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Abstract
Robot navigation in crowded environments has recently benefited from advances in deep reinforcement learning (DRL)
approaches. However, it still presents a challenge to designing socially compliant robot behavior. Avoiding collisions and
the difficulty of predicting human behavior are crucial and challenging tasks while the robot navigates in a congested social
environment. To address this issue, this study proposes a dynamic warning zone that creates a circular sector around humans
based on the step length and speed of humans. To properly comprehend human behavior and keep a safe distance between the
robot and the humans, warning zones are implemented during the robot’s training using deep enforcement learning techniques.
In addition, a short-distance goal is established to help the robot efficiently reach the goal through a reward function that
penalizes it for going away from the goal and rewards it for advancing towards it. The proposed model is tested on three state-
of-the-art methods: collision avoidance with deep reinforcement learning (CADRL) , long short-term memory (LSTM-RL),
and social attention with reinforcement learning (SARL). The suggested method is tested in the Gazebo simulator and the real
world with a robot operating system (ROS) in three scenarios. The first scenario involves a robot attempting to reach a goal
in free space. The second scenario uses static obstacles, and the third involves humans. The experimental results demonstrate
that the model performs better than previous methods and leads to safe navigation in an efficient time.

Keywords Deep reinforcement learning · Autonomous robots · Dynamic obstacle avoidance · Dynamic warning zone ·
Short-distance goal

List of symbols
p̄ Position of agents (robot or humans)
v̄ Velocity of agents
ḡ Goal position
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J (t) Join state of agents
d̄ρg Robot’s distance to goal
d̄ρh Robot’s distance to human
a(t) Robot’s action
R Reward
V ∗ Optimal value function
π∗ Optimal policy
γ Discount factor
rwz Warning zone radius
φwz Warning zone angle
hgait Step length human

Introduction

The relevance and utility of robot navigation in diverse appli-
cations have increased in recent years [1, 2]. Robots are
currently used to navigate autonomously in spaces such
as hospitals, airports, malls, industries, hotels, etc. [3–6].
The main purpose of deploying autonomous robots is their
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ability to operate in unknown environments and navigate
without human intervention or only slight intervention [7,
8]. Static environments are navigated using traditional nav-
igation techniques, but obstacles that are dynamic still pose
challenges [9]. Nevertheless, intelligent mobile robots must
be capable of navigating complex environments [10, 11].
In complex scenarios, combining human motion predic-
tion with robot motion planning can be challenging due to
humans’ unpredictable and dynamic nature [12]. The robots
must be capable of evaluating, comprehending, and predict-
ing future situations to avoid colliding with objects in a
dynamic environment. However, effective autonomous nav-
igation includes mapping and localization, human detection,
social rules, and decision-making, making it a challenging
task [13].

Prior studies have used robot path planning in conjunc-
tion with the prediction of future human trajectory to avoid
overlap between human and robot path [14–16]. The meth-
ods, however, encountered some major problems, including
freezing robot scenarios. In this case, the robot freezes or
oscillates in dense crowds deciding that all paths are unsafe
[17, 18].

Recent research has demonstrated reinforcement learning
alongside deep learning [19], is an effective method of cre-
ating socially compliant robot navigation systems [20–22].
The learning-model methods present human-aware naviga-
tion as a Markov decision process (MDP) and use deep
V-learning, where the agent chooses an action based on the
state value approximated by the neural networks [23, 24]. By
maximizing the total reward of the action, the deep reinforce-
ment learning (DRL) technique selects the optimal policy
for leading the robot through environmental interaction [25].
The robot learns the collective importance of neighboring
humans to their future states. However, in the real-world
scenario when the goal is located at a farther distance, these
methods are ineffective since the robot made detours to find
the optimal path. [26, 27]. A map-based mechanism is also
introduced for the robot to take safe actions within indoor
environments [28].

Most of the existing DRL-based social navigation meth-
ods assume homogeneity of agents, i.e., that humans behave
similarly [21, 26, 29]. Also, they assume that the human tran-
sition states are well known and well defined. These states
are, in fact, difficult to model due to the unpredictable nature
of human behavior, i.e., humans move at different speeds
based on their physical conditions, activities, and even their
size. Therefore, it is still challenging to develop new tech-
niques that can better account for the heterogeneity of human
behavior in the design of socially compliant robot navigation
systems.

To solve the aforementioned issues, the aim of this pro-
posed work is to design a reward function that considers the
safety of the surrounding environment and simplicity to lead

the robot to take action for collision-free navigation. In the
proposed method, dynamic warning zones are formulated
to enable the robot to predict and anticipate the diversity
of human behavior at the current state, thus the robot takes
actions that lead it to avoid these zones for safe navigation.
To lead the robot to minimize the arrival time, the reward
function also evaluates the action taken by the robot at the
current time and encourages it to take a route that forwards
it closer to the desired goal.

Accordingly, the contribution of this study is as follows:

• Robots are trained with the dynamic warning zones
around humans based on their size, speed, and the length
of steps they take, to avoid collisions. The warning zone
is a circular space that the robot avoids crossing to keep
a comfortable distance from humans.

• A proposed reward function evaluates the distance
between the robot’s position and the goal to reach a short-
distance goal.Apositive reward is given to the robotwhen
it gets closer to the goal, and a negative reward when it
moves away from the goal.

• The proposed navigation system model is integrated into
the robot operating system (ROS) for extensive evalua-
tion in three different simulated and real scenarios: empty
space, static obstacles, and dynamic obstacles.

The dynamic warning zones and short-distance goals
are formulated and later trained and tested on DRL-based
navigation methods to lead the robot to take collision-free
actions while considering the unpredictable human behavior
in densely crowded environments. The paper is structured
as follows: “Related work” begins with the related work,
followed by the methodology in “Methodology”. The exper-
imental setup, results, and evaluations are presented in
“Results and discussion”. Finally, the conclusions are pro-
vided in “Conclusions”.

Related work

Crowd navigation is complex since the robot cannot directly
acquire each human’s implicit goal since the environment
is partially observable [10, 30]. The recent research on this
problem can be roughly divided into the following two cate-
gories:

Reaction-basedmodels

Using attractive and repulsive forces, the Social Force model
[31] is one of the earliest models developed for improving
navigation in crowded environments. Other reaction-based
models such as reciprocal velocity obstacles (RVO) [32],
and optimal reciprocal collision avoidance (ORCA) [33] use
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optimal collision-free velocities for obstacle avoidance in
multi-agent navigation. These models have the drawback
of being computationally intensive since well-engineered
parameters are required.

Learning-basedmethods

DRL algorithms are currently being used in the field of
robotics to directly learn optimal control strategies from
visual inputs for various real-world issues [34]. The pop-
ularity of DRL as an end-to-end approach has led to it
being used to learn collaborative behavior in crowd-aware
scenarios [35]. DRL is also used for socially compliant
obstacle-aware avoidance [29, 36, 37]. Additionally, imi-
tation learning can be used to discover policies based on
demonstrations of desired behaviors [38, 39]. Human inter-
actions are addressed using Collision Avoidance with DRL
[23]. The socially aware DRL approach has been extended
with long short-term memory (LSTM) architecture [24],
which converts each human state into a fixed-length vec-
tor in reverse order of distance from the robot. All these
methods use deep V-learning, where the planner calculates
the value of all possible next states. Based on the agents’
state transitions, the planner chooses an action that leads
to the highest valued state. Supervised and reinforcement
learning are combined by considering human behaviors in
human–robot interaction [26, 40, 41]. To fully define the
spatial–temporal interactions between pedestrians and robots
for autonomous navigation in a dynamic environment, the
spatial–temporal state transformer is created [42]. Despite
this, all of the approaches mentioned above do not per-
form well when presented with complex environments that
include real-time human behavior. Using the decentralized
collision avoidance method, a reinforcement learning frame-
work is proposed where each agent makes its own decisions
independently without communicating with any other agent
[43].

AlthoughDRL-basedmethodshavedemonstrated improve-
ment in performance in crowded environments, they still
suffer from a number of drawbacks. These include not adapt-
ing to human behavior by considering their size and speed,
or not finding a path in some situations. Therefore, limiting
the application of these methods to real-world situations to a
substantial extent.

This manuscript proposes a method by which a robot can
learn to adapt its behavior by considering comfort and safety.
To accomplish this, dynamicwarning zones are created as cir-
cular sectors around humans. To find an efficient and smooth
path, a short-distance goal is integrated with DRL to intelli-
gently select waypoints, thus aiding the robot in reaching its
goal by maintaining an optimized course.

Methodology

Problem formulation

In this work, the crowd-aware robot navigation problem is
formulated as a sequential decision-making problem in a
reinforcement learning framework. The robot interacts in
an environment comprising of n number of humans, where
all agents (humans and robot) move in a two-dimensional
plane. The states of agents at any time t consist of position
p̄ = [x, y]T , velocity v̄ = [vx , vy]T , and the radius r . They
constitute observable states that can be observed by all the
agents. On the other hand, the unobservable states include
the goal position ḡ = [gx , gy]T , preferred velocity v̄p of each
agent with its magnitude as vp, and orientation θρ . Here, the
subscript p represents the preferred parameters, while sub-
script ρ represents the robot parameters.

The robot state Oρ at any time t is given by:

Oρ(t) = [
p̄ρ, v̄ρ, rρ, ḡρ, vpρ, θρ

]
, (1)

and the each human’s state Oh is given by:

Oh(t) = [ p̄h, v̄h, rh, vph], (2)

where h is the index for each human and has a value of
1 < h < n. From a geometric perspective and for better
parametrization, a robot-centric system is used, with the ori-
gin at its current position, and the x-axis pointing towards
the goal [23]. Such a system is given by:

Oρ(t) = [
d̄ρg, v̄ρ, rρ, vpρ

]
, (3)

where d̄ρg represents the distance of the robot from the goal
and is given as d̄ρg =‖ p̄ρ − ḡ ‖2, and:

Oh(t) = [d̄h, p̄h, v̄h, rh], (4)

where d̄ρh =‖ p̄ρ − p̄h ‖2 is the robot’s distance to neighbor
h.

The observable robot state and human state are combined
to form a Joint State J of the system at time t , which is given
by:

J (t) = [Oρ, O1, ..., Oh, ..., On]. (5)

At each time-step t , the robot takes an action a(t) ∈ A,
where A represents the action space, according to its policy
π(J ). As a result, the robot receives a reward of R(J , a)

for selecting that action. The optimal value function V ∗(J )

is calculated by accumulating the expected rewards at each
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Fig. 1 The overview of deep reinforcement learning framework

time-step t given an action performed and is computed as:

V ∗(J ) =
T∑

k=o

γ k�tvp R(J , a∗), (6)

where γ is a discount factor and its value is given as 0 ≤ γ ≤
1, and a∗ is the optimal action. As mentioned before vp is the
preferred velocity, and here it is used as a normalization factor
for numerical reason [26]. R(J , a∗) is the total accumulated
reward at each time-step t .

With an optimal value function V ∗(J ) as provided in
(6), the optimal policy can be calculated by choosing the
optimized value, i.e., selecting an action with maximum
cumulative reward, as provided below:

π∗(J ) = argmax
a

R(J , a)

+ γ k�tvp

∫

J+
P(J , a, J+)dJ+,

(7)

where P(J , a, J+) is the probability of the unknown state
transition from t to t+. The integral in (7) is approximated by
assuming that the human travels with a constant velocity for
a short time interval t to t+, where t+ = t + �t . Therefore,
the next joint state can be estimated, and the optimal policy
is simplified as:

π∗(J ) = argmax
a

R(J , a) + γ k�tvp V ∗(J+). (8)

Figure1 shows the DRL architecture. The observations
such as position and velocity are provided to the deep neu-
ral network framework. With a pre-trained value network
N , a path is planned by selecting actions that maximize the
cumulative reward. The proposed reward function creates an
optimal path by incorporating dynamic warning zones and

short-goal distances to ensure comfort and safety. Addition-
ally, three different groups of humans are simulated in the
training environment. These groups include adults over 18
years of age, adolescents between 12 and 17 years of age,
and children between 5 and 12 years of age [44]. The sec-
tor’s radii and speeds are assigned to each group during the
training process depending on their step length and speed.

Algorithm design

A detailed description of the proposed algorithm is provided
in this section.

Dynamic warning zones

To emphasize navigational safety, a realistic dynamic envi-
ronment is modeled by incorporating human behavior pat-
terns. Human behavior and speeds differ based on the
characteristics of each individual. Therefore to simplify
human behavior, three groups are selected: adults, adoles-
cents, and children. During training, the diameters of the
circles represent the size of the person. Thus, circles with
diameters of 0.41–0.6 m are used to represent adults, 0.31–
0.4 m for adolescents, and 0.2–0.3 m for children. Based
on various activities, such as walking slowly or rapidly, or
running, the velocity varies from 0.5 to 0.6 m/s, 0.61 to 0.8
m/s, and 0.81 to 1.8 m/s, respectively [44, 45]. To accommo-
date the robot’s hardware limitations, the human velocity is
limited to 1.8 m/s for this study.

The dynamic warning zones are circular sectors with
radius rwz based on human velocity vh and the step length
hgait, given by:

rwz = 0.8vh + hgait. (9)

A gain of 0.8 is applied to reduce the elongation of the tan-
gent lineswith themaximum increase in velocity. Thevalue is
found through experimentation. The values assigned to hgait
are calculated by measurement trial. Therefore, the maxi-
mum length each individual covers in one step corresponds
to 0.8m for an adult, 0.65m for an adolescent and 0.45m for
a child. Figure2 shows the geometry of the dynamic warning
zone.

Warning zone angle is formulated based on [46], where
φwz, decreases exponentially with magnitude of human
velocity, vh, and is expressed as follows:

φwz = 2.2πe−1.7vh + 0.2π. (10)

This has a difference with [46], in terms of the factors of
2.2, 1.7, 0.2π . These values are based on experimental trials
to increase the angle of the zone, and subsequently formalize
a reward that penalizes as a safety precaution. This allows the
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Fig. 2 Dynamic warning zones based on zero to the maximum velocity of the humans with different radii

Fig. 3 A local goal lg is selected on the global path at time t , within
the range of look-ahead distance dla centered at the robot’s position

robot to react faster and anticipate the movement of humans
from far distances, thus avoiding collisions with humans and
safety.

Short-distance goal

The primary objective of robot navigation is to reach the goal
safely and efficiently. Based on the Dijkstra algorithm [47],
the robot follows a trajectory from the initial point to the goal.
To reach the goal, the algorithm generates waypoints based
on the occupancy grid map. A local short-distance goal, lg, is
introduced to ensure the robot follows thewaypoints even if it
deviates from avoiding a dynamic or static obstacle. Figure3
shows the short-distance goal.

The robot’s local goal is set to be the closest waypoint
within the range of look-ahead distance dla and is based on
the robot’s current position p̄ρ . This procedure updates in
the joint state J and continues until the robot’s local goal
coincides with its final goal. The robot’s trajectory is also
evaluated by a reward function, if it is approaching the goal
by dρg(t) and dρg(t−), corresponding to the distance from

the robot’s position to the goal in current time-step t and the
previous time-step (t−). The reward function encourages the
robot to move towards the goal and penalizes it if it chooses
a different course that leads it away from the goal.

Reward function

The reward formulation in DRLmodels for social navigation
penalizes only collisions or uncomfortable distances [26].
The proposed reward function takes into account the safety
between humans and robots and at the same time encourages
the robot to continue approaching the goal, thereby mini-
mizing navigation time. According to the proposed reward
formulation, once the robot has reached the goal position, it
will receive a positive reward of 10. The robot, however, is
penalized with −0.1 for the actions that lead to a collision.
In the event that the robot navigates beyond the distance tol-
erable by humans, the robot is penalized further.

As mentioned before, the robot is penalized if it exceeds
the distance that is acceptable to human safety while navi-
gating, as:

0.25(dρh − dmin), if 0 < dρh < dmin,

where dρh represents the robot’s distance to neighbor h, and
dmin is discomfort factor which is set to 0.2 [35].

Another reward function is formulated based on the
dynamicwarning zone,where rwz is the radius of the dynamic
warning zone, and rh is the human radius accordingly to the
group of the human. The robot is penalized if it exceeds
dρh ≤ rwz − rh as:

0.2
(
e(dρh−rwz−rh) − 0.3

)
.

To encourage the robot to continue moving towards the
goal, another reward function is established based on a
short-distance goal by calculating the difference between the
current time-step t and the previous time-step t−. This value
is multiplied by a constant gain of 0.01 formulated based on
experimental trials, given by:
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0.01
(
dρg(t

−) − dρg(t)
)
,

where dρg(t−) and dρg(t) denote the robot’s distance to the
goal d̄ρg =‖ p̄ρ − ḡρ ‖2 at time t− and t .

During each time-step, the robot’s progress is evaluated.
The robot is rewarded if it advances towards the goal position
and is penalized if it diverges from its goal.

The final reward Rwz is calculated by combining all the
aforementioned reward functions as follows:

Rwz =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

10, if reach the goal
−0.1, if dρh < 0
0.25(dmin − dρh), if 0 < dρh < dmin

0.2
(
e(dρh−rwz−rh) − 0.3

)
, if dρh ≤ rwz − rh

0.01
(
dρg(t−) − dρg(t)

)
, otherwise.

(11)

Results and discussion

To improve clarity and organization, this section has been
divided intomultiple sub-sections.A comprehensive descrip-
tion of the training setup is provided first. A detailed analysis
of both quantitative and qualitative evaluations is presented,
followed by a statistical analysis of the results. Towards the
end of this section, a detailed exposition of the implementa-
tion and experimental setup has been provided.

Training setup

To evaluate the approach of the proposed model, the robot is
trained in an environmentwith five and ten simulated humans
belonging to different categories as mentioned in the pre-
vious section. As part of the training and testing process,
the humans navigate from random positions in circular and
square crossing scenarios, where each human’s goal is the
opposite of his initial position. Additionally, the robot navi-
gates in two modes: invisible and visible. When the robot is
in invisible mode, humans react only to the movements of
other humans without taking into account the movements of
the robot. In the visiblemode, the human interacts according
to the robot’s movement.

The model is trained for 10,000 episodes, with a learning
rate of 0.001 and a discount factorγ set to 0.9. In thefirst 4000
episodes, the exploration rate ε of the greedy policy decreases
linearly from 0.5 to 0.1 and then remains unchanged for the
remaining episodes. The value network is reinforced using
mini-batches of size 100 after every 1000 episodes. The robot
is tested in 500 test scenarios with the same configuration.
A comparison of the reinforcement learning parameters used
in training and testing is presented in Table 1.

The humans are represented by circles with random diam-
eters from 0.2 to 0.6 m in reference to children, teens,

Table 1 Reinforcement learning
parameters

Parameters Value

Training episodes 10,000

Testing episodes 500

Batch size 100

Learning rate 0.001

Discomfort factor γ 0.9

Exploration rate ε 0.5–0.1

and adults sizes. Humans’ speed is also random and varies
between 0.5 and 1.8 m/s according to actions such as walk-
ing slowly, rapidly, and running. The time-step �t is 0.25 s
and the maximum navigation time is 25 s. The look-ahead
distance, dla, of the local goal, is 2.5 m, and the total distance
from the start point to the endpoint is 8 m.

The proposed method is compared with reward functions
over three state-of-the-art DRLmethods: collision avoidance
with deep reinforcement learning (CADRL), long short-term
memory (LSTM-RL), and social attention with reinforce-
ment learning (SARL). The network frameworks of all
methods are kept. The proposed reward function Rwz is also
compared with three previously proposed reward functions
R1 [26], R2 [24], and R3 [46] as provided in (12), (13), and
(14), respectively.

R1 =

⎧
⎪⎪⎨

⎪⎪⎩

1, if reach the goal
−0.25, else if collision
−0.1 + dρh/2, else if uncomfortable
0, otherwise.

(12)

R2 =

⎧
⎪⎪⎨

⎪⎪⎩

1, if reach the goal
−0.25, else if collision
−0.1 + 0.05dρh, else if uncomfortable
0, otherwise.

(13)

R3 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if reach the goal
−0.1, else if collision

−dρh

( −0.1
rdz−0.3

)
+ 0.1), else if danger zone

0, otherwise.

(14)

While previous reward formulations have encouraged the
robot to avoid collisions during navigation, the robot disre-
gards safety during the course of its behavior. The reward
function R3 [46] imposes a penalty for entering a danger
zone, however, it is based on the assumption that the agent is
placed in an environment with dynamic obstacles of the same
size, which idealizes the agent’s state and its surrounding
crowd. Moreover, it does not evaluate the distance between
the robot and the goal, resulting in a long time to reach the
target and non-smooth routes.
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Table 2 Quantitative evaluation
results in the invisible and
visible circular crossing
scenarios with 5 humans

Method Invisible Visible

SR CR Time PL DR SR CR Time PL DR

CADRL(R1) 0.66 0.23 12.16 9.28 0.72 0.81 0.07 11.44 9.77 0.37

CADRL(R2) 0.68 0.22 12.02 9.99 0.64 0.86 0.04 11.34 9.15 0.35

CADRL(R3) 0.77 0.14 12.26 9.65 0.79 0.93 0.06 11.54 9.81 0.92

CADRL(Rwz) 0.77 0.12 10.05 8.65 0.62 0.94 0.06 10.18 8.95 0.57

LSTM-RL(R1) 0.90 0.09 10.73 9.71 0.22 0.95 0.04 10.31 9.14 0.13

LSTM-RL(R2) 0.84 0.12 10.96 9.87 0.30 0.94 0.06 10.51 10.02 0.12

LSTM-RL(R3) 0.93 0.07 10.46 9.70 0.63 0.96 0.02 10.20 9.65 0.63

LSTM-RL(Rwz) 0.95 0.07 10.20 9.57 0.44 0.97 0.02 10.14 9.09 0.28

SARL(R1) 0.94 0.02 10.33 9.02 0.33 0.97 0.03 11.07 9.96 0.22

SARL(R2) 0.91 0.04 10.91 9.85 0.38 0.96 0.03 12.89 9.84 0.27

SARL(R3) 0.96 0.02 10.07 9.77 0.23 0.99 0.01 10.47 9.55 0.22

SARL(Rwz) 0.98 0.02 9.98 9.71 0.13 1.00 0.00 10.06 9.34 0.10

Table 3 Quantitative evaluation
results in the invisible and
visible square crossing scenarios
with 5 humans

Method Invisible Visible

SR CR Time PL DR SR CR Time PL DR

CADRL(R1) 0.60 0.25 12.82 10.45 0.39 0.86 0.05 10.67 9.47 0.69

CADRL(R2) 0.63 0.23 12.08 10.17 0.37 0.86 0.04 10.16 9.44 0.64

CADRL(R3) 0.72 0.21 12.21 9.73 0.79 0.89 0.03 10.18 9.37 0.77

CADRL(Rwz) 0.83 0.13 11.65 9.45 0.65 0.90 0.03 10.06 9.24 0.57

LSTM-RL(R1) 0.85 0.09 9.44 9.87 0.57 0.90 0.09 9.86 9.72 0.72

LSTM-RL(R2) 0.84 0.09 9.64 9.98 0.63 0.90 0.08 9.89 9.78 0.60

LSTM-RL(R3) 0.90 0.04 9.30 9.15 0.63 0.96 0.03 9.73 9.67 0.52

LSTM-RL(Rwz) 0.92 0.04 9.27 9.06 0.44 0.98 0.02 9.68 9.55 0.51

SARL(R1) 0.91 0.04 9.79 9.33 0.31 0.96 0.04 10.09 9.82 0.27

SARL(R2) 0.90 0.05 9.88 9.43 0.33 0.94 0.07 10.74 9.91 0.30

SARL(R3) 0.97 0.02 9.66 9.28 0.31 0.98 0.02 9.53 9.27 0.55

SARL(Rwz) 0.97 0.02 9.51 9.01 0.28 0.99 0.01 9.62 9.09 0.17

Quantitative evaluations

Several metrics are used to evaluate robot navigation perfor-
mance: success rate (SR), collision rate (CR), total time (T),
path length (PL), and discomfort rate (DR). The SRmeasures
the success rate without collision, whereas CR measures the
rate of collision between the robot and the human. Total time
(T) is the average time taken by the robot to reach its goal.
PL is the average length of the path traveled by the robot
in successful trials, and DR represents how often the robot
crosses the warning zone in Rwz and R3, or crosses the dis-
comfort distance in R1 and R2. The navigation performance
with the proposed reward function is evaluated by calculating
the success rate, collision rate, and discomfort rate.

Navigation performance

Navigation performance is evaluated in two modes: invis-
ible and visible modes with circular and square crossing
scenarios. Tables 2 and 3 list the quantitative evaluations of
experiments with five humans in both modes and scenarios,
respectively. SARL, CADRL, and LSTM are evaluated with
R1, R2, R3 and the proposed Rwz.

In the invisible mode, the performances of CADRL(R1)

and CADRL(R2) are lowest as shown in Tables 2 and 3.
With the proposed method, CADRL(Rwz) and CADRL(R3)

improve their SR reaching 0.77. The lowest CR and DR are
obtained by CADRL(Rwz).
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Table 4 Quantitative evaluation
results in visible circular and
square crossing scenarios with
10 humans

Method Circular Square

SR CR Time PL DR SR CR Time PL DR

CADRL(R1) 0.62 0.16 15.28 9.87 0.56 0.62 0.12 12.70 9.16 0.83

CADRL(R2) 0.63 0.18 16.77 9.97 0.61 0.73 0.21 11.98 9.02 0.68

CADRL(R3) 0.80 0.13 13.38 9.61 0.90 0.75 0.13 12.81 9.13 0.91

CADRL(Rwz) 0.80 0.11 12.83 9.15 0.37 0.77 0.13 11.81 8.77 0.82

LSTM-RL(R1) 0.80 0.09 11.45 10.35 0.40 0.85 0.08 10.33 9.38 1.14

LSTM-RL(R2) 0.76 0.10 10.89 10.87 0.46 0.83 0.09 10.83 9.44 1.23

LSTM-RL(R3) 0.82 0.06 10.20 9.34 0.67 0.87 0.05 10.78 9.22 0.69

LSTM-RL(Rwz) 0.83 0.03 9.53 9.28 0.27 0.89 0.07 9.68 9.15 0.52

SARL(R1) 0.87 0.09 11.10 10.09 0.25 0.83 0.11 11.54 10.89 0.38

SARL(R2) 0.86 0.09 11.22 10.12 0.27 0.80 0.15 11.56 10.92 0.45

SARL(R3) 0.97 0.04 10.45 9.89 0.52 0.96 0.04 11.27 10.06 0.96

SARL(Rwz) 0.99 0.01 10.37 9.01 0.16 0.98 0.02 10.39 9.71 0.14

On the other hand, the performance of LSTM-RL(Rwz)

increases, achieving an SR of 0.96, with a low CR of 0.03
and a DR of 0.44 compared to previous LSTM-RL(R1), and
LSTM-RL(R2)models. Unlike CADRL(R3) and LSTM-RL
(R3), the CADRL (Rwz) and LSTM-RL(Rwz) present the
lowest DR demonstrating more safety and comfort during
the robot navigation.

As shown in Tables 2 and 3, the SR for the SARL baseline
is the highest in circular and square scenarios. Furthermore,
SARL(R1) and SARL(R2) are superior in terms of CR, with
the lowest average of 0.02. However, in comparison with
SARL(R3), the proposed SARL(Rwz) has a higher SR of
0.98 and a lower DR, demonstrating that the robot is less
frequently entering discomfort distance with humans. Due to
the invisible mode, the robot is very likely to have collisions
and close crossovers.

In the visible mode, the human interacts with the robot,
and the SR and CR are improved in all the methods.
CADRL(Rwz) performs better, achieving a high SR of 0.94
and a low CR of 0.06. Nevertheless, DR is still high, because
CADRL does not consider complex interactions between
agents, and the robot is more likely to take paths that lead it
to enter a group of humans. LSTM-RL with rewards (R1),
and (R2) show similar SR and CR. Though LSTM-RL(R3)

keeps relative success and collision rates, LSTM-RL(Rwz)

performed better by obtaining higher safety with a low DR.
Table 4 shows the quantitative evaluation results in visible

circular and square crossing scenarios with 10 humans. It can
be seen that the higher crowd density results in reduced per-
formance for CADRL and LSTM-RL with rewards R1 and
R2. CADRL(Rwz) and LSTM-RL(Rwz), however, enhance
SR, reducingCRandDR. In contrast, LSTM-RL(Rwz) shows
a higher DR when compared with DR with less crowd den-
sity, as shown in the table.

In terms of SR and CR, the SARL performs better in all
scenarios. Nonetheless, SARL(Rwz) is able to achieve higher
SRs of 0.99 and 0.98, and better CRs close to 0 in both
circular and square scenarios.

SARL(Rwz) also has the lowest DR, demonstrating that
the robot prioritizes safety. By adapting its navigation behav-
ior for environments with humans and their variety of speeds,
SARL(Rwz) shows the best performance in the different sce-
narios and crowd densities.

Efficiency

The efficiency is assessed by the average time (T) taken to
reach the goal by the robot and the average length of the
path traveled for successful navigation (PL), supported by
SR, CR, and DR. The results are presented in the Tables 2, 3
and 4.

As the proposed reward function also evaluates the trajec-
tory of the robot, the PL is lower than the previous methods
with rewards R1, R2, and R3 in all experimented scenarios,
thus showing that the proposed method decreases the suc-
cessful path length significantly. Furthermore, the proposed
method consumes less time to reach the goal with fewer
chances of collision as demonstrated by SR, CR, and DR
as shown in the tables. Consequently, the proposed method
requires less time and travels less distance. The efficiency
of SARL(Rwz) is higher than all other performance metrics,
due to the fact that the path maintained by SARL(Rwz) min-
imizes arrival time while achieving fewer collisions.

A complete overview of the performance of CADRL,
LSTM-RL, and SARL in all metrics is given in Figs. 4 and 5.
All metrics results are plotted in spider graphs, and the time
(T) and path length (PL) are normalized for better visualiza-
tion.
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Fig. 4 Results from circular crossing scenario with all methods plotted
in spider graph. a CADRL model results in invisible mode. b CADRL
model results in visible mode. c LSTM-RL model results in invisible

mode.dLSTM-RLmodel results in visiblemode. eSARLmodel results
in invisible mode. f SARL model results in visible mode
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Fig. 5 Results from square crossing scenario with all methods plotted
in spider graph. a CADRL model results in invisible mode. b CADRL
model results in visible mode. c LSTM-RL model results in invisible

mode.dLSTM-RLmodel results in visiblemode. eSARLmodel results
in invisible mode. f SARL model results in visible mode
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(a) CADRL(R1) (b) CADRL(R2)

(c) CADRL(R3) (d) CADRL(Rwz)

Fig. 6 Local trajectory comparison with CADRLmethod in a random test episode with five humans in a circle crossing scenario. The experimental
conditions have the same starting point, goal position, and time-step

Qualitative evaluation

For qualitative evaluation, all themethods are tested under the
same experimental conditions such as the same starting point,
goal position, and time-step. Figure6 shows the CADRL per-
formance in a random test episodewithfivehumans in a circle
crossing scenario. CADRL(Rwz) stops and moves backward
to avoid the humans surrounding it. The robot exits without
collision and avoids the warning zones around the humans,
taking 8.25 s to reach the goal. CADRL(Rwz) tends to fol-
low an even path in comparison to CADRL with previous
formulations.

On the other hand, in LSTM-RL(Rwz), the robot goes
backward and turns right. Later, the robot is heading to find
the path to reach the goal. Figure7 illustrates the trajectory
taken by the robot with all the formulations, demonstrating
that with the proposed reward formulation, the robot reaches

the goal with less time and a smooth path. It can be seen that
at 8.75 s, the robot reaches the goal with LSTM-RL(Rwz);
whilewith othermethods, the robot is still on theway towards
the goal.

Figure8a shows how SARL(R1) makes greater devia-
tions at first to avoid collisions with humans and therefore
takes longer to find and reach the goal. During crossovers,
SARL(R2) model attempts to locate a path through the mid-
dle, causing the robot to be uncomfortably near and at a
higher risk of collision, as shown in Fig. 8b. SARL(R3) ini-
tially stops and backtracks, losing sight of the goal; finally,
it chooses a path that intersects the humans, which leads
it to do more maneuvers and takes more time to reach
the goal, as is shown in Fig. 8c. The robot trajectory per-
formed by SARL(Rwz) is shown in Fig. 8d. It is observed
that SARL(Rwz) avoids all humans by a larger margin. The
SARL(Rwz) behavior takes a larger detour to the left, esti-
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(a) LSTM-RL(R1) (b) LSTM-RL(R2)

(c) LSTM-RL(R3) (d) LSTM-RL(Rwz)

Fig. 7 Local trajectory comparisonwith lSTM-RLmethod in a random test episodewith five humans in a square crossing scenario. The experimental
conditions have the same starting point, goal position, and time-step

mating in advance the warning zones and managing to avoid
front-on human contact.

As seen from the experiments SARL shows the perfor-
mance when combined with the proposed reward formula-
tion. The robot moves away from the humans and takes open
routes to guarantee safe navigation.

Statistical analysis

Statistical analysis is performed to assess the proposed
method over baseline methods. To ensure reliable data com-
parison, the Kolmogorov–Smirnov test [48] was used to
determine normality. The test’s outcome revealed that sev-
eral metrics had a non-Gaussian distribution, therefore, the
non-parametric Wilcoxon signed-rank test is used to identify
differences and significant levels. A test statistic value (i.e.,
z-score) is generated using Wilcoxon signed-rank, and this

value is then converted into a p value. The smaller p value
denotes a considerable variation between populations. The
threshold of p value is 0.05, where if the p value is less than
0.05, pair 1 is less than pair 2, rejecting the null hypothesis
and accepting the alternative hypothesis. The one-sided alter-
native hypothesis with the less option is taken into account.
The results in Table 5 demonstrate that the success rate does
not accept the null hypothesis; thus, the proposed method is
more significant than other methods. In contrast, the metrics
of collision rate, time, path length, and discomfort rate do not
reject the null hypothesis, proving that the proposed method
improves the metrics in comparison to previous methods.

Implementation and experimental setup

Since the robot considers all surrounding humans’ dynamic
warning zones, the risk of a robot freezing diminishes due to
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(a) SARL(R1) (b) SARL(R2)

(c) SARL(R3) (d) SARL(Rwz)

Fig. 8 Local trajectory comparison with SARL method in a random test episode with ten humans in a circle crossing scenario. The experimental
conditions have the same starting point, goal position, and time-step

Table 5 Statistical analysis of quantitative evaluation results using
Wilcoxon signed-rank test

Metrics z-score p value

Success rate 0 0.02847628

Collision rate 11.55 0.84790811

Time 17.05 0.93923611

Path length 16.22 0.92534722

Discomfort rate 13.33 0.74479167

the proposed reward function. Based on prior training results,
superior outcomes were obtained with the SARL method
given by its collective significance of the crowd. There-
fore, to assess the effectiveness of SARL with our proposed
method, Gazebo simulations, and real-time experiments are
conducted.

The Turtlebot 3 is used for experimental tests, and it
includes some hardware limitations to consider. Its limita-
tions include the limited computational power of a Raspberry
Pi 3, which constrains the computational capabilities to
quickly process the actions of the robot. To address this lim-
itation, the Raspberry Pi 3 is connected to a remote PC that
processes real-time inputs related to the observable state of
humans and the full state of the robot. Since the maximum
velocity of the Turtlebot 3 is 0.23 m/s, the robot may be
unable to take prompt action and avoid obstructions if the
velocity of the human surpasses that of the robot. Therefore,
to overcome this constraint, the robot was trained by consid-
ering that the maximum velocity the human can reach is 1.8
m/s. Originally, the Turtlebot 3 has a 2D laser distance sensor
(LDS) with a sensor range of 3.5 m. To mitigate, the sensor
range, the Turtlebot 3 was equipped with a Hokuyo LIDAR
with a detection distance of 5.6 m and a 1% margin of error.
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(a) SARL(R1)

(b) SARL(R2)

(c) SARL(Rwz)

Fig. 9 Performance comparison of SARL(R1), SARL(R2),
SARL(Rwz) in an empty scenario in Gazebo-ROS. The red dots
denote the path that the robot must follow. The purple dots show the
trajectory performed by the robot

Gazebo-ROS simulation

The reward functions Rwz, R1 and R2 from equations (11),
(12) and (13), respectively, are evaluated in Gazebo simula-
tions using ROS within three scenarios: empty space, static
obstacles, and dynamic obstacles. The following packages
are used for simulations includingGMapping [49] for SLAM
approach to obtain a 2D occupancy grid map of the environ-
ment by a 2D Laser Distance Sensor (LDS), AMCL package
[50] for robot’s localization, and the leg-detector package
[51] for the position and velocity of the dynamic obstacles.

Figure 9 shows the robot navigation in an empty scenario
with the goal distance of 5 m. The red dots denote the path
that the robot must follow. The purple dots show the tra-
jectory performed by the robot. Table 6 shows the results
comparing the SARL approach with the reward functions
R1, R2, and Rwz within 5, 10, and 15 m of goal distance.
For all three models, the robot navigates at a similar speed.
As the distance to the goals increased, the navigation time
also increased. It appears that SARL(R1) and SARL(R2) are
slow to follow the path. Comparatively, their courses become
irregular, unlike SARL(Rwz), which can keep steady navi-
gation without changing directions.

Figure10 shows the comparison of the SARL approach
with the three reward functions in a static obstacle scenario.
The goal distance in this case is 10 m. The red dots denote
the path that the robot must follow. The purple dots show
the trajectory performed by the robot. Table 6 shows the
results with 5, 10, and 15 m of goal distances. SARL(R1)

and SARL(R2) take a longer time to reach the goal as com-
pared to SARL(Rwz). The performance of SARL(Rwz) is
better even if the goal is farther away. Figure10 shows that
SARL(R1) and SARL(R2) change their trajectory, indicat-
ing that the models do not follow the global planner of the
Dijkstra algorithm, while the SARL(Rwz) follows the pro-
posed short-distance goal method. Accordingly, SARL(Rwz)

demonstrates high performance by achieving the most effi-
cient results in terms of time, path planning, and obstacle
avoidance.

Figure 11 shows the robot navigation with ten dynamic
obstacles with 15 m of the goal distance. The red dots denote
the path that the robot must follow. The purple dots show the
trajectory performed by the robot. Table 6 shows the naviga-
tion results of the three scenarios for 5, 10, and 15 m of goal

Table 6 Navigation time
(seconds) in empty, static
obstacles, and dynamic
obstacles scenario on
Gazebo-ROS simulator

Empty Static obstacles Dynamic obstacles

5 m 10 m 15 m 5 m 10 m 15 m 5 m 10 m 15 m

SARL(R1) 10.74 20.75 31.34 11.49 21.74 45.74 13.50 39.75 81.24

SARL(R2) 11.02 21.01 31.46 11.50 25.01 54.50 15.49 42.00 92.02

SARL(Rwz) 10.25 20.50 30.30 10.74 20.50 34.75 11.00 26.74 63.51
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(a) SARL(R1)

(b) SARL(R2)

(c) SARL(Rwz)

Fig. 10 Performance comparison of SARL(R1), SARL(R2),
SARL(Rwz) in static obstacles scenario in Gazebo-ROS. The red dots
denote the path that the robot must follow. The purple dots show the
trajectory performed by the robot

distance. To avoid the dynamic obstacles, SARL(R1) turns at
a large trajectory ormoves continuously in the opposite direc-
tion of the goal when it perceives an approaching obstacle,
as shown in Fig. 11a. SARL(R2) model frequently freezes,
requiring the robot to rotate in place to find an opportunity
to escape, as shown in Fig. 11b. The Rwz allows the robot
to react from a farther distance, preventing it from cross-
ing over the circular sector around the dynamic obstacle. As
a result, SARL(Rwz) demonstrates remarkable performance
by avoiding dynamic obstacles and following the global path
planner of the Dijkstra algorithm.

Real-time experiments

This section presents the real-time environment for the exper-
imental tests, robot, and sensors. The information about

(a) SARL(R1)

(b) SARL(R2)

(c) SARL(Rwz)

Fig. 11 Performance comparison of SARL(R1), SARL(R2),
SARL(Rwz) in dynamic obstacles scenario in Gazebo-ROS. The red
dots denote the path that the robot must follow. The purple dots show
the trajectory performed by the robot

packages used to validate the performance of autonomous
navigation based on DRL is also provided. The robot tries to
reach the goal in three scenarios: empty space, obstacles, and
humans at a distance of 8m.TheTurtlebot 3,with amaximum
velocity of 0.23m/s, is usedwith aHokuyo2Dscanner sensor
with a 360-degree resolution formapping and obstacle detec-
tion. An odometer is used to localize the robot’s position. The
GMapping package [49] is used for mapping. The AMCL
package [50] is used in conjunction with the LiDAR and
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(a) Empty scenario

(b) Scenario with obstacles

(c) Scenario with humans

Fig. 12 Real-world experiments in three scenarios: empty, static obsta-
cles, and with humans

odometer for robot’s localization, and the obstacle-detector
package [52] is used to identify static and dynamic obstacles.

In the initial deployment, the robot with SARL(R1) takes
a long detour to the right, which causes it to veer off course
and take longer to reach its destination, as shown in Fig. 12a.
In comparison, using the proposed formulation SARL(Rwz),
follows the route directly without detours, resulting in a
quicker arrival time at the goal.

In the static obstacle scenario as shown in Fig. 12b,
SARL(R1) collides with the obstacles and takes longer to
reach the goal. whereas, with SARL(Rwz), the robot avoids
obstacles and takes a path that leads to its goal without col-
lision.

Figure12c shows the scenario with humans. The robot
with SARL(R1) is able to respect the comfortable distance
and avoid colliding with people. However, on some occa-
sions, the robot rotates in its own space and looks like it
loses its path, resulting in a long time to reach the goal. Table
7 shows the experimental results in the three different sce-
narios, where SARL(Rwz) has a significantly lower arrival
time, resulting in smoother trajectories and demonstrating
fewer oscillations in comparison to SARL(R1). SARL(Rwz)

is the model that performs well in the human–robot coex-
istence scenario. When the robot perceives the human from
the front, it stops and quickly looks in another direction to
continue with the desired route. In this way, the robot antic-
ipates collisions and navigates safely to reach its destination
faster.

Conclusions

This manuscript proposes a safe navigation method for
mobile robots using deep reinforcement learning. To teach
the robot tomaintain comfortable distances fromhumans, the
proposed model formulates the reward function for warn-
ing zones based on the size and velocity of humans or
dynamic obstacles. This allows the robot to anticipate and
predict human motion while navigating in a socially accept-
able manner. Furthermore, the distance between the robot’s
current position and the goal is evaluated and a reward
system is implemented that penalizes the robot for mov-
ing away from the goal and rewards the robot for moving

Table 7 Experimental results in
empty, static obstacles and
human scenario

Metrics Method Empty scenario Static scenario Human scenario

Average time (s) SARL(R1) 34 46 52

SARL(Rwz) 27 38 35

Distance (m) SARL(R1) 7.82 10.58 11.96

SARL(Rwz) 6.21 8.74 8.05
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closer to the goal. The robot is therefore able to reach the
goal in a shorter distance, resulting in smoother trajecto-
ries and fewer oscillations. The proposed reward function is
tested on three state-of-the-art methods, collision avoidance
with deep reinforcement learning, long short-term memory,
and social attention with reinforcement learning, and also
tested in the Gazebo simulator and the real world with robot
operating system (ROS) in three scenarios. The results of
extensive experiments were evaluated both quantitatively
and qualitatively. Compared to previous formulations, the
results demonstrated better overall performance in all sce-
narios, increasing the robot’s ability to reach the goal with
the lowest collision rate, maintain safety, and minimize its
arrival time. To improve the robot’s navigation policy in the
real world, our future study will exploit and improve the pol-
icy with more complicated settings of the environment such
as dynamic human groups in a high-density crowd. We aim
to encode complex interactions using memory-based neural
networks to learn navigation policies that help to achieve
collision-free and socially appropriate navigation in crowds
of human groups.
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