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Abstract
Distantly supervised relation extraction is an automatically annotating method for large corpora by classifying a bound of
sentences with two same entities and the relation. Recent works exploit sound performance by adopting contrastive learning
to efficiently obtain instance representations under the multi-instance learning framework. Though these methods weaken
the impact of noisy labels, it ignores the long-tail distribution problem in distantly supervised sets and fails to capture the
mutual information of different parts. We are thus motivated to tackle these issues and establishing a long-tail awareness
contrastive learning method for efficiently utilizing the long-tail data. Our model treats major and tail parts differently by
adopting hyper-augmentation strategies. Moreover, the model provides various views by constructing novel positive and
negative pairs in contrastive learning for gaining a better representation between different parts. The experimental results on
the NYT10 dataset demonstrate our model surpasses the existing SOTA bymore than 2.61%AUC score on relation extraction.
In manual evaluation datasets including NYT10m andWiki20m, our method obtains competitive results by achieving 59.42%
and 79.19% AUC scores on relation extraction, respectively. Extensive discussions further confirm the effectiveness of our
approach.

Keywords Distantly supervised learning · Information extraction · Relation extraction · Contrastive learning

Introduction

Relation extraction (RE) is a crucial task in natural language
processing (NLP) [1–5], which aims to identify the rela-
tionship between entities in a sentence. Recently, there are
various research directions in relation extraction, including
cross-modal relation extraction [6, 7], multilingual relation
extraction [8, 9], unified structure based relation extraction
[1, 2] and large language model-based relation extractions
[10]. Most existing supervised RE methods rely on manual
annotations [11, 12]. While the annotation of large training
data is a time-consuming and laborious job in real-world
scenarios. To automatically obtain the large-scale labeled
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corpus, Mintz et al. [13] propose a DS approach to gener-
ate abundant data for RE by aligning knowledge bases (KB)
with raw texts. The assumption is that if two entities have
the same relation in KB, all the sentences containing target
entities would be labeled as this relation.

However, this assumption inevitably introduces massive
wrong labeling data. As shown in Fig. 1, the DS incor-
rectly labels the relation for the first and third sentences
with the given entity pairs 〈Amazon.com, Jeffrey P. Bezos〉,
on account of the limited-scale KB and the strong assump-
tion. In response, recent studies [14–17] adoptmulti-instance
learning (MIL) on improving the robustness against the
noisy label. These approaches apply the piece-wise convolu-
tional neural networks (PCNN) with attention to alleviate the
noise. Furthermore, with the help of pretrained model [18–
20], Bert-based methods gain better performance in learning
instance representations under MIL. However, as pointed
out in [21], MIL only forms accurate bag-level representa-
tions, but fails to effectively utilize abundant instances inside
MIL bags, which turns out a significant limitation. To over-
come insufficient learning of instance representations, the
contrastive learning [21–23] is used to enhance the sentence-
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Fig. 1 A mistake label from NYT10 dataset, where the DS gives the relationship major_shareholders to all sentence in the bag with entity pairs
〈Amazon.com, Jeffrey P. Bezos〉

level representation. Specially, Chen et al. [21] introduce
a contrastive instance learning (CIL) method to boost the
distantly supervised relation extraction (DSRE) under the
MIL framework. CIL adopts single augmentation term
frequency-inverse document frequency (TF-IDF) in positive
pairs construction and achieves competitive performance.
Moreover, HiCLRE [24] proposes a multi-level hierarchical
learning framework for generating the de-noising context-
aware representations and obtain better representations from
contrastive learning, which achieves state-of-the-art perfor-
mance.

However, the above approaches treat every category in
data equally, but ignore the ubiquitous long-tail distribution
problem in DSRE. The long-tail data commonly consist of
two parts, the major part which has few relations with rich
instances, and the tail part which hasmuchmore relations but
contains fewer instances. As Fig. 2 shows, the instance num-
ber for each relation on the widely used DSRE dataset NYT
is clearly under long-tail distribution. And nearly 70% of the
relations in NYT dataset are under long-tail distribution [25].
For example, the relation major_shareholders mentioned in
Fig. 1 has only 328 instances, far less than other categories
of the data. While the denotation of these tail part relations
seems insignificant to the overall results, but it is critical to
the model’s generalization ability in real scenario [26].

To address the above issues, we introduce our long-tail
awareness contrastive learning (LTACL) model. To accom-
plish this, we analysis and divide the long-tail dataset into
the major part and the tail part according to the most numer-
ous class. Based on the observation of different parts, we
adopt a novel dual-contrastive learning framework for bet-
ter capturing the mutual information between the major part
and the tail part instances representation. Specially, we adopt
a hyper-augmentation strategy to mitigate the impact of the
long-tail distribution. In addition, we introduce a counter-
intuitive rule for constructing positive pairs in contrastive
learning, employing slight augmentation for the major part
and more extensive augmentation for the tail part. This
operation enables us to capture diverse representations and
effectively address the challenges associated with the long-
tail issue.

Fig. 2 The relation distribution of NYT10 trainset. With the horizontal
axis representing the name of the relationship category and the vertical
axis standing in for the number of samples, we can clearly conclude
that the NYT10 dataset conforms to a long-tailed distribution

We carry out extensive experiments on the benchmark
NYT10 and the manual annotated dataset NYT10m to eval-
uate our proposed model. It turns out that our LTACL model
surpasses existing approaches by more than 2.61% AUC
score on NYT10 dataset. In addition, our model achieves
59.42% and 79.19% AUC scores on NYT10m andWiki20m
datasets, respectively. Moreover, extensive analysis testify
the effectiveness of our long-tail awareness model.

Our main contributions of proposed LTACLmodel can be
summarized as follows:

1. A novel dual-contrastive learning architecture based
on different parts of long-tail distribution data is pro-
posed, which can enhance mutual information learning
of sentence-level representations between the major part
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and the tail part, and improves the performance of unbal-
anced categories relation extraction.

2. A hyper-augmentation strategy based on unsupervised
contrastive learning is proposed, which uses different
level augmentation for long-tail instances representation
to construct positive pairs. The various view generated
by hyper-augmentation strategy can be beneficial for the
proposed model to learn meaningful representations to
alleviate unbalanced distribution affection.

3. We evaluate on the widely used NYT dataset and two
more accurately annotated sets, LTACL achieves signif-
icant improvements over previous SOTA models.

Related work

DSRE

Recently, burgeoning distantly supervised (DS) learning
approaches [13] have raised particular interest in RE tasks,
due to fact that the DS can generate relation labels for
given entity automatically via aligning source corpus with
a knowledge base. However, it suffers from data noise and
long-tail distribution problems which is caused by its heuris-
tic assumption. To alleviate noisy data, Lin et al. [15] focus
on collecting the high-quality samples by adopting selective
attention mechanism. Ye et al. [17] only use soft attention on
intra-bag and inter-bag to deal with the noise at sentence-
level and bag-level respectively. Qin et al. [27] employ
reinforcement learning to construct an instance selector to
denoise input data iteratively. In addition, Vashishth et al.
[28] leverage graph convolution networks with side informa-
tion to improve DSRE. Sui et al. [29] introduce a federated
de-noising framework to suppress label noise in federated
settings.

Long-tail

There are only few studies available on the long-tail rela-
tion extraction task. Gui et al. [30] follow the approach of
explanation-based learning and learns rules to utilize unla-
beled. Zhang et al. [31] propose a hierarchical attention to
convert data-rich information to data-poor class at the tail
of the distribution without explicit external data. Wang et
al. [32] employ a hierarchical relational searching module
to preprocess the relation labels and alleviate noisy simul-
taneously via RL. Unlike merging long-tail relations to the
data-rich ones, we create discriminatory augmentations for
different parts without extending the dataset.

Contrastive learning

As a very popular technique in unsupervised method, con-
trastive learning is widely explored in computer vision (CV)
and natural language processing (NLP). In CV, Chen et al.
[22] make use of two random augmentations for each image
to generate different views of representations. Besides, it
requires a large batch size of negative samples. Same as
above, MoCo [23] gets two different augmented represen-
tations as positive pairs, while introducing the momentum
update with a vast queue of negative samples. In NLP tasks,
i.e., sentence representations, Yan et al. [33] propose a data
augmentation module including adversarial attack, token
shuffling, cutoff and dropout to generate views for contrastive
learning. In DSRE, CIL [21] first combines multi-instance
learning with contrastive learning, and gains the competitive
results without any additional knowledge bases or relation
information. The HiCLRE model extends contrastive learn-
ing by exploring representations across three levels and
bolstering positive example pairs using the a dynamic gra-
dient adversarial perturbation module. This enhancement
enables the model to effectively mitigate the noise associate
with DSRE. We argue that CIL and HiCLRE are efficient
models under data noise, but lack the consideration of long-
tail distribution in DS. Tracking of the problem, we provide a
mix-augmentationmodule against different parts in the long-
tail data. Our inspiration comes from SimCLR [22], which
reveals that mixed augmentations would improve the perfor-
mance of learning image representation.

Methodology

In this paper,we argue that the contrastive framework is effec-
tive to leverage sentence-level representations with bag-level
ones, but deficient to handle long-tail distributions. Along the
intention,we present an approach for simply and intelligently
reducing the impact of long-tail problem in integrating into
contrastive pairs construction.

The overall model architecture is shown in Fig. 3, on the
left side is pipeline of our LTACL, and on the right side
is detail of hyper-augmentation strategy module. First, we
leverage long-tail analysis module to divide the bag-level
data into different parts. Then, various dotted arrows point
to different augmented views, which are generated by the
hyper-augmentation strategy module. On top of model, we
build a contrastive learning layer. The solid arrow connects
the representation with its corresponding augmented from
same instance to minimize their difference. The dotted arrow
connects the instance with another bag representation in the
same batch while keeping it distant from each other.
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Fig. 3 Overall flowchart of LTACL. At first, the bag format input
divided into major part and tail part according to a simple but effective
analysis from the number of major samples. Then, different parts of
the long-tail data lead to various levels augmentation strategies. Tokens

and relations are encoded by BERT as distributed representations from
multiple perspectives. Finally, a sentence-level positive pairs and a bag-
level negative pairs are used to perform contrastive learning DS relation
extraction

Hyper-augmentation strategy

In this section, we describe our long-tail awareness method.
The purpose is direct and simple: given distribution of a long-
tail dataset, the tail part requires hard augmentations for a
better utilizing of instances while the major part just suits
gentle operations.

Specifically, the dataset offers a collection of sentences
{xi }mi=1. In MIL learning paradigm, we choose the instances
which has same relational triplet 〈e1, e2, r1〉 to form bag
B. Most of the textual data with relation labels present
a long-tail distribution spontaneously, which means some
of the relations own much fewer instances than others. To
ensure that the tail parts of data not be ignored, we con-
duct our long-tail analysis module on input bags. According
to the training set, we collect each relations number Nri .
For {rm |m = max(Nr1 , Nr2, ..., Nri )}, we employ rm as the
denominator to calculate the ratio to each relation:{
BMajor

ri
rm

> δ

BTail
ri
rm

≤ δ
(1)

where i = 1, ...., Nri , BMajor is the collection of the Major
part of each bag, while BTail is the tail part. Note that we
empirically choose δ = 0.03 in the experiments, which
means that we treat relations with instances less than 1000
as tail part relations.

We explore four data augmentation strategies of varying
difficulties to generate views for contrastive learning, includ-
ing synonym replacement (SR), random deletion (RD), term
frequency-inverse document frequency (TF-IDF) and ran-
dom swap (RS).

Synonym replacement is a widely used method for tex-
tual data augmentation. Randomly choose n words that are
not stop words or entities. Then, replace chosen words with
their synonyms in the word list.1 Generally, SR is a robust
augmentation in keeping instance representation.

Term frequency-inverse document frequency [21] adopts
TF-IDF values to evaluate the importance of eachword in the
corpus. Based on that, the method replaces the unimportant
words in the lexicon with other low TF-IDF score words to
augment the original text.

Random deletion is a simple and direct strategy for ran-
domly removing several words in the sentence with a fixed
probability. To be noticed, we should not abandon the entity
to avoid tampering the semantic of instances.

Random swap is a strategy which aims to randomly swap
the order of chosen tokens in the input sentences. It is worth
noting that we need to skip the entity in case of wrecking the
whole representation of the instance. RS mainly affects the
position encoding of the sentence.

1 https://wordnet.princeton.edu/.
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Since we have enough samples in the major part, we take
RSas a furtherminingmethod for contrastive learning.More-
over, we utilize SR as a slight perturbation for the tail part
to keep its primary distribution. Note that overmuch data
augmentation will hurt the performance, hence we apply the
configuration of EDA [34] to initialize it. Besides, we give
extra analysis for testing the robustness of four augmentation
strategies mentioned before in “Ablation study”.

Input instance encoding

Sentence level encoder

Following the hyper-augmentation strategy module, we use
BERT Encoder for our sentence-level embedding, of which
details can be found from [35, 36]. Given an input of sentence
Si , we can obtain [wi1, ei1, wi2, . . . , ei2, wi Nw−1, wi Nw ] by
BERT Tokenizer, where Nw is the number of whole words,
i is the i-th sentences of input instances, ei1 and ei2 are
the corresponding subject and object entities respectively.
Following the setting of encoder-only transformer, we add
special tokens [18] tomark the beginning ([CLS]) and the end
([SEP]) of each sentence. After that, we transmit the token
embedding and the position embedding to hidden informa-
tion [t[CLS], ti1, tie1 , ti2, . . . , tie2 , ti Nt−1, ti Nt , t[SEP]], where
Nt is the number of all tokens. We denote the concatena-
tion of two entity hidden vectors as the entity-aware sentence
representation H(Si ) = hi = [tei1 : tei2 ].

Bag level encoder

Sticking with the DS assumption is hard to avoid noise.
Hence, we follow MIL framework and adopt selective atten-
tion [15] to highlight sentences that better express the current
relation of each bag. Given an encoder F for bag B, B is a
group of sentences that under the same fact 〈e1, e2, rc〉, rc is
the correct relation. B̃ is the weighted sum of all instances
representations:

B̃ = F(〈e1, e2, rc〉) =
Nb∑
i=1

αki hi (2)

where Nb is the bag size, hi follows the definition in sen-
tence encoder.αki is soft-attention score between the kth rela-
tion and the i th instance, αki = exp(aki )/

∑Nb
j=1 exp(akj ),

where aki is the matching degree between the kth relation
query and the i th sentence in a bag.

After that, we utilize a fully connected layer with Softmax
to obtain the probability distribution over the relations:

p(r |B̃, θ) = eor∑Nr
i=1 e

oi
(3)

Fig. 4 The framework of our dual-contrastive learning

where θ is the learnable parameter, o = MB̃ + b represents
the relative score to all relation labels, Nr is the total number
of relations, M is a relation weight matrix, and b is bias term.

In bag encoder, our model takes cross-entropy loss as
DSRE task loss LB(θ), where Ns is the set of all training
samples:

LB(θ) = −
Ns∑
i=1

log p(ri |B̃i , θ) (4)

Dual contrastive learning

The secret of contrastive learning is constructing positive and
negative sample pairs to extract information by itself. Fol-
lowing previous work [37], we aim to maximize the mutual
information between the positive pairs and push apart the
cluster of negative samples.
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Positive pair construction

The critical question is how to construct (xi , x
+
i ) pairs. As

Fig. 4a illustrates, given the major instances xm and the tail
instance xt in a batch,where {xi = xm+xt |xm ∈ BMajor, xt ∈
BTail}. We denote the mixed view x∗ = zSR(xt ) + zRS(xm),
where z(·) is the selective augmentation. Finally, we adopt a
bert-based encoder f (·) to extract the representation.

Negative pair construction

As the Fig. 4b exhibits, through out the bag encoder, we get
a batch of bags (B1, B2, ..., BG) with their weighted repre-
sentation which is denoted as (B̃1, B̃2, ..., B̃G), where G is
batch size. To avoid the “collapse”, vast quantities of negative
samples are needed. Following the negative pairs construc-
tion [21], we use another weighted bag representation B̃t in
the same batch serve as x−

i , where xi ∈ Bs and t �= s.

Training objective

To employ bag-level and sentence-level mutual information,
we define a two-part training objective:

L(θ) =
∑
B

∑
x∈B

Lc(x; θ) + LB(θ) (5)

where θ is learnable parameters, and B is the bag set which
consists of corresponding instances.

The main objective for sentence-level relation extraction
is defined to minimize a contrastive loss Lc. We choose
InfoNCE Loss [38] to be our loss function:

Lc(xs; θ) = − log
esim(hs ,h∗

s )

esim(hs ,h∗
s ) + ∑

t e
sim(hs ,B̃t )

(6)

where hs and h∗
s are the representation of positive instances

pairs, sim(hs, h∗
s )denotes the similarity between twovectors,

and t �= s.
As discussed in “Input instance encoding”, the bag-level

objective can be expressed by Eq. (4). According to [39],
introducing an randomly masks on some tokens to avoid
catastrophic forgetting. We denote LM(θ) as an auxiliary
objective to improve generalization.

Following the CIL framework, we take the bag encoder
loss as domination at the beginning of training, and finally
increases the CL loss equally. This helps smooth bag-level
and sentence-level training.

Therefore, ourfinal objective combinesEq. (5) and LM(θ)

as

L(θ) = λ(t)

NB

∑
B

∑
x∈B

LC (x; θ) + LB(θ) + λMLM (θ) (7)

where λ(t) = 2
1+e−t − 1 denotes a balance coefficient, t is

relative training steps, NB is the number ofwhole instances in
the batch, and λM is the weight of language model objective
LM.

Experiments

Experimental setup

Datasets

We evaluate our method on three popular datasets includ-
ing NYT10, NYT10m and Wiki20. NYT10 [40] has been
broadly used as a benchmark dataset. The dataset is con-
structed with New York Times corpus from 2005 to 2007
and aligned with Freebase knowledge base [40]. The dataset
has 52 common relations and a special relation NA indicated
an unknown relation between entity pair. The training data
contains 522,611 sentences, 281,270 entity pairs and 18,252
relational facts. NYT10m [41] is built by manually anno-
tated test sets of classical NYT10 to make DSRE evaluation
more credible. Specifically, the NYT10m dataset knock-
outs redundant samples and compresses relation in the new
dataset. There are 25 relations on the dataset. The training set
contains 417,893 sentences and 17,137 facts with 80% NA
relations. With efforts of human labeling, there are 157,859
sentences and 1940 facts with 96% N/A relations in test
set, which are an important part of DS evaluation. Wiki20m
[41] is re-organized by searching the same relation ontol-
ogy in Wiki80 [42] and re-splitting the train/validation/test
sets, which is constructing by distantly supervised label from
Wikipedia and Wikidata [43]. There are 81 relation classes
on the dataset, and we remove the sentences which have only
one entity. The training set contains 698,721 sentences and
157,740 facts with 59%NA relations. After manual labeling,
there are 137,986 sentences and 56,000 facts with 25% N/A
relations in test set, which is an high quality benchmark on
DS problem. It is worth noting that we did not conduct our
method onGIDS [44] because this dataset iswell designed on
the relation with balanced instances, which means it does not
fit the long-tail distribution. For exploring the ability of our
proposed method on different data distributions and diverse
relation types, we crop the dataset with a long-tailed way
based on these types, each ofwhich is carried out under adop-
tion construct the dataset.

Metrices

Following previous work [19, 28], we conduct a held-
out evaluation on NYT10. On the human-annotated dataset
NYT10m, we further test our model. We adopt standard
Precision–Recall curves (PR-curve), the Area Under Curve
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(AUC) and the Precision at N (P@N) to evaluate the model.
More concretely, the Marco-F1 score and the accuracy of
Hits@K are also reported to consider the long-tail metrics
for different cutoffs.

Compared baselines

We compare our LTACL to several baseline models for a
comprehensive comparison to demonstrate the superiority of
our LTACL. Our comparison mainly focuses on two groups
of models: the models for traditional DSRE and the models
designed for the long-tail problem. And some baselines are
used on both sides.

Traditional DSRE models Mintz [13] is a multi-class logis-
tic regression RE model under DS setting. PCNN-ATT [14]
is a piece-wise CNN model with selective attention over
instances. RESIDE [28] is a NNmodel that makes use of rel-
evant side information (entity types and relational phrases)
and employs Graph CNN to capture syntactic information
of instances. REDSandT [20] is a transformer-based DSRE
method that manages to capture highly informative instances
and label embeddings by exploiting BERT pretrained model.
CIL [21] integrates contrastive learning framework with
multi-instance learning, and takes full advantage of sen-
tence information. HiCLRE [24] introduces amulti-level and
multi-Granularity contrastive learning with recontextualiza-
tion module to reduce the influence of noisy data in DSRE.
Bert-ATT [45] replaces the piece-wise CNN model with
BERT in sentence-level learning and adopts ONE aggregator
for bag-level training. RH-Net [32] employs the tree search
for relation extraction and fitters noisy instances based on
reinforcement learning method, solving the noisy labeling
and long-tail problem simultaneously for DSRE.

Long-tail awareness models ToHRE [46] formulates the
DSRE as a hierarchical classification task and proposes a
top-down classification strategy with a hierarchical bag pre-
sentation. PCNN+HATT [47] leverages relation hierarchies
information and gain a coarse-to-fine grained attention for
DSRE. PCNN+KATT [31] is an attention-based method and
utilizes knowledge base embedding with graph neural net-
work to represent the hierarchical relational label.

Implementation details

During our experiments, the nlpaug2 is used to perform our
selective augmentation. In random swap, we set aug_min =
1, aug_max = 10 and aug_p = 0.3, while in synonym
replacement, we set aug_min = 0, aug_max = 10 and
aug_p = 0.2. Following CIL, we reuse pretrained check-
points of BERT [18] (uncased) as sentence encoder. While

2 https://github.com/makcedward/nlpaug.

training, due to limitation of equipment, we set our batch
size=16, after 3 epochs we test our model. In experiments,
we use the grid search to find the learning rate for the learn-
ing rate within [1×10e−6,5×10e−4] and find the optimal lr
= 3e − 5. Experiments conducted on a NVIDIA’s GeForce
RTX 3090.

Computational burden and complexity

In detail, we deployed our experimental models and train-
ing/testing codes on anUbuntu 20.04 environment. TheGPU
used was an RTX3090 with 24 GB of memory, and the CPU
used was an Intel(R) i7-10700 2.90 GHz with 40 GB of
RAM. Our deep neural network development platform was
PyTorch 1.10.1, and we utilized CUDA version 11.1 and
cuDNN version 8.0.5.35 for neural network acceleration.
Following the metrics proposed in [8] for analyzing model
complexity, we assessed the complexity of our proposed
LTACL model based on four aspects, including the num-
ber of neural network parameters (Params), floating-point
operations (FLOPs), single-model inference time, and the
computational resources (GPU memory) required for model
deployment. This analysis allows us tomeasure the computa-
tional burden imposed by our proposed method. (1) Params.
We measure the spatial complexity of our proposed method
by calculating the number of neural network parameters of
the LTACL model. The total number of parameters of the
model is 112M (112002701). (2) FLOPs. We calculate the
FLOPsgenerated byourmodelwith the assistant of theDeep-
Speed library.3 Our total FLOPs are up to 913.27 G times.
(3) Inference Time. When training our model in 30 epoches,
it almost takes 12660.84 s, while for the inference phase, we
calculated the average inference speed per sample, and our
model achieves a relation extraction speed of 16 samples/s
on the current evaluation. (4) GPU memory. After five times
repeat test, ourmodel can to reach a peakGPUmemory usage
of 19.2 GBs when batchsize = 16 during training.

Overall results

General experimental results

In this section, we present the performance of different
models on two datasets. For the NTY10 dataset, Table 1
shows more numerical comparisons among several compet-
itive methods. It can be observed that our model achieves
state-of-the-art performance on DSRE by obtaining 51.41%
AUC. Our LTACL outperformer the HiCLRE by 6.11%
at AUC score. Compared to the latest CIL method that
relies on single view of augmentation, our approach gets
absolute AUC improvements of 2.61% on DSRE. We find

3 https://github.com/microsoft/DeepSpeed.
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Table 1 AUC and P@N
evaluation results on NYT10

RE methods AUC P@100 P@200 P@300 P@500 P@M

Mintza 10.70 52.30 50.20 45.00 39.70 46.80

PCNN-ATTa 32.81 73.27 68.66 61.79 59.88 65.90

RH-Neta 37.81 81.00 84.50 80.67 72.00 79.54

RESIDEa 41.50 81.80 75.40 74.30 69.70 77.20

REDSandT 42.40 78.00 74.00 73.00 67.60 73.15

HiCLREa 45.3 82.0 78.5 74.0 – 78.2

CIL (bs = 16)b 48.80 77.20 76.10 76.10 73.30 76.50

LTACL 51.41 87.13 80.10 78.74 76.45 80.60

2.61% 6.13% −4.4% −1.93% 3.15% 1.06%

P@N represents precision calculated for the top-N rated relation instances
aResults from the corresponding official codes
bBaseline results given by our implementation. The Bold in the table indicates our LTACL achieves the best
performance compare to all baselines, while the Underline signifies the best performance among the compared
baselines

Fig. 5 Precision–Recall curves on NYT10 dataset

even stronger performance increases with respect to DSRE
(+9.01%)when compared to theREDSandT baseline, which
uses transformer-based sentence encoder for tokens with
their types and applies attention mechanism on relations. For
P@Nmetric, our method underperforms in P@200 (−4.4%)
and P@300 (−1.9%) against RH-Net, which preprocesses
the relations with an elaborate hierarchical search. However,
Table 1 shows that ourmodel significantly outperforms previ-
ous methods in most cases for averages of P@100 to P@500,
indicating that our model has a consistent performance.

Wealso compare thePrecision–Recall curves of ourmodel
with several major baselines to further evaluate the overall
performance in Fig. 5. Consistent with the previous results,
RH-Net performs better at first but drops rapidly in preci-
sion after a recall-level of approximately 0.25. Notably, our
method can achieve higher precision over most part of the
entire range of recall.

Table 2 AUC and Micro-F1 scores evaluation on NYT10m

RE methods AUC Micro-F1

PCNN-ATTa 56.80 56.50

RESIDEa 35.80 43.30

Bert-ATTa 51.20 54.10

HiCLREa 61.4 36.9

CILb 57.66 60.91

LTACLb 59.42 62.38

−1.98% 1.47%

aBaseline results reported in [41]
bBaseline results given by our implementation. The Bold in the table
indicates our LTACL achieves the best performance compare to all base-
lines, while the Underline signifies the best performance among the
compared baselines

Table 3 AUC and Micro-F1 scores evaluation on Wiki20m

RE methods AUC Micro-F1

PCNN-ATTa 77.50 71.20

Bert-ATTa 70.90 66.80

CILb 77.00 70.70

LTACLb 79.19 71.22

2.19% 0.52%

aBaseline results reported in [41]
bBaseline results given by our implementation. The Bold in the table
indicates our LTACL achieves the best performance compare to all base-
lines, while the Underline signifies the best performance among the
compared baselines

To avoid the influence of noisy labeling by held-out,
we take NYT10m, a human-labeled test data, for bag-level
evaluation on our model. Table 2 shows that while PCNN-
ATT achieves a surprising result against graph-based and
Bert-based method, the contrastive learning framework is a
notch above the rest. Our model surpasses the CIL in AUC
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Table 4 AUC and Micro-F1
scores evaluation on long-tailed
GIDS

RE methods AUC F1 P@500 P@1000 P@2000 P@M

CIL‡ 88.73 85.19 93.41 90.61 83.26 89.09

LTACL 89.96 86.42 95.21 93.31 88.26 92.26

1.23% 1.23% 1.8% 2.7% 5% 3.17%

We collect the scores for five variant versions of the GIDS dataset and retain their average performance. The
old in the table indicates our LTACL achieves the best performance compare to the CIL

Table 5 Accuracy (%) of
Hits@K(Macro) on relations
with training instances less than
100/200 on NYT10

Training instances <100 <200
Hits@ (Macro) 10 15 20 10 15 20

PCNN+ATT < 5.0 7.4 40.7 17.2 24.2 51.5

PCNN+HATT 29.6 51.9 61.1 41.4 60.6 68.2

PCNN+KATT 35.3 62.4 65.1 43.2 61.3 69.2

RH-Net 36.6 64.1 68.9 44.5 62.3 71.7

ToHRE 62.9 75.9 81.4 69.7 80.3 84.8

CIL 71.2 74.87 85.86 75.77 78.85 88.11

LTACL 91.91 91.91 97.69 75.57 81.94 89.43

20.7% 16.52% 11.83% −0.2% 1.64% 1.32 %

The Bold in the table indicates our LTACL achieves the best performance compare to all baselines, while the
Underline signifies the best performance among the compared baselines

Fig. 6 The performance visualization (AUC score) under individual
or composition of different augmentations. All these experiments fol-
low our contrastive learning setting on NYT10 dataset. Columns and
diagonal entries correspond to single transformation, and off-diagonals
correspond to composition of two transformations applied sequentially
(the row indicates data augmentation strategy for the 1st subset of data)

score (+1.76%). The above findings indicate that our model
improves the generalization against the noise by various
viewwith contrastive learning. However, ourmethod reduces
the AUC by 1.98% relative to HiCLRE, which implies that
HiCLRE has a really strong ability in the prediction of pos-
itive examples. However, on the more balanced Micro-F1
metric, HiCLRE dramatically decreases to 36.9%, which
also proves that the long-tail problem has a great impact

on HiCLRE in DSRE. The performance on metric Micro-
F1 further verifies that the proposed model outperforms
CIL (+1.47%). Hence, through the results, we find out that
LTACL is able to tackle the noise issue for relation extraction.

Moreover, we adopt Wiki20m dataset, which is a non-
NYT source data for an additional evaluation of our model.
As Table 3 presents, LTACL achieves a 79.19% AUC score
and exceeds the CIL by 2.19%. Though our model obtains a
minor discrepancy (+0.02%) on Micro-F1 when compared
withPCNN-ATT,whileCILeven fall behind (−0.5%).Aswe
know the Wiki20m has larger number of instances with less
long-tail relations, the well labeled on distantly supervised
instances may weaken our advantages.

To further evaluate the performance of our method on
datasets from different domains under a long-tailed distri-
bution, we manually design a new DSRE dataset based
on the GIDS dataset. In this new dataset, we down sam-
ple the data from each of the five relationship categories
in GIDS and select one relationship category to reduce to
only 300 samples, creating a long-tailed dataset. We con-
struct five different versions of this dataset and compare the
performance of our LTACL method with the CIL method.
We average the results across all versions of the dataset.
Table 4 shows the comparison results between our LTACL
method and theCILmethod in terms of F1 score. Our LTACL
method outperforms the CIL method by 1.23% on average.
These experiments demonstrate that our method is capable
of achieving non trivial performance in solving the DSRE
problem on datasets from different domains, even under a
long-tailed distribution.
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Table 6 Ablations on the
NYT10 dataset

Model AUC Micro-F1 Marco-F1 P@M

LTACL0.03 51.41 53.36 39.22 80.60

Reverse 50.15 (−1.26) 53.36 (−0.00) 38.34 (−0.88) 78.07 (−2.53)

δ : 0.0 (RS) 50.31 (−1.10) 53.05 (−0.31) 37.73 (−1.49) 80.49 (−0.11)

δ : 0.1 49.61 (−1.80) 52.17 (−1.19) 38.26 (−0.08) 79.24 (−1.36)

δ : 1.0 (SR) 49.32 (−2.09) 52.24 (−1.12) 38.24 (−0.98) 77.74 (−2.86)

The threshold value δ is set 0.03 empirically to divide the whole data into two parts. Specifically, RS is
adopted for the long part while SR is utilized for tail part.The Bold in the table indicates the performance of
our proposed LTACL with complete modules

Table 7 A case study selected
from the subset of testing where
entities are marked in bold

Sentence CIL predicted Our predicted Ground truth

Steven Spielberg of
DreamWorks are the
hosts with a private dinner
afterward at Mr. Geffen
’s.(S1)

Founders� Founders� founders

The Cajun rocker Zachary
Richard had a song that
vowed...(S2)

Place_of _birth� Ethnicity� Ethnicity

He had grown up in
Louisiana and learned to
ride on the region’s fabled
Cajun bush tracks.(S3)

Place _lived� Place _lived� Geographic _distribution

Evaluation on long-tail relations

To further demonstrate the improvements on uneven rela-
tions, we evaluate our model on a subset of test dataset in
which all the relations have fewer than 100 or 200 instances.
The macro-average Hits@K accuracy is introduced for a fair
comparison with methods which are dedicated to long-tail
problem. Following previous work [46], we select K from
{10, 15, 20}. Table 5 shows that our method obtains a sur-
prising performance on these benchmarks. In the aspect of
Hits@10 which are less than 200 training instances, even if
our results are slightly less than CIL (−0.2%), our model
achieves significantly performance on Hits@15 (+3.09%)
and Hits@20 (+1.32%) settings. Note that our LTACL eval-
uates on the less than 100 training instances, has largely
improved the performance in metric Hits@10 (+20.71%),
Hits@15 (+16.01%) and Hits@20 (+11.83%) respectively.
This demonstrates that our different level augmentation strat-
egy for long-tail parts can better leverage different relation
samples without being trapped in the majority class.

Ablation study

In this section, we conduct extensive ablation studies on the
effect of mixed views and long-tail data processing.

Effect of mixed data augmentation To verify the impact
of mixed views, we select four options for individual and

composition of transformations including term frequency-
inverse document frequency (TF-IDF), Random Swap (RS),
Random Delete (RD) and Synonym Replacement (SR),
according to the configuration of EDA [34]. Besides, we
remove the long-tail discrimination by randomly dividing
the NYT10 dataset into two parts equally, and adopt differ-
ent operations on it in sequence. In Fig. 6, we observe that:

1. There is hardly a single transformation which suffices to
learn better representations than the mixed views under
the positive pairs construction. This confirms that the
contrastive learning with mixed augmentations benefits
DSRE task.

2. Even if we select the same augmentation combinations
of RS and SR, the AUC scores of RS-SR (50.13%)
and SR-RS (50.75%) are less than the score of long-
tail awareness (51.41%). It reveals that even if the model
adopts the mixed augmentation, ignoring long-tail distri-
bution problem would affect the DSRE performance.

Ablations of long-tail partition processing In Table 6, we
conduct extensive ablations on the hyperparameters of the δ

and the different level augmentations to investigate the effec-
tiveness of our long-tail awareness architecture. According
to Eq. (1), we select δ from 0.0 (consider all data as major
part), 1.0 (consider all data as tail part) and 0.1 (the tail part
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has 47 instances of classes). For a fair comparison, we also
take a reverse strategy at δ is 0.03. We find that:

1. The inappropriate augmentation for major part and the
tail degrades the performance of our model.When adopt-
ing a reverse strategy (RS for tail part and SR for major
part), the AUC score decreases by 1.26%while the P@M
decreases by 2.53%.

2. Incorrect division of long-tail parts lead to inefficiently
learning of overall representation. When δ = 0.1, more
major classes have been brought into the tail part. The
AUC drops by 1.80% while the Micro-F1 drops by
1.19%.

3. The single augmentation strategy neither suffices to learn
better representations nor alleviates the long-tail dis-
tribution problem. When δ = 1.0, it denotes that we
only adopt RS for the whole data. The Micro-F1 score
decreases by 0.31% while the Macro F1 decreases by
1.49%, indicating that the model has been trapped in
long-tail bias. When δ = 0.0, it denotes that we only
adopt SR for thewhole data. The results ofMicroF1 score
52.24%(−1.12%) and Macro F1 38.24%(−0.98%) fur-
ther prove our viewpoint.

Consequently, our model gives the appropriate partition for
each part of the long-tail distribution. These metrics prove
that LTACL selects right augmentations for capturing varied
representations and achieves a competitive overall perfor-
mance in DSRE.

Case study

Table 7 shows the predicted relation under the contrastive
learning framework in bag-level testing. Note that we select
three relational triplets from the long-tail class. S1 is a easy
sample that both methods give the correct prediction. S2 is
a hard sample and may confuse the model. The CIL gives
the wrong relation prediction place_of_birth, which contains
more than 8000 training instances. The different parts of the
long-tail data are taken into account by our model thus we
make the right choice. Our method makes the wrong predic-
tion geographic_distribution on the last sentence.We analyze
that LTACLmay not capture the key information because the
word related to geographical location has been replaced by
other inappropriate synonyms.

Conclusion

In this paper, we propose a novel long-tail awareness con-
trastive learning (LTACL) model for distantly supervised
relation extraction. We first show that long-tail effect in
previous contrastive learning framework is largely underes-

timated. We then identify major and tail parts on ubiquitous
long-tail distribution dataset. Ourmodel LTACL selects vary-
ing degrees of data enhancements on different parts. And it
is conceptual simple since it requires no redundant operation
to construct positive pairs. The experimental results show
that our approach provides nontrivial performance on various
distantly supervised benchmarks and is effective in handling
long-tail relation bias.

In the future, we will try to explore other contrastive
learning methods to get rid of complicated object function
terms, and experiment with long-tail selective on other rela-
tion extraction tasks to further prove its effectiveness.
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