normalization module to the input time-series. However,
normalization will reduce the unsteadiness of the data distri-
bution. On the one hand, some anomalous information will
be lost. On the other hand, the input sequence of the attention
mechanism may not be able to produce differentiated atten-
tion due to over-smoothing, which leads to the degradation
of the model training performance. Hence, we change the
execution object of the attention mechanism. The standard
self-attention mechanism is

Att(Q, K , V ) � Softmax

(
QKT

√
dk

)
V , (2)

where Q, K , V ∈ R
w×dk are queries, keys, and val-

ues, respectively. Softmax is an exponential normalization
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function. With the normalization of Eq. 1, each feature vari-
able in the sequence has the same variance, so σX can be
converted to a scalar. Because the embedding and feedfor-

ward layers have linear properties, Q′ �
(
Q − 1μT

Q

)
/σX

is formed by the projection of X ′, where μQ ∈ R
dk , and we

can obtain

Softmax

(
QKT
√
dk

)

� Softmax

⎛

⎝
σ 2
x Q

′(K ′)T + 1
(
μT
QKT

)
+ (QμK ) 1T − 1

(
μT
QμK

)
1T

√
dk

⎞

⎠ ,

(3)

where 1hRw×1, QμK ∈ R
w×1, μT

QμK is a scalar, and
Sof tmax(·) is invariant to the same translation on the row
dimension of input, and we have

Softmax

(
QKT

√
dk

)
� Softmax

⎛

⎝
σ 2
x Q

′(K ′)T + 1
(
μT
QK

T
)

√
dk

⎞

⎠.

(4)

In this way, we obtain an improved attention calcula-
tion that can benefit from the predictability of a stationary
sequence while maintaining the inherent temporal correla-
tion of the original. However, the assumption that the linear
embedding and feedforward layer have linear properties
holdswith difficulty in practice, and there are often numerous
nonlinear activation factors. We need to compensate for this

nonlinear information based on σ 2
x and 1

(
μT
QK

T
)
by mul-

tilayer perceptron (MLP) to learn two hyperparameters, to
obtain non-stationary attention mechanism calculation for-
mula [19]

Att
(
Q′, K ′, V ′)

� Softmax

⎛

⎝
MLP

(
σ 2
x

)
Q′(K ′)T + MLP

(
μT
QK

T
)

√
dk

⎞

⎠ V ′.

(5)

To our knowledge, ours is the first work to simplify and
introduce this attention mechanism to multivariate temporal
anomaly detection. Hence, we can obtain the values of all
features at any moment t by a feedforward neural network
(FNN) [11] based on historical serial time window data as

Yt � FFN
(
Att

(
Q′, K ′, V ′)), (6)

FFN(x) � wx + b, (7)

wherew is the weight matrix and b is the bias term, Yt ∈ Rd .
Then, we calculate the MSE loss as:

ζMSE � 1

Ttrain

∑

t∈Ttrain
(Yt − St )

2. (8)

Spatial-dependencymodeling

To comprehend the interconnections and relationships
among features enables us to acquire insights through con-
trastive learning techniques basedon the graph structure. This
provides useful supervisory information that enhances abnor-
mal information expression learning.

Graph structure learning

Following thework ofGDN, the original training data feature
d types of sensors at different graph nodes.Any sensorwill be
randomly initialized to the d1 dimension embedding vector
based on the sequence ID, and represented as

Oi ∈ R
d1 , f or i ∈ {1, . . . , d}. (9)

We calculate the similarity between sensor representations
Oi and Oj for each time stamp

ei j � OT
i O j

‖Oi‖ · ∥∥Oj
∥∥ . (10)

A ji � 1{ j ∈ topK ({eki : k ∈ Ci })}. (11)

For a given sensor nodei , we select the top K nodes with
the highest similarity to as the candidate relations Ci , where
Ai j represents an edge from node i to node j , so as to obtain
the homogeneous graph with only one node type and edge
type G(O , A).

In actual industrial systems, the various models of sensor
functions can be placed in one of two categories according to
the nature of their work. One is to perform control operations,
and the other to monitor the indicators of the working envi-
ronment, whichwe, respectively, call actuators andmonitors,
and we classify nodes according to these attributes. Accord-
ing to the node classification, we can get two types of edges,
which connect nodes of either the same or different type.
This constitutes our heterogeneous association graph G0(O ,
A, α, β), where α and β, respectively, denote node and edge
types.

Graph contrastive learning

Ourmain goal of graph contrastive learning based on the het-
erogeneous graph G0 is to find beneficial spatio constraints.
Its two main steps are data augmentation and sampling. We
perform an initial spatio embedding of the original data of
the graph nodes into the d1-dimensional space to obtain a
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representation of any node in the graph G0, denoted as vi ,
vi ∈ G0, vi ∈ R

d1 . It is worth noting that we do not intro-
duce sensor sequence embedding information here, and Oi

is only used to learn the graph structure.
We randomly lose a certain number of edges and node

features in the graph G0 with mask ratio ε. Then, we repeat
this operation twice to obtain two new graphs G1 and G2.
We next performmessage aggregation and node updating for
the two graphs by GNN, and for any node vi , we obtain its
re-characterization as

vl+1i � σ

⎛

⎝
∑

r∈R

∑

j∈Nr
i

1

Ci , r
Wl

rv
l
j +Wl

0v
l
i

⎞

⎠, (12)

where vl+1i is the feature vector of node i in layer l, R is
the set of relations, Wl

r is the weight matrix of relations in
layer i , Wl

0 is the bias vector in layer l, Ci , r the normal-
ization factor, and Nr

i is the set of nodes whose relation to
node i is r . In simpler terms, during the encoding process
for each node, we calculate its feature vector by taking a
weighted sum of the feature vectors of all the nodes con-
nected to it in the previous layer. The weights assigned to
each node feature vector are determined by a weight matrix
associated with their relationship, along with a bias vector.
This weighted sum is passed through a nonlinear activation
function to introduce nonlinearity. Throughout this process,
the weights undergo normalization to mitigate the influence
of node degrees.

After data augmentation and graph node re-
characterization, we perform positive and negative sampling.
The traditional graph contrastive learning sampling strategy
is to randomly fix the node of one of the views as the
anchor point; only the same point in another view constitutes
a positive sample pair, and the rest are negative sample
pairs, with repeat traversal to obtain the set of all positive
and negative sample pairs [39]. While this is intuitive and
easy to implement, we found through experiments that
such methods have limitations in heterogeneous graphs,
and it is difficult to effectively use the representation of
heterogeneous information between different node and edge
types. To improve the sampling strategy, we sample positive
and negative sample pairs in G1 and G2, and classify the
relationship between sample pairs into two categories,
one unrelated and the other inconsistent, where unrelated
refers to sample pairs that are not directly connected, and
inconsistent to those whose edges are connected but whose
node types are inconsistent.

We first randomly sample a node in G1 to obtain vi ∈ G1,
vi ∈ R

d1 . Then, we find the set M of neighboring nodes of
node i in G2 to obtain v j . A positive sample pair can be
expressed as Pi � (vi , v j ), vi ∈ G1, (v j ∈ G2) ∩ (v j ∈
M), and a negative sample pair as Ni � (vi , v j ), vi ∈ G1,

(v j ∈ G2) ∩ (v j /∈ M). Then, we perform pooling on the
sample pairs. For the generalization of the model, we use
sum-pooling to obtain Pi , Ni ∈ R

d1 . We repeat sampling K1

times to obtain the set of positive and negative sample pairs
denoted as P � {

P1, .., Pk1
}
, P ∈ R

k1×d1 , N � {
N1, ..,

Nk1

}
, N ∈ R

k1×d1 , and the objective function is

ζ1 � − log
k1∑

i�0

θk1∑

j�0

exp
(
Pi (Pj )T

)

exp
(
Ni (N j )T /τ

) , (13)

where τ is the temperature coefficient. It is worth noting that
the number of positive and negative samples is the same K1 at
this time. However, through experimental analysis, we found
that increasing the number of negative samples will improve
the learning ability of the model, for which we will learn
a hyperparameter θ to control the sampling ratio of each
group of positive and negative samples. The above sampling
strategy is based on uncorrelated node structures.

The second sampling strategy is based on the incon-
sistency of node attributes. The difference with the first
sampling strategy is that the first focuses on the characteris-
tics of edges, in short, on whether or not they are connected
as a basis for sampling positive and negative samples in
two graphs. The second sampling strategy focuses on node
characteristics, sampling different types of nodes on the two
graphs as positive and negative sample pairs when they are
already connected. Specifically, we randomly sample a node
v′
i ∈ G1, by finding the neighboring nodes of the v′

i node
combined with M′ in G2, in which a node with the same
node type is randomly selected to form a positive sam-
ple pair. When learning the graph structure, we mentioned
that our graph structure divides the nodes into actuator and
monitor types, and we can denote the set composed of the
two types of sensor nodes, respectively, as A � {

v′
i |t ype(

v′
i

) � actuator
}
, B � {

v′
i |t ype

(
v′
i

) � monitor
}
. A

positive sample pair can be expressed as P ′
i � (v′

i , v′
j ),

v′
i ∈ G1, v′

j ∈ M′, type
(
v′
i

) � t ype
(
v′
j

)
, and a nega-

tive sample pair as P ′
i � (v′

i , v′
j ), v

′
i ∈ G1, v′

j ∈ M′, type
(
v′
i

) 
� t ype
(
v′
j

)
. Then, we perform sum-pooling on the

sample pairs to obtain P ′
i , N

′
i ∈ Rd1 . We repeat sampling

k1 times, obtain the respective sets of positive and negative

sample pairs P ′ �
{
P ′
1, .., P ′

k1

}
, P ′ ∈ R

k1×d1 , N ′ �
{
N ′
1,

.., N ′
k1

}
, N ′ ∈ R

k1×d1 , and obtain the objective function

ζ2 � − log
k1∑

i�0

θk1∑

j�0

exp
(
P ′
i (P

′
j )
T
)

exp
(
N ′
i (N

′
j )
T /τ

) . (14)
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Table 1 Details of SWaT and
WADI datasets Dataset Features Monitor Actuator Train Test Anomalies

Swat 51 24 27 47,520 44,991 14.01%

WADI 127 87 40 117,297 17,280 6.28%

In this way, we obtain the spatial-dependency modeling
objective function

ζspatio � ζ1 + ζ2, (15)

which introduces a constraint on our temporal prediction
task, thereby yielding the comprehensive objective function
for our model

L � ζMSE + ζspatio. (16)

Anomaly detection

Having integrated spatio constraints into our prediction
framework for sensor behavior, we compute an anomaly
score to provide an explanation for anomalous behavior [15].
We calculate the discrepancy between the predicted and
observed values of a sensor i at each time stamp t within
the test set

Et , i � ∣∣Yt , i − St , i
∣∣, t ∈ Ttest, i ∈ {1, ..., d}, (17)

where Ttest denotes all the time stamps in the test set, Yt , i ∈
Yt . Considering the varying sensitivities among the sensors,
we apply robust normalization to the calculated deviations

ψt , i � Et , i − μi

σi
, (18)

where μi and σi are the median and inter-quartile range,
respectively. Subsequently, we employ the maximum func-
tion to aggregate the anomaly scores of all sensors at time
t , yielding the time stamp anomaly score ψt , i . If this sur-
passes the predefined threshold, we classify it as an anomaly
occurring at that time. The way the thresholds are chosen can
be optimized differently depending on the direction and dis-
tance [40], but to ensure fairness with baseline experiments,
we use the maximum value of the system anomaly score at
all moments in the validation set as the threshold [15, 18].
It is important to note that our training and validation sets
solely consist of normal sample data, and only the test set
contains abnormal samples. This is an important condition
for us to use unsupervised training and to set thresholds.

Experiment

We performed experiments and conducted quantitative and
qualitative analyses to compare our method with baseline
approaches.

Dataset: The scarcity of high-dimensional series data
originating from real-world industrial systems, incorporat-
ing anomalous instances, poses a challenge. However, there
are two extensively employed cyber-physical systems (CPS)
datasets available for research in time-series anomaly detec-
tion. These datasets, Secure Water Treatment (SWaT) and
Water Distribution (WADI) [1], were generated and released
by the iTrust Center for Research in Cybersecurity at the
Singapore University of Technology and Design. Details are
shown in Table 1.

Baselines: As our model is designed for anomaly detection
based on multivariate time-series forecasting, our baselines
fall into two categories. The first comprise outstanding work
focused on detecting anomalies in multivariate time-series
data, and can provide a visual comparison of our model’s
performance. The second category consists of transformer
models that have recently demonstrated excellent perfor-
mance in multivariate time-series forecasting. The baselines
are as follows:

PCA [41]: Discovers a low-dimensional projection that
effectively captures the majority of variance present in the
data. The anomaly score, in this context, refers to the recon-
struction error associated with this projection;

KNN [42]: Employs the distance between each data point
and its top k nearest neighbor as an anomaly score;

DAGMM [43]: Combines deep autoencoders and a Gaus-
sian mixture model to generate a low-dimensional represen-
tation and reconstruction error for each observation;

AE [44]: Consisting of an encoder and a decoder, recon-
structs data samples, utilizing the reconstruction error as a
metric for detecting anomalies;

LSTMVAE [45]: To leverage the advantages of both
LSTM and VAE, the feedforward network in a VAE is
replaced by LSTM, allowing for the computation of the
reconstruction error, which serves as an error score;

Mad-GAN [21]: By employing generative adversarial net-
works (GANs) in conjunction with a reconstruction-based
approach, error scores are computed for each sample;

GDN [15]: Can capture both spatio and temporal depen-
dencies, representing multivariate time-series data as graphs,
and utilizing GNNs to learn the representations of nodes and
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edges within them. Learned representations are fed into a
sensor future behavior prediction module, which enables the
detection of anomalies in time-series data;

TranAD [18]: Utilizing an innovative self-attentive mech-
anism, it incorporates self-regulation grounded in focus
scores for resilientmulti-modal feature extraction.Themodel
employs adversarial training for stability and integrates
reconstruction loss for anomaly detection.

Informer [46]: Employing amultilayer Transformer archi-
tecture, this model enhances the weight calculation method
for attention, and incorporates techniques such as time-
varying positional encoding and length masking, which
enable efficient processing of long sequences and accurate
predictions across multiple time steps;

Autoformer [47]: This adaptive transformer model intro-
duces an adaptive feature selection module and adaptive
transformation module to dynamically learn the crucial fea-
tures and transformation methods of time-series data, so as
to enhance the accuracy and generalization of sequence pre-
diction.

Non-stationary Transformer (Nsformer) [19]: Designed
for non-stationary time-series data, a progressive learning
mechanism allows for adaptive learning of the dynamic
nature of a sequence. Information from both historical and
future data is leveraged during the prediction process, result-
ing in improved accuracy of sequence prediction.

Evaluation metrics: To ensure generalizability and fairness,
we chose the evaluation indicators in the literature: precision,
recall, and F1-score [15, 21]

Pre � TP

TP + FP
(19)

Rec � TP

TP + FN
(20)

F1 � 2 × Pre × Rec

Pre + Rec
, (21)

where TP is the correctly detected anomaly, FP is the falsely
detected anomaly, TN is the correctly assigned normal, and
FN is the falsely assigned normal.

Implementation: We used the PyTorch-1.8.1 library to train
all the models, and split the trained time-series into 90%
training data and 10% validation data. We used the Adam
optimizer with a learning rate of 0.01 and an epoch of 10.
Some important hyperparameters are as follows: in the tem-
poral module, the sliding window length was w � 15, the
number of transformer encoder layers was L � 3, the num-
ber of heads was 4, and dk� 64; in the spatio module,
ε � 0.2, d1 � 64, k � 20, k1 � 10, θ � 5, τ � 0.25.

Research question 1: anomaly detection
performance

We present the anomaly detection performance of our model
and the baseline approaches in Table 2, in terms of precision,
recall, and F1-score on the SWaT and WADI datasets. The
results indicate that our model outperforms the baselines in
terms of recall and F1-score on both datasets, achieving F1-
scores of 0.82 and 0.59 for SWaT and WADI, respectively.
While theGDNbaseline achieves higher precision scores, the
trade-off between precision and recall is inevitable. In prac-
tice, maintenance technicians with domain expertise tend to
prioritize high sensitivity over specificity to avoid missing
any critical events worthy of future reference [36]. There-
fore, the goal of our model optimization is to maximize the
recall while optimizing the F1-score.

We observe that the improvement rate on the WADI
dataset is higher than on the SWaT dataset. We attribute this
to its larger data volume and feature dimensions, which result
in a more complex spatio topology. By utilizing graph-based
contrastive learning, our model can uncover more valuable
spatio constraints and guide the learning process to enhance
the representation of anomalous behavior. By analyzing the
experimental data, it is worth noting that the TranAD model
performs very well in SWaT, especially the Rec metrics,
but does not perform as well as our model on the WADI
dataset. This is because TranAD is able to learn feature
relevance through adversarial learning and meta-learning.
However, meta-learning uses limited data and lowers the
learning threshold, so although it can detect more anoma-
lous moments, it can easily misclassify some anomalous
moments, whichmakes the accuracymuch lower.Ourmodel,
on the other hand, has a good ability to learn the non-
stationarity of the original data through improved attention,
which is more expressive on the WADI dataset with higher
data dimensions, and is able to balance the conditions of the
two metrics Prec and Rec, to obtain excellent F1 values.

Research question 2: ablation

To demonstrate the necessity of our model components
in achieving the optimal detection performance shown in
Table 2, we conducted an ablation study, whose results are
presented in Table 3.

Temporal: When we replace the temporal modeling compo-
nent of our model with a regular Transformer network that
only includes an encoder, there is a significant decrease in
precision, recall, and F1-score. Specifically, the F1-scores
decreased by 0.07 and 0.03 on the SWaT andWADI datasets,
respectively. This indicates that applying the attention mech-
anism directly to normalized data resulted in the loss of
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Table 2 Anomaly detection
performance on SWaT and
WADI datasets in terms of
precision (Prec) (%), recall (Rec)
(%), and F1-score (F1)

Method SWaT WADI

Prec Rec F1 Prec Rec F1

PCA 24.92 21.63 0.23 39.53 5.63 0.10

KNN 7.83 12.13 0.08 7.76 7.75 0.08

AE 72.63 52.63 0.61 34.35 34.35 0.34

DAGMM 27.46 69.52 0.39 54.44 26.99 0.36

LSTMVAE 96.24 59.91 0.74 54.44 26.99 0.36

Mad-GAN 98.97 63.74 0.77 41.44 33.92 0.37

GDN 99.35 68.12 0.81 97.50 40.19 0.57

TranAD 97.21 72.42 0.83 35.25 82.96 0.49

ours 98.29 70.84 0.82 93.42 43.23 0.59

Best performance for each evaluation metric is bolded; second-best is underlined. Results are partly from
work of Deng [15]

Table 3 Ablation test results
Method SWaT WADI

Prec Rec F1 Prec Rec F1

Ours 98.29 70.84 0.82 93.42 43.23 0.59

Temporal 91.31 63.21 0.75 88.22 41.50 0.56

Spatio 96.82 68.13 0.79 90.32 40.34 0.55

Best performance for each evaluation metric is bolded

Table 4 Prediction task (MSE, MAE) and detection task (Prec, Rec, F1) performance test data

Method SWaT WADI

MSE MAE Prec Rec F1 MSE MAE Prec Rec F1

Trans [5] 0.19 0.27 91.31 63.21 0.75 0.22 0.28 88.22 41.50 0.56

In [34] 0.15 0.19 98.13 60.15 0.74 0.17 0.23 94.13 40.41 0.58

Auto [35] 0.13 0.17 99.24 62.81 0.77 0.19 0.24 91.35 41.53 0.57

Ns [13] 0.17 0.21 95.13 67.41 0.79 0.20 0.25 92.42 41.23 0.57

ours 0.16 0.23 98.29 70.84 0.82 0.21 0.24 93.42 43.23 0.59

Best performance for each evaluation metric is bolded

anomalous information present in the original data. Addi-
tionally, it caused excessive stationarity during deep model
training, leading to attention weights that were difficult to
differentiate across sequences. Ourmodel emulates the atten-
tionmechanism on the original data, which helps capture and
express the information related to anomalous behavior.

Spatio: When we directly remove the spatio dependency
modeling by not calculating ζspatio, and rely solely on
the time-series prediction results for detection, there are
decreases in the F1-score of 0.03 and 0.04 on the SWaT
andWADI datasets, respectively. This indicates that utilizing
graph contrastive learning to search for supervisory signals
can guide the model to learn spatio dependencies between

features. It strengthens the constraints during model train-
ing, allowing for more comprehensive training of the model.

Research question 3: interpretability

We investigate an interesting question that we discovered
during our experiments. In our prediction-based multivariate
time-series anomaly detection model, the upstream task is
one of general multivariate time-series prediction, and down-
stream is a binary classification anomaly detection task. In
multivariate time-series prediction tasks, MSE and MAE are
commonly used performance evaluationmetrics [46, 47].We
wish to explore whether the downstream anomaly detection
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Fig. 2 Attention visualization on WADI dataset

Fig. 3 Sample error score distribution

task can directly benefit from the optimized MSE and MAE
metrics in the prediction task. To study this question, we
employed various state-of-the-art transformer models that
have shownexcellent performance inmultivariate time-series
prediction tasks. We observed the impact of MSE and MAE
during the prediction phase on the precision, recall, and
F1-score in the detection task. The results are presented in
Table 4.

As mentioned in Research Question 1, we place more
emphasis on recall and F1-score as our primary objectives
in the practical process. On the SWaT dataset, Autoformer
demonstrates the best performance in the prediction task,
with MSE and MAE values of 0.13 and 0.17, respectively.
However, its recall and F1-scores are not as high as those
of Ns [19] and our model. On the WADI dataset, Informer
performs best in the prediction task, with MSE and MAE
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Fig. 4 Hyperparametric sensitivity experiments

values of 0.17 and 0.23, respectively. Nevertheless, the final
detection performance is still not optimal. Through experi-
mental data analysis, we argue that optimizing the MSE and
MAE metrics for the upstream prediction task is a nonlinear
relationship in terms of gain for the downstream detection
task and that there is a critical point that prevents sustained
gain. Hence, we introduced spatial-dependence modeling,
and although the MSE and MAE of the prediction task are
numerically inferior to those of other models, the recall and
F1-score of the final detection task can be surpassed. In
further analysis, we believe that we should focus more on
whether our model can learn enough information represen-
tation of anomalous behavior and get enough constraints in
the prediction phase. Hence, ourmodel tries to strengthen the
anomalous behavior information expression at two levels.
First, different from the mainstream Transformer, we exe-
cute the attention mechanism on the original un-normalized
non-stationary data to avoid ignoring anomalous behavior
information lost due to normalization. Second, we can get
more spatio constraints on the anomalous behavior by min-
ing the spatio dependencies between the features through
graph contrastive learning.

To further enhance interpretability, we visualize self-
attention plots on our dataset WADI using the standard
attention mechanism and the non-stationary attention mech-
anism employed in our model.

As shown in Fig. 2, the horizontal and vertical axes are
the normalized input data. Figure 2(a) and (c) visualizes the

execution of standard attention, and Fig. 2(b) and (d) visu-
alizes the non-stationary attention mechanism. Comparing
the figures in the same dataset, we can clearly find that in
Fig. 2(a) and (c), due to the effect of normalization, the
attention weights focus on the diagonal line, and all input
tokens tend to focus on themselves, thus producing an over-
stationarity problem, while in Fig. 2(b) and (d), our model
can focus on more information of other tokens in the input
sequence and produce effective variability in attention, help-
ing our model learn to express more information about the
anomalous behavior.

To further illustrate the ability of the error scores con-
structed by ourmodel to discriminate between abnormalities,
we visualize a comparative plot of the distribution of abnor-
mal scores for positive and negative samples. Given the
balance of precision and recall, we visualize the distribu-
tion of GDN abnormality scores for comparison and contrast
to facilitate comparative observations, as shown in Fig. 3.
Compared to GDN, our model obtains a better distribution of
normal/abnormal data, especially in the SWaTdataset, where
error scores of normal data remain low and concentrated,
indicating that our model can more effectively separate nor-
mal from abnormal embedding. In the WADI dataset, there
are still many normal sample points with excessive error
scores, and the presence of these noisy points is one of
the main reasons why detection performance on the WADI
dataset is inferior to that on SWaT.

To explore the sensitivity of the hyperparameters in our
model, we conducted tests on six important hyperparameters,

123



2948 Complex & Intelligent Systems (2024) 10:2937–2950

Table 5 The detail in module time complexity and parameter

Block Time complexity Parameter

Temporal O
(
3d21w2

)
121,344

Spatial O
(
20L2d21

)
+ k21d1 17,120

as shown in Fig. 4, sliding window length (w), the num-
ber of transformer encoder layers (L), the number of node
neighbors (K), the graph embedding dimension (D1), the
contrastive learning sample times(K1), and sampling ratio
(θ ). We can find many hyperparameters which have multiple
optimal values. Considering the model inference speed, we
chose relatively small values for all hyperparameters. It is
also worth noting that the two most influential parameters
are K and θ . As for K, we need to ensure that each node
has enough neighbors, so that we are able to capture more
useful information when we perform information transfer
in the graph, but when our number of neighbors exceeds
20, an over-smoothing phenomenon occurs, and the flow
of information in the whole graph tends to be like a fully
connected graph. As for θ , when theta is too small, the differ-
ence between positive and negative samples cannot be fully
explained and the model is underfitted, and when theta is too
large a large amount of noise is learned and the inference effi-
ciency is significantly reduced. Finally, the details in module
time complexity and parameter are shown in Table 5.

Conclusion

In this work, we proposed a novel end-to-end multivari-
ate time-series spatial–temporal anomaly detection model
(EAIE-AD), which is capable of deep modeling in both tem-
poral and spatio dimensions, compensating for anomalous
behavioral information. Our model is versatile, catering to
both temporal and graph domains. It employs self-supervised
learning specifically tailored for sparse data, making it
well suited for scenarios characterized by data sparsity
and complexity. This adaptability is particularly valuable
in applications that demand the simultaneous capture of
spatial–temporal characteristics, such as traffic flow detec-
tion and anomaly detection in intelligent systems. Through
experiments, we verified that the performance of our model
outperforms the baseline on two generic real datasets, while
we explored the relationship between performance in the pre-
diction task and performance gain in the final detection task
in mainstream models through visualization and analysis of
experimental results, enhancing the interpretability of our
model. In our future work, we will further dig deeper into
the spatio topology properties, including spatio-localization

and path compensation, as a way to provide more realistic
application scenarios for our model.
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