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Abstract

Numerous graph neural network (GNN) models have been used for sentiment analysis in recent years. Nevertheless, addressing
the issue of over-smoothing in GNNs for node representation and finding more effective ways to learn both global and local
information within the graph structure, while improving model efficiency for scalability to large text sentiment corpora,
remains a challenge. To tackle these issues, we propose a novel Bert-based unlinked graph embedding (BUGE) model for
sentiment analysis. Initially, the model constructs a comprehensive text sentiment heterogeneous graph that more effectively
captures global co-occurrence information between words. Next, by using specific sampling strategies, it efficiently preserves
both global and local information within the graph structure, enabling nodes to receive more feature information. During
the representation learning process, BUGE relies solely on attention mechanisms, without using graph convolutions or
aggregation operators, thus avoiding the over-smoothing problem associated with node aggregation. This enhances model
training efficiency and reduces memory storage requirements. Extensive experimental results and evaluations demonstrate
that the adopted Bert-based unlinked graph embedding method is highly effective for sentiment analysis, especially when

applied to large text sentiment corpora.
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Introduction

Sentiment analysis is a prominent research area in natural
language processing, involving the automatic extraction of
emotional tendencies from text and the determination of peo-
ple’s emotional attitudes towards various trending topics [1].
Text sentiment analysis plays a vital role in various fields,
including government management, movie recommenda-
tions, public opinion analysis, and assisting researchers in
making more informed strategic decisions [2].

In recent years, graph neural network (GNN) models
have garnered significant attention for their effectiveness
in modeling graph structures, particularly in applications
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like text sentiment analysis. Yao et al. introduced GCN
(graph convolutional network) for heterogeneous text graphs,
achieving promising results [3]. Niu et al. proposed a syntax-
enhanced graph neural network model for sentiment analysis,
further enhancing model performance [4]. However, GNN-
based models still face challenges when dealing with text
sentiment graphs [5]. Existing GNN models heavily rely
on edge connections between graph nodes for representa-
tion learning. When constructing text sentiment graphs, the
sheer volume of edges created results in high memory con-
sumption. Additionally, due to the presence of edges, as
GNN models undergo continuous training, the node repre-
sentations obtained by such deep models tend to become
overly smoothed and indistinguishable [6]. GNN models
have demonstrated their ability to effectively preserve the
global information of graph structures. However, there are
challenges in handling local information among nodes.
Therefore, when dealing with sentiment graphs in text pro-
cessing, preserving the heterogeneity of text, improving
model efficiency for effective scalability to large text senti-
ment corpora, and effectively retaining both global and local
information within the graph structure have become signifi-
cant challenges.
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We distinguish ourselves from existing GNN models by
introducing a novel Bert-based unlinked graph embedding
(BUGE) model for text sentiment analysis. We utilize a
small batch of linkless subgraph decomposition for input
text sentiment graphs, breaking down large heterogeneous
text sentiment graphs into several subgraphs without edge
connections. This effectively reduces model memory usage
and extends its applicability to large text corpora. By employ-
ing specific sampling strategies during the sampling process,
we can efficiently preserve both global and local informa-
tion within the graph structure, enabling nodes to receive
more feature information. In the representation learning
process, BUGE relies solely on attention mechanisms [7],
without employing graph convolutions or aggregation oper-
ators, thereby addressing the issue of node oversmoothing
and enhancing model training efficiency.

In this paper, our focus is on simplifying the edge connec-
tions between nodes in existing GNN models while retaining
the heterogeneity of text and effectively preserving both
global and local information within the graph structure. We
aim to address the issue of node oversmoothing during model
training. To achieve this, we employ specific sampling strate-
gies on large-scale text sentiment heterogeneous graphs,
creating unlinked small-batch isomorphic subgraphs. This
approach eliminates the dependence on edges between graph
nodes and can be effectively scaled to large text sentiment
corpora. We demonstrate the effectiveness of this sampling
method in current research on text sentiment analysis. Our
primary contributions are as follows:

(1) We introduce the BUGE model for sentiment analy-
sis. We process the input text sentiment graph using
small-batch unlinked isomorphic subgraph decomposi-
tion. This approach retains the heterogeneity of text while
reducing the model’s storage and computational require-
ments, making it effectively scalable to large sentiment
corpora.

(2) We employ a specific subgraph sampling strategy that
preserves local information while retaining the global
information of the graph structure. During the repre-
sentation learning process, the model relies entirely on
attention mechanisms, thus addressing the issue of node
oversmoothing and enhancing model efficiency.

(3) We conduct experiments on several benchmark datasets,
and the results validate the effectiveness of our model.

Related work
Graph based sentiment analysis

Recently, GNN has achieved good results in sentiment
analysis [8], attracting the attention of many researchers.
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Sentiment analysis models the content text as a sentiment
graph for feature extraction and then uses GNN for graph
embedding. During graph embedding, the GNN model can
maintain the global structural information of the sentiment
graph and effectively deal with the complex relational struc-
ture between text sentiment words. Therefore, GNN is widely
used in sentiment analysis tasks. Yao et al. proposed the Text-
GCN model for text classification, which constructs a large
text heterogeneity graph to describe the word—document and
word—word relationships and then uses GCN model to com-
plete text classification [3]. Huang et al. proposed TLGNN, a
model that constructs a graph for each input text with global
parameter sharing, alleviating the dependency between an
individual text and the entire corpus [9]. However, these
models require pre-constructed graph structures, which have
limitations in practical applications. Therefore, Ding et al.
proposed HyperGAT, which effectively captures complex
node associations and hyperedge relationships through its
graph attention mechanism and multi-layer structure. How-
ever, it is constrained by attention distribution when handling
local information in the graph structure [10]. Zhu et al. pro-
posed SSGC, where they added a self-loop to the Markov
diffusion kernel and proposed a straightforward spectral map
convolution. The simple spectral graph convolution used in
this context strikes a balance between low-pass and high-
pass filter frequency bands, effectively capturing both global
and local information of nodes [11]. Zhang et al. proposed
TextING, which incorporates a gating mechanism to allevi-
ate the issue of excessive node smoothing. It is an inductive
and versatile text classification model that can handle diverse
text sentiment analysis tasks. However, it relies heavily on
the quality of the text graph [12]. Zhu et al. proposed GL-
GCN, a graph convolutional network guided by both global
and local dependencies. It employs two GCNis to learn differ-
ent dependency structures effectively, capturing both global
and local contextual information [13]. Yang et al. proposed
the CGA2TC model, which employs a contrastive learning
approach to enhance model classification performance by
using two different views. It should be noted that CGA2TC’s
use of two text views increases computational overhead and
does not scale well to large text corpora graphs [14].

Bert-based graph representation

In recent years, the powerful BERT model has made signif-
icant strides in natural language processing [15], prompting
researchers to apply it to graph representation learning by
combining BERT with GCN. Lu et al. proposed a VGCN-
BERT model that combines the pre-trained BERT model with
alexical graph convolutional network to construct a large text
heterogeneous graph. The attention mechanism is then used
to interact with local and global information, influencing each
other to jointly construct classification representations [16].
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Yang et al. proposed a BERT-enhanced text network model
(BEGNN) that considers both the semantic and structural
information of a single text. It constructs a graph structure
for each text and combines the graph neural network with
BERT to extract features of varying granularity [17]. Lin
et al. introduced a BERT-GCN model for text classifica-
tion, which uses a graph to model the relationships between
different samples from the entire corpus to leverage the sim-
ilarity between labeled and unlabeled documents. It employs
GNN s to learn these relationships [18]. Hao et al. introduced
a novel defect prediction framework named EDP-BGCNN.
This framework effectively harnesses the powerful capabili-
ties of BERT and GCN for code representation and analysis,
leading to more accurate defect prediction and enhancing the
precision of defect prediction [19]. Numerous studies have
demonstrated the effectiveness of Bert-based graph represen-
tation in related domains.

Compared to existing research, our work differs in several
aspects. When dealing with text sentiment graphs, existing
models often need to be more efficient due to the complex-
ity of the constructed text sentiment graphs. As a result,
we employ the method of small-batch linkless subgraph
decomposition to partition a large text heterogeneous graph
into multiple small-batch linkless subgraphs. This allows the
model to process the graph without relying on edge con-
nections, significantly enhancing its operational efficiency
when applied to large text sentiment corpora. Throughout
this process, we use specific sampling strategies to effectively
preserve both the global and local information within the
graph structure, enabling nodes to receive more feature infor-
mation. Furthermore, our model relies solely on the attention
mechanism, without the utilization of any graph convolutions
or aggregation operators. This approach effectively resolves
the issue of node oversmoothing present in existing GNN
models.

Problem definition

Definition 1 Text sentiment network

We construct a text sentiment heterogeneous graph G =
W, S, X,)), where VW and S respectively represent word
nodes and sentiment nodes, X represents edges between
word nodes, and Y represents edges between word nodes
and sentiment nodes.

The text sentiment heterogeneous graph links words and
sentiment words in the text together, represented as a graph.

Definition 2 Text graph embedding

Given an input graph G, we define U as the set of all nodes in
the text sentiment graph. The task of text graph embedding
is to learn a mapping function f : u; — u; € RY that

embeds the nodes u € U; of the text graph network into
low-dimensional latent representations X € RIVIXd  where
d < |U|. These embeddings capture structural and sentiment
information between nodes.

The obtained node embedding vectors can be used as fea-
ture inputs and embedded to complete the task of predicting
sentiment relationships.

Definition 3 Node neighbourhood of linkless subgraph

We calculate the intimacy matrix I between nodes. For each
target node u; € U, we define its learning context as set
Gy = {ujluj € UN{uj} AT, j) = 6;}, T'(i, j) measures
the closeness score between word node u; and word node
uj, and 6; defines the minimum intimacy score threshold for
nodes involved in u;’s context.

To find the k nearest neighbor word nodes u; € U with
the highest intimacy to node u; according to I', we can use
¢y, to select the top-k intimate nodes of ; in the graph G. By
combining the context &,, of the word node u; and the node
u; itself, we can form a linkless subgraph g;. This complete
heterogeneous text sentiment graph can be expressed as G =
81,825 -+ 8u-

Through this definition, we can determine the composition
of neighbor nodes in the linkless subgraph, including nodes
that are close to this node in the original large heterogeneous
graph and those that are farther away.

Definition 4 Sentiment relationship prediction

For the prediction of sentiment relationship, we predict the
sentiment contained in the target text based on the constructed
text sentiment graph G. We define the prediction function as
g:W,S, X, Y, v;) = Ztopredict v;’s sentiment relation-
ship where Z = [Z1, Z3, ..., Z;] represents the different
possible results of the sentiment relationship prediction for
v;.

Proposed method
Overview

This section will explain how the model is utilized for text
sentiment classification, as illustrated in Fig. 1. Initially, we
introduce the creation of a heterogeneous text graph for
sentiment analysis. Subsequently, we describe the sampling
method used to generate multiple linkless connected sub-
graphs from the large text heterogeneous composition. Next,
we discuss how node inputs are embedded in these subgraphs,
followed by learning the node representation through the
graph transformer encoder for classification.

@ Springer
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Fig. 1 The Architecture of the BUGE Model. (For example, a text is
constructed into a text sentiment graph, and subgraphs are decomposed
into several linkless subgraphs. We update the representation of nodes

Text sentiment graph

We aim to create a comprehensive and diverse text graph
that includes both word and sentiment nodes to facilitate
sentiment analysis, with a focus on capturing global word co-
occurrences. To achieve this, we construct a text sentiment
heterogeneous graph denoted as G = W, S, X, )), follow-
ing the approach of Text-GCN. We establish edges between
nodes to form a large and complex graph for the entire
corpus. The weight of the edge between a sentiment node
and a word node is determined by the word’s inverse docu-
ment frequency (TF-IDF) in the document. Additionally, to
leverage global word co-occurrence information, we collect
word co-occurrence statistics by applying a fixed-size slid-
ing window over all documents in the corpus. We calculate
the weights of edges between two-word nodes using point-
wise mutual information (PMI). Specifically, the weight of
an edge between node w; and node w; is defined as:

PMI(, j) i, jare words, PMI(i, j) > 0
TF —IDF(i, j) i is sentiment word, j is word )
1 i=j
0 otherwise
The formula for TF-IDF is:
i N; iN
PMI (w;, w;) = log L. = log =& @)
PiPj NiN;

where N; and N; are the number of sliding windows in the
corpus that contain the word w; and w; respectively, and N; ;
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through the graph transformer layer and obtain the text sentiment clas-
sification through the readout function)

is the number of sliding windows that contain both words w;
and w;. N is the total number of sliding windows in the

corpus.
The formula for TF-IDF is:

TF —IDF(w,s)=TF(w,s)*x IDF(w) 3)

Here, w represents a word, and s represents a sentiment word.
T F (w, s) represents the frequency of word w in a sentiment
word s, i.e., the number of times w appears in s. I DF (w)
represents the inverse document frequency of word w and
can be calculated using the following formula:

IDF(w) =log(N /(1 + n(w))) 4)

Here, N represents the total number of sentiment words in the
corpus, and n(w) represents the number of sentiment words
that contain the word w.

Bert-based graph embeddings learning

We have incorporated the Graph-bert model [20] into text
sentiment analysis. It adopts the top-k intimacy sampling
approach to calculate the intimacy degree between each node
and all other nodes. It then selects the top k nodes with the
largest intimacy values as neighbor nodes. It calculates the
intimacy matrix I" between the nodes in the complete graph
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using PageRank as follows: through the multi-layer attention operation:
N H" = G-Transformer(H/~1)
F=e (I_(l - A) ® =s0ftmax<QKT> V~|—G-Res(Hl_l,Xi) ®
Vi

Here, « is a factor in the range of [0, 1]. Theterm A = AD ™! where
denotes the column-normalized adjacency matrix, where A is
the adjacency matrix of the input graph, and D is the diagonal 0 =HUD Wg)
matrix corresponding to its diagonal. (=1 1y

According to the calculated intimacy matrix I", for each K=H Wk (10)

sentiment target node s; € S, we define its learning context
as the set:

s = fwjlwj € V\{wi + S} ATG, ) > 6} (6)

Here, 6; is the minimum intimacy score threshold for nodes
to be involved in s;’s context.

For each sentiment targetnode s; € S, we select the closest
k neighbor nodes w; € W to sample the context subgraph
of size k.

The nodes in the text sentiment analysis graph are updated
for classification based on the sampled linkless connected
subgraphs. Node feature vectors are obtained through embed-
dings of model input nodes.

Raw Feature Vector Embedding: Raw Feature Vector
Embedding can capture the sentiment text and word types in
the text graph. For each subgraph node W; € V;, we embed
the raw feature vector into a feature space, where the raw
feature vector is denoted as y;.

q" = Embed(y;) € R%>! (7

Here, the definition of the Embed(-) function can be imple-
mented using different models, and here we use BERT.
Relative Positional Embedding: We define the position of
word nodes as P (v;). By default, p,, is set to 0, and nodes
closer to v; have smaller position indices. Fornode v, we can
also extract its intimacy-based relative positional embedding
using the P-Embed(-) function defined above as follows:

q;” — P-Embed(P (v;)) € R% ! ®)

Then, we apply the graph transformer method to the graph
structure data. After calculating the two embedding vectors
defined above, we aggregate them together as input to the
encoder.

We organize all the input vectors in the subgraph g; into

T
a matrix H©® = [h;o), h;ol), e h;olz e RKk+Dxdn and

then the representation of the node is gradually updated

V=H"DwY

In the above equation, each graph transformer layer contains
three trainable matrices: Wg), W,((l), W‘(,l) e R@xdn) and
queries Q, keys K, and values V are generated by multiplying
the input correspondingly. G-Res [21] refers to a residual
network for solving the over-smoothing problem of GNNs.

The representation fusion layer averages the output
embeddings of the D-th encoder layer to obtain z; as the

final representation of the target node v;:
z; = Fusion(H?)) (11)
Text sentiment node classification

After learning the node representations, we classify the
nodes. The representation fusion layer averages the output
embedding of the D-th encoder layer to obtain z; as the final
representation of the target node v;, which is then fed into a
softmax classifier:

z; = softmax (average (H(D)> € Rwx1 (12)

In comparison with the real labels of nodes, we define the
cross-entropy loss function as follows:

dy
L==3"> " v(Nlogz(f) (13)
ne7 f=1

Here, n € 7 denotes the target word/sentiment word node
in the training set, dy is the label vector dimension, and y,
denotes the ground truth label vector of node 7.

Through the joint training of the fully connected layer
constructed above and the model, we can determine the label
type of the node.

Experimental results and evaluation

In this section, we will evaluate the performance of the pro-
posed model in text sentiment analysis. We will compare our

@ Springer
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Table 1 Summary statistics of datasets

Datasets Training Test Nodes Classes Length
MR 8530 2132 29,426 2 20.4
IMDB 25,000 25,000 90,653 232.8
SST-5 9484 2371 19,849 5 20.1

proposed model with classic text sentiment analysis baseline
methods, demonstrate the superiority of our model in text
sentiment analysis, and document and analyze the experi-
mental results.

Datasets

We conducted extensive experiments on three benchmark
datasets:

MR (Movie Review): This dataset is used for binary sen-
timent classification of movie reviews, each consisting of a
single sentence [22]. It comprises 10,662 samples, evenly
split between 5331 positive and 5331 negative reviews [23].

IMDB (IMDB Movie Reviews): This large text sentiment
corpus contains more data than previous benchmarks, con-
sisting of 50,000 reviews from the Internet Movie Database,
labeled as positive or negative [24]. It encompasses 25,000
positive and 25,000 negative sample reviews.

SST-5 (The Stanford Sentiment Treebank): Stanford
University released this sentiment analysis dataset, which
includes five labels: very positive, positive, neutral, negative,
and very negative. This dataset provides a clearer distinction
between emotions [25]. Detailed statistics for these datasets
are listed in Table 1.

Experimental setup

For our experiments, we initialized the embeddings with pre-
trained 300-dimensional Glove vectors [26]. We trained a
two-layer graph transformer with a hidden size of 32 and 6
attention heads. We used Adam as the optimizer [27] with an
initial learning rate of 0.001, which was decayed by a factor
of le — 5. We set the number of training epochs to 50.

Evaluation metrics

In our experiments, we adopted accuracy, precision, recall,
and Fl-score as performance metrics. accuracy measures
the model’s ability to correctly classify samples, precision
focuses on the model’s accuracy in the positive class, recall
assesses the model’s capability to identify positive class sam-
ples, and F'1-score provides a comprehensive evaluation by
considering both Precision and Recall. These metrics help us
comprehensively assess the model’s performance.

@ Springer

Accuracy: In binary classification, accuracy is calculated
as the proportion of correctly predicted positive and nega-
tive samples to the total number of samples. In multi-class
classification, accuracy is calculated by dividing the sum of
correctly predicted samples by the total number of samples.

TP +TN

Acc =
TP + TN + FP + FN

(14)

where TP = true positive, FP = false positive, TN = true
negative, and FN = false negative.

Precision: In binary classification, Precision represents
the proportion of correctly predicted positive samples to all
samples that were predicted as positive. In multi-class clas-
sification, Precision is calculated separately for each label,
and then a weighted average is computed to account for class
imbalances.

TP

Pr=——
TP + FP

(15)

Recall: In binary classification, Recall, also known as True
Positive Rate, measures the proportion of positive samples
that were correctly predicted out of the total number of actual
positive samples in the dataset. In multi-class classification,
Recall is calculated for each label by dividing the number of
correctly predicted samples in that label by the total number
of actual samples in that label. A weighted average is then
computed to account for class imbalances across labels.

TP

Re= ———
TP + EN

(16)
F1-score: The F1-score is the harmonic mean of Precision

and Recall. The F1-score is calculated using the following
formula:

2 1, a7
F1  Pr Re

Methods for comparison

We adopt the current popular text sentiment analysis mod-
els to conduct a performance comparison evaluation of our
proposed model:

Text-GCN [3]: Constructs a heterogeneous graph based on
text and words, enabling semi-supervised text classification
using Graph Convolutional Networks.

TLGCN [9]: Builds a graph for each input text with global
parameter sharing, alleviating the dependency between a sin-
gle text and the entire corpus.

SSLGNN [28]: Introduces a new sparse structure learning
model based on Graph Neural Networks.

HyperGAT [10]: it is a variant of Graph Neural Network
designed to handle hypergraph data.
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TensorGCN [29]: Utilizes a model for multi-angle map-
ping and fusion.

TextING [12]: Constructs a separate graph for each text
and updates nodes through a message propagation mecha-
nism.

SSGC [11]: Adds a self-loop to the Markov diffusion ker-
nel and proposes a simple spectral map convolution with a
softmax classifier after a linear layer.

CGA2TC [14]: Presents a novel framework of contrastive
graph convolutional networks with adaptive augmentation.

GFN [30]: Introduces a unified graph fusion network that
transforms external knowledge into structural information.

Results
Results analysis

We employ multiple metrics to present the experimental
results of various sentiment analysis classification methods
on our dataset. The experimental outcomes are detailed in
Tables 2, 3, and 4. Our experiments demonstrate that our
proposed model performs exceptionally well on benchmark
datasets. Notably, IMDB represents a large sentiment text
corpus with lengthier content in the text and a more exten-
sive sample size, while each item in the MR dataset consists
of relatively shorter text content. SSTS is a multi-category
dataset. It’s worth noting that graph-based methods consis-
tently excel across different datasets. Our model exhibits
significant improvements on the IMDB dataset, primarily
owing to the considerably longer average text length in IMDB
compared to other datasets. When constructing text senti-
ment graphs, longer texts can establish more sentiment word
connections transmitted through nodes, which enhances the
ability to capture the relationship between target nodes and
sentiment words. When combined with BUGE, this leads to
superior performance. This might elucidate why the improve-
ment is more pronounced on large text sentiment analysis
datasets than on smaller text sentiment corpora like MR and
SSTS5, which feature shorter texts. The constraints of the
graph structure during text graph construction result in only
slight performance improvements for datasets with shorter
texts.

Text-GCN and TLGCN use graph neural networks to
train models, but both struggle to effectively preserve the
heterogeneity of text data and face scalability challenges
when applied to large-scale text sentiment corpora. Tex-
tING may not be effective in extracting text features while
ignoring word order, especially in sentiment classification
tasks. HyperGAT neglects the capture of local information
in the graph structure, leading to the model’s inability to
capture label correlations, thereby reducing its performance,
especially in multi-label tasks.GFN introduces an innovative

Table 2 Comparison of performance on different sentiment analysis
approaches on the MR dataset

Model MR
Accuracy Precision Recall F1-score

TextGCN 0.7674 0.7548 0.7546 0.7547
TLGCN 0.7547 0.7412 0.7429 0.7420
SSLGNN 0.7974 0.7912 0.7896 0.7904
HyperGAT 0.7652 0.7598 0.7612 0.7605
TensorGCN 0.7789 0.7686 0.7627 0.7656
TextING 0.7982 0.7653 0.7622 0.7637
SSGC 0.7675 0.7675 0.7661 0.7668
CGA2TC 0.7780 0.7727 0.7756 0.7741
GFN 0.7807 0.7806 0.7806 0.7784
BUGE 0.8044 0.7972 0.7973 0.7973

Bold values represent the best experimental performance results

Table 3 Comparison of performance on different sentiment analysis
approaches on the IMDB dataset

Model IMDB
Accuracy Precision Recall F1-score

TextGCN - - - -
TLGCN - - - -
SSLGNN - - - -
HyperGAT 0.8346 0.8284 0.8265 0.8275
TensorGCN 0.8541 0.8343 0.8411 0.8377
TextING 0.8623 0.8597 0.8610 0.8603
SSGC 0.8726 0.8637 0.8692 0.8664
CGA2TC 0.8631 0.8628 0.8626 0.8627
GFN 0.8562 0.8462 0.8512 0.8487
BUGE 0.8957 0.8856 0.8906 0.8881

The data is sourced from existing research reports, and for scores that
have not been reported in the existing studies, we indicate them with a
“~in the table

Bold values represent the best experimental performance results

approach to construct a text sentiment graph, but like Hyper-
GAT, it also fails to adequately capture local information
within the graph structure. TensorGCN relies on pre-trained
word embeddings and tends to perform well with shorter texts
but fares poorly with longer ones. SSGC incorporates double-
layer attention mechanisms, which prove advantageous for
learning tasks involving lengthy texts. CGA2TC uses the
multi-view contrasting method to enhance the classification
performance of the model. However, the use of multi-view
methods typically increases computational complexity due to
the need to handle features from multiple views. This results
in longer training times and higher computational resource
requirements, causing the model to perform poorly on large
text sentiment corpora. In addition, the models mentioned
above all face the issue of node smoothing during the model

@ Springer



2634

Complex & Intelligent Systems (2024) 10:2627-2638

Table 4 Comparison of performance on different sentiment analysis
approaches on the SST-5 dataset

Model SST-5
Accuracy Precision Recall F1-score

TextGCN 0.4075 0.4043 0.4059 0.4051
TLGCN 0.4303 0.4292 0.4143 0.4217
SSLGNN 0.4398 0.4363 0.4318 0.4340
HyperGAT 0.4135 0.4032 0.4053 0.4043
TensorGCN 0.4368 0.4361 0.4364 0.4362
TextING 0.4289 0.4182 0.4235 0.4208
SSGC 0.4224 0.4024 0.4047 0.4036
CGA2TC 0.4498 0.4435 0.4466 0.4450
GFN 0.4436 0.4235 0.4333 0.4284
BUGE 0.4578 0.4476 0.4526 0.4501

Bold values represent the best experimental performance results

Table 5 Model efficiency comparison

Model Memory usage (MiB) Time consumption (S)
MR IMDB SST-5 MR IMDB SST-5
HyperGAT 523 1035 612 348 721 583
CGA2TC 629 1159 658 526 1232 741
BUGE 425 856 536 162 383 259

training process. However, the BUGE model we employ, by
disregarding edge connections in the text graph, effectively
addresses the problem of excessive smoothing in the model
and can be efficiently extended to handle large-scale text
sentiment corpora. During the sampling process, we also pre-
serve both the global and local information within the graph
structure adequately.

Analysis of efficiency

In this section, we investigate the efficiency of our model to
validate its effectiveness. We compare the time and mem-
ory usage of different models, and the experimental results
are presented in Table 5. We observed that in terms of time
and memory usage, our model outperforms other models
in comparison. This is because our model samples large
heterogeneous graphs into smaller batches of edge-less sub-
graphs, removing the constraints imposed by edges, resulting
in lower memory and time consumption.

Parameter sensitivity

In this section, we investigate the impact of different param-
eters on experimental results. While test recall and test
accuracy serve as similar evaluation metrics for the model,
we choose to showcase the model’s performance using test
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accuracy on the dataset. We present the experimental results
under various parameters on the dataset, and Fig. 2 illustrates
the effect of different values of k on experimental accuracy.
The value of k determines the size of the sampled neighbor
nodes when performing subgraph sampling without edges,
which can significantly affect the experimental outcomes.

We examine the results with different k values and observe
that on the MR dataset, test accuracy gradually increases from
k = 1 and then decreases after reaching the optimal value of
k = 16. On the IMDB dataset, the optimal value is k = 24,
and on the SST-5 dataset, the optimal value is k = 16. We
have also noticed similar trends on other datasets. As the
value of k increases, the efficiency cost of training the model
gradually rises. However, in comparison to other GNN mod-
els, our model exhibits significantly reduced training costs.

Additionally, we also took into account the influence of
other parameters on the experimental results. Figure3 dis-
plays the accuracy of the MR and IMDB datasets at various
window sizes. The graph illustrates that test accuracy initially
rises as the window size increases. It reaches its peak when
the window size is set to 20. However, once the window size
surpasses 20, test accuracy starts to decline. Consequently,
we have chosen to set the window size to 20.

We also considered the impact of vector dimensions
on experimental results. We conducted comparative experi-
ments using sentence vectors of varying dimensions on both
the MR and IMDB datasets. Our objective was to analyze
how the vector dimension affects the experimental outcomes.
The results of these experiments are presented in Fig.4.We
can see from this that as the vector dimension increases up to
150 dimensions, the model’s test accuracy reaches its max-
imum value. Beyond this point, the model’s accuracy starts
to gradually decrease. When the dimension of embeddings is
too low, it may fail to effectively preserve the original features
of the nodes. Conversely, embeddings with excessively high
dimensions can demand more training time. Consequently,
we have chosen to set the output dimension of the first layer
to 150.

We also investigated the impact of different numbers of
attention heads on the performance of neural networks, con-
sidering that multi-head attention is a crucial component in
such models. To evaluate model performance, we used test
accuracy as the metric for both the MR and IMDB datasets.
The results, as presented in Fig.5, indicate that our model
achieved the highest test accuracy when utilizing six atten-
tion heads. Notably, the test accuracy reached its lowest point
when the attention mechanism was not applied. Furthermore,
the model’s test accuracy gradually decreased as the number
of attention heads exceeded 6. These experimental findings
emphasize the importance of selecting an appropriate num-
ber of attention heads, as it can significantly improve the
model’s performance.
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Fig.4 The influence of dimensions on the experimental accuracy under different values

The learning rate is a crucial parameter in our experiment,
and we explored different learning rate values to assess their
effect on the model’s performance. As depicted in Fig. 6,
we can observe that the model achieves its best performance
when the learning rate is set to 0.001. The experiment began
with a learning rate of 0.1, and as the learning rate was
reduced, the model’s performance gradually improved. The
optimal performance was achieved when the learning rate
reached 0.001. Further reducing the learning rate led to a

decline in the model’s performance. Therefore, we have set
the learning rate to 0.001.

Finally, we investigated the impact of the number of
epochs on our experiments. The epoch number is a parame-
ter that requires adjustment, and by conducting experiments
with various numbers of epochs, our goal was to determine
the optimal value for our specific task, which would help
optimize model performance. According to Fig. 7, it can be
observed that when the number of epochs is set to 50, the
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model’s performance reaches its peak. Further increasing
the number of epochs does not significantly improve per-
formance. This may be attributed to an excessive number of
epochs, which can lead to overfitting and a reduction in the
model’s ability to generalize to new data.

Effects on the number of labelled data

To evaluate the influence of different proportions of train-
ing data on test accuracy, we conducted experiments using
several models on MR datasets with varying proportions of
training data. The comparison results are depicted in Fig. 8.
Our BUGE model consistently demonstrated the best per-
formance across all proportions of training data, achieving
a test accuracy of 0.709 with only 10% of the training data.
This underscores our model’s capacity to perform well even
with limited labeled data, showcasing its ability to effectively
capture and retain textual information.

Conclusion and future work

In this paper, we introduce a novel Bert-based unlinked
graph embedding (BUGE) model. Our approach demon-
strates significant potential when handling large-scale text
sentiment corpora graphs. By dividing the corpus into mul-
tiple unlinked subgraphs, each comprising a target node
and its surrounding nodes without direct edge connections
between them, our method enables representation learning
that relies on attention mechanisms rather than graph con-
nections. This effectively addresses the over-smoothing issue
present in existing Graph Neural Network (GNN) models
while enhancing model efficiency. Experimental results on
multiple benchmark datasets have validated the effectiveness
of our approach.

In the future, our research will focus on further improving
the proposed BUGE model. We plan to integrate knowl-
edge graphs into our graph pre-training model, enhancing
interpretability by combining domain-specific knowledge
graphs with data. This integration will enable better informa-
tion retention and extraction when constructing text graphs,
thereby further enhancing the model’s performance.
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