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Abstract
Fuzzy rough set models are useful tools for dealing with fuzzy and real-valued data. They have been used in many real-world
applications. In this paper, we investigate the fuzzy rough set model based on triangular norms and fuzzy implications. First,
we extend some results in the published literature by removing the condition that is the continuity of triangular norms, and
obtain more general conclusion about fuzzy upper approximation operators. Then, for the fuzzy neighborhood and the fuzzy
lower approximation operator based on fuzzy implications, we investigate their characterization with each other. Finally, we
establish the relationships between fuzzy rough sets and fuzzy topology. In this work, researches on the properties of fuzzy
rough sets based on triangular norms which need not be continuous provide generalization results for fuzzy rough set theory
from viewpoint of mathematics.
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Introduction

Rough set theory [1] has been widely used in many fields
of applied sciences, such as machine learning, data min-
ing and so on. It is a useful tool to deal with imperfect and
inconsistent information in data analysis [2, 3]. However, a
disadvantage of rough set theory is that it is designed to han-
dle discrete data [4]. In fact, symbolic, fuzzy, and real-valued
attributes exist, e.g., in medical analysis and fault diagnosis
[5–7]. In order to deal with these complex datasets, a gen-
eralized rough set model needs to be established. Fuzzy set
theory [8] is a generalization of classical set theory for deal-
ing with vague concepts and graded indiscernibility. Fuzzy
set theory and rough set theory complement each other, so
researchers presented the hybrid model, i.e., the fuzzy rough
setmodel, by integrating them,which canbe an alternative for
dealing with fuzzy and real-valued data. In the big data era,
the datasets collected from real-life applications have high
dimension and may have hundreds of features. Removing
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redundant features is necessary for the knowledge discov-
ery method. Fuzzy rough set theory becomes a useful tool
for feature selection of high dimensional data [9]. For exam-
ple, Zhao et al. [10] applied fuzzy rough set theory to design
a feature selection strategy for hierarchical classification of
high dimensional data.

In 1990,Dubois andPrade [11] introduced the fuzzy rough
set model that follows from replacing the equivalence rela-
tion in the Pawlak rough set model by the fuzzy similarity
relation in fuzzy set theory. Fuzzy implications have been
applied in many fields, such as, approximate reasoning [12],
fuzzy control [13], and fuzzymathematicalmorphology [14].
To extend application of the fuzzy rough set model, fuzzy
implications were introduced into fuzzy rough set theory.
Morsi and Yakout [15] presented a more general approach
to extend the fuzzy rough set model, and they provided the
concept of (I , T )-fuzzy rough sets, which are defined by
a triangular norm T and the R-implication I based on T .
Then Radzikowska and Kerre [16] discussed three classes of
(I , T )-fuzzy rough sets taking into account threewell-known
classes of fuzzy implications, that are the S-implication, R-
implication, and QL-implication. Cock et al. [17] and Wu
et al. [18] explored (I , T )-fuzzy rough sets based on a gen-
eral triangular norm T and a general fuzzy implication I .
These studies found significant interest of researchers in
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fuzzy rough set theory. Recently, a great diversity of research
on this topic has appeared [19–28]. For example, Hu et al.
[20, 21] proposed interval-valued fuzzy rough sets based on
interval-valued fuzzy logical operators; moreover, from the
viewpoint of lattice theory, the authors [19, 23–26] conducted
further research into this topic.

Fuzzy rough sets have been applied to optimization of
knowledge engineering algorithms. The main and success-
ful application is in attribute reduction [29–31]. The benefit
of the attribute reduction mainly focuses on that fuzzy rough
feature extraction preserves the semantics of the selected fea-
tures. Moreover, the model of fuzzy rough sets can also be
used for general data mining operations, like clustering or
classification in the case of uncertain input domains [32].
Obviously, the discussion of mathematical theory of fuzzy
rough sets is beneficial to improve their application effect. In
addition, in [33, 34], the authors pointed out that fuzzy rough
sets based on t-norms and fuzzy implications satisfy closure
property under some conditions, which indicates that fuzzy
rough set model based on t-norms and fuzzy implications
has good mathematical properties. This paper focuses on the
fuzzy rough set model based on t-norms and fuzzy impli-
cations, and investigate the fundamental properties of this
model. In practical application of fuzzy rough set model, we
usually face two issues: which t-norm and fuzzy implication
should one choose?What properties should they satisfy? The
results of this paper may provide support for solving these
issues.

It is well known that the properties of the lower and upper
approximation operators can be determined by the proper-
ties of neighborhood operator; for example, in a crisp rough
set model based on a neighborhood, if the neighborhood is
reflexive, then the upper approximation operator induced by
it satisfies property of extension [37]. Thus, it is fundamen-
tal to study the connection between the fuzzy neighborhood
operator and the fuzzy rough set model induced by the fuzzy
neighborhood. In [18, 35, 36], the relationships between
fuzzy neighborhood operators and fuzzy upper approxima-
tion operators based on a triangular norm was established.
However, there are no corresponding results for the fuzzy
neighborhood operator and the fuzzy lower approximation
operator based on a fuzzy implication. In this paper, we give
the connection between the fuzzy neighborhood operator and
the fuzzy lower approximation operator based on a fuzzy
implication. In addition, the results in [18, 35, 36] limited the
triangular norm to be continuous. In thiswork,we remove the
limitation of continuity of the triangular norm, and we obtain
the more general result which reveals that the T -transitivity
of fuzzy neighborhood operators only relates to the upper
approximation of the singleton sets. Finally, by means of the
above results, we discuss the relationships between fuzzy
topology and fuzzy rough sets based on t-norms and fuzzy
implications. The main contributions of this paper can be
described as follows:

– The result (see Theorem 1) in [18, 35, 36] is extended by
removing the condition that T is continuous. Thus, the
more general conclusions about fuzzy upper approxima-
tion operators based on t-norms are established.

– This paper concludes that the properties of fuzzy neigh-
borhood operators can be characterized by a fuzzy lower
approximation operator based on a fuzzy implication, and
vice versa.

– The relationships between fuzzy topology structures and
fuzzy rough sets based on t-norms and fuzzy implications
are further investigated.

The rest of this paper is organized as follows. Some
related notions and results are reviewed in “Notations, def-
initions and basic concepts”. In “Properties of fuzzy rough
sets with respect to fuzzy neighborhood operators”, we dis-
cuss the fundamental properties of the fuzzy lower and upper
approximation operators based on the triangular norm and
the fuzzy implication. “The relationships between the fuzzy
topology and the fuzzy lower (or upper) approximation oper-
ator” establishes the relationships between the fuzzy rough
set and the fuzzy topology. Finally, “Conclusion” concludes
this paper.

Notations, definitions and basic concepts

In this section, we review some basic concepts and notations
used in this paper.

LetU be a nonempty universe of discourse. In this paper,
we denote F(U ) as a family of fuzzy sets on U .

Fuzzy logical operators

A triangular norm is used to define the operation on two fuzzy
sets. Its definition is as follows [38]:

Definition 1 ([38]) A mapping T : [0, 1] × [0, 1] → [0, 1]
is called a triangular norm (t-norm for short) if for a, b, c ∈
[0, 1], it satisfies the following conditions:

(T1) T (a, 1) = a;
(T2) b ≤ c ⇒ T (a, b) ≤ T (a, c);
(T3) T (a, b) = T (b, a);
(T4) T (a, T (b, c)) = T (T (a, b), c).

Briefly, a t-norm is an increasing, associative and com-
mutative mapping from [0, 1] × [0, 1] to [0, 1] that satisfies
the boundary condition: ∀a ∈ [0, 1], T (a, 1) = a.

Clearly, a t-norm can be viewed as a real function of
two variables. Thus, according to the theory of mathemat-
ical analysis, we can give the definition of left-continuous
t-norm, that is, a t-norm is said to be left-continuous if it is
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left-continuous in each component [39]. This definition can
be reformulated as follows.

Definition 2 A t-norm T is said to be left-continuous, if T
satisfies the following condition:

∀∅ �= A ⊆ [0, 1] and b ∈ [0, 1], T (sup A, b) = sup
a∈A

T (a, b).

(1)

In fact, since T is commutative, it is easy to verify that
if T is left-continuous, then T also satisfies the condition:
∀A ⊆ [0, 1] and a ∈ [0, 1], T (a, sup A) = supb∈A T (a, b).

A fuzzy implication is seen as the extension of an impli-
cation in binary classical logic to the multi-valued domain.
However, there are different definitions for a fuzzy implica-
tion (see [39, 40]). In this paper, we choose themost common
definition of fuzzy implication defined by Kitainik in [41].

Definition 3 ([41]) A mapping I : [0, 1]× [0, 1] → [0, 1] is
called a fuzzy implication if it satisfies the following condi-
tions:

(I1) ∀x1, x2, y ∈ [0, 1], if x1 ≤ x2, then I (x1, y) ≥
I (x2, y),

(I2) ∀y1, y2, x ∈ [0, 1], if y1 ≤ y2, then I (x, y1) ≤
I (x, y2),

(I3) I (0, 0) = I (1, 1) = 1 and I (1, 0) = 0.

We can easily deduce that I satisfies the following properties:
∀a ∈ [0, 1], I (0, a) = I (a, 1) = 1. Clearly, I (0, 1) = 1.

Definition 4 ([39]) A mapping I : [0, 1]× [0, 1] → [0, 1] is
called an R-implication if there exists a t-norm T such that
∀a, b ∈ [0, 1],

I (a, b) = sup{c ∈ [0, 1] : T (a, c) ≤ b}. (2)

Fuzzy neighborhood operators

We know that a fuzzy subset A ofU is a mapping fromU to
[0, 1], that is, A : U → [0, 1]. Specially, a classical subset
K ⊆ U can be seen as the fuzzy subset whose member-
ship function is identical to its characteristic function, and
this fuzzy subset corresponding to K is still denoted as K
throughout this paper. For A, B ∈ F(U ), Zadeh [8] gave the
definitions of containment, equality, union and intersection
between fuzzy sets which are as follows:

• Containment; A ⊆ B ⇔ ∀x ∈ U , A(x) ≤ B(x).
• Equality; A = B ⇔ ∀x ∈ U , A(x) = B(x).
• Union; ∀x ∈ U , (A ∪ B)(x) = max{A(x), B(x)}.
• Intersection; ∀x ∈ U , (A ∩ B)(x) = min{A(x), B(x)}.

In [42], D’eer et al. proposed the definition of a fuzzy
neighborhood operator as follows:

Definition 5 ([42]) A fuzzy neighborhood operator is a map-
ping N : U → F(U ).

In Definition 5, for x ∈ U , N (x) ∈ F(U ) is a fuzzy set on
U , and it is called the fuzzy neighborhood of x . For y ∈ U ,
N (x)(y) is the membership degree of y in the neighborhood
N (x).

Let N be a fuzzy neighborhood operator on U . Similarly,
the concepts of a fuzzy reflexive (symmetric, transitive, resp.)
neighborhood operator are given as follows.

Definition 6 ([42]) Let N be a fuzzy neighborhood operator
and T be a t-norm. N is called

• a serial fuzzy neighborhood operator, if ∀x ∈ U ,
sup
y∈U

N (x)(y) = 1;

• a reflexive fuzzy neighborhood operator, if ∀x ∈ U ,
N (x)(x) = 1;

• a symmetric fuzzy neighborhood operator, if ∀x, y ∈ U ,
N (x)(y) = N (y)(x);

• a T -transitive fuzzy neighborhood operator, if ∀x, y, z ∈
U , T (N (x)(y), N (y)(z)) ≤ N (x)(z).

In [33, 42], by means of the fuzzy neighborhood, D’eer et
al. constructed the fuzzy rough set model based on a t-norm
and a fuzzy implication as follows.

Definition 7 [33] Let N be a fuzzy neighborhood operator
on U , T a t-norm and I a fuzzy implication. Then the fuzzy
approximation operators (apr I

N
, aprTN )with respect to N are

defined by the following formulas:

∀A ∈ F(U ) and ∀x ∈ U ,(
apr I

N
(A)

)
(x) = inf

y∈U I (N (x)(y), A(y)),

(
aprTN (A)

)
(x) = sup

y∈U
T (N (x)(y), A(y)).

Properties of fuzzy rough sets with respect
to fuzzy neighborhood operators

In this section, we use the fuzzy lower and upper approx-
imation operators to characterize the fuzzy neighborhood
operators, and the converse issues are also discussed.

Properties of fuzzy upper approximation operators
based on a t-norm

In this section, we extend a result (see Theorem 1) in [18,
35, 36] by removing the condition that T is continuous, and
obtain more general conclusion about fuzzy upper approxi-
mation operators (see Theorem 2).
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Remark 1 In this paper, given α ∈ [0, 1], we denote the con-
stant fuzzy set of U by α̂, that is, ∀x ∈ U , α̂(x) = α.

At first, we give the following properties of fuzzy upper
approximation operators based on a t-norm. In this result, we
also do not limit the continuity of t-norm.

Proposition 1 Let N be a fuzzy neighborhood operator onU
and T a t-norm. Then, the following assertions hold:

(1) aprTN (∅) = ∅.
(2) ∀α ∈ [0, 1], aprTN (α̂) ⊆ α̂.

Proof (1) By the monotonicity and boundary conditions of
T , we derive that ∀a ∈ [0, 1], T (a, 0) ≤ T (1, 0) = 0, that
is, T (a, 0) = 0. Therefore,

∀x ∈ U ,
(
aprTN (∅)

)
(x) = sup

y∈U
T (N (x)(y),∅(y))

= sup
y∈U

T (N (x)(y), 0) = 0 = ∅(x).

In other words, aprTN (∅) = ∅.
(2) Let α ∈ [0, 1]. By ∀a ∈ U , T (a, 1) = a, we obtain

that, for all x ∈ U ,

(
aprTN

(
α̂
))

(x) = sup
y∈U

T (N (x)(y), α) ≤ sup
y∈U

T (1, α)

= sup
y∈U

α = α = α̂(x).

Therefore, we have that aprTN (α̂) ⊆ α̂. ��
Remark 2 In this paper, ∀x ∈ U , we denote the fuzzy set μx

of U as:

∀y ∈ U , μx (y) =
{
1, y = x;
0, y �= x .

(3)

Theorem 1 [18, 35, 36] Let N be a fuzzy neighborhood oper-
ator on U and T a continuous t-norm. Then, the following
statements hold:

(1) N is serial ⇐⇒ aprTN (U ) = U,
⇐⇒ aprTN (α̂) = α̂, ∀α ∈ [0, 1].

(2) N is reflexive ⇐⇒ ∀A ∈ F(U ), A ⊆ aprTN (A).

(3) N is symmetric ⇐⇒ ∀x, y ∈ U,
(
aprTN (μx )

)
(y) ⊆(

aprTN (μy)
)
(x).

(4) N is T -transitive⇐⇒∀A ∈ F(U ), aprTN (aprTN (A)) ⊆
aprTN (A).

Theorem1holds under the condition that T is a continuous
t-norm. In this section, we delete this condition and establish
the corresponding results of Theorem 1.

The following example shows that if T is not continuous,
then N is serial does not necessarily imply ∀α ∈ [0, 1],
aprTN (α̂) = α̂. That is to say, Theorem 1 (1) is not true when
T is not continuous.

Example 1 Let U = {1, 2, 3, . . . }. ∀k,m ∈ U , we take that
N (k)(m) = m−1

m . Clearly, N is a fuzzy neighborhood opera-
tor onU . Since∀k ∈ U , supm∈U N (k)(m) = supm∈U m−1

m =
1, N is serial. We choose the drastic t-norm T0 as follows:

∀a, b ∈ [0, 1], T0(a, b) =
⎧⎨
⎩
b, if a = 1;
a, if b = 1;
0, otherwise.

(4)

In what follows, we take α = 0.3 ∈ [0, 1]. Thus, for k ∈ U ,
we have

(
aprT0N

(
α̂
))

(k) = sup
m∈U

T0
(
N (k)(m), α̂(m)

)

= sup
m∈U

T0

(
m − 1

m
, 0.3

)

= sup
m∈U

0 = 0 �= 0.3 = α̂(k).

This indicates that if T is not continuous, then N is serial
does not necessarily imply ∀α ∈ [0, 1], aprTN (α̂) = α̂.

The following example indicates that N is T -transitive
does not necessarily imply ∀A ∈ F(U ), aprTN (aprTN (A)) ⊆
aprTN (A). That is to say, Theorem 1 (4) is not true when T
is not continuous.

Example 2 Let U = {1, 2, 3, . . . }. The fuzzy neighborhood
N is given as follows:

N (1)(m) =
{
0.3, if m = 2;
0.2, otherwise.

∀n ∈ U and n ≥ 2, ∀m ∈ U , N (n)(m) = m

2m + 1
.

In [38], Klement et al. provided a not left-continuous t-norm
as follows:

∀a, b ∈ [0, 1],
T1(a, b) =

{
0, if (a, b) ∈ (0, 0.5)2;
min{a, b}, otherwise. (5)

In addition, ∀n,m, k ∈ U , it is easy to see that

0 < N (n)(m) < 0.5, and 0 < N (m)(k) < 0.5.

Thus, we have

T1
(
N (n)(m), N (m)(k)

) = 0 ≤ N (n)(k).

That is to say, N is a T1-transitive fuzzy neighborhood. We
take the fuzzy set A whose membership function is given
by the formula ∀m ∈ U , A(m) = m

m+6 . Next, it is easy to
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compute that

(
aprT1N (A)

)
(n) =

{
0.2, if n = 1;
0.5, otherwise.(

aprT1N

(
aprT1N (A)

))
(1)

= sup
m∈U

T
(
N (1)(m),

(
aprT1N (A)

)
(m)

)
= 0.3.

Thus,
(
aprT1N (aprT1N (A))

)
(1) >

(
aprT1N (A)

)
(1). This implies

aprT1N

(
aprT1N (A)

)
� aprT1N (A), which shows that N is

T -transitive does not necessarily imply ∀A ∈ F(U ),
aprTN (aprTN (A)) ⊆ aprTN (A).

Next, we remove the limitation of continuity of t-norm in
Theorem 1, and give the corresponding results. First, we can
obtain the following results.

Lemma 1 Let N be a fuzzy neighborhood operator onU and
T a t-norm. If∀x ∈ U, aprTN (aprTN (μx )) ⊆ aprTN (μx ), then
N is T -transitive.

Proof For z ∈ U , we know that aprTN (aprTN (μz)) ⊆
aprTN (μz). Thus, ∀x ∈ U , we have

(
aprTN

(
aprTN (μz)

))
(x) ≤

(
aprTN (μz)

)
(x). (6)

In addition, from the properties of t-norm, ∀a ∈ [0, 1],
T (a, 0) = 0, T (a, 1) = a, and Eq. (3), we have that ∀x ∈ U ,

(
aprTN (μz)

)
(x) = sup

w∈U
T (N (x)(w), μz(w))

= T (N (x)(z), μz(z))

= T (N (x)(z), 1) = N (x)(z),

and
(
aprTN

(
aprTN (μz)

))
(x)

= sup
u∈U

T
(
N (x)(u),

(
aprTN (μz)

)
(u)

)

= sup
u∈U

T

(
N (x)(u), sup

w∈U
T (N (u)(w), μz(w))

)

= sup
u∈U

T (N (x)(u), T (N (u)(z), μz(z)))

= sup
u∈U

T (N (x)(u), T (N (u)(z), 1))

= sup
u∈U

T (N (x)(u), N (u)(z)) .

Therefore, byEq. (6),weobtain that supu∈U T (N (x)(u), N (u)

(z)) ≤ N (x)(z). Clearly, for y ∈ U ,

T (N (x)(y), N (y)(z)) ≤ sup
u∈U

T (N (x)(u), N (u)(z)) .

This implies that T
(
N (x)(y), N (y)(z)

)
≤ N (x)(z). We

have proved that ∀x, y, z ∈ U , T
(
N (x)(y), N (y)(z)

)
≤

N (x)(z). Consequently, N is T -transitive. ��
Proposition 2 Let N be a fuzzy neighborhood operator onU
and T a t-norm. Then, the following statements hold:

(1) If ∀α ∈ [0, 1], aprTN (α̂) = α̂, then N is serial.
(2) If ∀A ∈ F(U ), aprTN (aprTN (A)) ⊆ aprTN (A), then N

is T -transitive.

Proof (1) Assuming that ∀α ∈ [0, 1], aprTN (α̂) = α̂, we
have aprTN (1̂) = 1̂. By Definition 7, this implies that

∀x ∈ U ,
(
aprTN (1̂)

)
(x) = supy∈U T (N (x)(y), 1̂(y)) =

supy∈U T (N (x)(y), 1) = supy∈U N (x)(y) = 1 = 1̂(x), that
is, ∀x ∈ U , supy∈U N (x)(y) = 1. Therefore, N is serial.

(2) By Lemma 1, it is obvious. ��
Remark 3 In [33], D’eer et al. provided a result: that is, if N
is reflexive, then ∀A ∈ F(U ), apr I

N
(A) ⊆ A ⊆ aprTN (A).

In this paper, we only use the upper approximation to char-
acterize the reflexivity of a fuzzy neighborhood operator.

Theorem 2 Let N be a fuzzy neighborhood operator on U
and T a t-norm. Then, the following statements hold:

(1) N is serial ⇐⇒ aprTN (U ) = U.
(2) n is reflexive ⇐⇒ ∀A ∈ F(U ), A ⊆ aprTN (A).

(3) N is symmetric ⇐⇒ ∀x, y ∈ U,
(
aprTN (μx )

)
(y) ⊆(

aprTN (μy)
)
(x).

(4) N is T -transitive ⇐⇒ ∀x ∈ U, aprTN (aprTN (μx )) ⊆
aprTN (μx ).

Proof (1) By ∀a ∈ [0, 1], T (a, 1) = a, we conclude that

aprTN (U ) = U ⇔ ∀x ∈ U ,
(
aprTN (U )

)
(x) = 1

⇔ ∀x ∈ U , sup
y∈U

T (N (x)(y),U (y)) = 1

⇔ ∀x ∈ U , sup
y∈U

T (N (x)(y), 1) = 1

⇔ ∀x ∈ U , sup
y∈U

N (x)(y) = 1

⇔ N is serial.

This completes the proof.
(2) The necessity is obvious from Remark 3.
Conversely, by ∀a ∈ [0, 1], T (a, 0) = 0 and T (a, 1) = a,

we have that, for all x ∈ U ,

aprTN (μx )(x) = sup
y∈U

T (N (x)(y), μx (y))

= T (N (x)(x), μx (x))

= T (N (x)(x), 1) = N (x)(x).
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Since μx ⊆ aprTN (μx ), it follows that 1 = μx (x) ≤
(aprTN (μx ))(x) = N (x)(x). This implies that N (x)(x) = 1.
We have proved that ∀x ∈ U , N (x)(x) = 1. Therefore, N is
reflexive. This completes the proof of the sufficiency.

(3) It is straightforward from Definition 7 and the defini-
tion of symmetry.

(4) The sufficiency is obvious from Lemma 1.
Conversely, let x ∈ U . By ∀a ∈ [0, 1], T (a, 0) = 0,

T (a, 1) = a and Eq. (3), we have that, for all y ∈ U ,

(
aprTN

(
aprTN (μx )

))
(y)

= sup
z∈U

T
(
N (y)(z),

(
aprTN (μx )

)
(z)

)

= sup
z∈U

T

(
N (y)(z), sup

w∈U
T (N (z)(w), μx (w))

)

= sup
z∈U

T (N (y)(z), T (N (z)(x), μx (x)))

= sup
z∈U

T (N (y)(z), T (N (z)(x), 1))

= sup
z∈U

T (N (y)(z), N (z)(x)) .

Since N is T -transitive, it follows that, for all y ∈ U ,

(
aprTN

(
aprTN (μx )

))
(y)

= sup
z∈U

T (N (y)(z), N (z)(x)) ≤ sup
z∈U

N (y)(x) = N (y)(x).

(7)

On the other hand, by ∀a ∈ [0, 1], T (a, 0) = 0, T (a, 1) = a
and Eq. (3), we know that, for all y ∈ U ,

aprTN (μx )(y) = sup
z∈U

T (N (y)(z), μx (z))

= T (N (y)(x), μx (x)) = T (N (y)(x), 1) = N (y)(x).

Therefore, by Eq. (7), we have proved that, for all y ∈ U ,(
aprTN

(
aprTN (μx )

))
(y) ≤ aprTN (μx )(y). Hence ∀x ∈ U ,

aprTN (aprTN (μx )) ⊆ aprTN (μx ). This completes the proof
of the necessity. ��

By combining Theorem 2 (2) and Proposition 1 (2), we
can provide the following result.

Corollary 1 Let N be a fuzzy neighborhood operator on
U and T a t-norm. If N is reflexive, then ∀α ∈ [0, 1],
aprTN (α̂) = α̂.

Properties of fuzzy lower approximation operators
based on the Gödel implication IM

In this section,we discuss the relationships between the fuzzy
lower approximation operators based on a fuzzy implication

and the fuzzy neighborhood operators. However, it is difficult
to investigate the fuzzy lower approximation operator based
on a general fuzzy implication. Thus, we discuss mainly the
characterization of the fuzzy lower approximation operator
based on the Gödel implication.

Remark 4 The popular left-continuous t-norm is the standard
min operator and it is defined by

TM (a, b) = min{a, b}, where a, b ∈ [0, 1]. (8)

The R-implication IM based on TM is also well known and
is called the Gödel implication [39]. It is defined as follows:

∀x, y ∈ [0, 1], IM (x, y) =
{
y, if x > y;
1, if x ≤ y.

(9)

First, we give the properties of the fuzzy lower approxi-
mation based on IM .

Proposition 3 Let N be a fuzzy neighborhood operator onU
and IM theGödel implication. Then, the following statements
hold:

(1) apr IM
N

(U ) = U.

(2) If N is serial, then apr IM
N

(∅) = ∅.
(3) ∀α ∈ [0, 1], apr IM

N
(α̂) ⊇ α̂.

Proof (1) By Remark 4, we can derive ∀a ∈ [0, 1],
IM (a, 1) = 1. Thus, for all x ∈ U , we have that

(
apr IM

N
(U )

)
(x) = inf

y∈U IM (N (x)(y),U (y))

= inf
y∈U IM (N (x)(y), 1) = 1 = U (x).

Thus, apr IM
N

(U ) = U .
(2) Since N is serial, we have that ∀x ∈ U , ∃y such

that N (x)(y) �= 0. This implies that ∀x ∈ U , ∃y such that
IM (N (x)(y), 0) = 0. Hence, ∀x ∈ U , we conclude that

(
apr IM

N
(∅)

)
(x) = inf

y∈U IM (N (x)(y),∅(y))

= inf
y∈U IM (N (x)(y), 0) = 0 = ∅(x).

Thus, apr IM
N

(∅) = ∅.
(3) Let α ∈ [0, 1]. Since ∀a ∈ [0, 1], IM (1, a) = a, and

IM is the monotone decreasing function with respect to the
first variable, it follows that ∀x ∈ U , we have that

(
apr IM

N
(α̂)

)
(x) = inf

y∈U IM (N (x)(y), α) ≥ inf
y∈U IM (1, α)

= inf
y∈U α = α = α̂(x).

This implies that apr IM
N

(α̂) ⊇ α̂. ��
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For β ∈ [0, 1] and x ∈ U , we define the fuzzy set βx of
U as follows:

∀y ∈ U , βx (y) =
{

β, if y = x;
1, otherwise.

(10)

Lemma 2 Let N be a fuzzy neighborhood operator onU, TM
the standard min operator and IM the Gödel implication. If
∀β ∈ [0, 1] and x ∈ U, apr IM

N
(apr IM

N
(βx )) ⊇ apr IM

N
(βx ),

then N is TM-transitive.

Proof Suppose that N is not TM -transitive, then there exist
x0, y0, z0 ∈ U such that TM

(
N (x0)(y0), N (y0)(z0)

)
>

N (x0)(z0). We choose β = TM
(
N (x0)(y0),N (y0)(z0)

)
+N (x0)(z0)

2 .
Clearly, N (x0)(z0) < β < TM (N (x0)(y0), N (y0)(z0)). By
Remark 4, we can derive ∀a ∈ [0, 1], IM (a, 1) = 1. This
implies that

(
apr IM

N

(
apr IM

N

(
βz0

)))
(x0)

= inf
u∈U IM

(
N (x0)(u),

(
apr IM

N

(
βz0

))
(u)

)

= inf
u∈U IM

(
N (x0)(u), inf

w∈U IM
(
N (u)(w), βz0(w)

))

= inf
u∈U IM

(
N (x0)(u), IM (N (u)

(
z0), βz0(z0)

))

= inf
u∈U IM (N (x0)(u), IM (N (u)(z0), β))

≤ IM (N (x0)(y0), IM (N (y0)(z0), β)) .

and by N (x0)(z0) < β, we have

(
apr IM

N

(
βz0

))
(x0) = inf

w∈U IM (N (x0)(w), βz(w))

= IM
(
N (x0)(z0), βz0(z0)

) = IM (N (x0)(z0), β) = 1.

That is,
(
apr IM

N

(
apr IM

N
(βz0)

))
(x0) ≤ IM (N (x0)(y0), T (N

(y0)(z0), β)) and
(
apr IM

N
(βz0)

)
(x0) = 1. By

β < TM (N (x0)(y0), N (y0)(z0)),

we can get that β < N (x0)(y0) and β < N (y0)(z0). This
implies that

(
apr IM

N

(
apr IM

N
(βz0)

))
(x0)

≤ IM (N (x0)(y0), T (N (y0)(z0), β)) = β < 1

=
(
apr IM

N
(βz0)

)
(x0).

That is to say,we conclude that
(
apr IM

N

(
apr IM

N
(βz0)

))
(x0) <(

apr IM
N

(βz0)
)
(x0). This contradicts the condition: ∀β ∈

[0, 1] and x ∈ U , apr IM
N

(apr IM
N

(βx )) ⊇ apr IM
N

(βx ). Conse-
quently, N is TM -transitive. ��

Theorem 3 Let N be a fuzzy neighborhood operator on U
and IM theGödel implication. Then, the following statements
hold:

(1) N is serial ⇐⇒ ∀α ∈ [0, 1], apr IM
N

(α̂) = α̂.

(2) N is reflexive ⇐⇒ ∀A ∈ F(U ), apr IM
N

(A) ⊆ A.
(3) N is symmetric ⇐⇒ ∀β ∈ [0, 1] and x, y ∈ U,(

apr IM
N

(βx )
)
(y) =

(
apr IM

N
(βy)

)
(x).

(4) N is TM-transitive ⇐⇒ ∀A ∈ F(U ), apr IM
N

(apr IM
N

(A))

⊇ apr IM
N

(A), where TM is the standard min operator.

Proof (1) For α ∈ [0, 1], if α = 1, then by the definition of
lower approximation and Remark 4, we can obtain that ∀x ∈
U ,

(
apr IM

N
(α̂)

)
(x) = inf

y∈U IM (N (x)(y), 1) = 1 = α̂(x), that

is, apr IM
N

(α̂) = α̂. Next, let α < 1. Since N is serial, we
know that ∀x ∈ U , sup

y∈U
N (x)(y) = 1. Thus, for x ∈ U ,

there exists y0 ∈ U such that N (x)(y0) > α.

(
apr IM

N
(α̂)

)
(x) = inf

y∈U IM (N (x)(y), α)

≤ IM (N (x)(y0), α) = α = α̂(x).

That is to say, apr IM
N

(α̂) ⊆ α̂. On the other hand, by Propo-

sition 3 (3), we know that apr IM
N

(α̂) ⊇ α̂. In summary,

apr IM
N

(α̂) = α̂. This completes the proof of the necessity.
Conversely, suppose that N is not serial. Then, there

exists x0 ∈ U such that sup
y∈U

N (x0)(y) �= 1. That is to say,

sup
y∈U

N (x0)(y) < 1. We take

α0 =
1 + sup

y∈U
N (x0)(y)

2
> 0.

Clearly, supy∈U N (x0)(y) < α0 < 1. Thus, ∀y ∈ U ,
N (x0)(y) < α0. This implies that∀y ∈ U , IM (N (x0)(y), α0)

= 1. It follows that
(
apr IM

N
(α̂0)

)
(x0) = 1 �= α0 = α̂0(x0).

Thus, apr IM
N

(α̂0) �= α̂0, which contradicts the condition:

∀α ∈ [0, 1], apr IM
N

(α̂) = α̂. Consequently, N is serial.
(2) Since N is reflexive, we have that ∀x ∈ U , N (x)(x) =

1. Thus, ∀A ∈ F(U ) and x ∈ U ,

(
apr IM

N
(A)

)
(x) = inf

y∈U IM (N (x)(y), A(y))

≤ IM (N (x)(x), A(x))

= IM (1, A(x)) = A(x).

This implies that ∀A ∈ F(U ), apr IM
N

(A) ⊆ A.
Conversely, suppose that N is not reflexive, then there

exists x0 ∈ U such that N (x0)(x0) �= 1. That is to say,
N (x0)(x0) < 1. We choose β = 1+N (x0)(x0)

2 . It is clear that
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N (x0)(x0) < β < 1. By Eq. (10), we can construct the
fuzzy subset βx0 ofU . By ∀a ∈ [0, 1], IM (a, 1) = 1, we can
compute that

(
apr IM

N
(βx0)

)
(x0) = inf

y∈U IM
(
N (x)(y), βx0(y)

)

= IM
(
N (x0)(x0), βx0(x0)

)

= IM (N (x0)(x0), β) = 1 > β = βx0(x0).

This implies that apr IM
N

(βx0) � βx0 , which contradicts with

the condition: ∀A ∈ F(U ), apr IM
N

(A) ⊆ A. This completes
the proof of the sufficiency.

(3) Let β ∈ [0, 1] and x, y ∈ U . By ∀a ∈ [0, 1],
IM (a, 1) = 1, we have that

(
apr IM

N
(βx )

)
(y) = inf

z∈U IM (N (y)(z), βx (z))

= IM (N (y)(x), β), (11)

and

(
apr IM

N
(βy)

)
(x) = inf

z∈U IM (N (y)(z), βx (z))

= IM (N (x)(y), β) . (12)

Since N is symmetric, it follows that N (x)(y) = N (y)(x).

Thus, byEqs. (11) and (12), we conclude
(
apr IM

N
(βx )

)
(y) =(

apr IM
N

(βy)
)
(x).

Conversely, suppose that N is not symmetric, then there
exist x, y ∈ U such that N (x)(y) �= N (y)(x). Without loss
of generality, we assume N (x)(y) < N (y)(x). We choose
β = N (x)(y)+N (y)(x)

2 . Clearly, N (x)(y) < β < N (y)(x). By
Remark 4 and Eqs. (11) and (12), we can derive

(
apr IM

N
(βy)

)
(x) = IM (N (x)(y), β) = 1 �= β

= IM (N (y)(x), β)

=
(
apr IM

N
(βx )

)
(y).

This is a contradiction to the condition: ∀β ∈ [0, 1] and

x, y ∈ U ,
(
apr IM

N
(βx )

)
(y) =

(
apr IM

N
(βy)

)
(x). This com-

pletes the proof.
(4) The sufficiency is obvious from Lemma 2.
Conversely,we shall prove that∀A ∈ F(U ),apr IM

N

(
apr IM

N
(A)

) ⊇ apr IM
N

(A). We only need to prove that ∀x ∈ U ,(
apr IM

N

(
apr IM

N
(A)

))
(x) ≥

(
apr IM

N
(A)

)
(x). Suppose that

there exists x0 ∈ U such that
(
apr IM

N

(
apr IM

N
(A)

))
(x0) <

(
apr IM

N
(A)

)
(x0), that is to say,

inf
y∈U IM

(
N (x0)(y), inf

z∈U IM (N (y)(z), A(z))

)

< inf
z∈U IM (N (x0)(z), A(z)).

Then, there exists y0 ∈ U such that

IM

(
N (x0)(y0), inf

z∈U IM (N (y0)(z), A(z))

)

< inf
z∈U IM (N (x0)(z), A(z)).

It is clear that IM
(
N (x0)(y0), inf

z∈U IM (N (y0)(z), A(z))
)

<

1. By the definition of IM , we can obtain that

N (x0)(y0) > inf
z∈U IM (N (y0)(z), A(z)), and

IM

(
N (x0)(y0), inf

z∈U IM (N (y0)(z), A(z))

)

= inf
z∈U IM (N (y0)(z), A(z)) < inf

z∈U IM (N (x)(z), A(z)),

that is, inf
z∈U IM (N (y0)(z), A(z)) < inf

z∈U IM (N (x)(z), A(z)).

This implies that there exists z1 ∈ U such that

IM (N (y0)(z1), A(z1)) < inf
z∈U IM (N (x)(z), A(z)). (13)

In addition, according to N (x0)(y0) > inf
z∈U IM (N (y0)(z),

A(z)), we can conclude that there exists z2 ∈ U such that

N (x0)(y0) > IM (N (y0)(z2), A(z2)). (14)

By Eqs. (13) and (14), we can conclude that IM (N (y0)(z1),
A(z1)) < 1 and IM (N (y0)(z2), A(z2) < 1. It follows from
the definition of IM that

N (y0)(z1) > A(z1), (15)

IM (N (y0)(z1), A(z1)) = A(z1); and (16)

N (y0)(z2) > A(z2), (17)

IM (N (y0)(z2), A(z2)) = A(z2). (18)

Without loss of generality, we assume that A(z2) ≥ A(z1).
Thus, by Eqs. (13) and (16), we have

A(z1) < inf
z∈U IM (N (x)(z), A(z)); (19)

and by Eqs. (14) and (18), we have

N (x0)(y0) > A(z2) ≥ A(z1). (20)
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By Eqs. (15) and (20), this implies that TM (N (x0)(y0),
N (y0)(z1)) > A(z1). Since N is TM -transitive, we have

TM (N (x0)(y0), N (y0)(z1)) ≤ N (x0)(z1).

Thus, N (x0)(z1) > A(z1). This implies that IM (N (x0)(z1),
A(z1)) = A(z1). Therefore, we obtain

inf
z∈U IM (N (x)(z), A(z)) ≤ IM (N (x0)(z1), A(z1)) = A(z1),

which is a contradiction with Eq. (19). Consequently,
apr IM

N

(
apr IM

N
(A)

) ⊇ apr IM
N

(A). This completes the proof
of the necessity. ��

In this section, the notations α̂, μx and βx represent three
types of fuzzy sets. They are similar and easily confused
notations. For easy understanding, we summarize them in
Table 1.

The relationships between the fuzzy
topology and the fuzzy lower (or upper)
approximation operator

Topology is an important topic ofmathematics. It is applied in
many fields.We know that closure operator and topology can
determine each other. Thus, closure operators (characterized
by closure axioms [43]), are an important tool to investigate
topology theory. In 1976, Lowen extended this concept into
fuzzy set theory, and established the concept of fuzzy clo-
sure operators [44]. Since the lower and upper approximation
operators in the rough set theory is strongly similar to the clo-
sure operator and interior operator in topology theory. Hence
there are many researches on the connections between topo-
logical structures and rough sets [36, 45–48]. Wiweger [46]
discussed the relationships between Pawlak rough sets and
topological spaces, and he showed that an upper approxima-
tion is a closure operator while a lower approximation is an
interior operator. Then, the connections between crisp rough
set model and crisp topology were explored [49, 50]. Subse-
quently, Qin and Pei [51] discussed topological structures of
fuzzy rough sets by the interior operator and closure operator.
Mi et al. [35] and Wu [36] gave different collections of inde-
pendent axiomatic sets to characterize various types of fuzzy
rough approximations based on t-norm. In this section, by
means of the results of Section 3, we further investigate the
relationships between fuzzy topology structures and fuzzy
rough sets based on t-norms and fuzzy implications.

Fuzzy upper approximation operators and fuzzy
closure operators

In this subsection, we shall investigate the connections of
fuzzy upper approximation operators and fuzzy closure oper-
ators. In [36], Wu introduced the closure axioms of a fuzzy
topology on U as follows:

Definition 8 [36] Let U be a nonempty set. A mapping
cl : F(U ) → F(U ) is called a fuzzy closure operator if
it satisfies following axioms:

(C1) ∀A ∈ F(U ), A ⊆ cl(A);
(C2) ∀A, B ∈ F(U ), cl(A ∪ B) = cl(A) ∪ cl(B);
(C3) ∀A ∈ F(U ), cl(cl(A)) = cl(A);
(C4) ∀α ∈ [0, 1], cl(α̂) = α̂.

In [33], D’eer et al. showed that aprTN satisfies the prop-
erty: ∀A, B ∈ F(U ), aprTN (A∪B) = aprTN (A)∪aprTN (B),
and they proved that the following result hold:

• Let N be a fuzzy neighborhood operator on U , T a t-
norm and I a R-implication based on T . If T is left-
continuous, and N is reflexive and T -Euclidean, or if
T is a left-continuous and N is T -similarity relation,
then ∀A ∈ F(U ), aprTN (aprTN (A)) = aprTN (A) and
apr I

N
(apr I

N
(A)) = apr I

N
(A).

Note that N is referred to as T -similarity relation if N is
reflexive, symmetric and T -transitive. In fact, the limitation
of symmetry in above result is not necessary. Next, we pro-
vide a more general condition under which ∀A ∈ F(U ),
aprTN (aprTN (A)) = aprTN (A).

Proposition 4 Let N be a fuzzy neighborhood operator on
U and T a t-norm. If T is left-continuous, and N is reflex-
ive and T -transitive, then ∀A ∈ F(U ), aprTN

(
aprTN (A)

) =
aprTN (A).

Proof Let A ∈ F(U ). Since N is reflexive, it follows from
Theorem 2 (2) that aprTN

(
aprTN (A)

) ⊇ aprTN (A). On the
other hand, since N is T -transitive and T is left-continuous,
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Table 1 The summary of
notations of three fuzzy sets

Notation α̂ μx βx

Definition α̂(x) = α If y = x , μx (y) = 1 If y = x , βx (y) = β

If y �= x , μx (y) = 0 If y �= x , βx (y) = 1

we have that ∀x ∈ U ,

(
aprTN

(
aprTN (A)

))
(x) = sup

y∈U
T

(
N (x)(y),

(
aprTN (A)

)
(y)

)

= sup
y∈U

T
(
N (x)(y), sup

z∈U
T

(
N (y)(z), A(z)

))

= sup
y∈U

sup
z∈U

T
(
N (x)(y), T

(
N (y)(z), A(z)

))

= sup
y∈U

sup
z∈U

T
(
T

(
N (x)(y), N (y)(z)

)
, A(z)

)

≤ sup
y∈U

sup
z∈U

T
(
N (x)(z), A(z)

)

= sup
z∈U

T
(
N (x)(z), A(z)

)
=

(
aprTN (A)

)
(x).

We have proved that ∀x ∈ U ,
(
aprTN

(
aprTN (A)

))
(x) ≤(

aprTN (A)
)
(x).That is to say,aprTN

(
aprTN (A)

) ⊆ aprTN (A).

In summary, aprTN
(
aprTN (A)

) = aprTN (A). ��
By combining Theorem 2 (2), Corollary 1 and Proposi-

tion 4, we can establish the following conclusion.

Theorem 4 Let N be a fuzzy neighborhood operator on U
and T a t-norm. If T is left-continuous, and N is reflexive
and T -transitive, then aprTN is a fuzzy closure operator.

Fuzzy lower approximations and fuzzy interior
operators

In this subsection, we shall investigate the connections of
fuzzy lower approximation operators and fuzzy interior oper-
ators. In [36], Wu introduced the interior axioms of a fuzzy
topology on U as follows:

Definition 9 [36] Let U be a nonempty set. A mapping
int : F(U ) → F(U ) is called a fuzzy interior operator
if it satisfies following axioms:

(I1) int(A) ⊆ A, ∀A ∈ F(U );
(I2) int(A ∩ B) = int(A) ∩ int(B), ∀A, B ∈ F(U );
(I3) int(int(A)) = int(A), ∀A ∈ F(U );
(I4) int(α̂) = α̂, ∀α ∈ [0, 1].
We first provide the following conclusion.

Proposition 5 Let N be a fuzzy neighborhood operator on
U, TM the standard min operator and IM the Gödel impli-
cation. If N is reflexive and TM-transitive, then ∀A ∈ F(U ),
apr IM

N

(
apr IM

N
(A)

) = apr IM
N

(A).

The properties of IT-FRS

Pro. 1 and 2 (Sec. 3.1)    Pro. 4 (Sec. 4.1) 

Pro. 3 (Sec. 3.2)              Pro. 5 (Sec. 4.2)

The relationships between 

the properties of IT-FRS 

and FNO

Thm. 2 (Sec. 3.1) , 

Thm. 3 (Sec. 3.2)

The relationships between 

IT-FRS and FT

Thm. 4 (Sec. 4.1) , 

Thm. 5 (Sec. 4.2)

Fig. 1 The connections among the proposed conclusions

Proof It is straightforward from (2) and (4) of Theorem 3. ��
By combining Theorem 3 and Proposition 5, we can

obtain the following conclusion.

Theorem 5 Let N be a fuzzy neighborhood operator on U,
TM the standard min operator and IM the Gödel implication.
If N is reflexive and TM-transitive, then apr IM

N
is a fuzzy

interior operator.

Conclusion

This paper proposed some fundamental results on fuzzy
neighborhood operators (FNO), fuzzy topology (FT) and
fuzzy rough sets based on t-norm and fuzzy implication
(IT-FRS). These conclusions were summarized by Fig. 1. In
Fig. 1, we can see that the paper first gave the properties of
IT-FRS. Then, using these properties, IT-FRS was character-
ized by FNO and vice versa. Finally, combining the results of
Sect. 3, topological properties of IT-FRS were discussed. In
summary, this work provided theoretic foundation for fuzzy
rough sets based on arbitrary t-norms and fuzzy implications.
In our future work, we will take into account the following
issue: Whether are these results of Sect. 3.2 true or not when
we replace the fuzzy implication IM by a general fuzzy impli-
cation I . In addition, we will research on the applications of
the IT-FRS model in real problems.
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