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Abstract

The “single-valued neutrosophic set (SVNS)” is used to simulate scenarios with ambiguous, incomplete, or inaccurate infor-
mation. In this article, with the aid of the Aczel-Alsina (AA) operations, we describe the aggregation operators (AOs) of
SVNSs and how they work. AA f-norm (#-NM) and f-conorm (1-CNM) are first extended to single-valued neutrosophic
(SVN) scenarios, and then we introduce several novel SVN operations, such as the AA sum, AA product, AA scalar multipli-
cation, and AA exponentiation, by virtue of which we generate a few useful SVN AOs, for instance, the SVN AA weighted
average (SVNAAWA) operator, SVN AA order weighted average (SVNAAOWA) operator, and SVN AA hybrid average
(SVNAAHA) operator. Next, we create distinct features for such operators, group numerous exceptional cases together, and
study the relationships between them. Following that, we created a way for “multiple attribute decision making (MADM)”
in the SVN context using the SVNAAWA operator. We provided an illustration to substantiate the appropriateness and, addi-
tionally, the productiveness of the produced operators and strategy. Besides this, we contrasted the suggested strategy to the

given procedures and conducted a comprehensive analysis of the new framework.

Keywords AA operations - SVNSs - SVN AA average AOs - MADM

Introduction

In real decision-making issues, the decision data are nor-
mally inaccurate, uncertain, or incomplete. Therefore, it is
becoming more and more difficult to make scientific and
reasonable decisions. Thus, to put it succinctly, Zadeh’s [59]
concept of fuzzy set (FS) has played an important role in
decision-making issues by allowing each element to have a
membership degree. Later on, Atanassov [5] prolongs the
FSs to intuitionistic FSs (IFSs) by adding nonmembership
degrees along with MDs, such that their sum can’t pass
one. In the contemporary world, the interconnected structure
involves vulnerabilities in acquaintance with indeterminacy,
and consequently, the existing FS or IFS are unable to man-
age the data effectively. In light of the deficiency in managing
fragmented data, Smarandache [52] initiated the neutro-
sophic set (NS) by including the three individual mappings,
in particular “truth”, “indeterminacy” and “falsity”, which
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are real or non-real subsets of 170, 1T[. A year later, NSs
were extended to SVNSs on the basis of the standard real
interval [0, 1] to facilitate their use in genuine logical and
designing regions [54]. Because of its significance, a few
specialists have implemented their attempts to enhance the
idea of SVNSs in the decision-making approach.

Motivation of the study

Ye [58] primarily defined the functional laws for SVNSs
and initiated the idea of weighted averaging/geometric oper-
ators. Peng et al. [38] noticed that several SVNS operations
ascertained by Ye [57] were often incorrect, and they char-
acterized new functional rules and AOs and utilized them
to similarity measure issues. Peng et al. [37] characterized
the score function in order to organize SVNSs. Later, Nancy
and Garg [35] exhibited a further developed score function.
Garai et al. [10] exhibited first time probability hypothesis of
SVNNs and implemented it in decision-making issue. Mon-
dal et al. [33] formulated a model, which is dependent on
hybrid weighted score-accuracy functions and utilized it in
the recruitment of teachers in educational institutions. Liu
et al. [29] defined the operators on the basis of Hamacher
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norm. Nancy and Garg [36] developed Frank z-NM-based
AOs for decision-making issues. In recent times, Tian et al.
[53] and Zhao et al. [60] offered a few novel SVN Heronian
power AOs and recommended new decision-making tech-
niques utilizing the advanced operators. Wei and Zhang [55]
defined some Bonferroni mean AOs. Yang and Li [56] pre-
sented power AOs for SVNS. Liu and Wang [30] outlined a
weighted normalised Bonferroni mean AO of SVNS. Garg
and Nancy [12] presented the power AOs for the linguis-
tic SVNSs. Ji et al. [23] developed the frank prioritized BM
operators for solving DMPs. Garg [13] defined the concept
of neutrality functional rules and the AOs that are based on
them for resolving decision-making concerns. Sahin et al.
[41] considered the notion of subsethood as a measure for
SVNSs. By analyzing Choquet integral, Heronian mean and
Frank -NM, Garg et al. [14] expanded the Heronian hybrid
mean AOs for linguistic SVNSs. Majumdar et al. [31] and
Qin et al. [39] calculated similarity measures, Hausdorff dis-
tances, cardinality, weights and entropy of SVNSs. Karaaslan
and Hunu [24] presented Type-2 SVNSs and their utiliza-
tion in MCGDM on the basis of TOPSIS method. Karaaslan
[26] defined similarity measures for SVNSs under refined
situations. Karaaslan and Hayat [25] defined a few novel
operations for SVNSs and applied them to MCGDM con-
cerns. Nabeeh et al. [34] consolidated AHP strategies with
neutrosophic procedures to adequately introduce the models
identified with powerful factors for a fruitful IoT venture.
Basset et al. [7] recommended an approach that joins bipolar
neutrosophic numbers with TOPSIS under GDM. By join-
ing TOPSIS techniques and type-2 neutrosophic numbers,
Basset et al. [6] recommended a novel T2NN-TOPSIS tech-
nique for retailer selection. Additional information on related
operators and concepts can be found at [11, 15-19, 22].

Menger [32] introduced the tought of “triangular norms”
in his concept of stochastic euclidean space, which was the
starting point for the concept. In the early 2000s, Klement et
al. [27] did a lot of good work on the features and parts of
“triangular norms,” and their observations have been broadly
accepted. AA [3] introduced two novel operations in 1982,
which are referred to as AA -NM and AA ¢-CNM, and they
have a big effect on how parameters are used. Using the
AA t-NMs, Senapati and his collaborators have just recently
opened up new perspectives in the realm of decision-making
arrangements. They had been using AA #-NMs to solve prob-
lems with making decisions in IFS [46, 47], interval-valued
IFS [48, 49], hesitant fuzzy [50], Pythagorean fuzzy [51],
environments. Motivated by these novel concepts, we devel-
oped an SVN MADM strategy focused on the AA AOs for
managing SVN MADM within SVNSs. Figure 1 depicts the
implications of our methodological approach.
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Contributions of this study

The purpose of this investigation is to develop a strategic
and insightful recommendation technique that will enable the
choice of the alternative approach that represents the most
appropriate alternative among a repository of alternatives.
Using the AA ¢-NMs and #-CNMs, we have developed a
new type of SVN AOs. Consequently, the primary objective
of this research is to define the concepts of SVN AA weighted
average AOs within the framework of SVNS. In addition,
we show the effectiveness of various AOs. Ultimately, the
following are the principal accomplishments of this paper:

1. To develop new AOs, such as the SVN Aczel-Alsina
weighted average (SVNAAWA) operator, the SVN Aczel-
Alsina order weighted average (SVNAAOWA) operator
and the SVN Aczel-Alsina hybrid average (SVNAAHA)
operator in the framework of SVNSs, it is necessary to
investigate the basic operations of 7-NMs and 7-CNMs.

2. Investigate the properties of such novel operators, as well
as specific examples of their use.

3. Construct an algorithm that can deal with MADM issues
while also making use of SVN data.

4. Some computational results based on SVN data are dis-
cussed to figure out how reliable and useful the suggested
method is.

5. In a comparison analysis, we contrast pre-existing AOs
with those that we suggest. These comparison outcomes
demonstrating the efficacy of the suggested AOs are
exhaustively summarised.

6. To show that the presented method is both reliable and
strong, sensitivity analyses are done.

Structure of this study

The sections of this paper are set up like this: “Preliminaries”
presents fundamental notions related to 1-NMs, -CNMs, AA
t-NMs, SVNs, and many operational rules in the context of
SVNNSs. In “AA operations of SVNNs”, we talk about the
AA working rules and the properties of SVNNs. We out-
line several SVN AA AOs in “SVN AA average aggregation
operators”. Additionally, we look at plenty of desired charac-
teristics. “Method for MADM issues based on SVNAAWA
operator” addresses the MADM concern through the use of
SVN AA aggregated techniques. “Numerical example” con-
tains an exemplary example. In “Evaluation of the influence
of the operational parameter E on decision-making conse-
quences”, we assess the influence of a parameter on the
outcomes of decision-making. In “Sensitivity analysis (SA)
of criteria weights”, we examine the impact of weighted
criteria on ranking results. In “Comparative analysis”, the
proposed AOs are compared to the dominant AOs. “Conclu-
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Consider the essential ideas of SVNSs, t-norm, t-conorm and
Aczel-Alsina t-norm

Demonstrating SVN Aczel-Alsina average aggregation operators

Assessment of the suitable alternative investment selection

Fig.1 Framework of the study

sions” summarizes the work and discusses potential future
research.

Preliminaries

To begin, we will cover some fundamental aspects of £-NMs,
t-CNMs, AA t-NMs, and SVNSs.

t-NMs, t-CNMs, AA t-NMs

A t-NM is a non-decreasing, symmetric, associative opera-
tion T : [0, 1] x [0, 1] — [0, 1] with neutral element 1. The

immediate consequences of this definition are the boundary
conditions:

rifn=rd,f=fr M
T(f,00=T(,f)=0, 2

for this reason, all -NMs coincide on the boundary of the
unit square [0, 1] x [0, 1].

Some examples of -NMs are the product 7p, the mini-
mum 7Ty, the Lukasiewicz r-NM T, and the Drastic -NM
Tp given, respectively, by
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Se(f,z

To(f.2) = fz ) A(fS )(f | N

T = mi 4 DY 2)s re=

M(fa Z) mln(f’ Z) ( ) — max(f’ Z), if 0= +00

TL(f,2) = max(f. +z—1,0) 6)) | — e~ (A= NH=I=DDE 460 - 5 < 400
f, ifz=1 (14)

Tp(f.2) =z iff=1, (©6)

0, otherwise

forall f,z € [0, 1].

A t-CNM is a symmetric, associative, non-decreasing
operation § : [0, 1] x [0, 1] — [0, 1] with S(f,0) = f
forall f € [0, 1].

The distinction between t-NMs and t-CNMs is self-
evident. Let N [0,1] — [0, 1] be a strong (fuzzy)
negation, i.e., an involution that reverses the order. The map-
ping S7.n : [0, 1] x [0, 1] — [0, 1] described by

St.N(f,2) = NT(N(f), N(2)) @)

is a t-CNM, also known as the N-dual of 7', for a +-NM T.
In addition, for a t-CNM S, the mapping Ts n : [0, 1] x
[0, 1T — [0, 1] provided by

Tsn(f.2) = N(S(N(f). N(2))) ®)

is a t-NM, known as the N-dual of the t-CNM S.

The duals of the four 7-NMs are the probabilistic sum
Sp, the maximum S}y, the Lukasiewicz r-CNM S;, and the
Drastic t-CNM Sp given, respectively, by

Sp(f.a)=f+z—fz )

Su(f,z) = max(f,z) (10)

Sp(f,z) =min(f +z,1) (11)
f. ifz=0

Sp(f,z) =12z iff=0 (12)

1, otherwise

for every f,z € [0, 1].

Definition 1 [3, 4](AA t-NM) AA introduced this category
of t-NM in the early 1980s, for 0 < o < +00, in terms of
functional equations, and it has been in use ever since.

The category (T/f)ge[o,oo] of AA t-NMs are constructed
as

TD(f,Z), lfQZO
T5(f.z) = { min(f,2), if o=400  (13)
e*((*lnf)gﬂflnz)g)l/gy if 0 <o < 400
The category (Sﬁ) 0€[0,00] of AA t-CNMs are constructed
as
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Limiting values: T/g) = Tp, T° = min, Tf{ =Tp, Sg =
Sp, SS° = max, S = Sp.

The -NM T/f and r-CNM Si are dual to one another for
each g € [0, oo]. The class of AA t-NMs is strictly increas-
ing, and the class of AA ¢-CNMs is strictly decreasing.

SVNSs

SVNS is a particular type of neutrosophic set. It tends to be
utilized in engineering and real-world scientific problems. In
these subsections, we give a few basic definitions, SVN oper-
ations, and information about how they work with SVNSs
[54].

Definition 2 [54] Let @ be defined as a set of objects (points),
with a conventional component in @ indicated by ¢p. A SVNS
E in @ is portrayed by three membership functions (MFs): a
truth-MF 7, an indeterminacy-MF g, and a falsity-MF @ .
If the functions 7, yr and $g are defined in terms of sin-
gleton subintervals or subsets in the real standard [0, 1] (i.e.,
ng : ® — [0,1], 7g : @ — [0,1] and f : & — [0, 1],
respectively), then the sum of £ (¢), Yg(¢), and g (¢) ful-
fills the condition:

0<7e() +7Ve(d) +9E(@) <3 15)

forany ¢ € @. Then, an SVNS E is denoted in the following
manner:

E = {9, (), VE(), PE(P))|¢ € P}, (16)

is referred to as a “single-valued neutrosophic set (SVNS)”.

For simplification purposes, the ordered triple compo-
nent (g (), Ye(¢p), $Er(¢)), which is the core of SVNS,
may be referred to as a “single-valued neutrosophic number
(SVNN)”.

Definition 3 [30, 37] IfE = (ﬁE, ?E, @E), E = (ﬁEl y )75] s
©r,) and Ey = (E,, VE,, §E,) are three SVNNs in the
universe &, then the following operations are generally
expressed as follows:

E|\ C Ey, iffig,(¢) <1, (). VE,(#) < VE,(¢) and

$E, (@) = O, (@); (17)

Ey=E, iff Ef C Eyand Ey C Ey; (18)

E1 U Ey = (max{ijg, (9), Ng, (#)}, min{pg, (9), Vg, (#)},
min{pg, (9), O, (@)1); (19)
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Ey N Ey = (min{i)g, (). E,($)}, max{Vg, (). VE, (@)},

max{$g, (¢). P, )); (20)
E=(9p@),1—7p(@), 1E@)); 21
Ei @D Ex = (g, (9) + i, (0) — fE, (@) E, (@),

VEL (D)VE, (D). §E, @) HE, ()); (22)

E1 Q) Ex = (g, ($)iE,(#). VE, (@) + VE, (@) — VE, (9)
XPE, (@), O, (9) + OE, (@) — HE, (DPE, (@)); (23)
SE =(1— (1 =@, 75(¢), 95 (9)): (24)
= (%), 1 — (1 —Pe@)’, 1 - (1 —pp@)®). (25
Definition 4 [54] Let E = (g, Ve, $E), E1 = (E,, VE,»

©r,) and Ex = (E,, VE,, §F,) be three SVNNs over the
universe @ and 8, 61, 8o > 0, then

E1@52=E2@E1, (26)
E1®E2=E2®E1, 27

S(E; @Ez) =SE, @wz, (28)
(Ex Q) E2)° = Ef (X) ES, (29)
QNEDKHE = (1 +&)E, (30)
EM Q) E®? = EC1H%), (31)
(E)%2 = %1%, (32)

Definition 5 [37] Let E, = (fig,, P&,. §r,) and Ey =

(ME,, VE,» §E,) betwo SVNNs, and the comparison method-

ology for SVNNs would be like this:

(1) If Y(E,) > Y(E») or Y(E,) = Y(E,) and K(E;) >
K(Ez) then E1 > Ej;

Q) If Y(E;) < Y(E») or Y(E;) =
K(Ez), then E| < E»;

(3) If Y(E|) = Y(E») and K(E,) = K(E»), then E; = E»;

Y(E,) and K(E;) <

where

. 1. . )
Y(E) = g(nE,- +1—=ve +1-9F),

Y(E) € [0, 1], (33)
K(E) = fig, — §5,. K(Ei) € [-1,1] (34)
(i = 1,2), respectively, denote the scoring and accuracy
functions.

The weighted averaging AOs are described this way for a
set of SVNNs:

Definition 6 [37] Let I, = (i, Py, Hp) (9 = 1,2,..., p)
represent a set of SVNNs. A SVN weighted averaging
(SVNWA) operator of dimension p is a mapping P* —

P that is closely correlated with a weight vector § =

(31,82, )" suchthat § > Oand 30 _; Fp = 1, a5
~ ~ ~ p ~
SVNWAz(h. b, ... &,) = P@,ily)
p=1
)
= 1—1—[(1—%)“’ J/w,]_[ 1. 65

=1 p=1

Definition 7 [37] Let £l, = (i, 7y, §9) (9 = 1,2,..., p)
represent a collection of SVNNs. A SVN ordered weighted
averaging (SVNOWA) operator of dimension p is a function
PP — P thatis closely correlated with weight vector § =

1,82, .-, 5p) ! including § > 0 and szl Fo=1,as
p
SVNOW Azl o, ... ) = D (5o, )
p=1
p p P
=|1- 1_[1 ( - "T«p)) H Agfw H o) | -
o= p=1 o=1

(36)

where ((1), (2), ..., T(p)) is a permutation of (1, 2, ...,
p), including Uz ,—1) > Uz foreachp =1,2,...,p

AA operations of SVNNs

In light of AA t-NM and AA ¢-CNM, we explained AA
operations concerning SVNNS.

Definition 8 Lettl = 1,7, [{3),111 = (N1, 71, 1) andﬂz =
(M2, V2, §2) be three SVNNs, & > 1 and a constant § > 0.
Hence, the AA ¢-NM and AA ¢-CNM operations of SVNNs
are formulated as having

©) el = <1 — o~ (== E+(= (=) )¢
e (M PHYE [ =(CInpn T+ n @2)6)1/E>;
(ii) @i = <e—((—lnﬁ1)@+<—1n Ve
1 —e (= 1“(1—)71))(54—(—111(1_);2))@)1/@7
1 —e (= ln(l_ﬁ’al))e-i-(—ln(l_b/j)z))@)l/e‘>;
(iii) 5.4 = <1 _ g—(a(—ln(l—f,))@?)l/e’
e~ B(=IPHHVE e—(d(_]ngf))@)l/@>;

(6
(iv) ¥ =
| — ¢~ GEIa=pNHYVE

A€
(e—@(—lnm e

_ e—(s(—ln(l—@»@‘)l/@)
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Example 1 Let £1=0.58,0.82, 0.33), £1;=(0.78, 0.23, 0.41)
and Ly = (0.34, 0.62, 0.38) be three SVNNSs. Using the AA
operation on SVNNs as specified in Definition 8 for € = 3
and § = 6, we can get
Q) G el = <1 _ (= 1n(1—0.78))3+(—ln(1—0.34))3)1/3,
e~ ((=In 0.23)3+(=1n0.62)3)1/3

e—((—1no.41)3+(—1n0.38)3)1/3)
= (0.782267369, 0.226197985, 0.309386337).
(ii) 0@l = <ef((71n0.78)3+(71n0,34)3)1/3,
1 — e—((—ln(l—0.23))3+(—ln(1—0.62))3)1/3’
1— ef((fln(170.41))3+(71n(170.38))3)1/3>
= (0.3385156560.6223923450.470100879).

e—(6(—ln(1—0.58))3)1/3 e—(6(—1n0‘82)3)1/3

(iii) ©- = (1
e—(6(—1n0.33)3)1/3>
= (0.793272369, 0.69725137, 0.133377252).

. e—(6(—ln(1—0.82))3)1/3

~ _ 1/3
(iv) {6 = < (6(—1n0.58)%) 1

| — o= (6= ln(170.33))3)1/3>

= (0.371638018, 0.955665651, 0.516989088).

Theorem 1 Let 8l = (7,7, §), h = (1, 71, 1), th =
(N2, 12, §2) be three SVNNs, and 8, 81, 83 be three constants
> 0, then we obtain

) 111 EBilz —112 69211,

(i) £ ®il2 =il ®ﬂ1,
(iii) 5(111 69112) = 3111 (&) 5).12, 5 >0,
@iv) (61 + 88 =810 @ 84, 81,82 > 0,
V) (@) =L el s >0,
(vi) U0 @ %2 = u<51+52>, 81,8, > 0.

Proof In accordance with Definition 8, we may obtain the
following for the three SVNNs il 111 and le, and §, 81, 6o >
0.

o L = (1 — o~ (—InU=A) ¢ +(=In(1—A2) &) /¢
() e =(1-e¢ ,

e~ (I PEH=In ) OVE — (= 1n551)e+(—1n5’32)@)1/e>

=<1—e

e~ () (=g ©VE

~((= (1 =2) (= In(1=1) ) /€

(= m@)%(—m@)@)”@) Lol
(ii) It1is straightforward.
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(iii) Assume t = 1 — ¢=((=In1=AD)E+(=In(1=i2) )V
Therefore In(1 — 1) = —((—In(1 — 1) + (= In(1 —
) EE.

This gives us
S @ £) = 8(1 — ¢~ (= InA=i) E+(= In( =) ©)VE

e~ (P OHVE  —(= 1H§11)@+(—1n5<32)@)1/@>

=(1-e

e~ B E+H(=In ) ENVE

7(8((7ln(lfﬁl))eﬂf1n(17ﬁ2))6)1/@’

e—(a((—1ngfn)@+<—lng32>@)>‘/@>

=(1-e

e—(a(—lngso@)'/@)

~@(=In(=NHYE —E=niHVE

®<1 — =G OVE —(@(=In7)VE

ef(a(fln@z)@)'/@)

= 5{11 D 5112.
Gv) 818 @ 8281 = <1 e~ G =IA=ANHVE —@E1(=Inp)HHVE
ef<51(71n@>@>1/@>
—(&2(=In(1=7)®)"/¢

®<1 e e~ B2l PHOHVE

e—(ﬁz(—ln@)€)1/6>

=<1—e

e~ (G5 (=nHEVE e—(<51+az><—1n@>€>‘/@>

7((81+82><fln(lfﬁ»@)”@,

= (81 + o)l
v) @ ® )’ = <e—((—lnﬁ1)6+(—1nfzz)@)l/@7
1 — ¢~ (=7 EH(=In(1=p2) HVE
- ef«f1n<171;31>)@+(f1n<17g52>>@>1/@>8
- <e—(5((— ) € +(=In ) )V

] — ¢~ GU=In(=71)E+(=In(1=) ¢

1 — ¢~ (U=In(1=H)®+(~ 1n(1*§>2))6)1/@>
— <e—<5(—1“’71)€>'/€, ] — ¢~ GCI=p)HYVE

1— e—<s<—1n<1—gfn)>@>1/@> o <e—(6(—lnﬁ2)6)l/€,

| — ¢~ GEI=p)HYE
=4} ® 3.

PN
i) §0 @ g2 :( —G1 =V 4

_ e*(é(*ln(F@z))e)”6>

— G (=In(1=p)VE
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1— e%s.eln(lf@))@)‘/@)
®<e—(52(—lnﬁ)€)l/@’ ] — e~ G2(=Ind=p)EVE

1— e—<82<—1n<1—@>)6)1/6> <e—((51+32)(_mm€)1/@’

1 — ¢~ (@3 (=In(1=p)HVE

(G148 (= 1n<1—56)>@)”@>

— §(G1+62)

]

SVN AA average aggregation operators

We furnish lot of SVN average AOs in this section employing
the AA operations.

Definition 9 Let £l, = (g, 7y, Hp) (¢ = 1,2,..., ) be
a set of SVNNs. Then, the SVN AA weighted average
(SVNAAWA) operator is a function P? — P, so that

P
SVNAAWAg (&, 1, ..., &,) = P Folly
=1

¢
=51 PP Py (37)

in which § = (§1,32,...,3,)" is the weighted vector of
Uy (9 =1,2,..., p) with F, >0andZZ=1%'¢ =1.

As a result, we find the underlying result, which is con-
sistent with the AA operations on SVNNs.

Theorem 2 Let I, = (g, Py, §p) (9 = 1,2,...,p) be a
set of SVNNs, then aggregated value of them utilizing the
SVNAAWA operation is additionally SVNNs, and

P
SVNAAWAg (81, i, .. .. £,)= P B, tly)
p=1

P /e . e
< —( > Tol— ln(l—ﬁw))e) —( > Fp(=In JZp)Q)
=(1—e ‘¢=! ,e ~v=l

e
where § = (§1, 82, - - -, Sp) is the weight vector ofﬁ(p (p =
1,2,..., p) including §, > 0 and 25:1 Fo =1

Proof We employed mathematical induction to prove Theo-
rem 2 as follows:

% e
’ < —( )y sw(—lna—ﬁw))@)
=(1—e ‘¢!

. /€
_< Z Sw(_lnﬁaw)e) >
o= (38)

(i) When p = 2, in light of AA operations of SVNNs, we
obtain

38l = <1 — e @I OVE (=g HVE
ef<31<71n551)@>'/6>,
38l = <1 — BNV —Ga (=) VE

e—(&z(—lnﬁzﬁ)l/@)

Based on Definition 8, we obtain
SVNAAWA (i1, i) = 11 P Foily
- <1 — e G OVE  —Fi (=)
e—<31<—1n551>@>1/@>
@(1 — @A) HYE =@ HVE

o~ @2(=1n gﬁz>@>1/@>

’

/¢
<1 7(31(7 ln(lfﬁl))€+52(*1n(1*f12))6>
=(1l—e

e
e—(Sl (=InP)E+F2(=1n 172)Q>

]

/e
e—<31(—1n5”31)@+32(—1n&52)6) >

3

5 e
< —( > Sw(—lna—ﬁ@»@)
=(1—e ‘¢!

/€ /€

2 1
—( > 3¢<—lnm>‘5) >
p=1 .

2 1
—( > sw(—lnfq))‘f)
¢=1

e ,e

Thus, (38) holds true when p = 2.
(ii) Considering that (38) is true for p = k, we derive

k
SVNAAWAg (i1, 1. . ... fh) = D@, y)
p=1

)

e p=1 S e p=1

k /e k /¢
_( Z Sw(_lnﬁw)e) _( Z &w(_lnbﬁw)e) >

Now, for p = k + 1, then

k
SVNAAWAg ({1, Sha. ... Sy, ) = PG lly)
@=1
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D Gerilesn)

k e k e
< —( > a,,(—ln(l—ﬁq,))@) —( > sq;(—lm?w)e)
=(1—¢ ‘¢! e =l

)

e

P /e
—( > &O(—lnm)‘f) >
o=1

/e /e
e—(akH(—ln(l—ﬁHl))@) e—(skm—lnml)@)

(i
e /e
*(SkJrl(*l"b’?’kH)e) (ZEW In(1—7y)) )
e =(1—¢ ‘¢!

e Vo=l e

k+1 e k+1 A€
—(Zsu—lnn)@) —( lew(—lnm%) >
=

Consequently, if p = k + 1, (38) is accurate.
We draw the conclusion from (i) and (ii) that (38) is valid
for every p. O

By applying the SVNA AWA operator, we can successfully
exhibit the pursuing features.

Theorem 3 (Idempotency) In the eventthatfl‘p = (Mg, Vo, Pp)

(p = 1,2,..., p) be a set of entirely equal SVNNs, i.e.,
11¢ = il.for all ¢, then SVNAAWAz (111, 112, .. ilp) =
Proof Since SJ.(/, = (Mg, Vo, Pp) = 111 (o = 1,2,...,p).
Then, we have by Eq. (38),
~ ~ p ~
SVNAAWA 3 ({1, b, . . = PG,
(p:
/e
(Z T (=In(1=1y)) )
={1—e ¢! ,
P /¢ » /¢
7( x Swmnm)@) 7( > sqa(flngsw)@) >
e v ,e o=

X /¢ /¢
< —((—m(l—ﬁ))@) —((—lnw@)
=(1—e¢ , € s

/e
—((—ln@@) >
e

Thus, SVNAAWA ({1, £y, . .., {1,) = {l holds. O
Theorem 4 (Boundedness) Let flw = (Mg, Vo, Pp) (o =
1,2,. cs P) be an accumulation of SVNNs. Let 4 =
mm(ill,ilz,.. ilp) and 9t = max(ill, ..., ilp).

Then, 1~ < SVNAAWA (), £y, . .., {1,) < (T,

@ Springer

Proof Let {1, = (fiy. 9. §p) (¢ = 1,2..... p) be several

SVNNs. Let 9= = mm(ill 112,.. ilp) = (f)_,)?_,gé_)
and 4 = max(£ly, &y, . . Up) =t pt, H1). We have,
N = rr}’}n{mp}, YT = mgngWd Kf = max{[@p} Nt =
m;X{ﬁw}, A
have the subsequent inequalities,
0 /¢
7< x &p(fln(lfﬁ*))@)
l—e ¢!

0 e
—( Zl sq,(—ln(l—ﬁ*»@)
=

= min{y,} and T = mm{g)(p}. Hence, there
¢ ¢

0 /¢
7< zl &p(fln(lfﬁw))@)
=

<l—e

<l-—e ,
P /e P /¢
—( > &(—lnﬁ*)@) —( > Fp(=In m@)
e =l < e ‘¢=I

o /e
—( Zl W—ln@w@)
P

Therefore, S~ < SVNAAWAz (i, {ho, ..., 8,) <. O

Theorem 5 (Monotonicity) Letflw andﬂ:p (p=1,2,...,p0)
be a couple of SVNNZ, zfijlw < 5:1;) for all ¢, then

SVNAAWA (81, &y, ..., 4

)
< SVNAAWAG (8, €05, ... 1)
We would now like to introduce the SVN AA ordered
weighted averaging (SVNAAOWA) operator.

Definition 10 Let £, = (i, 7y, Hy) (@ = 1,2,..., p) be
a set of SVNNs. A SVNAAOWA operator with a dimension
of p is a function SVNAAOWA : PP — P with the affil-

iated vector ¥ = (¥, ¥, ..., lllp)T including ¥, > 0 and
P

> W,=1,as

p=1

SVNAAOWAy ({11, iy, ...

EB Wil ()
= Wz P wilzo) P - @ VBTEI

where (T(1),%(2),..., S(p))Nare the perrputation of (p =
1,2,..., p), in a manner that Uz ,_1) > Ug(y) forall ¢ =
1,2,...,p

(39)

On the basis of AA product operation on SVNNSs, the
accompanying hypothesis is created.
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Theorem 6 Assume that fl(pz(ﬁ(p, Yo 89) (0=1,2,..., p)
be a set of SVNNs. A SVN AA ordered weighted aver-
age (SVNAAOWA) operator of dimension p is a function
SVNAAOWA : PP — P with the corresponding vector
W=, ¥, ..., W) sothat W, > 0and 30 W, = 1.
Then

P
SVNAAOWAy (81, fly. ... 11,) = P W, ilx()
p=1

= <1 — ei(wZ; e (71“ (1*’73:(@))6)]/G

’

/e
_ ( il ' (—ln }73,'((/,))6)
o=

e 9

e
_ < fl , (—ln @3(@) e)
o

e >

(40)

where (2(1),%(2),...,%(p)) are the permutation of (p =
1,2,...,p), in a manner that Usy_1) > Uz for any
e=12,...,p.

By applying the SVNAAOWA operator, it is possible to
efficiently show the properties listed below.

Theorem 7 (Idempotency) Assuming that fl,, (p=1,2, ..., p)
are totally equivalent, i.e., ,=4 for all ¢, then

SVNAAOWAy (8, $ho, ..., £l,) = £L. (41)
Theorem 8 (Boundedne§s) Assuming f{(p (=1, g )

be a set of SVNNs, and 1~ = min Uy, U = max U, Then
¢ v

U7 < SVNAAOWAy (811, &y, . ..., il,) < 4T (42)
Theorem 9 (Monotonicity) Let £, andil, (p = 1,2, ..., p)

be a couple of SVNNZ, ifﬂ(p < fl;) for all ¢, then

SVNAAOWA (814, 0o, . ..

< SVNAAOWAy (8, 56, . . .

711,0)

A1) (43)

Theorem 10 (Commutativity) Let £l, and i, (9p=1,2, ...,
p) be a couple of SVNNs, then

SVNAAOWAy (81, &y, ..., £1,)

= SVNAAOWAy (81, {6, ..., £1) (44)

where fl:p (o =1,2,..., p) is any permutation ofﬂ(p (p =
1,2,...,p).

According to Definition 9, SVNAAWA operator rates are
the most basic form of SVNN, and according to Definition 10,
SVNAAOWA operator values are the form of weights that are
used to arrange the SVNNSs. As a result, the weights, which
are specified in operators SVNAAWA and SVNAAOWA,
give a variety of scenarios that are antagonistic to one another.
However, in terms of the general approach, these viewpoints
are considered equal to one another. In order to alleviate this
discomfort, we will now propose the SVN AA hybrid aver-
aging (SVNAAHA) operator in the following paragraph.

Definition 11 Suppose fl(,, (¢ = 1,2,...,p) be a set of
SVNNs. A p-dimensional SVNAAHA operator is a map-
ping SVNAAHA : P” — P, so that

P .
SVNAAHAG, ¢ (1. b, ..., £1,) = D Wtz
p=1

= d/lﬁg(l) @ ‘1/21;13(2) @ o @ ‘Ppﬁf(p)

where ¥ = (Y,¥,,..., lI/p)T is the weighted vector
involved in dealing with the SVNAAHA operator, with
% e [0,1] (¢ = 1,2,...,,0). and .ZZ:I ¥, B I;
Uy = h§lp, 0 = 1,2,..., 0, Us), Yz02), -+, Uz(0))
is any permutations of the collections of the weighted
SVNNSs (111, ﬂz, R ﬂp), so that {lz((p_l) > ﬂz((p) (o =
1, %, e )85 = G152, -0, np)T is the weighted vector
ofil(p (p=1,2,...,p),withgy, € [0, 1] (¢ = 1,2, ..., p)
and ZZ:] Sy = 1, and p is the balance coefficient, that
performs a function in sustaining stability.

(45)

The underlying theorem may be proven using AA opera-
tions on SVNNs data.

Theorem 11 Let fl(p (o = 1,2,...,p) be a set of SVNNs.
Their accumulated value as determined by the SVNAAHA
operator remains an SVNN, and

4 .
SVNAAHAg y ({1, b, ..., £)) = P Wl ()
p=1

= <1_e_<¢£l y(~1n (1_%(@))@) e

s

¢

_< i xlfw(—ln J;/‘I(w))€>l/

e ~v=!

) A /€
(Elonban)’)

e =

)

(40)

Proof We can acquire Theorem 11 in a manner similar to that
of Theorem 2. O
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Theorem 12 The SVNAAWA and SVNAAOWA operators are
special cases of the SVNAAHA operator.

Proof (1)LetW = (1/p,1/p,...,1/p)T. Then

SVNAAHAG ¢ (8, £, ..., {,)

= Wlﬁg(l) @ Wzﬁz(z) @ o GB Wpﬁf(m
= %(ﬁsa) @QT@) D @ﬁﬂp))
=Fil @32112 @ e @ ’lpﬁp

= SVNAAWA (8, $bo, ..., ),

@ Let§ = (1/p,1/p.....1/p)T. Then, &I, = {I, (¢ =
1,2,...,p)and

SVNAAHA&W(Q] , 5:12, e, ﬁp)
= Wilsoy P vllse) P - P iz
= Willsoy P wllse) P - P iz

= SVNAAOWAy ({1, iy, ..., £1,),

this leads to the result. |

Method for MADM issues based on
SVNAAWA operator

To do this, we might offer a MADM strategy that has SVN
AOs, uses SVNNSs as attribute values, and uses real num-
bers as attribute weights. Assume 0 = {91, d2, ..., 0z} is a
set of options, i = {h, ho, ..., Ay} is a set of attributes,
§ = (&1, 82, ..., 8p) is a weight vector of the attribute §,
(p =1,2,...,p) so that F, > 0 and ZZZIS¢ = 1. The
provisional of the option d5 (0 = 1,2,..., g) in terms of
the criterion h, (¢ = 1,2,..., p) is expressed explicitly
by Lep = (figps Veps Hgp)- Assume that R = (g“gp)gxp is
the SVN decision matrix, where 7),, denotes the positive
membership degree such that choice 9, fulfills the attribute
hy specified by the decision maker, y,, signifies the neutral
membership degree such that choice 93 does not fulfill the
attribute A, and £, , signifies the degree to which choice 95
does not address the attribute 7, specified by decision maker,
where 7y, Vop, £gp C [0, 1] allowing

0 <1gp+Vepo+8gp =3, 0=12,....8). (47)

In the next algorithm, we use the SVNAAWA operator to
try to solve the MADM problem with this kind of SVN data.

@ Springer

Step 1. Transform the decision matrix R = (&), , into

the normalization matrix R = (Eg P)gxp'

T, = gp for benefit attribute A, 48)
&p (Lgp)¢ for cost attribute 7,

where (£g,)¢ is the complement of g, and (£z,)¢ =
(&3> Vep» Ngp)-

If all of the attributes A, (¢ = 1,2,..., p) are of the
same type, it is not necessary to normalise the values of the
attributes; however, if there are cost and benefit attributes
in MADM concerns, we can change the cost type rating
values into the benefit type rating values. Consequently,
R = (ggp)gxp can be turned into an SVN decision matrix

R= (Cgﬂ)gxp'

Step 2. We take into account the collected data mentioned
in matrix R, along with the operator SVNAAWA:

o
¢ = SYNAAWA (511, G2, - - Cin) = ED FCen)

p=1
p N\ /e p) /e
< —( > Sw(—ln(l—ﬁwW) —( > Fp(=In MG)
=(1—¢ ‘¢! ,e ~v=l s
0 /e
*( Z gw(*]nﬁéw)@>

e =l (49)
to derive the standardized desired values ¢5 (0 = 1,2, ..., g)

of the options 5.

Step 3. We calculate the score value )?(53) 0@ =
1,2,...,g) depending on generalized SVN data ¢z (0 =
1,2, ..., g) in ranking all the options d5 (0 = 1,2, ..., g)
in step is to select the better option d5. When there is no
distinction to be made between the score functions ¥ (Zs)
and Y (Zy), we proceed to calculate the accuracy degrees of
K (¢5) and K (¢y) anticipated on conventional SVN data for
{5 and ¢y, and we rank the alternatives dg in relation to the
accuracy degrees of K (¢5) and K (Cp)-

Step 4. We rank all of the options 95 (0 = 1,2, ..., g) to
choose the best one(s) based on ?({3) @=12,...,9).

Step 5. End.

Numerical example

To demonstrate the technique’s utility, we’ll consider a situa-
tion in which a financial company needs to invest a large sum
of money in the best option. There is indeed a committee con-
taining five different investment opportunities: 91 represents
a passenger vehicle industry; 0> represents a supermarket
chain; 03 represents a technology company; d4 represents
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a weapons industry; and 95 represents a broadcasting cor-
poration. The corporation limited must make a judgment in
accordance with the four characteristics listed below:

hy : Vulnerability assessment.

hy : Developmental assessment.

hsz : Social-political effect assessment.

h4 : Environmental and sustainability assessment.

The decision-maker is to evaluate the five feasible options
dg (0 = 1,2,...,5) utilising SVN data for the four
above-mentioned attributes (for whom the weighted vector
§ = (0.30, 0.40, 0.20, 0. IO)T), as indicated in the following
matrix (Table 1).

To identify the most advantageous company d5 (0 =
1,2,...,5), we employ the SVNAAWA operator to con-
struct a MADM approach using SVN data, which can be
determined by measuring:

— Step 1. Taking the assumption that ¢ = 1, we can use
the SVNAAWA operator to compute the conventional

desired values ¢ of the companies 95 (0 = 1,2, ...,5).
Specifically
Company Desired value
g1 (0.526189, 0.303500, 0.514930)
o (0.409656, 0.353031, 0.307311)
&3 (0.347555, 0.535247, 0.289129)
L4 (0.593350, 0.332730, 0.338323)
s (0.579400, 0.251404, 0.510950)

— Step 2. We evaluate the score values ?(;a) 0 =
1,2,...,5) of SVNNs ¢z employing Definition 5. The
score values are as follows: ?({1) = 0.569253, ?({2) =
0.583105, Y(z3) = 0.507727, Y(&) = 0.640765,
Y (£s) = 0.605683.

— Step 3. Order all of the companies d5 (0 =1,2,...,5)
based on the score values ?({3) ©@=1,2,...,5) of the
overall SVNNs as 94 > 05 > 9 > 01 > 03.

— Step 4. 94 is selected as the optimal alternative.

Evaluation of the influence of the
operational parameter ¢ on
decision-making consequences

For the purpose of demonstrating the influence of the opera-
tional parameters € on MADM findings, we will use a variety
of estimates of & that are ranked in conformity with the alter-
natives. On the basis of score values, the consequences of
ordering the choices d5 (0 = 1,2, ..., 5) from the perspec-

tive of the said SVNAAWA operator are furnished in Table
2 and illustrated visually in Fig. 2.

It has become obvious that as the amplitude of ¢ intensi-
fies for such an SVNAAWA operator, its score values for the
options keep increasing, but still, the corresponding rank-
ing stays the same d4 > d5 > dy > J; > 03, indicating
that the improvement methodologies generally have the iso-
tonic property, permitting the decision-maker to provide an
acceptable value in light of their tendencies.

In addition, as illustrated in Fig. 2, the results derived for
the alternatives are identical when the value of € is varied
in the example, demonstrating the consistency of the recom-
mended SVNAAWA operators.

Sensitivity analysis (SA) of criteria weights

We look at how weighted criteria affect the order of prefer-
ence using a sensitivity analysis. This is done with 24 distinct
weight sets, notably S1, S2, ..., 524 (Table 3), which are
made by looking at all possible ways to combine the weights
for the criteria ¢; = 0.3, Y = 0.4, Y3 = 0.2 and ¥4 = 0.1.
This is especially important for getting a greater variety of
criterion weights when figuring out how much the built model
matters. Figure 3 shows a total of how the different options
were rated, and Table 4 shows how they were ranked. When
the SVNAAWA operator (with € = 10) is employed and the
ranking order of options is examined, it is discovered that 94
ranks first in 83.33% of situations. Accordingly, the ranking
of options obtained using our technique is realistic.

Comparative analysis

In this section, we compare our proposed methodologies
to existing models, including the “SVN weighted averag-
ing (SVNWA) operator” [37], the “SVN Einstein weighted
averaging (SVNEWA) operator” [28], the “SVN Hamacher
weighted averaging (SVNHWA) operator” [29], and the
“SVN Dombi weighted averaging (SVNDWA) operator” [8].
Table 5 contains the results of the comparison studies, and
Fig.4 depicts the results in graphical form. As shown in
Tables 2 and 5, the SVNWA operator is a specific instance
of our recommended SVNAAWA operator and it takes place
when € = 1.

As a result, our theories and methods are typically more
comprehensive and versatile than certain commonly used
techniques for managing SVN MADM difficulties.

Limitations of our study:
1. One of the biggest problems with the way we suggest

doing things is that it relies only on the knowledge and
experience of people.
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Table 1 SVN decision matrix

01

02

03

04

05

0
ho
i3
N

(0.68, 0.23, 0.59)
(0.25, 0.36, 0.39)
(0.75, 0.26, 0.58)
(0.12,0.48, 0.82)

(0.26, 0.17, 0.59)
(0.15, 0.66, 0.24)
(0.72, 0.48, 0.21)
(0.69, 0.14, 0.25)

(0.17,0.91, 0.09)
(0.46, 0.51, 0.34)
(0.34, 0.26, 0.85)
(0.34, 0.56, 0.58)

(0.25, 0.62, 0.42)
(0.82, 0.14,0.51)
(0.42, 0.58, 0.07)
(0.17, 0.54, 0.80)

(0.75, 0.26, 0.92)
(0.12,0.47, 0.35)
(0.57,0.07, 0.62)
(0.90, 0.24, 0.27)

Table 2 Priority ranking for

various values of the operational

parameters in the aggregating

process

¢ Y(¢1) Y(22) Y (&) Y (g4) Y(¢s) Ranking order

1 0.569253 0.583105 0.507727 0.640765 0.605682 04 > 05 > 0y > 01 > 03
2 0.601526 0.642865 0.559926 0.715333 0.672355 04 > 05 > 0y > 01 > 03
3 0.621894 0.680016 0.591852 0.761906 0.710919 04 > 05 > 0y > 01 > 03
4 0.635611 0.702443 0.613449 0.789670 0.736482 04 > 05 > 0y > 01 > 03
5 0.645547 0.716805 0.628840 0.806901 0.754680 04 > 05 > 0y > 01 > 03
6 0.653130 0.726648 0.640169 0.818290 0.768191 04 > 05 > 0y > 01 > 03
7 0.659127 0.733795 0.648736 0.826276 0.778545 04 > 05 > 0y > 01 > 03
8 0.663995 0.739231 0.655378 0.832155 0.786697 04 > 05 > 0y > 01 > 03
9 0.668028 0.743521 0.660642 0.836652 0.793268 04 > 05 > 0y > 01 > 03
10 0.671425 0.747009 0.664901 0.840200 0.798677 04 > 05 > 0y > 01 > 03
50 0.701309 0.778398 0.695761 0.864355 0.842180 04 > 05 > 0y > 01 > 03
100 0.705653 0.784182 0.699558 0.867198 0.847805 04 > 05 > 0p > 01 > 03

¢=3

¢=6

¢=10

I, Huo,

Hnos

LI | S

¢ =100

Fig. 2 Score values of the alternatives for various values & by
SVNAAWA operator

2. The reliability of these systems is greatly affected by the
fact that they use a lot of unclear information and inputs.
3. This techniques are incapable of identifying machine

learning or neural networks.
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Fig. 3 Final utility values of options for different sorts of criteria

weights

Conclusions

Our research has focused on expanding the AA 7-NM and
AA t-CNM to account for SVN circumstances, developing
several innovative operational rules concerning SVNNSs, and
investigating their characteristics and interconnections. Next,
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Table 3 Various weight sets of

criteria

Table 4 Priority ranking of
options for various weight sets

Weight 1 Y2 3 Ya Weight Y1 Yo Y3 Ya Weight Y1 Yo Y3 s
sets sets sets

S1 03 04 02 01 S9 04 01 03 02 S17 02 01 03 04
S2 03 02 01 04 S10 04 03 01 02 S18 02 03 04 0.1
S3 03 01 04 02 SI11 04 0.1 02 03 S19 0.1 04 03 02
S4 03 04 01 02 S12 04 02 03 0.1 S20 0.1 03 02 04
S5 03 01 02 04 S13 02 04 03 01 821 0.1 02 04 03
S6 03 02 04 01 Si4 02 03 01 04 S22 0.1 04 02 03
S7 04 03 02 0.1 SI5 02 0.1 04 03 823 0.1 02 03 04
S8 04 02 01 03 Sl16 02 04 01 03 8S24 0.1 03 04 02

Ranking order

Ranking order Ranking order

S1
S2
S3
S4
S5
S6
S7
S8

dq > 05
4 > 05
dq > 05
04 > 05
05 > 04
04 > 05
04 > 05
04 > 05

>0y > 01 > 03

>0y > 01 > 03

>0y > 01 > 03

>0y > 0] > 03

>0y > 0] > 03

>0y > 0] > 03

>0y > 0] > 03

>0y > 0] > 03

S9 04 > 05 > 0p > 01 > 03 S17 05 > 04 > 0p > 01 > 03
S10 04 > 05 > 0p > 01 > 03 S18 04 > 05 > 0y > 01 > 03
S11 05 > 04 > 02 > 01 > 03 S19 04 > 05 > 0y > 01 > 03
S12 04 > 05 > 0p > 01 > 03 S20 04 > 05 > 0y > 01 > 03
S13 04 > 05 > 0y > 01 > 03 S21 04 > 05 > 0y > 01 > 03
S14 04 > 05 > 0p > 01 > 03 S22 04 > 05 > 0y > 01 > 03
S15 05 > 04 > 07 > 01 > 03 S23 04 > 05 > 0y > 01 > 03
S16 04 > 05 > 0y > 01 > 03 S24 04 > 05 > 0y > 01 > 03

Table 5 Comparative analyses using a selection of presently available methodologies

Techniques ?(;1 ) ?({2) 1?({3) 1?({4) 1?(§5) Order of preference

SVNWA operator [37] 0.569253 0.583105 0.507727 0.640765 0.605682 04 > 05 > dp > 0] > 03
SVNEWA operator [28] 0.560050 0.567521 0.492942 0.621285 0.585830 04 > 05 > 0p > 01 > 03
SVNHWA operator [29] 0.555015 0.559546 0.484477 0.611923 0.574508 04 > 05 > 02 > 01 > 03
SVNDWA operator [8] 0.685975 0.763554 0.681654 0.857816 0.826763 04 > 05 > 0r > 01 > 03
Proposed operator 0.705653 0.784182 0.699558 0.867198 0.847805 04 > 05 > 02 > 01 > 03

0.9

0.8

0.7

0.6

0.5

Fig.4 Comparative assessment using several popular approaches

SVNWA operator [37]
SVNEWA operator [28]

SVNDWA operator [8]

—o—
——
—8—  SVNHWA operator [29]
—o—
——

Proposed SVNAAWA operator

Y(¢1)

Y (¢2)

Y(¢3)

Y (Ca)

Y (¢s)

based on these innovative operational rules, several novel
AOs, such as the SVNAAWA operator, the SVNAAOWA
operator, and the SVNAAHA operator, have been created
to suit circumstances in which the provided arguments are
SVNNs. Many appealing features and specific examples
of such operators are now being investigated in consid-
erable detail, as are the interconnections between these
operators. The suggested operators have been placed on
MADM difficulties together with SVN information, and a
mathematical framework is being provided to illustrate the
decision-making processes. A mathematical instance has
been presented to highlight the validity and dependability
of the technique. Ongoing research looks into the impact of
criteria weights on ranking order. The influence of parameter
€ on decision-making consequences has been investigated.
The proposed work is judged by comparing the number of
options that can be done with new and old aggregation oper-
ators to show how important it is.
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Following the construction of this paper, it focuses on the
theoretical aspect of the problem. We will continue to study
the application of the new method in some other fields, such
as fuzzy dynamical systems, hypothesis testing, logistics
solutions, and optimization approaches. Incredibly power-
ful computing and decision frameworks built on the SVN
framework remain limited. It is noticeable that all decision-
making problems with SVNSs can be addressed in a similar
way to the offered case study. Furthermore, we will continue
toresearch decision making with SVN information and intro-
duce more simple and applicable decision-making methods.
Artificial intelligence, data extraction, pattern recognition,
computer vision, visual analytics, and maybe even more
fields with unpredictable results [1, 2, 9, 20, 21, 40, 4245,
61] are all interesting new areas of study.

Furthermore, it might be helpful to build consensus
approaches for the SVN MADM difficulties that are based on
AA t-NMs and AA t-CNMs and then use the results of these
approaches to solve realistic problems. Another possibility
is granular computing, which makes it possible to construct
many SVN aggregation operators. The way of determining
which is the advantageous parameter for AA aggregation is
an important one; hence, the appropriate exploitation of data
precision will be an effective approach to identify a solution
to this primary problem. In subsequent studies, attention will
be paid to the aforementioned concerns.
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