
Complex & Intelligent Systems (2024) 10:1715–1732
https://doi.org/10.1007/s40747-023-01238-6

ORIG INAL ART ICLE

Actor-critic objective penalty function method: an adaptive strategy
for trajectory tracking in autonomous driving

Bo Wang1 · Fusheng Bai1 · Ke Zhang1

Received: 19 March 2023 / Accepted: 3 September 2023 / Published online: 30 September 2023
© The Author(s) 2023

Abstract
Trajectory tracking is a key technology for controlling the autonomous vehicles effectively and stably to track the reference
trajectory. How to handle the various constraints in trajectory tracking is very challenging. The recently proposed generalized
exterior point method (GEP) shows high computational efficiency and closed-loop performance in solving the constrained
trajectory tracking problem. However, the neural networks used in the GEP may suffer from the ill-conditioning issue during
model training, which result in a slow or even non-converging training convergence process and the control output of the
policy network being suboptimal or even severely constraint-violating. To effectively deal with the large-scale nonlinear
state-wise constraints and avoid the ill-conditioning issue, we propose a model-based reinforcement learning (RL) method
called the actor-critic objective penalty function method (ACOPFM) for trajectory tracking in autonomous driving. We adopt
an integrated decision and control (IDC)-based planning and control scheme to transform the trajectory tracking problem into
MPC-based nonlinear programming problems and embed the objective penalty function method into an actor-critic solution
framework. The nonlinear programming problem is transformed into an unconstrained optimization problem and employed
as a loss function for model updating of the policy network, and the ill-conditioning issue is avoided by alternately performing
gradient descent and adaptively adjusting the penalty parameter. The convergence of ACOPFM is proved. The simulation
results demonstrate that the ACOPFM converges to the optimal control strategy fast and steadily, and perform well under the
multi-lane test scenario.

Keywords Autonomous driving · Trajectory tracking · Model predictive control (MPC) · Reinforcement learning (RL) ·
Objective penalty function method

Introduction

Autonomous driving has attracted increasingly more atten-
tion from practitioners and researchers [1]. The primary
research areas for autonomous driving include three major
aspects: visual perception, planning and decision, andmotion
control [2]. Trajectory tracking is a key technology for pre-
cisely controlling autonomous vehicles. As a fundamental
part of the motion control module, trajectory tracking aims

B Fusheng Bai
fsbai@cqnu.edu.cn

Bo Wang
wb1999430@163.com

Ke Zhang
20208023@cqnuedu.cn

1 National Center for Applied Mathematics in Chongqing,
Chongqing Normal University, Chongqing 401331, China

to calculate the vehicle control commands based on the ref-
erence trajectory obtained by the path planning module to
achieve accurate tracking of the reference trajectory. The
performance of trajectory tracking directly determines, to a
large extent, the performance of autonomous vehicles, which
involves driving safety, passenger comfort, travel efficiency,
energy consumption and so on. The trajectory tracking prob-
lem in autonomous driving is very challenging as the system
involved is typically high nonlinear and contains large-scale
state-wise constraints [3]. How to mathematically model the
trajectory tracking problem properly, set up the obstacle
avoidance strategy, reduce the huge computational burden
in the solution process, and minimize the trajectory tracking
error are crucial issues in the trajectory tracking research [4,
5].

The current vehicle trajectory tracking control methods
mainly include sliding mode control (SMC), proportion inte-
gration differentiation (PID) control, and model predictive

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-023-01238-6&domain=pdf
http://orcid.org/0000-0003-0514-1331

1716 Complex & Intelligent Systems (2024) 10:1715–1732

control (MPC) [6–8], etc. SMC is a nonlinear variable struc-
ture control, in which the composition of the system is
constantly changing with the system state, so that the system
always changes according to the employed slip mode state.
SMC has the advantages of fast response, insensitivity to
parameter changes and perturbations, and no need for online
system identification [9], but it is prone to chatter, which is
themost noticeable issue affecting the practical application of
SMC [10]. The chattering issue can be lessened by approxi-
mating the discontinuous terms via continuous functions like
saturation function, arctan function, and hyperbolic tangent
function [11–13]. Although some improvements obtained
using thesemodifiedSMCmethods, there are still someprob-
lems associated with the presence of external disturbances
[14–16]. PID control is used broadly in industry because it
is simple and does not require a mathematical model [17],
but it is not applicable to nonlinear systems and the tuning
of parameters is complicated, which makes it hard to guar-
antee the accuracy and robustness of the control [18]. MPC
employs the nonlinear dynamics model of the control sys-
tem and predicts the output behavior of the system in the
future period by solving the optimal control problem with
constraints [19], however its tracking performance is sensi-
tive to the accuracy of the predictionmodel, and the nonlinear
MPC has high demand for computational resources [20].

Reinforcement learning (RL) solves sequential decision-
making problems via a trial-and-error process interacting
with the environment [21]. Model-based RL builds environ-
ment models in which trial-and-error can take place without
real costs and can improve RL algorithms significantly by
making them more sample-efficient and thus reducing errors
[22]. Deep neural networks (DNN) have been commonly
used as function approximators inRL,whichmitigate against
the state-action space explosion as the number of state-action
pairs recorded grows [23], and generalize prior experience
to previously unseen state-action pairs, leading to the birth
of deep reinforcement learning (DRL). Actor-critic methods
for RL are hybrid methods that combine the advantages of
policy-based and value-based algorithms, where the ‘actor’
is the term for the policy structure in charge of choos-
ing actions and the ‘critic’ is the estimated value function
to evaluates the actor’s actions. Zhao et al. [24] proposed
a model-based actor-critic framework for optimal tracking
control of robotic systems,which overcomes the issue of long
learning cycles for control strategies. The actor-critic based
solution framework is widely used in autonomous driving
tasks, especially to solve the problem for which the training
process of RL or DRL can be hard when the state space is
enormous [25]. Recently, given the uncertainties in the driv-
ing conditions, a soft actor-critic scheme was used in [26] to
solve the decision-making and planning problem with con-
tinuous action space. Note that in general the DRL lacks
closed-loop stability analysis, state constraints satisfiability,

and significant weight initialization capacity [27]. In order to
deal with these issues, the prospect of using MPC-based RL
has been proposed and justified in [28], where using MPC
as the function approximation for the optimal policy in RL
is suggested. MPC based strategies can effectively deal with
the multivariable constraints in autonomous vehicle track-
ing under uncertain environments by building systems that
satisfy state constraints and safety requirements [29].

Recently, Guan et al. [30] proposed an integrated deci-
sion and control (IDC) framework for autonomous vehicles,
which has better interpretability and computational effi-
ciency compared with the traditional decomposed scheme
[31] and the end-to-end scheme [32]. In addition, it is appli-
cable in different driving scenarios and tasks. Amodel-based
actor-critic RL algorithm, called the generalized exterior
point method (GEP) is presented in [30] for solving the
formulated MPC-based optimal control problem with large-
scale state-wise constraints in a rolling optimization process
to minimize the trajectory tracking error. The GEP is an
extension of the exterior point method in the optimiza-
tion domain to the field of neural network (NN), which
transforms the constrained optimal control problem into an
unconstrained problem with penalties for safety violations
and an actor-critic solution framework is employed to solve
the problem. The purpose of the actor is to obtain an excellent
policy NN, which aims to make trajectory tracking perfor-
mance as good as possible without collision. The objective
function with penalties is mapped as the parameterized loss
function of the policy NN for model training, and the input is
the state vector of the autonomous vehicle and the output is
the control vector, thus giving the corresponding control com-
mands for the autonomous vehicle. Meanwhile, the critic,
with the function of judging state goodness, can be served as
the path selector. Unlike the exterior pointmethod in the opti-
mization domain, the GEP relaxes the conditions to establish
convergence of the exterior point method, eliminates the
need to find global minima in each gradient descent step,
and updates the NN parameters effectively under the guid-
ance of the model. An approximate feasible optimal control
strategy is obtained by implementing gradient descent and
updating the penalty parameter alternatively. For the exterior
point method, it can be shown that under certain conditions,
when the penalty parameter increases to infinity, the optimal
solution to the penalty problem is the optimal solution to the
original problem [33]. However, as the penalty parameter
increases, it would face the ill-conditioning issue [34, 35],
including severe numerical instabilities [36], so the penalty
parameter cannot be infinitely large. A similar issue arises
for DNN training [37–39], where each iterative update of the
network parameters is essentially a step of gradient descent.
On the one hand, we do not know exactly how large the
penalty parameters need to be. Theoretically speaking, the
penalty parameters have to be increased to infinity to ensure

123

Complex & Intelligent Systems (2024) 10:1715–1732 1717

convergence, but due to the actual computational limitations,
the penalty parameters cannot be too large or too small [40].
On the other hand, as the penalty parameters keep increas-
ing, the condition number of the Hessian matrix of the loss
function becomes larger and larger, the correlation between
the columns of the matrix becomes too high [41, 42], and the
ill-conditioning issue in the training of the DNN becomes
more and more serious, which results in a very slow or even
non-converging training process [38, 39]. In other words, the
control ofDNNoutputmay be suboptimal or even constraint-
violating, so that we can hardly ensure the quality of the
trained model.

In this paper, we propose a model-based RL algorithm
called the actor-critic objective penalty function method
(ACOPFM) to solve the trajectory tracking problem. The
ACOPFM can effectively deal with the large-scale nonlin-
ear state-wise constraints and avoid the ill-conditioning issue
caused by the increasing condition number of the Hessian
matrix during the model training of the policy network of
the GEP. The ACOPFM transforms the nonlinear program-
ming problem into a parametric, unconstrained optimization
problem and employs the objective penalty function as a
loss function for policy network updates to find the optimal
control strategy by alternately performing gradient descent
and adaptively adjusting the penalty parameter. The conver-
gence of ACOPFM is proved. Meanwhile, the ACOPFM can
improve the computational efficiency of the solution process
and update the NNs efficiently under the guidance of the
model. To the best of our knowledge, this is the first time
that the objective penalty function method is extended to the
RL framework. Moreover, we conduct extensive simulation
experiments via the joint platform consisting of CARLA and
SUMO. During the offline training, the proposed ACOPFM
converges faster and more steadily to the optimal control
strategy with the GEP as the baseline. During the online
testing, our trained autonomous vehicle can successfully
complete the trajectory tracking task in the overtaking chal-
lenge under themulti-lane test scenario with frequent vehicle
interactions.

The remainder of this paper is organized as follows. Sec-
tion“Related work” briefly introduces the penalty function
methods in the optimization field, and the development of the
integration of MPC and RL. Section“Planning and control
scheme” describes the planning and control scheme we have
adopted based on the IDC framework. Section“Design of the
nonlinear programming problem” presents the modeling of
the trajectory tracking problem into the MPC-based nonlin-
ear programming problem. Section“ACOPFM framework”
presents the ACOPFM solution for the modeled trajectory
tracking problem under the RL framework, and its theoret-
ical convergence analysis. Section“Simulation experiment”
reports the numerical results of the offline training and online
testing of the NN trained using the ACOPFM for the multi-

lane simulation scene. Finally, the conclusions of the present
work and some suggestions for the future work are given in
Sect. “Conclusion and future work”.

Related work

In this section, we introduce firstly the penalty function
methods, including the development of the objective penalty
function methods in recent decades, then the integration
of MPC and RL, including its applications in the field of
autonomous driving.

Penalty functionmethods

Consider the following constrained optimization problem:

min f (x), (P)

s.t. gc(x) ≤ 0, c ∈ C,

where f : Rn → R is the objective function, gc : Rn →
R, c ∈ C are constraints. The set

X = {
x ∈ R

n
∣∣ gc(x) ≤ 0, c ∈ C

}

is called the feasible set of (P).
The problem finds applications in various fields such as

artificial intelligence and transportation [43, 44].
Penalty function methods are popular choices for solving

problem (P). Based on the principle of converting a con-
strained optimization problem into a series of unconstrained
optimization problems, penalty function methods are rela-
tively simple and effective in finding the optimal solution
[45, 46]. A commonly used penalty function for (P) is the l2
penalty function, which is defined as:

F(x, ρ) = f (x) + ρ
∑

c∈C
max{gc(x), 0}2,

where ρ > 0 is the penalty parameter. The corresponding
penalty problem for (P) is given as follows:

min F(x, ρ) s.t. x ∈ Rn . (P′)

It can be shown that under certain conditions, when the
penalty parameter increases to infinity, the optimal solution
of the problem (P′) is also the optimal solution of the origi-
nal problem (P) [46]. Therefore, when the penalty parameter
keeps increasing, only a series of penalty problems need to
be solved to obtain an approximate optimal solution of the
original problem (P). However, the Hessian matrix of the
penalty function will become increasingly ill-conditioning
as the penalty parameter increases [34, 35, 47], which leads

123

1718 Complex & Intelligent Systems (2024) 10:1715–1732

to numerical difficulties. Another commonly used penalty
function is the l1 penalty function, which is defined as:

F1(x, ρ) = f (x) + ρ
∑

c∈C
max{gc(x), 0}.

The corresponding penalty problem for (P) is given as fol-
lows:

min F1(x, ρ) s.t. x ∈ Rn . (P′′)

Note that the l1 penalty function is an exact penalty function
(EPF) [48–51], which means that under some conditions,
there is some ρ∗ such that an optimal solution to (P) is also
an optimal solution to (P′′) for all ρ ≥ ρ∗. However, as
the ρ∗ is unspecified, it is necessary to gradually increase
the penalty parameter to find the optimal solution to (P),
and the ill-conditioning issue still occurs. Besides, the l1
penalty function is nondifferentiable at the point x with some
gc(x) = 0. As the most powerful optimization methods
require a differentiable cost function, this entails restrictions
on choices of optimizationmethods to solve the exact penalty
problem.

The idea of the objective penalty functionmethodwas first
proposed in [52]. By adjusting the objective penalty param-
eter adaptively, the ill-conditioning issue can be effectively
overcome.

The following objective penalty function was presented
in [53]:

F(x, M) = (f (x) − M)2 +
∑

c∈C
max{gc(x), 0}p,

where p > 1, and an objective penalty function method
(OPFM) was developed to solve (P) and the convergence
of the corresponding algorithm was established under the
assumption that X is connected and compact. In [54] a gen-
eral objective penalty functions was proposed as follows:

F(x, M) = Q(f (x) − M) +
∑

c∈C
P(gc(x)),

where Q(t) is strictly decreasing on [0,+∞), Q(t) > 0 for
t 	= 0, Q(0) = 0, and P(t) > 0 for t > 0, P(t) = 0 for
t ≤ 0. For example, Q(t) = t2 and P(t) = max{t, 0}2. In
[55] the modified Q(t) and P(t) were used to construct the
objective penalty function, where Q(t) = 0 for t < 0 and
P(t) is further required to be strictly increasing on [0,+∞).

The convergence results for the objective penalty function
method are established in [55] without the compactness and
connectivity assumption on the feasible set.

Integration of MPC and RL

MPC is a well-established control strategy that uses a
mathematical model to predict the system behavior over
a finite time horizon and optimize a performance crite-
rion subject to constraints [8], but the performance of
MPC is highly dependent on the accuracy of the model
used for predictions. RL, on the other hand, is a machine
learning technique that enables an agent to learn from its
interactions with an environment and make decisions that
maximize a reward signal [21], but many critical aspects
still need to be tackled, including safety and stability issues
[27].

The integration ofMPC and RL can leverage the strengths
of both approaches. MPC provides a framework for handling
constraints and modeling complex systems, while RL allows
for adaptive control in uncertain environments where tradi-
tional model-based methods may fail. Aswani et al. [57] first
presented learning-basedmodel predictive control (LBMPC)
scheme, and used a linear model with bounds on its uncer-
tainty to construct invariant sets that provided deterministic
guarantees on robustness and safety. In [58], Koller et al.
presented a learning-based model predictive control scheme
that can provide provable high-probability safety guarantees.
Gros and Zanon [28] proposed that a Nonlinear Model Pre-
dictive Control (NMPC) can be tuned to deliver the optimal
policy of the real system even when using a wrong model,
and one practical outcome of the theory proposed in this
paper is that all RL techniques can be directly used to tune
the NMPC scheme to increase its performance on the real
system, and this was the first work proposing to use NMPC
as a function approximator in RL. In [27] Gros and Zanon
proposed an RL formulation based onMPCwhich addresses
the issue of safety, which they did not rigorously enforce in
[28, 59]. A key idea is that MPC is used as a function approx-
imator within RL to provide safety and stability guarantees;
and RL is used to tune the MPC parameters, thus improving
closed-loop performance in a data-driven fashion [27, 28,
59].

Recently, a method to implement the stochastic policy
gradient method using actor-critic techniques was proposed
in [29], where the policy is approximated using an MPC
scheme, and a computationally inexpensive approach is used
to build a stochastic policy generating samples that are sup-
posed to be feasible for the MPC constraints. In [60], a
novel algorithm called reinforced predictive control (RL-
MPC) that merges the relative merits of MPC and RL,
and the complementarity between RL and MPC is empha-
sized.

In summary, the integration of MPC and RL can pro-
vide a more efficient, robust, and adaptive control system
for autonomous driving.

123

Complex & Intelligent Systems (2024) 10:1715–1732 1719

Fig. 1 Illustration of our
integrated decision and control
scheme

Planning and control scheme

This section describes our planning and control scheme
employed based on the IDC framework [30], which consists
of two main modules: path planning and trajectory tracking
control, as seen in Fig. 1.

Firstly, the global road points are generated in consid-
eration of the road static information [30], including road
characteristics (shapes, intersections, obstacles etc.) and traf-
fic rules (traffic light signals, vehicle speed limits etc.), then
the reference paths are filtered using the static information
from the starting point to the end point of the ego vehi-
cle, which are used as the underlying reference paths for
the dynamic optimal tracking task (in the CARLA simu-
lator, the built-in A∗ algorithm can quickly generate the
reference paths). Next, use the dynamic traffic information
including surrounding vehicles’ movements to formulate the
constrained trajectory tracking problem with respect to each
candidate path, solve the formulated problems separately,
and follow the path with the best tracking performance.

The formulated MPC-based trajectory tracking problem
consists of three parts: first, the objective function to eval-
uate the trajectory tracking effect; second, the state transfer
equation constraints based on the bicycle vehicle model [14]
and vehicle kinematics for the ego and other vehicles, respec-
tively; third, the constraints resulting from dynamic collision
avoidance in consideration of the surrounding vehicles, and
the distance restrictions in consideration of the lane bound-
aries.

For the constrained optimization problem faced, the
ACOPFM is developed as the solution scheme. The objec-
tive penalty function method in the optimization field is
employed to handle the constraints in order to obtain the

unconstrained optimization problem and further the loss
function required for the DNNmodel training, and the objec-
tive penalty parameters are adjusted adaptively during the
model training process to avoid the ill-conditioning issue.

As seen in Fig. 2, the highway scenario is used to demon-
strate the trajectory tracking task. The A∗ algorithm is used
to generate the reference paths. The optimal trajectory for
the ego vehicle is obtained by the ACOPFM. Note that the
goal of the optimization problem is to minimize the trajec-
tory tracking error between the trajectory of the ego vehicle
and the reference trajectory as much as possible under the
premise of safety and reasonableness.

MPC-based nonlinear programming problem

The trajectory tracking model for autonomous driving was
given in [30]. Equation(1) shows the variables related to the
state and control.

xi |t = [lx, ly, vlon, vlat, ϕ, ω]
i |t
x j
i |t = [l jx , l jy , v

j
lon, 0, ϕ j , 0]
i |t

xlanei |t = [l lanex , l laney , 0, 0, 0, 0]
i |t
xrefi |t = [lrefx , lrefy , vreflon, 0, ϕref , 0]
i |t
ui |t = [δ, a]
i |t

(1)

The prediction horizon is set as T steps. xi |t is the state of
the ego vehicle at the i th time step within T from the current
time step t . x j

i |t is the state of the j th vehicle in N , which
stands for a collection of vehicles interacting with the ego
vehicle, where lx and ly are the position coordinates (for ego
and other vehicles, they stand for the position of the center

123

1720 Complex & Intelligent Systems (2024) 10:1715–1732

Fig. 2 Schematic diagram of the trajectory tracking task on highway
scenario. The blue line segment illustrates the trajectory tracking error.
The pink dashed segment illustrates the predicted trajectory of other
vehicles, according to the state transfer equation. The red thick line
segment is the optimized trajectory obtained for the ego vehicle after
dynamically solving the MPC-based trajectory tracking problem using
ACOPFM. The green solid line is the reference path, generated by the
A∗ algorithm in the CARLA simulator

of gravity(CG)). vlon and vlat are the longitudinal and lateral
velocities, ϕ is the heading angle, ω is the yaw rate. x refi |t and

x lanei |t are the closest points from xi |t on the reference path
and on the road edge. ui |t is the control of the ego vehicle at
the i th time step within T from the current time step t . The
vehicle control is expressed in terms of the front-wheel angle
δ and acceleration a.

The objective function is given in (2):

min
ui |t ,i=0:T−1

J(xi |t , ui |t) =
T−1∑

i=0

l(xi |t) + η(ui |t) (2)

where

l(xi |t) = ||xi |t − xrefi |t ||22
= (xi |t − xrefi |t)
 Q(xi |t − xrefi |t),

η(ui |t) = u

i |t Rui |t ,

Q, R are positive definite weighting matrices. Note that the
trajectory tacking problem is formulated as a rolling opti-
mization processwhere for each step the new x0|t is provided,
then the tracking error is minimized to get the optimal con-
trol sequence {u0|t , u1|t , ...uT−1|t }. The actual control given
to the vehicle is u0|t each time due to the uncertainty of the
dynamic road information. The state of the vehicle at the next
time step is obtained by the state transfer equation. This opti-
mization process is repeated at each time step [8, 61]. Based
on the vehicle kinematics and the bicycle vehicle model [14],
the state transfer equation of ego vehicle is

xi+1|t = Fego(xi |t , ui |t),

which is specifically given in Eq. (3):

⎡

⎢⎢⎢⎢⎢⎢
⎣

vlon|i+1

ϕi+1

lx|i+1

ly|i+1

vlat|i+1

ωi+1

⎤

⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

vlon|i + Ts · ai
tan δi

L
· ϕi + Ts · vlon|i+1

lx|i + Ts · vlon|i+1 · cosϕi+1

ly|i + Ts · vlon|i+1 · sin ϕi+1

vlat|i
ωi

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(3)

The state transfer equation of other vehicles is

x j
i+1|t = Fother (x

j
i |t),

which is specifically given in nonlinear Eq.(4):

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

v
j
lon|i+1

ϕ
j
i+1

l jx|i+1

l jy|i+1

v
j
lat|i+1

ω
j
i+1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

v
j
lon|i
ϕ
j
i

l jx|i + Ts · v
j
lon|i+1 · cosϕ

j
i+1

l jy|i + Ts · v
j
lon|i+1 · sin ϕ

j
i+1

v
j
lat|i
ω

j
i

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(4)

Next we move to the nonlinear constraints involved in the
model:

||xi |t − x j
i |t ||2 ≥ Dsafe

other ,

||xi |t − xlanei |t ||2 ≥ Dsafe
lane,

where Dsafe
other is the safe distance between the ego vehicle and

other vehicles, while Dsafe
lane is the safe distance between the

ego vehicle and the lane line. More specifically, we have the
following nonlinear constraints, as shown in Eq. (5), which
update dynamically at each time step with the change of
the ego vehicle’s state, other vehicles’ states, lane boundary
information, and number of other vehicles:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

√
(lx − l jx)2 + (ly − l jy)2≥ Dsafe

other , j ∈ N

√
(lx − l lane,1x)2 + (ly − l lane,1y)2≥ Dsafe

lane

√
(lx − l lane,2x)2 + (ly − l lane,2y)2≥ Dsafe

lane

(5)

where l lane,1 and l lane,2 represent the left lane boundary and
the right lane boundary.

Amodel predictive control-based nonlinear programming
problem is given as follows to fully describe the trajectory

123

Complex & Intelligent Systems (2024) 10:1715–1732 1721

tracking problem:

min
ui |t ,i=0:T−1

J(xi |t , ui |t) =
T−1∑

i=0

l(xi |t) + η(ui |t)

s. t. xi+1|t = Fego(xi |t , ui |t)

x j
i+1|t = Fother (x

j
i |t)

||xi |t − x j
i |t ||2 ≥ Dsafe

other

||xi |t − xlanei |t ||2 ≥ Dsafe
lane

x0|t = xt , x
j
0|t = x j

t , u0|t = ut

i = 0 : T − 1, j ∈ N.

(6)

As the problem is highly nonlinear, the number of con-
straints involved is large, and the vehicle-mounted computing
resources are limited, the traditional numerical optimization
methods are not able to solve the problem satisfactorily. It has
been shown that themodel-based RL algorithms can produce
reasonable solutions for such problems [30, 62]. However,
the constraints involved pose a great challenge to these algo-
rithms. In the next section, we will present a generalized
objective penalty function method to handle the constraints
under the model-based RL framework, which can well han-
dle the ill-conditioning issue that occurs in the traditional
penalty function methods.

ACOPFM framework

DRL-based parameterization

We consider a standard RL setup for the interaction of the
agent with the environment in discrete time steps. Here the
agent is defined as an autonomous vehicle and the simulation
environment can be modeled as a Markov decision process
(MDPs), which can be defined by the tuple (S,A,R,P,V).
The state space and action space are identified as being con-
tinuous. Within each discrete time step, for each state given
by the simulation environment st ∈ S, the ego vehicle takes
the appropriate action at ∈ A according to the input state st
and the policy π : S × A → R to complete the trajectory
tracking task. The function r(st , at) : S ×A → R describes
the cost, indicating the objective function of the trajectory
tracking task optimized at each moment, which is repre-
sented here as l(xt) + η(ut). The function p(st+1|st , at) :
S × A → P(st+1) represents the probability density of
the next state st+1 to which the current state st is trans-
ferred by taking action at . p(·) is usually unknown due to
the complexity and uncertainty of the autonomous vehicle
dynamics and the motion of the surrounding traffic partic-
ipants, but we can obtain the state at the next time step
according to the state transfer equation st+1 = F(st). The

state value function V π (st) is defined as the expected cost
sum from the start of st to future moments and can be used
to evaluate the value of an initial state st under policy π . It
is closely related to the policy π of the selected action by

V π (st) =
{∑T−1

t=0 l(xt) + η(ut)|s0 = st
}

.

We use the actor-critic RL scheme to solve the trajec-
tory tracking problem. The purpose of actor is to find the
optimal policy π∗

θ , which demonstrates the tracking perfor-
mance during the training of NNs. The purpose of critic is
to approximate the true function value, and to improve the
closed-loop performance as the training of NNs becomes
more and more accurate, the loss of critic can demonstrate
the safety performance during the training process.

Our RL problems are modeled as follows:

min
θ

Jactor =Es0|t

{
T−1∑

i=0

l(si |t , πθ (si |t))+η(ui |t , πθ (si |t))
}

s.t. si+1|t = F(si |t , πθ (si |t))
gc(si |t) ≥ 0, c ∈ C

s0|t = st ← {τ ∗, xt , x j
t , j ∈ N } ∼ d

i = 0 : T − 1 (7)

min
ω

Jcri tic

=Es0|t

⎧
⎨

⎩

(
T−1∑

i=0

l(si |t ,πθ (si |t))+η(ui |t ,πθ (si |t))−Vω(s0|t)
)2

⎫
⎬

⎭

s.t. si+1|t = F(si |t , πθ (si |t))

s0|t = st ← {τ ∗, xt , x j
t , j ∈ N } ∼ d

i = 0 : T − 1, (8)

where the tracking error objective

l(si |t , πθ (si |t)) + η(ui |t , πθ (si |t))
= ||xi |t − xrefi |t ||22 + πθ (si |t)
Rπ θ (si |t),

gc(si |t) ≥ 0, c ∈ C denote all the constraints. As the num-
ber of constraints is dynamically changing according to the
surrounding vehicle information and the location informa-
tion at each moment. Note that F ∈ {Fego, Fother }. In the
value network, the optimal value function Vω∗ is obtained by
fitting the optimization parameter ω. We train the value net-
work so that Vω∗ approximates the obtained J∗. The control
ui |t = πθ (si |t) can be obtained via the policy network. Under
some assumptions, ui |t can be mapped as πθ(si |t), and the
optimal policy π∗

θ (si |t)is equivalent to optimal action u∗
i |t .

123

1722 Complex & Intelligent Systems (2024) 10:1715–1732

Actor-critic objective penalty functionmethod

Taking P(t) = max{0, t}2 and introducing a dynamic objec-
tive penalty parameterM , then the constrained critic problem
is converted to a generalized objective penalty function prob-
lem as follows:

min
θ

Jp = Q(Jactor − M) + Jpenalty

= Es0|t

{

Q

(
T−1∑

i=0

l(si |t , πθ (si |t))+η(ui |t , πθ (si |t))−Mθ

)}

+ Es0|t

{
T−1∑

i=0

φi (θ)

}

s.t. si+1|t = F(si |t , πθ (si |t))

φi (θ) =
∑

c∈C
[max{0,−gc(si |t)}]2

s0|t = st ← {τ ∗, xt , x j
t , j ∈ J } ∼ d

i = 0 : T − 1. (9)

The algorithmic procedure of the actor-critic objective
penalty method is given in Algorithm 1. Let the set

U = {u = πθ(st)
∣∣ gc(st) ≥ 0, c ∈ C}.

The optimal control taken each time through the policy net-
work is uk . f (uk) is the value obtained from∑T−1

i=0 l(si |t , πθ (si |t)) + η(ui |t , πθ (si |t)). Since the pun-
ishment for constraint violations is formulated as a penalty
term, uk does not necessarily satisfy the constraints.

Convergence analysis of the ACOPFM

We will show that the ACOPFM converges to the optimal
policy under certain conditions, and we say that a “round" is
completed when an optimization process is completed.

Assumption 1 After the round k completes, we have an opti-
mized policy parameter θk . Let

P(θk, β) = {
θk

∣∣ Jactor (θk) ≤ β, k = 1, 2, ...
}
, (10)

which is called a generalized P-level set. We assume that
P(θk, β) is bounded for any given β > 0 if the sequence
{Mk} is convergent.

Next we establish the convergence of the sequence {Mk}.

Theorem 1 Let M∗ = min
θ

Jactor (θ), then M∗ = f (πθ∗(st)).

Suppose that for some M, uM is the control obtained from
Jp(θ, M), and let θM be the optimal parameter correspond-
ing to Jp(θ, M), i.e. uM = πθM (st). Then the following three
assertions hold.

Algorithm 1 ACOPFM for Offline Training
Initialize: Policy networkπθ and value network Vω with random para-
maters θ and ω,

buffer B ← ∅, the learning rates αθ and αω.

for each iteration do
// Sampling (from the environment)
Select a optimal candidate path τ ∗ ⊂ ,

initialize ego vehicle state xt and other vehicles states x j
t , j ∈ N.

for each environment step do
st ← {τ ∗, xt , x j

t , j ∈ N} ,
B ∪ {st } ,
ut = πθ (st) ,
Apply ut to ego vehicle and other vehicles to observe
xt+1, x

j
t+1, j ∈ N.

end for
// Optimizing (ACOPFM)
Iteration counter k ← 0.
Initialize parameters θ0 and ω0.
Apply f and πθ to compute Jcri tic and Jp .
// Updating the value network parameter
Apply value network Vω to update:
ω → ω − αω∇ω Jcri tic .
// Updating the policy network parameter
if k = 0 then
Randomly choose a0 to satisfy a0 < 0,
choose u0 ∈ U to satisfy Jpenalty(θ0) = 0.

Let b0 = f (u0), M0 = a0 + b0
2

.

Apply policy network π0 to update:
θ1 → θ0 − αθ∇θ Jactor (θ0, M0).

else
Apply policy network πθ to observe:
f (uk), Jp(θk , Mk−1), Jpenalty(θk).
if Jp(θk , Mk−1) = 0 then

Let ak = ak−1, bk = f (uk), Mk = ak + bk
2

.

Apply policy network πθ to update:
θk+1 → θk − αθ∇θ Jactor (θk , Mk).

else
if Jpenalty(θk) > 0 then

Let ak = max{ f (uk), Mk−1}, bk = bk−1, Mk = ak + bk
2

.

Apply policy network πθ to update:
θk+1 → θk − αθ∇θ Jactor (θk , Mk).

else
Apply policy network πθ to update:
θk+1 → θk − αθ∇θ Jactor (θk , Mk).

end if
end if

end if
end for

(i) If Jp(θM , M) = 0, then uM ∈ U and M∗ ≤ f (uM) ≤ M .

(ii) If Jp(θM , M) > 0 and uM /∈ U , then M ≤ M∗ and
f (uM) < M∗.
(iii) If Jp(θM , M) > 0 and uM ∈ U , then θM ∈
argmin

θ

Jactor (θ).

Proof (i) The conclusion clearly holds according to the defi-
nitions of P and Q. (ii) Assume that θ∗ ∈ argmin

θ

Jactor (θ).

123

Complex & Intelligent Systems (2024) 10:1715–1732 1723

Obviously

Jpenalty(θ
∗) = 0, Jactor (θ

∗) = f (πθ∗(st)).

As Jp(θM , M) > 0, it follows

0 < Jp(θM , M) ≤ Jp(θ
∗, M) = Q(f (πθ∗(st) − M)).

By the definition of Q, M < f (πθ∗(st)) = M∗.
If f (uM) ≤ M, then f (uM) ≤ M ≤ M∗. If f (uM) > M,

then

0 < Q(f (uM) − M)

≤ Jp(θM , M) ≤ Jp(θ
∗, M) = Q(f (πθ∗(st) − M)).

Therefore, f (uM) < f (πθ∗(st)) = M∗. At the initial step
0, the ego vehicle is generated at the starting point, the
default parameter settings satisfy the constraints, therefore
Jpenalty(θ0) = 0.
(iii) According to the given conditions, we have

0 < Q(f (uM) − M)

= Jp(θM , M) ≤ Jp(θ, M)

= Q(f (u) − M),∀u ∈ U .

Since uM ∈ U , this implies that

f (uM) − M ≤ f (u) − M,∀u ∈ U ,

i.e. θM ∈ argmin
θ

Jactor (θ). ��

Theorem 2 Let {Mk} be the sequence of objective penalty
parameters generated during the iteration with the sequence
{ak} and the sequence {bk}. Then {ak} is an increasing
sequence and {bk} is a decreasing sequence and satisfies

ak ≤ M∗ ≤ bk, k = 1, 2, ..., (11)

bk+1 − ak+1 ≤ bk − ak
2

, k = 1, 2, (12)

Proof Considering the casewhen k = 0.Clearly, a0 ≤ M∗ ≤
b0. When k = 1, if Jp(θ1, M0) = 0, then a1 = a0, b1 =
f (u1) = M0, M1 = a1 + b1

2
, thus we have

b1 − a1 = M0 − a0 = a0 + b0
2

− a0 = b0 − a0
2

;

else Jp(θ1, M0) 	= 0, then for Jpenalty(θk) = 0, it holds, for
the case Jpenalty(θk) > 0,

a1 = max{ f (u1), M0}
≥ M0 = a0 + b0

2
≥ a0 + a0

2
= a0.

b1 = b0.

thus

b1 − a1 = b0 − max{ f (u1), M0}
≤ b0 − M0 = b0 − a0 + b0

2
= b0 − a0

2
,

this implies that b1 − a1 ≤ b0 − a0
2

.

Considering the case k ≥ 1. By induction, suppose that
ak ≤ M∗ ≤ bk for some k ≥ 1, then we consider the case of
k + 1.

If Jp(θk+1, Mk) = 0, this implies that uk+1 ∈ U ,

f (uk+1) = Mk = bk+1, ak+1 = ak, Mk+1 = ak+1 + bk+1

2
,

thus

ak+1 = ak ≤ M∗ ≤ bk+1 = Mk = ak + bk
2

≤ bk .

bk+1 − ak+1 = Mk − ak = bk − ak
2

.

If Jp(θk+1, Mk) 	= 0, then for Jpenalty(θk+1) = 0, obvi-
ously it holds. For the case Jpenalty(θk+1) > 0, we have
bk+1 = bk, ak+1 = max{ f (uk+1), Mk} ≥ Mk, thus

ak+1 ≥ Mk = ak + bk
2

≥ ak + ak
2

= ak .

��
From Theorem 1, we have

ak+1 ≤ M∗ ≤ bk = bk+1.

Therefore,

bk+1 − ak+1 = bk − max{ f (uk+1), Mk}
≤ bk − Mk = bk − ak

2
.

Also, we can find that the sequence {ak} is increasing
and the sequence {bk} is decreasing, and both of them are
bounded. Therefore, the sequences {ak} and {bk} are both
convergent. Let

lim
k→∞ak = a∗, lim

k→∞bk = b∗.

By Eqs. (11) and (12), it is clear that a∗ = b∗. Then we have
that the sequence {Mk} converges to a∗ = b∗.

Theorem 3 Under Assumption 1, the limit point of any con-
vergent subsequence of the sequence of the optimization
parameters {θk}, k = 1, 2..., is the optimal solution to the
original problem, where each θk is obtained in the kth itera-
tion.

123

1724 Complex & Intelligent Systems (2024) 10:1715–1732

Proof Wefirst show that the sequence of optimization param-
eters {θk}, k = 1, 2... is bounded.

Since θk is the optimal parameter after k rounds of itera-
tions and u0 ∈ U , Jpenalty(θ0) = 0 when k = 0, we have

Jp(θk, Mk−1) ≤ Q(Jactor (θ0) − Mk−1), k = 0, 1, 2, ...

by the convergence of {Mk}, i.e. limk→∞Mk = a∗.
By Assumption 1, there exists β > 0, when β > β we

have

Jp(θk, Mk−1) ≤ Q(Jactor (θ0) − Mk−1)

< β. k = 0, 1, 2, ...

as P-level set P(θk, β) is bounded, i.e. the sequence {θk} is
bounded.

Since M∗ = min
θ

Jactor (θ), without loss of generality, let

θ∗ ∈ argmin
θ

Jactor (θ). We have proved that ak ≤ M∗ ≤
bk, k = 0, 1, 2... and the sequences {ak}, {bk}, {Mk} con-
verge toa∗.Let k → +∞,weobtaina∗ = M∗ = Jactor (θ∗).

Note that Jp, Jactor , Jpenalty are all continuous on the
parameter space. As the sequence θk is bounded, it has con-
vergent subsequence {θk j } with θk j → θ as k j → +∞.

We will show that Jactor (θ) = a∗. Clearly M∗ =
Jactor (θ∗), and note that

Jp(θk j , Mk j−1) ≤ Jp(θ
∗, Mk j−1)

= Q(Jactor (θ
∗) − Mk j−1).

Let k j → +∞, we have Mk j−1 → a∗. Then

lim
k j→+∞ Jp(θk j , Mk j−1) = Jp(θ, a∗)

≤ Q(Jactor (θ
∗) − a∗)

= 0.

Therefore Jp(θ, a∗) ≤ 0. It is clear that Jp(θ, a∗) = 0 due
to the nonnegativity, and Jpenalty(θ) = 0, Jactor (θ) = a∗,
i.e., the limit of any convergent subsequence of the parameter
sequence {θk}, k = 0, 1, 2... is the optimal solution. ��

Simulation experiments

Our simulation experiments are conducted on the CARLA-
SUMO joint platform. In order to simulate the real-time
trajectory tracking scenario under complex constraints, the
simulation platform employed should have realistic sensor
simulation, vehicle dynamics simulation, and traffic flow
simulation. We thus choose CARLA, which comes with a
realistic sensor simulation system, a vehicle dynamics sim-
ulation system, and a game engine rendering [63]. SUMO,

Table 1 Important variable settings in SUMO simulation traffic flow

Variable Meaning Value

Begin Start time 0s

End End time 999999s

DepartLane Generate lanesfor the vehicle Random (1–5)

DepartPos Generate the initial vehicle position Random

DepartSpeed Vehicle initial speed Random

VehsPerHour Vehicle generation frequency Random

which has realistic complex random traffic simulation [64],
is chosen to produce realistic traffic flow in CARLA, and
some important variable settings in SUMO simulation traffic
flow are shown in Table 1. For the experimental scenario, we
choose the multi-lane setting of the CARLA 09.13 version
of the Town06 map, and it is worth noting that the vehicle
speed limit is set at 20 m/s.

Experimental environment

We choose the vehicle.tesla.model3 simulation model in
CARLA simulator as ego vehicle for the trajectory tracking
task. The state information is known to contain three pieces:
ego vehicle’s state information, other vehicles’ state infor-
mation, and information about the reference state:

s = [sego, sother, sref].

The specific settings of sego are described in Sect. “Design of
the nonlinear programming problem”. sother = [l jx , l jy , v

j
lon,

ϕ j]Ti |t , j ∈ N, and N = 6. sref = [lrefx , lrefy , vreflon, ϕ
ref]
i |t ,

in which

(lrefx , lrefy) ∈ argmin
i

{√
(lx − lrefx)2 + (ly − lrefy)2

}
.

The reference speed vreflonis 13m/s, which is generated based
on the real time traffic rules, and the reference heading angle
ϕref is generated adaptively by the CARLA simulator. In
the policy network, the input space of the DNN contains
information on all the three states, which is a 34-dimensional
tensor.

The control is set as

u = [δ, a]
,

where δ is the front-wheel angle, and can be adjusted by
changing the steering wheel angle in the CARLA simulator
(the steeringwheel angle range is [−1, 1]rad), a is the accel-
eration of the ego vehicle, and can be converted to throttle
in the CARLA simulator by the PID controller, parameter-
ized by the throttle range [0, 1]. The output space contains

123

Complex & Intelligent Systems (2024) 10:1715–1732 1725

Fig. 3 Schematic diagram of the policy network structure. The input
layer has 34 neurons, i.e., the input space is 34-dimensional. They
include the ego vehicle information (6 dimensions), the 6 other vehi-
cles information (6×4 dimensions) and the reference information (4
dimensions). The number of neurons in both hidden layers is 256, and
ELU is used as the activation function. To ensure that the control of the

network output conforms to the boundary constraints of the control, a
sigmoid function with parameters is used to map the network output
to the corresponding intervals, and the CARLA simulator simulates the
control of the autonomous vehicle by adjusting the steering wheel angle
and throttle size accordingly

the angle and acceleration of the front wheel, which is a
2-dimensional tensor with an angle range [−0.4, 0.4]rad,
and acceleration range [−3, 3]m/s2. Due to the nonlinear
mapping relationship, we use ELU function to activate the
network output and use sigmoid function with parameters to
map the network output to appropriate intervals in order to
ensure that the control of the network output is in line with
the control range. The basic structure of the policy network
is shown in Fig. 3. The value network is also a DNN with
two hidden layers, but it differs structurally from the policy
network in that the value network outputs a real-valued sig-
nal. This real-valued signal is the score of the state-control
pair.

The information of all road points of the map is obtained
from CARLA simulation platform in advance. During
the simulation process, the ego vehicle is automatically
destroyed when it reaches the end point, collides with other
vehicles, or crosses the boundary of the lane, and then it
is generated again at the starting position. The data of the
start and end coordinates of the reference path are shown in
Table 2.

The prediction horizon T = 30, and the simulation inter-
val time step Ts for each step is 0.05s. The positive definite
weighting matrix is

Q = diag{0.04, 0.04, 0.01, 0.05, 0.1, 0.06},
R = diag{0.1, 0.05}.

Safe distance Dsafe
other = 3.0 m, Dsafe

lane = 1.5 m. The distance
from the front axle to the rear axle L = 3.0 m. The height of

top view point in CARLA is 50m. The important parameters
of the NNs are shown in Table 3, and the computational com-
plexity, e.g., FLOPs and model’s parameter sizes are shown
in Tables 4 and 5.

Offline training

The ACOPFM, GEP, and l1 exact penalty function based
method (denoted by EPF) are trained for comparison. In the
key iteration step of the GEP [30] ‘if i mod m: ρ ← cρ’,
the parameter settings are shown in Table 3. Five different
runs are conducted with different random seeds on a desktop
computer with a 3.70 GHz-10 core Intel XeonW-2255 CPU,
with evaluations every 100 iterations. The GEP and the EPF
are trained using four different sets of initial penalty parame-
ters ρ0, and are compared with the ACOPFM. The numerical
results are reported in Fig. 4.

As seen in Fig. 4a, from the trend of Jactor , comparedwith
the GEP and the EPF, we can see that ACOPFM converges
faster, and is more stable; in other words, ACOPFM is able to
find the optimal strategy more efficiently, which means that
the trajectory tracking performance of ACOPFM is better
than that of the GEP and the EPF. Figure 4b shows the vari-
ation of the objective penalty parameter M ; compared with
the infinite growth of the penalty parameter ρ of the GEP and
EPF as shown in Fig. 4c, it converges faster to a finite value
that is roughly equal to the parameterized Jactor . Figure 4d
shows the variation of Jp, and it can be seen that ACOPFM
converges to a small number quite steadily, whereas the GEP

123

1726 Complex & Intelligent Systems (2024) 10:1715–1732

Table 2 The starting and ending
points’ coordinates

Reference path number Point Coordinates

1 Start carla.Location(x=106.3154, y=237.56, z=0.3)

End carla.Location(x=599.10, y=237.73, z=0.3)

2 Start carla.Location(x=106.3154, y=241.06, z=0.3)

End carla.Location(x=599.10, y=241.06, z=0.3)

3 Start carla.Location(x=106.3154, y=244.56, z=0.3)

End carla.Location(x=599.10, y=244.73, z=0.3)

4 Start carla.Location(x=106.3154, y=248.06, z=0.3)

End carla.Location(x=599.10, y=248.06, z=0.3)

5 Start carla.Location(x=106.3154, y=251.56, z=0.3)

End carla.Location(x=599.10, y=251.73, z=0.3)

Table 3 Important
hyperparameter settings

Hyperparameter Value

Optimizer Adam (β1 = 0.9, β2 = 0.999)

Approximation function MLP

Number of hidden layers 2

Number of hidden units 256

Nonlinearity of hidden layer ELU

Replay buffer size B 1e4

Batch size 1024

Policy learning rate (actor) 1e-6

Value learning rate (critic) 1e-6

The penalty amplifier c of the GEP and the EPF 1.1

The update interval m of the GEP and the EPF 150

The initial Parameter a0 of ACOPFM –1

Total iteration 20,000

Table 4 Computational
complexity of the policy
network

Layer (type) Output shape Param #

Linear-1 [1024, 1, 256] 8704

ELU-2 [1024, 1, 256] 0

Linear-3 [1024, 1, 256] 65,792

ELU-4 [1024, 1, 256] 0

Linear-5 [1024, 1, 2] 514

Total params: 75010 Input size (MB): 0.13

Trainable params: 75010 Forward/backward pass size (MB): 8.02

Non-trainable params: 0 Params size (MB): 0.29

Flops: 76283904.0 Estimated total size (MB): 8.43

gives a diverging and oscillating trend, and the EPF gives an
oscillating result. The numerical performance of the value
network of the three methods are shown in Fig. 4e. It can be
seen that theACOPFMconverges very fast, whereas theGEP
and the EPF diverge. Figure 4f demonstrates the variation of
Jpenalty , which indicates the degree of constraint violations.
It can be seen that the ACOPFM performs much better than
the GEP and the EPF. Moreover, we take the average vio-

lation degree [65] J̄penalty of Jpenalty to measure the safety
performance:

J̄penalty = E0|k

{

Es0|t

{
T−1∑

i=0

φi (θ)

}}

. (13)

Overall, the average violation degree ofACOPFMis lower
than the average value of the GEP and the EPF as shown

123

Complex & Intelligent Systems (2024) 10:1715–1732 1727

Table 5 Computational
complexity of the value network

Layer (type) Output Shape Parameter #

Linear-1 [1024, 1, 256] 8,704

ELU-2 [1024, 1, 256] 0

Linear-3 [1024, 1, 256] 65,792

ELU-4 [1024, 1, 256] 0

Linear-5 [1024, 1, 1] 257

Total params: 74573 Input size (MB): 0.13

Trainable params: 74573 Forward/backward pass size (MB): 8.01

Non-trainable params: 0 Params size (MB): 0.29

Flops: 76021760.0 Estimated Total Size (MB): 8.43

(a) (b) (c)

(d) (e) (f)

Fig. 4 Comparative experimental results of theACOPFMwith theGEP,
the EPF in a multi-lane overtaking simulation scenario. The solid lines
represent the mean value over different episodes. The shaded regions
represent the 95% confidence interval. a The variation of Jactor . b The

objective penalty parameter M . c The penalty parameter ρ of the GEP
and the EPF. d The variation of Jp . e The variation of Jcri tic . f The
variation of Jpenalty

in Table 6, which indicates that the safety performance of
ACOPFM is better than that of the GEP and the EPF in gen-
eral.

Online testing

We deploy the model trained by the ACOPFM to the ego
vehicle and test it in a Town06 multi-lane scenario. The red
thick line segment is the optimized trajectory obtained by the
ACOPFM, which is formed by connecting waypoints within
the prediction horizon (T = 30) at each simulation moment.

The green solid line is the reference path, generated by the
A∗ algorithm in the CARLA simulator after considering the
road static information, and there are 5 reference paths cor-
responding to the multi-lane scenario.

1) Performance in the environment without surrounding
vehicles

In such environment, the ego vehicle trajectory should be
well maintained in the reference lane. In the SUMO simula-
tor we set the vehicle generation frequency vehsPerHour to

123

1728 Complex & Intelligent Systems (2024) 10:1715–1732

Table 6 Average violation
degree J̄penalty of the
ACOPFM, GEP and EPF

Method k = 5000 k = 10000 k = 15000 k = 20000

ACOPFM 0.076573 0.038286 0.025524 0.019143

The GEP with ρ0 = 1 0.113201 0.056600 0.037734 0.028300

The GEP with ρ0 = 2 0.128813 0.064406 0.042938 0.032203

The GEP with ρ0 = 5 0.151513 0.075757 0.050504 0.037878

The GEP with ρ0 = 10 0.256800 0.128400 0.085600 0.064200

Average value of the GEP 0.162582 0.081291 0.054194 0.04065

EPF with ρ0 = 1 0.098345 0.070590 0.047060 0.035295

EPF with ρ0 = 2 0.141179 0.201405 0.134270 0.100702

EPF with ρ0 = 5 0.402809 0.203583 0.135722 0.101792

EPF with ρ0 = 10 0.624790 0.312395 0.208263 0.156197

Average value of EPF 0.316781 0.196993 0.131329 0.098450

The bold values are used for comparison

0 vehicles per hour. The dynamic breakdown of the whole
process of the simulation test is shown in Fig. 5, where the
ego vehicle is initialized in the lane 2, with the goal of reach-
ing the end of the line in a safe and traffic rules compliance
manner.

During the whole test process, the changes of the indi-
cators of the ego vehicle are shown in Fig. 6, and it
can be seen that the ego vehicle almost keeps a constant
speed after accelerating for a period of time, and the front-
wheel angle, the steering wheel angle and the heading angle
parameters are basically kept near 0, which indicates that
the trajectory tracking performance of the ego vehicle is
good.

2) Performance in the environment with surrounding vehi-
cles

In this environment, the challenging task is to safely and
stably complete the overtaking control of the ego vehicle.We
adopt a multistep safety shield [30] after the output of the
policy to enhance safety during the online implementation
of the trained model. In the SUMO simulator we set the
vehicle generation frequency vehsPerHour to 5000 vehicles
per hour. The dynamic breakdown of the whole process of
the simulation test is shown in Figs. 7 and 8.

A collision can occur when there is a vehicle A in front of
the ego vehicle. The ego vehicle will turn to lane 2, as shown
in Fig. 7b, and chooses lane 2 as the path to be tracked to
complete the first overtaking, as shown in Fig. 7c and d.

After driving stably on lane 2 for a period of time, the
sensor detects vehicle B which is directly ahead of the ego
vehicle, as shown Fig. 8b, and the ego vehicle will perform a
second lane change for overtaking. The ego vehicle chooses
to change lane to enter the lane 1 to the left and overtake
the vehicle B by acceleration, as shown in Fig. 8c. After the

second overtaking, the ego vehicle ultimately arrives at the
end of the lane safely and stably, as shown in Fig. 8c and d.

During the whole test process, the changes of the indica-
tors of the ego vehicle are shown in Fig. 9. Around simulation
step 170 and step 530, it is evident that there are clear fluctu-
ations in the indicators, since the first and second overtaking
maneuvers entail the changes of the acceleration and the
front-wheel angle, which are reflected in Fig. 9a to Fig. 9f).
Note that the first and second overtaking maneuvers involve
the right-turn control and left-turn control of the steering
wheel, which are implemented by changing the angle of the
steering wheel (Fig. 9c). The front-wheel angle (Fig. 9d) and
the heading angle (Fig. 9e) have abrupt changes around sim-
ulation step 170 and step 530.

Conclusion and future work

In this paper, we have proposed a model-based RL algo-
rithm, theACOPFM, to avoid the ill-conditioning issue faced
by the GEP during model training and effectively deal with
the large-scale nonlinear state-wise constraints. A planning
and control scheme based on the IDC framework is adopted,
and a MPC-based model of the trajectory tracking prob-
lem is established. Subsequently, the model is converted into
an unconstrained optimization problem using the objective
penalty function method and it is parameterized based on the
actor-critic framework. The loss function guiding the update
of the policy network is employed in the form of objective
penalty function. The ACOPFM can find the optimal con-
trol strategy faster and stabler in comparison with the GEP
by alternately performing gradient descent and adaptively
adjusting the penalty parameter. The simulation results show
that under multi-lane scenarios, the ACOPFM performs well
in trajectory tracking tasks and is able to complete the over-
taking maneuvers successfully.

123

Complex & Intelligent Systems (2024) 10:1715–1732 1729

(a) (b) (c)

Fig. 5 Visualization of the trajectory tracking simulation process without interactions with other vehicles. a The ego vehicle starts in lane 2. b The
ego vehicle is in motion. c The ego vehicle is approaching the end (marked by red dot) smoothly

(a) (b) (c)

(d) (e) (f)

Fig. 6 Results of the indicators in the environment without interactions
with other vehicles. a The variation of the speed. b The variation of the
acceleration. c The variation of the steering wheel angle. d The vari-

ation of the front-wheel angle. e The variation of the heading angle. f
The variation of the throttle parameter

(a) (b) (c) (d)

Fig. 7 Visualization of the ego vehicle’s maneuvers during the first
overtaking. a The ego vehicle starts in the lane 1. b The ego vehicle
detects vehicle A in the right front of it through sensors in the CARLA

simulator and prepares to steer itself enter lane 2 to the right. c The ego
vehicle interacts with vehicle A safely and stably. d The ego vehicle
completes the first lane change to overtake and travels on lane 2

123

1730 Complex & Intelligent Systems (2024) 10:1715–1732

(a) (b) (c) (d)

Fig. 8 Visualization of the ego vehicle’s maneuvers during the second
overtaking. a The ego vehicle travels on lane 2 for some time. b The
ego vehicle detects vehicle B in the right front of it via sensors in the
CARLA simulator and prepares to steer itself to enter lane 1 on the left.

c The ego vehicle interacts with vehicle B safely and stably. d The ego
vehicle completes the second lane change to overtake and travels on
lane 1 to reach the end (marked with red dot) successfully

(a) (b) (c)

(d) (e) (f)

Fig. 9 Results of indicators in the environment with surrounding vehicles. a Variation of the speed. b Variation of the acceleration. c Variation of
the steering wheel angle. d Variation of the front-wheel angle. e Variation of the heading angle. f Variation of the throttle parameter

As the ACOPFM converts the original problem into an
unconstrained optimization problem by imposing penalties
for constraint violations as the GEP, there is no 100% guar-
antee of safety. Our next research is to improve the multistep
safety shields [30] to ensure safety performance.
Note that the state transfer equation we employed in the
present work is relatively simple and there could be errors
in real applications. There are some environmental factors
such as wind speed, ambient temperature, and ground slope
that are not considered in the simulation process. Moreover,
some scenes (e.g., some control behaviors of the ego vehicle
and other vehicles) are not encountered during model train-

ing, which can cause long-tail problems and makes the real
applications of the method less secure. However, by refining
themodel and extending the training process, these problems
can be overcome to a large extent.

Acknowledgements The authors would like to thank the anonymous
referees for their very helpful comments and insightful suggestions that
have helped improve this paper greatly. This work was supported by the
Chongqing Technological Innovation and Applications Development
Special Program (Project No. cstc2021jscx-jbgsX0001), the Scientific
and Technological Research Program of the ChongqingMunicipal Edu-
cation Commission (Project No. KJZD-K202114801), the Innovation
and Development Joint Program of the Chongqing Natural Science

123

Complex & Intelligent Systems (2024) 10:1715–1732 1731

Foundation (Project No. 2022NSCQ-LZX0301) and the National Nat-
ural Science Foundation of China (Project No. 11991024).

Data Availability The data associated with this paper is available from
the corresponding author upon request.

Declarations

Conflicts of interest The authors declare that there are no conflicts of
interest regarding the publication of this paper.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Badue Claudine, Guidolini Rânik, Carneiro Raphael Vivacqua,
Azevedo Pedro, Cardoso Vinicius B, Forechi Avelino, Jesus Luan,
Berriel Rodrigo, Paixao Thiago M, Mutz Filipe, et al (2021)
Self-driving cars: A survey. Expert Systems with Applications,
165:113816

2. González D, Pérez J, Milanés V, Nashashibi F (2015) A review of
motion planning techniques for automated vehicles. IEEE Trans
Intell Transp Syst 17(4):1135–1145

3. Huang Z, Li H, Li W, Liu J, Huang C, Yang Z, Fang W (2021) A
new trajectory tracking algorithm for autonomous vehicles based
on model predictive control. Sensors 21(21):7165

4. ChatzikomisC, SorniottiA,Gruber P, ZanchettaM,WillansD,Bal-
combe B (2018) Comparison of path tracking and torque-vectoring
controllers for autonomous electric vehicles. IEEE Transactions on
Intelligent Vehicles 3(4):559–570

5. Li L, Li J, ZhangS (2021)Reviewarticle: State-of-the-art trajectory
tracking of autonomous vehicles. Mechanical Sciences 12(1):419–
432

6. Shtessel Yuri, Edwards Christopher, Fridman Leonid, Levant Arie,
et al (2014) Sliding mode control and observation, volume 10.
Springer

7. Karl Johan Åström and Tore Hägglund (2001) The future of pid
control. Control Eng Pract 9(11):1163–1175

8. Grüne Lars, Pannek Jürgen, Grüne Lars, Pannek, Jürgen (2017)
Nonlinear model predictive control. Springer

9. Liu J-K, Sun F-C (2007) Research and development on theory and
algorithms of sliding mode control. Kongzhi Lilun yu Yingyong/
Control Theory & Applications 23(3):407–418

10. Kachroo P, Tomizuka M (1996) Chattering reduction and error
convergence in the sliding-mode control of a class of nonlinear
systems. IEEE Trans Autom Control 41(7):1063–1068

11. Huang B, YangQ (2019) Double-loop slidingmode controller with
a novel switching term for the trajectory tracking of work-class
rovs. Ocean Eng 178:80–94

12. Elmokadem T, Zribi M, Youcef-Toumi K (2016) Trajectory track-
ing sliding mode control of underactuated auvs. Nonlinear Dyn
84:1079–1091

13. Labbadi M, Cherkaoui M (2019) Robust adaptive backstepping
fast terminal sliding mode controller for uncertain quadrotor uav.
Aerosp Sci Technol 93:105306

14. Ge Q, Sun Q, Li SE, Zheng S, Wu W, Chen X (2021) Numerically
stable dynamic bicycle model for discrete-time control. In: 2021
IEEE IntelligentVehicles SymposiumWorkshops (IVWorkshops),
pp 128–134. IEEE

15. MohanTiwari Pyare, Janardhanan S, unNabiMashuq (2015)Rigid
spacecraft attitude control using adaptive non-singular fast termi-
nal sliding mode. Journal of Control, Automation and Electrical
Systems 26:115–124

16. Hassani H, Mansouri A, Ahaitouf A (2021) Robust autonomous
flight for quadrotor uav based on adaptive nonsingular fast terminal
sliding mode control. Int J Dyn Control 9:619–635

17. Rupp Astrid, Stolz Michael (2017) Survey on control schemes for
automated driving on highways. In Automated driving, pages 43–
69. Springer

18. NieL,Guan J,ChihuaL,ZhengH,YinZ (2018)Longitudinal speed
control of autonomous vehicle based on a self-adaptive pid of radial
basis functionneural network. IET Intel TranspSyst 12(6):485–494

19. Howard Thomas M, Alonzo K (2007) Optimal rough terrain tra-
jectory generation for wheeled mobile robots. Int J Robot Res
26(2):141–166

20. Li S, Li K, Rajamani R, Wang J (2010) Model predictive multi-
objective vehicular adaptive cruise control. IEEE Trans Control
Syst Technol 19(3):556–566

21. Sutton Richard S, Barto AndrewG (2018) Reinforcement learning:
an introduction. MIT press

22. Pal Constantin-Valentin, Leon Florin (2020) Brief survey of
model-based reinforcement learning techniques. In 2020 24th
International Conference on System Theory, Control and Comput-
ing (ICSTCC), pages 92–97. IEEE

23. Bellman R (1966) Dynamic programming. Science 153(3731):34–
37

24. Xingwei Z, Bo Tao L, Qian HD (2020) Model-based actor-critic
learning for optimal tracking control of robotswith input saturation.
IEEE Trans Industr Electron 68(6):5046–5056

25. Yu Lingli, Shao Xuanya, Yan Xiaoxin (2017) Autonomous over-
taking decision making of driverless bus based on deep q-learning
method. In 2017 IEEE International Conference on Robotics and
Biomimetics (ROBIO), pages 2267–2272. IEEE

26. Tang X, Huang B, Liu T, Lin X (2022) Highway decision-making
and motion planning for autonomous driving via soft actor-critic.
IEEE Trans Veh Technol 71(5):4706–4717

27. Zanon M, Gros S (2020) Safe reinforcement learning using robust
mpc. IEEE Trans Autom Control 66(8):3638–3652

28. Gros S, Zanon M (2019) Data-driven economic nmpc using rein-
forcement learning. IEEE Trans Autom Control 65(2):636–648

29. Gros Sébastien, ZanonMario (2021)Reinforcement learning based
on MPC and the stochastic policy gradient method. In 2021 Amer-
ican Control Conference (ACC), pages 1947–1952. IEEE

30. Yang G, Yangang R, Qi S, Eben LS, Haitong M, Jingliang D,
Yifan D, Bo C (2022) Integrated decision and control: toward inter-
pretable and computationally efficient driving intelligence. IEEE
transactions on cybernetics 53(2):859–873

31. Brian P, Michal Č, Zheng YS, Dmitry Y, Emilio F (2016) A survey
of motion planning and control techniques for self-driving urban
vehicles. IEEE Transactions on intelligent vehicles 1(1):33–55

32. Ravi KB, Ibrahim S, Victor T, Patrick M, Al Sallab Ahmad
A, Senthil Y, Patrick P (2021) Deep reinforcement learning for
autonomous driving: A survey. IEEE Trans Intell Transp Syst
23(6):4909–4926

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1732 Complex & Intelligent Systems (2024) 10:1715–1732

33. Fletcher R_ (1981) Practical methods of optimization: Vol. 2: Con-
strained optimization. JOHN WILEY & SONS, INC., ONE WILEY
DR., SOMERSET, N. J. 08873, 1981, 224

34. Charalambous Christakis (1980) A method to overcome the ill-
conditioning problem of differentiable penalty functions. Opera-
tions Research, 28(3-part-ii):650–667

35. Fletcher Roger (1983) Penalty functions. Mathematical Program-
ming The State of the Art, pages 87–114

36. Dussault J-P (1995) Numerical stability and efficiency of penalty
algorithms. SIAM J Numer Anal 32(1):296–317

37. Saarinen S, Bramley R, Cybenko G (1993) Ill-conditioning in neu-
ral network training problems. SIAM J Sci Comput 14(3):693–714

38. Zhang Yongke, Zhang Yongjun, Ye Wei (1995) Local-sparse
connection multilayer networks. In Proceedings of ICNN’95-
International Conference on Neural Networks, volume 3, pages
1254–1257. IEEE

39. Der Smagt Patrick Van, Hirzinger Gerd (2002) Solving the ill-
conditioning in neural network learning. InNeural networks: tricks
of the trade, pages 193–206. Springer

40. Byrd Richard H, Gabriel L-C, Jorge N (2012) A line search exact
penalty method using steering rules. Math Program 133(1):39–73

41. Rheinboldt Werner C (1976) On measures of ill-conditioning for
nonlinear equations. Math Comput 30(133):104–111

42. Peters G, Wilkinson James H (1979) Inverse iteration, ill-
conditioned equations and newton’s method. SIAM Rev
21(3):339–360

43. Peter KM, Chua Leon O (1988) Neural networks for nonlin-
ear programming. IEEE Transactions on Circuits and Systems
35(5):554–562

44. Jie L, Gupte A, Huang Y (2018) A mean-risk mixed integer non-
linear program for transportation network protection. Eur J Oper
Res 265(1):277–289

45. Nocedal Jorge, Wright Stephen J (2006) Numerical Optimization,
2nd edition. Springer

46. Luenberger David G, Ye Yinyu (2021) Linear and Nonlinear Pro-
gramming, 5th edition. Springer Nature Switzerland AG

47. Murray W (1967) Ill-conditioning in barrier and penalty functions
arising in constrained nonlinear programming. In Proceedings of
the Sixth International Symposium onMathematical Programming

48. Zangwill Willard I (1967) Non-linear programming via penalty
functions. Manage Sci 13(5):344–358

49. Coleman Thomas F, Conn Andrew R (1980) Second-order condi-
tions for an exact penalty function. Math Program 19(1):178–185

50. Körner F (1990) On the numerical realization of the exact penalty
method for quadratic programming algorithms. Eur J Oper Res
46(3):404–408

51. MongeauM, Sartenaer A (1995) Automatic decrease of the penalty
parameter in exact penalty function methods. Eur J Oper Res
83(3):686–699

52. Morrison David D (1968) Optimization by least squares. SIAM J
Numer Anal 5(1):83–88

53. Meng Z, Qiying H, Dang C, Yang X (2004) An objective penalty
function method for nonlinear programming. Appl Math Lett
17(6):683–689

54. Meng Z, Qiying H, Dang C (2009) A penalty function algorithm
with objective parameters for nonlinear mathematical program-
ming. Journal of Industrial & Management Optimization 5(3):585

55. Meng Z, Dang C, Jiang M, Xinsheng X, Shen R (2013) Exactness
and algorithm of an objective penalty function. J Global Optim
56(2):691–711

56. Min J, Meng Z, Zhou G, Shen R (2021) On the smoothing of the
norm objective penalty function for two-cardinality sparse con-
strained optimization problems. Neurocomputing 458:559–565

57. Anil A, Humberto G, Shankar SS, Claire T (2013) Provably safe
and robust learning-based model predictive control. Automatica
49(5):1216–1226

58. Koller Torsten, Berkenkamp Felix, Turchetta Matteo, Krause
Andreas (2018) Learning-based model predictive control for safe
exploration. In 2018 IEEE conference on decision and control
(CDC), pages 6059–6066. IEEE

59. Zanon Mario, Gros Sébastien, Bemporad Alberto (2019) Practical
reinforcement learning of stabilizing economic mpc. In 2019 18th
European Control Conference (ECC), pages 2258–2263. IEEE

60. Arroyo J,MannaC, SpiessensF,HelsenL (2022)Reinforcedmodel
predictive control (rl-mpc) for building energy management. Appl
Energy 309:118346

61. Garcia Carlos E, Prett David M, Manfred M (1989) Model predic-
tive control: Theory and practice-a survey. Automatica 25(3):335–
348

62. Karg B, Lucia S (2020) Efficient representation and approximation
of model predictive control laws via deep learning. IEEE Transac-
tions on Cybernetics 50(9):3866–3878

63. Chen Jianyu, Li Shengbo Eben, TomizukaMasayoshi (2021) Inter-
pretable end-to-end urban autonomous driving with latent deep
reinforcement learning. IEEE Transactions on Intelligent Trans-
portation Systems

64. Ren Yangang, Duan Jingliang, Li Shengbo Eben, Guan Yang, Sun
Qi (2020) Improving generalization of reinforcement learning with
minimax distributional soft actor-critic. In 2020 IEEE 23rd Inter-
national Conference on Intelligent Transportation Systems (ITSC),
pages 1–6. IEEE

65. Ma Haitong, Chen Jianyu, Eben Shengbo, Lin Ziyu, Guan Yang,
Ren Yangang, Zheng Sifa (2021) Model-based constrained rein-
forcement learning using generalized control barrier function. In
2021 IEEE/RSJ InternationalConference on Intelligent Robots and
Systems (IROS), pages 4552–4559. IEEE

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Actor-critic objective penalty function method: an adaptive strategy for trajectory tracking in autonomous driving
	Abstract
	Introduction
	Related work
	Penalty function methods
	Integration of MPC and RL

	Planning and control scheme
	MPC-based nonlinear programming problem
	ACOPFM framework
	DRL-based parameterization
	Actor-critic objective penalty function method
	Convergence analysis of the ACOPFM

	Simulation experiments
	Experimental environment
	Offline training
	Online testing
	1) Performance in the environment without surrounding vehicles
	2) Performance in the environment with surrounding vehicles

	Conclusion and future work
	Acknowledgements
	References

