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Abstract
Sleep stage classification is essential in evaluating sleep quality. Sleep disorders disrupt the periodicity of sleep stages,
especially the common obstructive sleep apnea (OSA). Many methods only consider how to effectively extract features
from physiological signals to classify sleep stages, ignoring the impact of OSA on sleep staging. We propose a structured
sleep staging network (SSleepNet) based on OSA to solve the above problem. This research focused on the effect of sleep
apnea patients with different severity on sleep staging performance and how to reduce this effect. Considering that the
transfer relationship between sleep stages of OSA subjects is different, SSleepNet learns comprehensive features and transfer
relationships to improve the sleep staging performance. First, the network uses the multi-scale feature extraction (MSFE)
module to learn rich features. Second, the network uses a structured learning module (SLM) to understand the transfer
relationship between sleep stages, reducing the impact of OSA on sleep stages and making the network more universal.
We validate the model on two datasets. The experimental results show that the detection accuracy can reach 84.6% on the
Sleep-EDF-2013 dataset. The detection accuracy decreased slightly with the increase of OSA severity on the Sleep Heart
Health Study (SHHS) dataset. The accuracy of healthy subjects to severe OSA subjects ranged from 79.8 to 78.4%, with a
difference of only 1.4%. It shows that the SSleepNet can perform better sleep staging for healthy and OSA subjects.

Keywords Sleep stage · Obstructive sleep apnea · Deep learning · Structured learning

Introduction

Sleep is an essential primary physiological activity. Sleep
can restore the spirit, relieve fatigue, improve immunity, and
resist diseases. Poor sleep quality seriously affects human
mental state and brain thinking ability and increases the inci-
dence rate of hypertension, stroke, and heart disease [1].
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Sleep stage classification is primary research to evaluate
sleep quality. The sleep stages are classified by analyz-
ing the features of several polysomnographic (PSG) sig-
nals, such as electrooculographic (EOG), electroencephalo-
graphic (EEG), electromyographic (EMG) signals, and so
on. Sleep experts divide the sleep records into several con-
secutive epochs, and each epoch marks the sleep stage
according to the standard. There are two common standards:
Rechtschaffen and Kales rules (R&K) and the American
Academy of Sleep Medicine (AASM) [2]. R&K rules divide
the sleep stages into wake, rapid eye movement (REM), and
non-rapid eye movement (NREM). NREM includes stage 1,
stage 2, stage 3, and stage 4. For the AASM rules, NREM
is further divided into three stages, referred to as N1, N2,
and N3. They merged stage 3 and stage 4 into stage N3.
If sleep experts manually analyze these signals, this pro-
cess is time-consuming, laborious, and expensive. Therefore,
machine learning and deep learningmethods aremainly used
for automatic sleep staging.

Obstructive sleep apnea (OSA) is a common sleep dis-
order, mainly caused by intermittent sleep apnea caused by
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upper airway obstruction [3]. OSA leads to an increase in
transition stage N1 and changes the sleep structure [4]. Dur-
ing thewhole night, healthy people experience the circulation
sleep process. For OSA subjects, the transfer relationship
between sleep stages also changes. TheOSA severity has dif-
ferent effects on sleep structure. The OSA severity is mainly
determined by the apnea-hypopnea index (AHI). AHI refers
to the number of apnea per hour. If AHI<5, the subject is a
healthy subject. If 5≤AHI<15, the subject is judged as amild
OSA. If 15≤AHI<30, the subject is considered a moderate
OSA. If AHI≥30, the subject is regarded as a severe OSA.
It is worth studying how OSA severity affects sleep staging
performance and how to design models to reduce this effect.

Many researchers use predefined rules, machine learn-
ing, and deep learning methods for automatic sleep staging
based on various physiological signals [5–11]. Combining
various physiological signals can improve sleep staging per-
formance and lead to poor sleep comfort. Therefore, many
studies use single-channel EEG signals for sleep staging. In
the predefined rules, the definition of threshold affects the
classification performance. In themachine learningmethods,
classification performance depends on feature extraction and
classifier selection. These methods require the prior knowl-
edge to analyze physiological signals and manual feature
extraction. So some researchers use deep learning models to
learn features from physiological signals.

Some researchers use the convolutional neural network
(CNN), recurrent neural network (RNN), or hybrid net-
workmodels for automatic sleep staging. CNNautomatically
learns features from the raw physiological signal or time-
frequency images. Tsinalis et al. [12] used the raw EEG
signals to learn features by two-layer convolution and pool-
ing operation. Phan et al. [13, 14] used the short-time Fourier
transform to convert the EEG signal into time-frequency
images. They added a multi-task classification layer for joint
classification and prediction. Many studies use the RNN to
learn the temporal features of sleep stages. Michielli et al.
[15] used a cascaded RNN based on long short-term mem-
ory (LSTM) blocks to classify sleep stages. Phan et al. [16]
proposed the dual RNN with attention to learn the tempo-
ral features within epochs and long epoch sequences. The
EEG signal as input, RNN is complex and needs more train-
ing time. Therefore, many researchers build hybrid network
models. Supratak et al. [17] proposed deepsleepnet, includ-
ing two CNN branches and one LSTM layer, which belongs
to two-stage training. To further simplify the model, these
researchers designed an end-to-end tinysleepnet model [18].
Seo et al. [19] proposed the modified resnet-50 to learn the
featureswithin sleep stages and used bidirectional long short-
term memory (Bi-LSTM) to obtain the temporal features,
which can get an average accuracy of 83.9%. Mousavi et al.
[20] used the dual-CNN to learn the internal features of each

epoch and utilized the RNN with attention to discover the
most relevant part of the input sequence.

Perslev et al. [21] proposed the U-Time model based on
the U-Net architecture. Jia et al. [22] proposed SalientSleep-
Net to detect the salient wave. The model is a temporal fully
convolutional network based on the U2-Net architecture.
Zhang et al. [23] used a “Dual-CNN” to process the temporal
signals and time-frequency simultaneously. They combined
CNN and RNN, and a Markov chain model fine-tuned
the final results. Eldele et al. [24] proposed an attention-
based deep learning architecture called AttnSleep to classify
sleep stages using EEG signals. This architecture starts with
the feature extraction module based on a multi-resolution
convolutional neural network. Then an adaptive feature recal-
ibration improves the quality of the extracted features. Yang
et al. [25] combined a deep one-dimensional convolutional
neural network and a hidden Markov model (HMM). They
leveraged CNN to extract features for epoch-wise classifi-
cation and HMM to get prior information on adjacent EEG
epochs for subject-wise classification.

These deep learning models mainly study the sleep stages
of healthy subjects. They classify sleep stages by learning the
features of each epoch and the temporal features of multiple
epochs, ignoring the transition relationship between sleep
stages and the impact of OSA. There are transfer structures
between sleep stages. The transfer structures are differences
between healthy and OSA subjects on the SHHS dataset, as
shown in Fig. 1. For healthy subjects, the transition prob-
ability of N1→N1 is 0.52, and the transition probability of
N1→N2 is 0.33.WhenOSAoccurs, the number ofN1 stages
increases, the transition probability of N1→N1 increases
to 0.57, and the transition probability of N1→N2 is 0.28.
For OSA subjects, the transition probability changes. We
designed a structured sleep stage network (SSleepNet) to
learn better the transition probability between sleep stages.
The network uses the multi-scale convolution neural net-
work module to learn the rich internal features of epochs
and uses the structured learning module to learn the temporal
features between epochs and the transfer structure between
sleep stages. Thewholemodel is an end-to-end deep learning
network.

The main contributions are described as follows:

1. We propose a structured sleep staging network named
SSleepNet for the sleep stages based on OSA subjects.
We utilize a structured learning module (SLM) to learn
the transfer structure between sleep stages and to reduce
the impact of OSA on sleep stages.

2. We design a multi-scale feature extraction (MSFE) block
for learning the high-frequency, low-frequency, and tem-
poral features within an epoch. This block improves the
sleep staging performance using rich features.

123



Complex & Intelligent Systems (2024) 10:2689–2701 2691

Fig. 1 Transition diagram and transition matrix of healthy and OSA subjects

Fig. 2 The overall network
framework of SSleepNet

3. We perform extensive experiments on two public datasets,
and experimental results demonstrate that our SSleep-
Net model achieves good sleep staging performance for
healthy and OSA subjects.

Materials andmethods

OSAhas a specific impact on the sleep stage structure, and the
transfer structure between sleep stages is different. Therefore,
we designed an SSleepNet based onOSA for sleep stage clas-
sification. The overall network framework is shown in Fig. 2.
The model mainly consists of the multi-scale feature extrac-
tor (MSFE) and the structured learning module (SLM). First,
the MSFE with three-branch CNN architectures is exploited
to extract the features from a 30s EEG signal (an epoch). In
particular, it extracts low-frequency, high-frequency and tem-
poral features by the different convolution branches. Second,
we develop an SLM to capture subjects’ transfer structure
between sleep stages. The SLM mainly uses Bi-LSTM to
obtain temporal features and conditional random field (CRF)
to learn transfer structure between sleep stages labels. Third,
the softmax activation function outputs the sleep stages.

Datasets

We used two public datasets to verify the effectiveness,
namely, Sleep-EDF-2013 and Sleep Heart Health Study
(SHHS). The Sleep-EDF-2013 was obtained from the Phys-
ioBank [26, 27]. This dataset includes PSG records of 20
healthy subjects. Except that the 13th subject only contains
the one-night data, the others have the two-night data. Only
the Fpz-Cz channel EEG signal was used in our experiment,
and the frequency was 100Hz. According to the R&K rule,
the experts marked sleep with a duration of 30s as wake,
stage 1, stage 2, stage 3, stage 4, REM, movement time,
and unscored. We excluded some movement and unscored
epochs. We merged stage 3 and stage 4 into N3 according to
the AASM rule. Each epoch is marked asWake, N1, N2, N3,
and REM. The statistical information of each sleep stage is
shown in Table 1.

SHHS is a multi-center research cohort study imple-
mented by the national heart, lung, and Blood Institute of
the United States [28, 29]. It is mainly used to study the
correlation between sleep disorders and high risk of cardio-
vascular diseases or other diseases. SHHS-1 contains 5793
PSG records from 6441 subjects over 40 years old. These
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Table 1 Statistics of sleep stages on the Sleep-EDF-2013 dataset

Subjects Wake N1 N2 N3 REM Total

20 8285 2804 17,799 5703 7717 42,308

19.6% 6.6% 42.1% 13.5% 18.2% 100%

PSG records include two EEG channels (C4-A1 and C3-A2),
two ophthalmic signal channels, an EMG signal channel, an
ECG signal channel, and so on. In this experiment, we only
use the EEG signal of the C4-A1 channel with a sampling
rate of 125Hz. The subjects in the dataset had sleep-related
diseases, such as lung disease, sleep apnea syndrome, cardio-
vascular disease, and coronary artery disease. These diseases
may lead to deviations in the training model. We filtered the
data using the following preprocessing steps tominimize this
impact. First, according to the OSA severity, the subjects can
be divided into four categories: healthy, mild OSA, moder-
ate OSA, and severe OSA. Second, the sleep time at night is
more than 7h. The N3 sleep stage accounts for at least 5% of
the whole sleep stage, REM accounts for at least 15%, and
sleep efficiency is at least 75%. A total of 780 subjects are
selected according to the above steps. The sleep stages statis-
tics of OSA subjects is shown in Table 2. From the statistics,
we can find that the proportion of sleep stages in severe OSA
has changed. Among them, the percentage of Wake, N1, and
N2 sleep stages increased, and the percentage ofN3 andREM
sleep stages decreased.

Feature extraction

Features are essential to sleep stage classification methods.
CNN can capture the local correlation and spatial invari-
ance of the information. So we developed MSFE module
to learn rich features based on CNN. Figure3 shows the
MSFEmodule for feature extraction from raw single-channel
EEG signals. The MSFE module consists of three-branch
CNN architectures. Branch1 extracts high-frequency fea-
tures by the small kernel convolutions. Branch2 extracts low-
frequency features by the big kernel convolutions. Branch3

extracts temporal features by the temporal block with causal
convolution.Because different sleep stages have their charac-
teristic waves. For example, the wake stage mainly includes
α (8–13 Hz) and β (14–30 Hz) waves. We can learn fre-
quency information through different convolutional kernel
sizes. Additionally, sleep is a temporal process, so the tem-
poral features within an epoch also impact the classification
performance. The features extracted by MSFE concatenate
together and input into the SLM to the structural features of
the sleep stages sequence.

The specific parameters of the three branches are shown
in Table 3. The selection of these parameters is analyzed
in the discussion section. The first convolution branch uses
the convolution of (50, 1) to extract high-frequency features,
with the stride of (6, 1) and 64 convolution kernels. The
module uses max pooling to reduce dimension and remove
redundant information. Then, it uses a dropout operation to
prevent over-fitting. After three repeated convolution oper-
ations, the first branch outputs the feature Fi1. The second
convolution branch uses a big convolution kernel with a size
of (400, 1) to extract low-frequency features. Other opera-
tions are the same as the first branch and output the feature
Fi2. The third convolution branch uses the 4-layer tempo-
ral block. Each temporal block layer includes two causal
convolutions, two dropouts, and a residual connection. The
convolution kernel size of each layer is (7, 1), and the dilated
factor is 5. The third branch outputs the feature Fi3. MSFE
uses the convolution structure of three branches to obtain fea-
tures. These features concatenate to get more comprehensive
features Fi = Concat(Fi1, Fi2, Fi3), which are input into
SLM through dropout.

Structured learningmodule

Weuse SLM to learn the transfer relationship between differ-
ent sleep stages based on MSFE. SLM consists of Bi-LSTM
and CRF, where Bi-LSTM learns the temporal features of
sequences, and CRF learns the transfer between labels. The
input to SLM is a sequence of features F=(F1, F2,…, Fn)
from the MSFE module. The specific structure is shown in

Table 2 Statistics of sleep
stages on the SHHS dataset

OSA severity Subjects Wake N1 N2 N3 REM Total

Healthy 312 41,480 10,834 145,894 57,061 64,194 319,463

13.0% 3.4% 45.7% 17.9% 20.1% 100%

Mild OSA 284 37,807 10,572 13,2328 51,745 58,718 291,170

13.0% 3.6% 45.4% 17.8% 20.1% 100%

Moderate OSA 133 18,040 4898 64,061 22,749 26,281 136,029

13.3% 3.6% 47.1% 16.7% 19.3% 100%

Severe OSA 51 7160 2267 24,309 8915 9598 52,249

13.7% 4.3% 46.5% 17.1% 18.4% 100%
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Fig. 3 Structure of multi-scale
feature extraction (MSFE)

Table 3 Parameter table of MSFE module

Branch Type # filter Size Stride Drop rate

Branch1 Conv1D 64 (50, 1) (6, 1) –

Max pooling – (8, 1) (8, 1) –

Dropout – – – 0.5

Conv1D*3 128 (4, 1) (4, 1) –

Branch2 Conv1D 64 (400, 1) (50, 1) –

Max pooling – (4, 1) (4, 1) –

Dropout – – – 0.5

Conv1D*3 128 (6, 1) (1, 1) –

Branch3 Temporal*4 64 (7, 1) (1, 1) –

Fig. 4. In Bi-LSTM, a jump connection is used to add MSFE
and Bi-LSTM. Output features do not lose multi-scale fea-
tures and learn the temporal features between epochs. h

f
i

represents the features of the forward hidden layer, and hbi
describes the features of the backward hidden layer. The fully
connected (FC) inBi-LSTM is used to ensure the consistency
of dimensions.After the output of the features byBi-LSTM is
the second FC operation. The FC output performs two opera-
tions, respectively. One is to calculate the loss of the temporal
features between sleep stages with the softmax function. The
other is that CRF continues to learn the transfer relationship
between labels.

Loss function

Inspired by multi-task learning, temporal feature and trans-
fer relationship between sleep stages can be regarded as
two tasks. Joint training of these two tasks can better learn
the structured sleep staging results of different subjects and
improve the performance of sleep staging. For the first task,
the output of Bi-LSTM is used to generate the prediction
label through softmax and calculate the cross-entropy loss as

follows:

�c = −
N∑

c=1

yc log(yc
′) (1)

where N represents the number of sleep stages, yc represents
the probability of actual classification, and yc ′ describes the
probability of classification predicted by the model.

Each classification in the sleep stage is unbalanced. In the
Sleep-EDF-2013 dataset, thewake accounts for 19.6%,while
theN1 stage accounts for only 6.6%.N1belongs to theminor-
ity classification. Unbalanced classification in deep learning
may be more suitable for majority classification. There are
three kinds of technologies to deal with unbalanced classi-
fication: sampling, threshold-moving, and adjusting cost or
weight. Sampling eliminates or reduces data imbalance by
changing training data distribution, such as over-sampling,
clustering, under-sampling, and so on. Threshold-moving is
to change the decision threshold to focus on theminority clas-
sification. Adjusting cost, also called cost-sensitive learning,
biases the minority classification by adjusting the cost or
weight of different categories to improve classification per-
formance. In our SSleepNet, we use cost-sensitive learning
to give weights to each classification. The definition of class
cross-entropy with weight is as below:

�wc = −wc

n∑

c=1

yc log(yc
′) (2)

where wc represents the weight of each classification. In our
experiments, wc is set as [1, 1.5, 1, 1, 1].

The second task in the multi-task model is to use CRF to
learn the transfer relation between labels and optimize the
output sequence. The loss function of CRF consists of two
parts: the score of the actual path and the total score of all
paths. The score of the actual path should be the highest of all
paths, and there is only one path. CRF uses the transmission
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Fig. 4 Framework of structured
learning module (SLM)

and transfer scores to calculate the score. These two scores
are the parameters of CRF. CRF calculates the loss func-
tion by comparing the actual path score with all path scores
expressed by �e. To make the loss from temporal feature
learning and transfer relation learning part at the same scale,
we use a λ, which is a hyper-parameter. In our experiment,
this parameter is set to 10. The network adds the L2-norm
regularization loss �2 to prevent over-fitting. Therefore, the
multi-task loss function is defined as follows:

�mtl = λ�wc + �e + �2 (3)

Performance evaluation

We evaluate and compare the performance of different meth-
ods using classification Accuracy, Recall, Precision, Kappa
coefficient, and F1 score. They are defined as:

Accuracy = T P + T N

T P + T N + FN + FP
× 100% (4)

Recall = T P

T P + FN
× 100% (5)

Precision = T P

T P + FP
× 100% (6)

F1 = 2 × Precision × Recall

Precision + Recall
× 100% (7)

where TP, FP, TN, and FN represent the number of true pos-
itive, false positive, true negative, and false negative epochs.
The proportion of the correctly identified epochs is measured
by sensitivity. Specificity reflects the detection effect of neg-
ative samples.

In the performance evaluation, we also adopted macro-
averaged F1-score (MF1), Kappa coefficient, and confusion
matrix to evaluate the general performance of all classes.

MF1 is a common metric to evaluate the performance of the
models and can be defined as below:

MF1 = 1

N

N∑

i=1

F1i (8)

where N is the number of sleep stage classification.
Kappa coefficient is to characterize the interrater agree-

ment level and can be calculated as below:

Kappa = pc − pe
pt − pe

(9)

where pc represents the number of correctly scored stages,
pt represents the total number of stages, and pe represents
the expected number of agreements for each sleep stage.

The confusion matrix also is used. Each row of the confu-
sion matrix represents the epoch in actual labels, while each
column represents the epoch in the predicted labels. We also
standardized the confusionmatrix by rows to obtain different
probabilities.Use colorswith different shades to represent the
probability. The darker the color, the greater the probability.
On the contrary, the smaller the probability.

Results

Experimental setup

To verify the effectiveness of the SSleepNet, we design the
three groups of experiments. First, using the Sleep-EDF-
2013 dataset to demonstrate the efficacy for healthy subjects.
Second, in the SHHS dataset, 50 subjects from healthy sub-
jects, mild, moderate, and severe OSA subjects are selected
for training to explore the performance of OSA subjects.
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Finally, ablation experiments verify the role of each mod-
ule.

The experiment divides the dataset into training, verifica-
tion, and test set. The training set trains the parameters in
the model, the verification set selects the optimal model, and
the test set evaluates the model’s performance. Sleep-EDF-
2013 dataset uses 20-fold cross-validation. For 20 subjects,
we adopted the leave one subject out method. We selected
one subject as the test set for each fold, four subjects as the
validation set, and 15 subjects as the test set. The prediction
results of all 20 people are combined and compared with the
expert labels to obtain the evaluation performance of the net-
work. In the SHHS dataset, we choose 200 subjects. The 50
subjects of each type of OSApatient are selected to train, ver-
ify, and test. We adopted the tenfold cross-validation. 10%
of subjects are chosen as the test set, 10% of the remaining
90% are selected as the verification set, and the rest are the
training set.

In the experiment, the details of the model implementa-
tion, the network model adopts the Adam optimization, the
learning rate is 1e−4, the epoch of training is 10, the batch
size is 16, and the sequence length is 10. The number of
layers in the time convolution model is 4, the convolution
kernel size is (7, 1), and the dilated factor is 5. The number
of hidden units in Bi-LSTM is 128. The experimental imple-
mentation uses the Tensorflow framework, and the hardware
adopts NVIDIA GTX 2080 Ti GPU.

Experimental results

The results on the Sleep-EDF-2013 dataset

We used the Sleep-EDF-2013 dataset to verify that the net-
work can get good sleep staging performance in healthy
subjects. The experimental results are shown in Table 4. The
table shows the confusion matrix and the performance of
each sleep stage score. The average accuracy on the test set
is 84.6%, the MF1 score is 79.5%, and the kappa coefficient
is 0.79. For the classification results of each sleep stage, pre-
cision, recall, and F1 scores are used for evaluation. The
precision and F1 scores of the Wake are 90.5% and 89.5%,
and the recall of the N3 is 91.4%. N1 belongs to the minor-
ity classification, with the lowest classification performance,
and other stages show good performance.

To visually observe the classification results of SSleepNet,
Fig. 5 shows the sleep stage histogram of the SC415 subject.
The horizontal axis represents the number of 30 s epoch. The
vertical axis represents five sleep stages. In the figure, (a) rep-
resents the sleep stage histogram labeled by human experts
for each epoch, while (b) represents the histogram predicted
by the SSleepNet. The classification accuracy of the SSleep-
Net is 92.7%, the Kappa coefficient is 0.90, and the F1 score
is 83.9%.Many N1 are misclassified as REM, and there are a

fewmisclassifications between N3 and N2.Most of the other
classification results are very close to the results marked by
human experts. The experimental results show that the pro-
posed model performs better in sleep stage classification.

The results on the SHHS dataset

The model was trained on the SHHS dataset to analyze the
impact ofOSAon sleep staging. Figure6 shows the confusion
matrix of OSA subjects. For healthy subjects, the average
accuracy is 79.8%, and the accuracy of Wake, N2, and REM
can reachmore than 79%.As aminority classification,N1has
the lowest accuracy of 40%, and 25% is misclassified as N2.
For mild OSA subjects, the accuracy of REM increased, but
the accuracy of N1 decreased. The overall average accuracy
is the same as that of healthy subjects,which is 79.8%. For the
moderate OSA subjects, compared with healthy subjects, the
accuracy of the N1 stage and N3 stage decreased by 7% and
4%, the N2 stage decreased by 1%, REM increased by 5%,
and the accuracy of theWake stage remained unchanged. The
sleep staging accuracy of themodel in this set reached 79.1%,
and the average accuracy decreased by 0.7% compared with
healthy subjects. The main reason is that with the increase in
the OSA severity, the number of N1 classifications increases,
and the transfer of sleep stages is more complex. The accu-
racy is 78.4% for severe OSA subjects, which decreased by
0.7% compared with moderate OSA. The accuracy of Wake
in moderate OSA is 79%, but in severe OSA patients, the
number of Wake classifications increased, and the accuracy
increased by 3%. The accuracy of N1 and N3 decreased by
2% and 1%, respectively.

To observe the effect of OSA severity on sleep staging,
Fig. 7 shows the performance of per-class on OSA severity.
And it also shows the average accuracy, F1 score, and kappa
coefficient of these subjects. From the figure, we can find
that with the increase in OSA severity, the performance of
the N2 is unchanged. The Recall and F1 scores of N3 show
a downward trend. The changes in Wake and N1 are more
complex. The Recall and F1 scores of the Wake increased
slightly, while the Precision and F1 scores of N1 decreased.
The F1 score of REM changes little with the increase in OSA
severity. We can find that OSA with different severity affects
each sleep stage. The average accuracy, F1 score, and kappa
coefficient of all sleep stage classifications decreased with
the increase in OSA severity.

Ablation experiments

The SSleepNet is based on MSFE, CRF, and loss function.
Weperform the ablation experiments on the Sleep-EDF-2013
dataset and SHHS subset to analyze the effectiveness of each
part. The ablation experiment forms five variables by elimi-

123



2696 Complex & Intelligent Systems (2024) 10:2689–2701

Table 4 The confusion matrix
and per-class results on the
Sleep-EDF-2013 dataset

SSleepNet output Per-class results (%)

Wake N1 N2 N3 REM Precision Recall F1

Wake 7327 522 164 82 190 90.5 88.4 89.5

N1 442 1407 516 13 426 50.3 50.2 50.2

N2 163 517 15266 962 891 89.5 85.8 87.6

N3 24 5 445 5214 15 83.0 91.4 87.0

REM 137 347 665 9 6559 81.2 85.0 83.0

Fig. 5 Human experts and
SSleepNet hypnograms of
SC415 subject

(a) Hypnogram of Human experts

(b) Hypnogram of SSleepNet

nating different positions, and the first four variable modules
do not consider the class-sensitive loss function.

Variant 1: (MSFE_1): contains only two-branch CNN and
Bi-LSTM, without the third branch convolution (Branch3).

Variant 2: (MSFE_2): based on Variant 1, an epoch inter-
nal temporal feature extension (Branch3) is added to form a
three-branch multi-scale feature learning module.

Variant 3: (MSFE_1 + CRF): based on Variant 1, add CRF
to learn the transfer relationship between sleep stages.

Variant 4: (MSFE_2 + CRF): add CRF based on Variant 2,
learn the temporal features within the epoch and the transfer
relationship between labels simultaneously.

SSleepNet: (structured sleep network): based onVariant 4,
add a class-sensitive loss function to strengthen the learning
of the minority classification.

Table 5 shows the classification performance of different
variable modules. The results of ablation experiments verify
the role of each variable. First, the third branch convolution
can improve classification performance. The classification
accuracy ofVariant 1 is 83.4%, and that ofVariant 2 is 83.9%.
The classification performance of Variant 2 is better than
that of Variant 1. Variant 2 adds the Branch3 to learn the
temporal features inside the epoch, improving accuracy by
0.5% and MF1 score by 0.5%. This result shows that the
temporal features within the epoch can also learn valuable
features for classification. Observing Variant 3 and Variant
4 can obtain the same conclusion. Secondly, by comparing
the performance of Variant 1 and Variant 3, or Variant 2
and Variant 4, we find that CRF is also important for sleep
staging, which improves the accuracy by 0.5%. CRF can
learn the transfer relationship between different sleep stages.
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(a) Confusion matrix of healthy subjects (b) Confusion matrix of mild OSA subjects

(c) Confusion matrix of moderate OSA subjects (d) Confusion matrix of severe OSA subjects

Fig. 6 Sleep stage confusion matrix of subjects with OSA severity

Finally, SSleepNet added the class-sensitive loss function
to alleviate the problem of unbalanced classification. The
average accuracy is improved by 0.2% and MF1 by 0.7%.

To further validate the role of each variantmodule, we also
perform the ablation experiments on SHHS subsets. SHHS
dataset are divied into four subsets, including the health sub-
jects, mild OSA subjects, moderate OSA subjects and severe
OSA subjects. By using this subset to verify the sleep staging
performance of subjects with different OSA severity. Table 6
shows the classification performance of different variable
modules on the first subset (healthy subjects). Through this
ablation experiment, we can find that in the SHHS subset,
each variable module has varying degrees of improvement
in performance. Especially Variant 2 to Variant 1 improved
accuracy by 0.4%, indicating that Branch3 improves perfor-
mance by learning temporal features. Additionally, Variant
4 to Variant 2 improved accuracy by 0.2%, indicating that
CRF improves performance.

Discussion

Sensitivity analysis in MSFE

MSFE module is one key component of SSleepNet, it is
important to study the size of convolution kernels of each
branch. We fix the other parameters and test different size
of convolution kernels on Sleep-EDF-2013 dataset. In the
branch1, we design our model using (25, 1), (50, 1), (75,
1) and (100, 1). In the branch2, we design our model using
(200, 1), (400, 1), (600, 1) and (800, 1). In the branch3, we
design temporal block with small convolution kernels. The
convolutional kernel of this branch has a weak impact on per-
formance. Figure8a shows the model performance in terms
of accuracy and F1 score in the Branch1. Figure8b shows the
model performance in the Branch2. We can observe that the
size of the convolutional kernel affects the performance of
the model, as using smaller convolutional kernels can extract
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(a) Precision on OSA severity (b) Recall on OSA severity

(c) F1 Score on OSA severity (d) Performance on OSA severity

Fig. 7 Per-class performance on OSA severity on the SHHS dataset

Table 5 Results of the ablation
experiments on
Sleep-EDF-2013 dataset

MSFE_1 MSFE_2 CRF Loss Accuracy (%) MF1 (%) Kappa

Variant 1 � 83.4 78.4 0.77

Variant 2 � 83.9 78.9 0.78

Variant 3 � � 83.9 78.4 0.78

Variant 4 � � 84.4 78.8 0.79

SSleepNet � � � 84.6 79.5 0.79

Table 6 Results of the ablation
experiments on SHHS subset

MSFE_1 MSFE_2 CRF Loss Accuracy (%) MF1 (%) Kappa

Variant 1 � 80.7 71.4 0.72

Variant 2 � 81.1 72.0 0.73

Variant 3 � � 81.1 72.3 0.73

Variant 4 � � 81.3 72.4 0.73

SSleepNet � � � 81.5 72.8 0.73
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(a) Performance in the branch1 (b) Performance in the branch2

Fig. 8 Sensitivity analysis for the sizes of convolution kernel in MSFE

Table 7 Performance
comparison between SSleepNet
and other literature on
Sleep-EDF-2013 dataset

Method Classifier Results (%) Per-class F1-score (%)

Acc MF1 Wake N1 N2 N3 REM

Tsinalis et al. [12] CNN 78.9 73.7 65.4 43.7 80.6 84.9 74.5

Supratak et al. [17] DeepSleepNet 82.0 76.9 84.7 46.6 85.9 84.8 82.4

Phan et al. [13] 1-max CNN 79.8 72.0 77.0 33.3 86.8 86.3 76.4

Seo et al. [19] IITNet 83.9 77.6 87.7 43.4 87.7 86.7 82.5

Zhu et al. [30] CNN+Attention 82.8 77.8 90.3 47.1 86.0 82.1 83.2

Yang et al. [25] 1D-CNN-HMM 83.9 76.9 87.8 35.1 86.6 90.5 86.8

Li et al. [31] CAttSleepNet 84.1 78.2 89.6 47.1 87.2 85.0 82.1

Qu et al. [32] Res+Attention 84.3 79.0 90.2 48.3 87.8 85.6 83.0

SSleepNet MSFE+SLM 84.6 79.5 89.5 50.2 87.6 87.0 83.0

high-frequency features, while larger convolutional kernels
can extract low-frequency features. In our experiments, we
eventually set (50, 1) and (400, 1) in the branch1 and branch2.

Comparision with other literature

The SSleepNet model uses MSFE to learn comprehensive
features and SLM to learn the temporal features and the trans-
fer relationship between sleep stages. This network performs
well on the dataset containing healthy subjects and analyzes
its impact on sleep staging for OSA subjects with different
severity. To illustrate the progressive nature of the network
performance, we compare the model with other literature
regarding average accuracy (Acc), MF1, and F1 scores of
each sleep stage on two datasets. The performance compar-
ison on Sleep-EDF-2013 dataset are shown in Table 7. For a
fair comparison, all networks are trained on the same EEG
signal of the Fpz-Cz channel. These networks use 20-fold
cross-validation and independent subjects as the test set. We
also use the same SHHS dataset as other literature and con-
duct training and testing. The performance comparison on
SHHS dataset are shown in Table 8.

Tsinalis et al. [12] used CNN to learn features from the
raw EEG signal directly, and themodel can obtain an average
accuracy of 78.9%. Supratak et al. [17] proposed a deep sleep
net (DeepSleepNet) to learn features from the raw EEG sig-
nal, and themodel adopts two-stage training. In the first stage,
the dual branch CNN training model is used to learn the fea-
tures of different frequencies. In the second stage, the learned
features are input intoBi-LSTMto continue training to obtain
the sleep staging results. The accuracy can reach 82.0%. Phan
et al. [13] preprocessed the raw EEG by short-time Fourier
transform. They got the power spectrum and extracted the
features by 1-max CNN, with an average accuracy of 79.8%.
Considering that sleep experts pay more attention to individ-
ual features in analyzing signals, Zhu et al. [30] proposed a
CNNmodel integrating attention mechanisms, with an accu-
racy of 82.8%. The F1 scores of the Wake and N1 stages
are also higher than other methods. Seo et al. [19] proposed
an intra- and inter-epoch temporal context network (IITNet).
IITNet extracts representative features at a sub-epoch level by
a residual neural network and captures intra- and inter-epoch
temporal contexts from the sequence of the features via Bi-
LSTM. This model can achieve an accuracy of 83.9%. Yang
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Table 8 Performance
comparison between SSleepNet
and other literature on SHHS
dataset

Method Classifier Results (%) Per-class F1-score (%)

Acc MF1 Wake N1 N2 N3 REM

Supratak et al. [17] DeepSleepNet 81.0 73.9 85.4 40.5 82.5 79.3 81.9

Eldele et al. [23] Attnsleep 84.2 75.3 86.7 33.2 87.1 87.1 82.1

SSleepNet MSFE+SLM 84.3 77.5 86.0 47.8 85.6 82.0 86.3

et al. [25] used CNN and the HMM to learn the temporal fea-
tures of long epochs and obtained 83.98% accuracy. Li et al.
[31] exploited CNNwith attentionmechanism andBi-LSTM
to learn contextual information intra-epoch and continuous
epochs, respectively. However, they did not fully consider the
use of large convolutional kernels to extract low-frequency
features intra-epochs. Qu et al. [32] proposed a multi-scale
deep architecture and utilized the multi-head self-attention
module of the transformer model to obtain global temporal
context. But they ignored the temporal features within an
epoch and the transition relationship between sleep stages.
Eldele et al. [23] utilized amulti-head attentionmechanism to
capture the temporal correlation between features extracted
in 30s epoch. However, it did not exploit the sleep transition
rules between sleep stages.

In our experiment, the SSleepNet is a helpful sleep stage
classification model. The accuracy on the Sleep-EDF-2013
dataset is 84.6% and MF1 of 79.5%. On the SHHS dataset,
accuracy is 84.3% and MF1 is 77.5%. The model’s input
is only the raw EEG signal and no special preprocessing,
which makes the sleep stage classification more concise. The
performance is superior to that of other literature, mainly for
some reasons. Themodel learns rich features throughMSFE,
including low-frequency features, high-frequency features,
and temporal features within an epoch. The model learns the
temporal sequence features between epochs through module
Bi-LSTM and uses CRF to learn the transfer relationship
between sleep stages. The model can also perform better for
OSA subjects. Cost-sensitive learning is used for minority
classification to improve the classification performance of
N1. The F1 score of N1 is higher than other literature.

Our studyhas some limitations. Firstly,weonlyusedphys-
iological signals in PSG for sleep stage classification. The
sleep stage is also related to other features of the human
body. Some diseases also affect sleep stage classification. To
accurately classify and comprehensively evaluate the sleep
stage, we will mine information related to sleep quality from
the data in electronic medical records in the future. Secondly,
for a minority classification in the sleep stage, we will con-
sider using the data augmentation strategy to generate new
sleep stage sequences.

Conclusion

We propose an SSleepNet based on OSA for sleep stage clas-
sification. The network can learn the transfer relationship
between sleep stages and perform well for healthy subjects
and OSA patients. The SSleepNet uses the MSFE to learn
rich features, the Bi-LSTM to obtain the temporal features
between epochs, and CRF to learn the transfer relationship
between sleep stages. The network performs better than other
methods on the Sleep-EDF-2013 dataset for healthy subjects.
Using a single-channel EEG signal, the accuracy can reach
84.6%. Moreover, the ablation experiments verify the effec-
tiveness of each module. On the SHHS dataset, healthy, mild
OSA, moderate OSA, and severe OSA subjects were tested,
respectively, and the accuracy is 79.8%, 79.8%, 79.1%, and
78.4%, respectively. The experimental results show that the
SSleepNet can perform well in healthy people and patients
with OSA. With the increase in OSA severity, the classifica-
tion accuracy decreases slightly. The SSleepNet can perform
sleep staging for patients with different severity OSA, mak-
ing the model application more universal.
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