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Abstract
The development of the Internet and big data has led to the emergence of graphs as an important data representation structure
in various real-world scenarios. However, as data size increases, computational complexity and memory requirements pose
significant challenges for graph embedding. To address this challenge, this paper proposes a multilevel embedding refinement
framework (MERIT) based on large-scale graphs, using spectral distance-constrained graph coarsening algorithms and an
improved graph convolutional neural network model that addresses the over-smoothing problem by incorporating initial
values and identity mapping. Experimental results on large-scale datasets demonstrate the effectiveness of MERIT, with an
average AUROC score 8% higher than other baseline methods. Moreover, in a node classification task on a large-scale graph
with 126,825 nodes and 22,412,658 edges, the framework improves embedding quality while enhancing the runtime by 25
times. The experimental findings highlight the superior efficiency and accuracy of the proposed approach compared to other
graph embedding methods.

Keywords Graph representation learning · Graph embedding · Graph neural networks · Graph convolutional network ·
Large-scale graph

Introduction

In recent years, there has been a significant increase in the
popularity of graph embedding, which involves encoding
nodes and edges into low-dimensional vectors so that the
graph’s structural information can be optimally preserved.
Graph embedding technology has demonstrated excellent
results in various applications, such as node classification [1],
link and community detection [2–4], social recommendation
systems [5], and traffic detection [6]. Although these new
embedding methods typically offer more significant qualita-
tive advantages than traditional methods, many of them are
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not scalable for large-scale datasets, such as graphswithmore
than 10,000 nodes, and their computation is expensive, and
they require a considerable amount of memory. For example,
Deepwalk [7] generates the node’s neighbor sequence points
via random walk, while the Skip-gram idea is employed to
train the nodes’ feature vector. Node2vec [8] is a sequence
of information that incorporates random breadth walk, fol-
lowing Deepwalk’s random depth walk. The original graph
is transformed into a multi-layer graph structure, and this is
followed by a context sequence of random walks with offset
information. The vector representation of nodes is ultimately
acquired through Skip-gram training. These methods aim to
embed a graph based on its topologywhile not including node
attribute knowledge. This factor decreases their embedding
capability and imposes a substantial amount of CPU time to
acquire an adequate number of walks to train the embedding
model.

Due to the high computational cost and memory use
of graph embedding in large-scale graphs [9, 10], several
approaches have been proposed to embed scalable graphs
using a multi-level framework. The process involves three
steps: first, a hybrid matching strategy is implemented to
repeatedly shrink the original graph into smaller graphs; sec-
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ond, existing embedding techniques are utilized to generate
the embedding on the coarse graph, which is computationally
inexpensive, occupies relatively minimal memory, and cap-
tures the global structure of the original graph; and finally, a
graph convolution network-based learning refinement model
is proposed [11]. Thismodel uses a nonlinear activation func-
tion to identify linear transformation of all nodes’ neighbors.
This model improves the quality of embedding from the
coarse graph to the original. The process of learning refine-
ment in the graph convolution network is dependent on the
embedment method, structure, and the selection of the rela-
tion graph.

Multi-level frameworks have significantly improved the
embedding speed of some large-scale graphs. Previous
research has been carried out toward coarsening, partic-
ularly focused on preserving diverse attributes. Typically,
this method involves the spectra of both the original and
the coarse graphs [9, 10, 12]. A more advanced coarsen-
ing algorithm [13] that could efficiently manage the first few
eigenvectors of the graph Laplacianmatrix was subsequently
discovered. These eigenvectors are particularly crucial for
preserving the critical structure of the graph. Nonetheless,
experimental outcomes demonstrate that graph embedding
is not effective for nodes with several features and com-
plicated structures. It becomes inappropriate to evaluate the
two graphs solely based on the difference in their eigenval-
ues since the spectral distance between the coarse and the
original graph is not clearly defined. The Graph Convolu-
tional Network (GCN) model is restricted in its ability to
obtain information from high-order neighbors since it has
little refinement capacity. However, adding more layers and
increasing nonlinearity can hinder the performance of these
models, leading to oversmoothing. This implies that as the
number of layers goes up, the GCN’s nodes representation
tends to specific values, making them indistinguishable.

This paper introduces a novel multi-level graph embed-
ding refinement framework, MERIT, designed to enhance
the efficiency of large-scale graph embeddings. Specifically,
MERIT contains three key components: graph coarsening,
graph embedding, and embedding refinement. First, the
graph is coarsened by assessing the similarity between the
original and coarsened graphs based on the shift in spec-
tral distance [14] and capturing structural adjustments in
the graph coarsening process. The paper proposes a novel
coarsening algorithm that locally clusters nodes with a high
spectral affinity to create a graphwith fewer nodes (adjacency
matrix). The previously mentioned process is repeatedly
performed to optimize the termination criterion for coars-
ening. Second, any existing unsupervised graph embedding
technique can be employed for node embedding of the
global graph in the base graph embedding stage. Finally,
this paper proposes a new refinement model that employs
learning-based graph convolutional networks to improve the

embedding from the coarsest graph to the original graph.
This graph convolutional network utilizes the inherent depen-
dencies of the graph structure and the selected embedding
technique to achieve a refinement process.

This paper evaluates the proposed MERIT framework on
three benchmark datasets: the bioinformatics dataset PPI, the
reviews dataset Reddit, and the social reviews dataset Flickr.
Furthermore, this paper evaluate the progress of MERIT
on the literature citation network public dataset CORA and
the bibliographic network dataset DBLP. The experimental
results demonstrate that MERIT significantly reduces run-
time while improving classification accuracy and prediction
precision.

The main technical contributions of this article are sum-
marized as follows:

• MERIT is a powerful tool for generating high-quality
embeddings for large-scale graphs. This paper introduces
a new coarsening algorithm that significantly reduces
graph size. As part of the refinement process, the GCN
model is tweaked to prevent over-smoothing and to con-
tinuously improve network performance as its depth
increases. As a result, embedding accuracy is improved
by 11% compared to existing embedding technologies
(Fig. 1).

• TheMERIT approach is highly scalable, greatly enhanc-
ing the scalability of embedding methods by a factor of
up to 40, both in terms of runtime and memory usage.

• MERIToffers highflexibility. The framework is indepen-
dent of the underlying graph embedding technology and
can be combined with any unsupervised graph embed-
ding method.

Related work

There is a large and active body of research on both multi-
level graph embedding and graph convolutional networks
that inspire MERIT to improve the performance and speed
of unsupervised embedding methods. This paper provides a
summary of recent research in these areas, with a focus on
the latest developments.

Graph embedding

In recent years, numerous network embedding and graph
embedding approaches have been proposed. LINE [15],
which preserves first-order and second-order proximities,
and SDNE [16], which captures the non-linear structure
through deep neural networks, are two notable graph embed-
ding algorithms. Matrix decomposition technique has also
been utilized in graph embedding [17, 18]. As a result,
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Fig. 1 The MERIT embedding method consists of three stages: graph coarsening, base embedding, and GCN refinement

more network embedding methods were developed for
information-rich graphs and heterogeneous networks [19–
22]. Efforts to improve the scalability of graph embedding
are relatively minimal [23]. Current methods are constrained
to moderate-sized datasets. The aim of multi-level graph
embedding is to simplify an original graph by breaking it
down into smaller graphs of decreasing sizes. These smaller
graphs are then fragmented into clusters, which are used to
reconstruct partitions recursively from the coarse-grained
graph. The final step involves connecting the resulting
embedding vectors to generate a hierarchically built mul-
tilevel graph that provides the final node embedding for the
original graph [24].Although prior research has concentrated
on improving embedding quality, scalability was not always
a priority. However, embedding frameworks based on the
coarsest graph are more scalable [12]. Unfortunately, many
of these techniques lack the necessary refinement processes
required to generate high-quality embeddings. It is impor-
tant to note that improving the accuracy and scalability of
graph embedding techniques are seen as separate issues. This
study aims to address the need for faster large-scale graph
embedding while simultaneously enhancing the quality of
the embedding.

Multi-level graph embedding

Previous efforts attempted to enhance embedding quality
by training the coarsest graph for coarse embedding, and
later refining with GCN [9, 10]. However, the drawback
with this approach is that the article necessitates training

a time-intensive GCN model for large-scale graphs, which
is problematic when stacking multiple layers. To address
this issue, the multi-level graph embedding in GraphZoom
[13] utilizes a GCN model for filtering, which eliminates
high-frequency noise in the node characteristic matrix.
This approach demonstrated the fundamental relationship
between graph embedding and filtering. A filtering neural
network (gfNN) is proposed to yield a more robust graph
filter, which enhances embedding quality. Additionally, two
generalized graph filters are derived and incorporated into
the graph embedding model for various classification tasks,
further improving the embedding quality. It is worth noting
that the neural network produced by training graphs captures
not only the features of the graphs themselves but also their
relative relationships [25, 26].

In the refinement process, a graph filter is employed in the
iterative thinning step to smooth the intermediate embed-
dings. This step plays a pivotal role in enhancing the quality
of the final embedding. However, datasets such as PPI [27]
contain multiple node types, and the contextual and sequen-
tial amino acid information must be filtered and aggregated
efficiently. When these datasets are extended to deep neu-
ral structures, the learning process becomes inefficient, and
developing an effective GCN model becomes challenging
due to the vanishing gradient problem.

Over-smoothing

The problem of over-smoothing in GCN has received sig-
nificant attention in recent work. JKNet [28] addresses this

123



1306 Complex & Intelligent Systems (2024) 10:1303–1318

issue by utilizing dense hop connections to maintain the
locality of node representation. DropEdge [29] proposes to
randomly delete some edges in the input graph to alleviate
the effects of over-smoothing. These methods demonstrate
a slower decline in performance when increasing network
depth. However, for semi-supervised tasks, shallow models
still provide the most advanced results, casting doubt on the
benefits of increasing network depth. In order to address this
challenge, MERIT proposed in this paper extends the depth
model through a simple yet effective modification. In addi-
tion, it introduces a graph convolutional network based on the
proportion of initial values and identity mapping, which con-
structs jump connections at each layer of the training model.
In this model, each layer adds a certain percentage of the
initial values, and the identity mapping adds the unit matrix
to the weight matrix, as described in detail in the method
section.

Problem formulation

Let G = (V, E,W ) represent the input graph with V and E
as the node-set and edge-set, respectively.W ∈ R

N×N is the
adjacency matrix, and w(i) ∈ R

N represents the weight of
all possible edge vectors. The purpose of each node in G is to
best preserve the attributes of the graph. To improve the speed
of existing graph embedding methods without compromis-
ing on quality, this paper extend the embedding method to
accommodate large-scale datasets.

This paper is to address the following problem: given
a graph G = (V, E,W ) and a graph embedding method
f (∗), the aim is to present a mechanism that can improve
the scalability of the graph embedding while maintaining or
enhancing the quality of output equal to, or even better than,
that of f (∗).

Graph coarsening

The coarse graph Gm = (Vm, Em,Wm) with n = |vm | is
coarsened from the original graph G with respect to a set of
non-overlapping graph partitions P = {S1,S2...Sn} ⊂ V , V
covers all nodes. Each partition Si corresponds to a "supern-
ode" denoted by Sp and the "superedge" connecting the
supernodes Wm(p, q) has the edge weight as the accumula-
tive edge weights between nodes in the corresponding graph
partitions Sp and Sq :

Wm(p, q) = w
(Sp,Sq

) :=
∑

vi∈Sp,v j∈Sq

W (i, j) (1)

Let P ∈ R
n×N be the matrix whose columns are partition

indicator vectors,

P(p, i) =
{
1, if vi ∈ Sp

0, othewise
(2)

An established fact is that theweightmatrixWm of the coarse
graph Gm satisfies Wm = PW P�. Using this relationship,
the coarsened Laplacian matrices can be directly defined as:

Lm = Dm − Wm and Lm = In − D−1/2
m WmD

−1/2
m (3)

The spectral graph partitioning algorithm, first proposed
by Fiedler, was initially interpreted as a clustering algorithm
because graph partitioning is often analogous to clustering. In
this paper, a set P of graph partitions {S1,S2, . . . ,Sn} ⊂ V
is referred to as a "cut" of a graph because it creates a partition
of V into P and P̄ .

Definition 1 The definition of the volume of a vertex is as
follows:

vol v =
∑

u

Wv,u (4)

Likewise, the volume of a set is

vol P =
∑

v∈P

vol v (5)

Finally, the volume of a cut is

vol ∂P =
∑

u∈P,v∈P̄

Wu,v (6)

One important property of the vol ∂P is that

vol ∂P = vol ∂ P̄ (7)

By definition, the partitioning algorithm follows a simple
set of steps. First, the normalized cut of a partition P in a
graph G is calculated in this paper.

ncut(P) = vol ∂P

(
1

vol P
+ 1

vol P̄

)
(8)

The normalized cut of a graph is the minimum value over
all possible subsets P . Additionally, the expansion of a par-
tition P of a graph G is defined as:

ρ(P) = vol ∂P

min(| P |, | P̄ |) (9)

It should be noted that this paper implements the graphi-
cal partitioning algorithm for coarsening with the constraint
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outlined in Eq. (1). The set of nodes that form "supernodes"
following the partitioning of the original graph is known as
the matching. By utilizing advanced matching techniques
that adhere to spectral distance constraints, the graph can be
effectively coarsened while still preserving its global struc-
ture.

This paper proposes a new spectral distance SD, which is
based on the coarsening relationship between spectral dis-
tance and graph coarsening as described in [30–32]. The
spectral distance SD is defined as the eigenvalues of the
normalized Laplacian matrices represented by λ, which are
used during the matching process. Specifically, the spectral
distance is used tomeasure the distance between graph G and
Gm, where Gm is the coarsened version of G.

SD (G,Gm) = ‖λ − λl‖1 =
N∑

i=1

| λ(i) − λl(i) | (10)

The vectors λ and λl contain the eigenvalues of the original
and coarsened layer graphs, respectively. In the ideal sce-
nario, the merged nodes possess the same normalized edge
weight.

• Proposition 1: Let Gm be the graph obtained by coars-
ening G according to a specific set of partitions.

P = {S1,S2, , ,Sn} ⊂ V (11)

If the selection of P is such that all nodes in a given
partition possess the same normalized edge weights,

w(i)

d(i)
= w( j)

d( j)
for all vi , v j ∈ S and S ∈ P (12)

Since SD(G,Gm) is equal to 0, the coarsening process of
ideal graphs yields a minimum (both complete and par-
tial) spectral distance. This paper presents a general result
that illustrates how the graph coarsening framework of
spectral structure changes can be captured by spectral
distance. Specifically, the rough graph is a basic graph
formed by merging a group of nodes (i.e., n = N − 1).
The paper establishes a proof for the following result:

• Proposition 2: Suppose that graph Gm is obtained by
merging a pair of nodes Va and Vb from G. If the normal-
ized edge weights of the merged nodes meet:

∥∥∥
∥
w(a)

d(a)
− w(b)

d(b)

∥∥∥
∥
1

≤ ε (13)

The spectral distance between the original and coarse
graphs is bounded by SD (G,Gm) ≤ Nε. The two
propositions above illustrate that the spectral distance is
limited by the edge weight of merging nodes that have

been normalized. In other words, minimizing the edge
weight division of nodes within the same region results in
boundary and leads to the bounded spectral disturbance.
In this paper, the Multi-level Spectral Graph Coarsening
(MSGC) algorithm is employed to iterativelymerge node
pairs that share similar data (Fig. 2).

TheMulti-level SpectralGraphCoarsening (MSGC) algo-
rithm is an iterative process that merges node pairs having
similar characteristics. During each iteration, MSGC seeks
normalized edge weights with the most similarity to merge,
and creates supernodes. A restriction is applied to the candi-
date graph’s nodes to limit them to a 2-hop distance, and Ni

represents the node-set of a 2-hop distance from nodeVi . The
MSGC pseudo-code is provided in Algorithm 1. The spectral
distance of the MSGC algorithm is analyzed as follows: It
is assumed that node pairs Vai and Vbi (i ranging from n to
N + 1) are merged iteratively from graph G coarsening to
graph Gm . If the normalized edge weight of the merged node
satisfies Eq. (13) formula, it follows from Proposition 2 that
the boundary of the spectral distance between the original
graph and the coarse graph is:

SD (G,Gm) ≤ N
n+1∑

i=N

εi (14)

The hybridmatching under the spectral distance constraint
is achieved by constructing Gi+1 from Gi to obtain the ini-
tial mapping M, followed by collapsing the nodes in each
match into supernodes in Gi+1. When Sp = Sq = S, the
weight Wm(i, j) is equivalent to the weight of all edges in
the subgraph induced by S. Thus, if Wm(i, j) is the same
for all vi , v j ∈ S, thenWm(i, j) = W(i, j), and in-partition
weights are precisely preserved by successive coarsening. In
this paper, the Laplacian adjacency matrix Ai+1 for Gi is
established by matrix operations, while the matching matrix,
which contains the matching information from Gi to Gi+1

as a binary matrix Mi,i+1 ∈ {0, 1}|Vi |×|Vi+1|, is created. The
row and column of Mi,i+1 is set to 1 if the node in Gi is col-
lapsed into super-node S in Gi+1, and is set to 0 if it is not.
Each column of Mi,i+1 represents a matching, while each
unmatched vertex appears as an individual column in Mi,i+1

with merely one entry set to 1. In this paper, the adjacency
matrix of Gi+1 is constructed using the following method:

Ai+1 = MT
i,i+1Ai Mi,i+1 (15)

The initial mapping M inevitably contains some mis-
matches between node pairs. For the mapping M between
graphs Gi and Gi+1 in this paper, the consistent degree of a
mapped pair (u, v) ∈ M is defined as the number of con-
sistent edges connected to u (or v) in Gi (or Gi+1), and the
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Fig. 2 The graph coarsening
process involved a random graph
sampled from a stochastic block
model with a total of 130 nodes
across 13 predefined blocks.
The coarse graph was derived
from the predefined partitions

consistent degree is calculated for each matched pair in the
mapping. Korula et al. [33] demonstrated that if a node pair
has at least three correctly mapped neighbors, the node pair
has a high probability of being correctly mapped. Therefore,
this paper sets the minimum confidence level for a subset to
three. If the consistency of the sub-mapping is greater than
three, the mapping pair gets added to the sub-mapping. Oth-
erwise, the two graphs are copied directly to Gi+1 because
they do not match.

Algorithm 1 Multi-level Spectral Graph Coarsening
Require: Graph G = (V, E,W ) and levels of the coarse graph m.
Ensure: Coarsened graphs Gi and Mi,i+1 for 0 ≤ i ≤ m − 1. s ← N
for i = 1 . . .m do
While s > m do
for va ∈ Vs do
for vb ∈ Ni do

ds (a, b) =
∥∥
∥w(a)
d(a)

− w(b)
d(b)

∥∥
∥
1

amin, bmin = argmina,b ds(a, b)
end for
Compute matching matrix Mi,i+1 based on Eq. (14)
Derive the adjacency matrix Ai for Gi using Eq. (15)

end for
s ← s − 1
Merge nodes vamin and vbmin to from the corase graph Gm

Algorithm 1 employs the spectral distance to enhance
graph matching fusion by coarsening the graph while main-
taining the global structure and improving speed. The spec-
tral distance coarsening algorithm has three steps in the
calculation process: first, the graph is partitioned and the
adjacency information is compiled in the partition, then the
weight-sum of all adjacent nodes is counted, and adjacent
similar nodes are combined into "supernodes." Finally, spec-
tral distance restrictions update the neighboring points and
edges to trigger the next iteration of neighboring nodes. The
entire process is parallelized to allow for high-dimensional
points. The choice of coarsening level is dependent on the
application domain and graph properties, although this study
found that a small number of coarsening levels (2 to 4) typi-
cally resulted in the best quality embedding and at a relatively
rapid pace.

Base embedding on coarsened graph

The graph size decreases significantly after each coarsen-
ing iteration, with the graph size halving in the best-case
scenario. m iterations of coarsening are carried out, with
the coarsest graph Gm designated as the embedding method
f (Gm), leading to Em = f (Gm). In the MERIT framework,
any graph embedding algorithmmay be employed as the fun-
damental embedding because the adopted graph embedding
method is unknown.

Refinement of embeddings

In the final step of MERIT, the focus shifts to embedding
refinement, given a series of coarsened graphs represented by
G0,G1,G2, . . . ,Gm , along with their corresponding match-
ing matrices denoted by M0,1, M1,2, . . . , Mm−1,m , and the
node embeddings Em generated on Gm . This study aims to
develop a method for inferring the node embedding of G0
from Gm . Specifically, the study begins by addressing a rel-
atively straightforward subtask. The subtask aims to infer
the embeddings Ei on graph Gi while given the graph Gi , its
coarsened form Gi+1, the matching matrix Mi,i+1, and the
node embeddings Ei+1 obtained from Gi+1. After solving the
subtask mentioned above, it can then be applied sequentially
to each pair of continuous graphs from Gm to G0 resulting in
the node embedding of G0. To perform the embedding refine-
ment, a graph-based neural network model is employed in
this study.

The study introduces the Graph Convolution Network for
RefinementLearning,where the node embedding is projected
from the coarse-grained graph Gi+1 to the fine-grained graph
Gi using the matching information between Gi and Gi+1,
which is available. The following equation is utilized for the
projection:

ε
p
i = Mi,i+1εi+1 (16)

In order to solve the problem of sharing the same embed-
ding among super nodes, a graph-based neural network
model is proposed in this paper, which leverages ε

p
i and adja-

cency matrix Ai to obtain refined embedding Ei through the
model RF (refinement model), i.e., Ei = RF

(E p
i , Ai

)
, as the

simple projection method that copies the embedding directly
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has the obvious limitation of the same embedding among
super nodes. This limitation will exacerbate in the iterative
refinement of graph embedding fromGm,Gm−1, . . . ,G0. The
adjacency matrix A of a graph G can be used to derive a fast
approximation to the convolution of the graph with the adja-
cency matrix, which is required to compute the l-th layer
of the neural network model [11]. The neural network’s lth
layer is a crucial component of the model.

H (�)(X , A) = σ
(
D̃− 1

2 ÃD̃− 1
2 H (�−1)(X , A)W (�)	(l)

)
(17)

The activation functionσ(∗), trainableweightmatrix	(l),
and representation degree matrix D̃, which includes self-
connected edges, are all essential components of the neural
network model. Specifically, Ã = A + In is the adjacency
matrix representation of the graph neural network.

Ei = RF
(
ε
p
i , Ai

) = H (�)
(
ε
p
i , Ai

)
(18)

The refinementmodel’s learning process involves learning
	(l) for each k ∈ [1, l] using Eq. (17). The graph convo-
lution model H (l)(·) predicts embeddings Ei on graph Gi
by replicating Gm and building a virtual coarsening graph
to learn E on the coarsest graph. Refinement embeddings
are inferred by repeatedly applying the same set of parame-
ters 	(l). Parameter sharing between levels using the same
set of parameters 	(l) is a trade-off between efficiency and
effectiveness. In summary, the refinement model integrates
the structural information of the current graph G into the
projected embedding E p

i by repeatedly performing spectral
graph convolution. This procedure involves the propagation
of embeddings in the embedding refinement process defined
as Eq. (17). Each layer of graph convolution satisfies Eq. (13)
normalized edge weight. The final node embedding on G0 is
derived by sharing 	(l) values and applying the technique to
each consecutive pair of graphs from Gm to G0.

Optimized GCNmodel

The classification of nodes using GCN is limited to 2–3 lay-
ers. Attempting to increase the number of layers in a GCN
model leads to two problems.

Question 1: Smoothing occurs when all nodes eventually
tend to the same value.

Question 2: As the number of layers increases, so does the
number of parameters exponentially. Additionally, expand-
ing the size of the neighborhood used becomes increasingly
difficult.

Therefore, choosing the correct depth model is crucial.
Recent works, such as [29, 34], have produced graph convo-
lutional networks that aim to address this issue. This paper
presents a new model for graph convolutional networks. The
proposed model involves adding a certain proportion of the

initial value to H (0) for each layer while maintaining a bal-
ance of identity mapping In to ensure that the sum of the
harmony with the current layer is 1. The GCN model’s lay-
ers are then redefined as follows:

H (�+1) = σ

((
(1 −α)P̃H (�) +αH (0)

) ((
1− β

�

)
In + β

�
W (�)

))

(19)

In comparison to the ordinary GCN model, the following
improvements have been made by discussing and comparing
the two super parameters, α and β:

• The initial value of the first layer, H (0), is combined pro-
portionally with the smooth representation P̃ H (�).

• The weight matrix, W (�), should have an added identity
map, In .

The approach in this paper includes ensuring that even
when multiple layers are used in training, the final represen-
tation of each node retains at least the α part of the input
layer. Typically, α = 0.1 or 0.2 are used to contain at least a
portion of the input features. Notably, H (0) may not be equiv-
alent to the characteristic matrix X . If the typical dimension
d is large, an initial representation H (0) can be obtained with
lower dimensions using a fully connected neural network
applied on X before forward propagation. However, only
adding a certain proportion of the initial value H (0) would
not be sufficient to extend GCN into a depth model.

To overcome the limitation of extending GCN to a depth
model, a self-identity mapping matrix, In , is included in
the weight matrix. The identity mapping guarantees that
the deep GCN model produces performance equivalent to
its shallow-layer counterpart. Additionally, as the number
of layers increases, the attenuation of the weight matrix
increases adaptively. At some point, the depth model ignores
W (�) and reduces to a simulation:

H (�+1) = (1 − α)P̃ H (�) + αH (0) (20)

The selection of GCN layers has been improved by con-
sidering the graph convolution model as a message-passing
operator. Each layer l is associated with the aggregation of
structural information from the neighbors jumped by each
node l. While it is necessary for the number of layers to
be greater than 1 to reflect the connected structure outside
a node’s nearest neighbors, too many layers can make the
node embeddings homogeneous and difficult to distinguish.
Since the problem of smooth transition is addressed, the layer
selection is better than that of the original GCN. Experimen-
tal results presented in this paper indicate that the best results
are obtained when l = 3.
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The principle of embedding refinement involves refining
from a coarse graph to a fine-grained graph in two steps—

step 1: Through matrix multiplication (Eq. (16)), nodes
basedon responsematching are embedded andprojectedonto
the fine-grained graph.

step 2: The optimized GCN model (Eq. (19)) is applied
to propagate the localization of the node embedding.

This paper presents a pseudo-coarsening graph which is
created by copying Gm . This approach not only reduces one
graph coarsening iteration, but also avoids the base embed-
ding ofGm , sinceEi+1 = Ei . Compared to a partitioning strat-
egy with edge slicing, a coarsening-based strategy reduces
the maintenance of copies of edges and conserves more
memory space. Additionally, parallelizing high-dimensional
points using the coarsening algorithmmakes the base embed-
ding save calculation time significantly as the coarsening
level m increases. The training of the refinement model
can be done effectively on the coarsest graph by minimiz-
ing the difference between the generated embeddings and
the embeddings generated by the refinement model (GCN).
The learning refinement model can then be used to gen-
erate embeddings for other coarsening levels. Finally, the
embedding refinement process is affordable and involves
only sparse matrix multiplications, using Eq. (18).

Algorithm 2 Multi-level embedding refinement(MERIT)
Require: graph G0 = (V0, E0,W0), coarsening level m, and a base
embedding method f (∗).

Ensure: Graph embedding E0 on G0.
Coarsen G0 into G1,G2, . . . ,Gm using proposed MSGC.

Perform base embedding on the coarsest graph Gm .
Learn the weights W using the Eq. (19).
for i = (m − 1) . . . 0 do

Compute the projected embedding E p
i on Gi

Use Eq. (13) and Eq. (19) to compute refined embeddings Ei
end for.
Return graph embedding E0 on G0.

Experiments and results

In this section, a series of experiments and comparisons are
conducted on large-scale datasets and basic embeddingmeth-
ods to validate the effectiveness of the MERIT method.

Databases

The multi-level graph embedding refinement framework
proposed in this paper is evaluated together with several
unsupervised graph embedding techniques [17, 35]. Table
1 reports the statistical data of the datasets used in the exper-
iments, including the CORA citation network public dataset,

Table 1 The statistics of databases

Database Node Edges Classes

CORA 2708 11,327 7

PPI 9785 120,572 50

DBLP 44,382 157,690 4

Flickr 80,513 5,899,882 195

Reddit 126,825 22,412,658 210

pre-processed biological information dataset PPI, and pre-
processed social commentary datasets Flickr and Reddit.
Moreover, it includes the computer science bibliography net-
work dataset DBLP, which collects information from four
research areas: database, data mining, machine learning, and
information retrieval.

Base embeddingmethods

Three popular graph embedding approaches are explored in
this paper to demonstrate that MERIT is compatible with
different methods.

• Random-walk based methods: Specifically Deepwalk
[7] and Node2vec [8, 36]. To compare with traditional
multi-level graph embedding frameworks, the number of
random length walks is set to 80, the number of walks
per node is set to 10, and the size of the context window
is set to 10. In Node2Vec, p is set to 4.0 and q is set to
1.0, which have been found empirically to generate better
results across all datasets.

• Matrix-factorization-based methods: NMF-AP [37] is a
link prediction method that uses non-negative matrix
decomposition, while NETMF [17] is a more popular
approach. To evaluate and compare their performance,
the window size is set to 10 and the level of factorization
is set to h = 1024.

This paper utilizes the TensorFlow software package to
implement the fine-grained embedding learning section, tak-
ing advantage of the available parallelism in various methods
(e.g., generating random walks in DeepWalk and Node2Vec,
refining models in MERIT, etc.).

MERIT framework performance

This paper investigates the effectiveness of the MERIT
frameworkwhen applied to different graph embeddingmeth-
ods. Figures3 and 4 depict the performance of varying
MERIT datasets with different basic embedding methods at
diverse coarsening stages of node classification [8] and link
prediction [38], respectively.
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Evaluation Metrics: This paper employs multi-label
node classification and link prediction. The embeddings are
utilized as 10-fold cross-validated features for node classifi-
cation, and the averageMicro-F1 andMacro-F1 are recorded
for analysis. The performance of link prediction is evaluated
via 5-fold cross-validation for AUROC and the average score
is presented.

• CORA (Suitable for node classification and link predic-
tion tasks): CORA is a citation network dataset used for
academic paper classification and citation relationships.
It contains papers from multiple academic fields, with
each node representing a paper and edges representing
citation relationships. The node classification task aims
to classify each paper into its corresponding academic
discipline, while the link prediction task aims to pre-
dict the citation relationships between papers. Due to the
rich paper features and label information provided by the
CORA dataset, such as titles, abstracts, keywords, and
references, it is highly suitable for node classification
and link prediction tasks.

• PPI (Suitable for link prediction and node classifica-
tion tasks): PPI is a preprocessed biological information
dataset representing protein-protein interaction relation-
ships. Nodes represent proteins, and edges represent
interactions between proteins. The link prediction task
aims to predict unknown protein-protein interactions,
while the node classification task aims to classify various
protein characteristics. The PPI dataset provides rich pro-
tein features and known interaction information, making
it suitable for performing link prediction and node clas-
sification tasks.

• Flickr and Reddit (Suitable for node classification tasks):
Flickr and Reddit are two preprocessed social comment
datasets used for social media comment analysis. Each
node in the dataset represents a user or comment, while
edges represent relationships between users. The node
classification task involves categorizing each user or
comment into different classes, such as sentiment clas-
sification or topic classification. These datasets provide
text features and category labels for users or comments,
making them suitable for node classification tasks.

• DBLP (Suitable for link prediction tasks): DBLP is a
computer science bibliography network dataset that col-
lects information from four research fields: databases,
datamining, machine learning, and information retrieval.
Nodes represent papers, and edges represent citation rela-
tionships. The link prediction task can involve predicting
citation relationships betweenpapers in theDBLPdataset
or predicting other papers related to a given paper. Due to
the availability of paper metadata and citation relation-
ships in theDBLP dataset, it is suitable for link prediction
tasks.

Running time: This paper presents an end-to-end clock
time for scalability analysis, where the time scale is selected
as hours for large-scale graph embedding and minutes for
small-scale graph embedding. Moreover, the runtime of the
proposed graph embedding method based on the MERIT
framework includes the execution time of all stages, as well
as the training time of the refinement model.

Impact of MERIT on embedding quality: This paper
evaluates node classification and link prediction performance
using various underlying embeddingmethods and coarsening
levels on the PPI dataset through theMERIT framework. Fig-
ure3 illustrates hownode classification performance changes
with increasing coarsening levels in the MERIT framework
(Note that m = 0 indicates the original method without
MERIT). When the coarsening level reaches 1 (m = 1),
this paper achieve a large-scale graph (PPI) of 2.3× to 4.7×
acceleration while enhancing the qualitative aspect. At a
coarsening level of 2 (m = 2), the acceleration ratio further
increases (up to 16.3×), with the same level of embedding
quality as the original method reflected in Micro-F1 scores.
In the case of link prediction, depicted in Fig. 4, perfor-
mance improves with increasing coarsening levels through
theMERIT framework, which leads to a reduction in the run-
ning time of the embedding method and an improvement in
link prediction results.

MERIT effectively improves the quality and accelera-
tion of embedding for large-scale graphs. Figure3 illustrates
that there is a significant increase in Micro-F1 scores on all
datasets when the coarsening level moves from m = 0 to
m = 1 compared to basic embedding methods. With fur-
ther increases in the coarsening level m within the MERIT
framework, the running time decreases sharply, while the
embedding quality decreases only slightly. In the coarsening
process, the spectral distance eliminates superfluous infor-
mation from the source graph and retains essential spectral
attributes for embedding. Moreover, MERIT incorporates a
defined percentage of initial values and identity mapping
matrices in the embedding refinement process, addressing the
over-smoothing problem and enhancing the overall embed-
ding quality.

Large graph embedding

The paper aims to demonstrate the scalability of the MERIT
framework for graph embedding on large-scale Reddit
datasets. The three fundamental embedding methods resear-
ched by the paper took over twenty-four hours to complete,
and even with improved computer performance, Deepwalk
struggled to complete. Notably, the MERIT framework sim-
plifies graph embedding on large-scale datasets. Figure5
depicts how the MERIT framework significantly reduces
execution time and enhances the Micro-F1 score in node
classification. For instance, when using the MERIT frame-
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Fig. 3 The performance and the run time of node classification vary
with increasing coarsening levels in MERIT. Micro-F1 scores and run-
ning time are presented on the left and right, respectively, with time

measured in minutes. Note that m = 0 indicates usage of the original
embedding method (best viewed in color)
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Fig. 4 The performance and run time of link prediction vary with the increase of the number of coarsening levels in MERIT. AUROC scores and
running time are presented on the left and right, respectively, with time measured in minutes. Note that m = 0 indicates the use of the original
embedding method

work with a coarsening level of 5, the scores of DeepWalk,
Node2Vec, andNetMF are improved by 2.3×, 2×, and 1.8×,
respectively, and their scores increase from 0.441 to 0.453,
from 0.451 to 0.465, and from 0.459 to 0.461. Furthermore,
when using theMERIT frameworkwith a coarsening level of
25, the execution time of all tested methods decreases from
over 24h to 1h, while the Micro-F1 score only decreases
by 1.5% from 0.453 to 0.438. The experiment showed that
increasing the coarsening level from 5 to 10 did not signifi-

cantly influence theMicro-F1 score, but resulted in a two-fold
increase in execution time. Thus, the results confirm that the
MERIT framework can generate high-quality embeddings
and improve the graph embedding algorithms.

The proposed method achieves excellent performance
in the link prediction task and greatly reduces the execu-
tion time. As shown in Table 2, on the Flickr dataset, an
increase in coarsening level using the MERIT framework
corresponds to an increase inAUROC score.When the coars-
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Table 2 On the Flickr dataset, the paper presents statistics for the per-
formance and execution time for link prediction under various graph
embedding methods and coarsening levels of the MERIT framework

Method AUROC Time (mins)

DeepWalk 0.652 478

MERIT (DW, m=1) 0.668 255 (1.8×)

MERIT (DW, m=3) 0.674 103 (4.6×)

MERIT (DW, m=6) 0.681 19 (25.2×)

Node2vec 0.801 82

MERIT (N2V, m=1) 0.845 46 (1.7×)

MERIT (N2V, m=3) 0.851 27 (3.1×)

MERIT (N2V, m=6) 0.902 4.3 (19×)

NetMF 0.817 76

MERIT (NM, m=1) 0.843 39 (1.9×)

MERIT (NM, m=3) 0.836 14 (5.4×)

MERIT (NM, m=6) 0.893 3.8 (20×)

ening level is 6, theAUROC scores of DeepWalk, Node2Vec,
and NetMF increase from 0.652 to 0.681, from 0.801 to
0.902, and from 0.817 to 0.893, respectively, while the exe-
cution time is significantly reduced, and the fastest running
speed is increased by 25×. The results demonstrate that the
coarsening and refinement strategy adopted by the MERIT
framework produces high-quality embeddings, scaling up the
graph embedding algorithms for both node classification and
link prediction tasks.

Experimental comparison

The paper conducts a link prediction task to evaluate the per-
formance of theMERIT framework on various datasets using
the AUROC evaluation metric, with higher scores indicat-
ing better performance. Two preprocessed datasets are used
for evaluation. The first dataset has 2700 nodes and 11,000
edges, while the second comprises over 40,000 nodes and
150,000 edges. The paper compares the performance of var-
ious recent works and presents their average results on the
test set in Table 3.

• HARP [39]: HARP is a hierarchical framework based on
iterative learningmethods likeDeepWalk andNode2Vec.
The framework implements two folding schemes, edge
folding and

• HSRL [24]: The paper proposes a framework that is
composed of two components: hierarchical sampling and
representation learning. Hierarchical sampling discovers
the hierarchical topological information of the global net-
work using a strategy that is aware of the community
structure. Representation learning focuses on learning
node embeddings with low dimensionality while pre-

Table 3 This section provides statistics on the time performance and
link prediction accuracy of various graph embedding methods, using
the CORA and DBLP datasets. The statistics are presented in terms of
the evaluated graph embedding methods

CORA DBLP

Method AUROC Time AUROC Time

DeepWalk 0.853 8 0.783 56

HARP (DW) 0.821 10 0.675 78

HSRL (DW) 0.882 29 0.836 127

NECL (DW) 0.865 6 0.803 31

MERIT (DW) 0.870 3 0.820 17

Node2Vec 0.849 19 0.684 115

HARP (NV) 0.823 23 0.652 104

HSRL (NV) 0.872 70 0.851 245

NECL (NV) 0.854 13 0.810 68

MERIT (NV) 0.861 2 0.883 46

serving the hierarchical topological information of the
network.

• NECL [12]: The paper proposes a novel and efficient
network embedding method which preserves the local
structural features of the nodes. The framework is a
modularized graph compression layout-based network
representation learning method.

Table 3 shows that MERIT outperforms other meth-
ods significantly, especially on large-scale datasets like
DBLP. For the CORA dataset, the performance improve-
ments achieved byMERIT(DW) onDeepwalk, HARP(DW),
and NECL(DW) are 2%, 6%, and 0.6%, respectively. For
HSRL(DW), although there is a reduction in performance
of 1.4%, the operating speed improves by a factor of
10. Similarly, the performance improvements achieved by
MERIT(NV) are 1.4%, 4.6%, and 0.8% for Node2Vec,
HARP(NV), and NECL(NV), respectively. For HSRL(NV),
there is a 1.3% reduction in performance, but the operating
speed increases by a factor of 25. For large-scale graphs like
DBLP, MERIT(DW) achieves performance improvements
of 4.7%, 21%, and 2.1% for Deepwalk, HARP(DW), and
NECL(DW), respectively. For HSRL(DW), despite a reduc-
tion in performance of 2%, the operating speed increases
by a factor of 7. In the Node2Vec-based approach, the per-
formance improvements achieved byMERIT for Node2Vec,
HARP(NV), HSRL(NV), and NECL(NV) are 29%, 35%,
3.8%, and 9%, respectively, with the running time being
greatly reduced.

MERIT not only improves the embedding quality but also
greatly shortens the runtime, especially on the DBLP dataset,
implying thatMERIT is more suitable for large-scale graphs.
Additionally, it is unclear how the logic of a method like
HARP extends to other embedding methods (e.g., GraRep
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Fig. 5 On the Reddit dataset, the performance and execution time for node classification vary with the coarsening level in the MERIT framework.
The report displays Micro-F1 results and execution time in hours, respectively, on the left and right sides. Notably, m = 0 denotes the use of the
initial embedding

and NetMF), since such an approach requires modifying the
embeddingmethod to preset its initialized embedding values.

Memory consumption

This study investigates the impact of MERIT on memory
consumption reduction, focusing onMERIT (NetMF) due to
the highmemory usage ofNetMF,which involves a dense tar-
get matrix. Deepwalk and Node2vec are not discussed here,
since their embedding learning methods generate training
data on the flywithminimalmemory consumption compared
to storage space. Figure 6 depicts the memory consump-
tion of MERIT(NetMF) on PPI, Flicker and DBLP as the
coarsening level increases. The paper observed that MERIT
significantly reducedmemory consumption as the coarsening
degree increased. Thememory consumption for the first level
of coarsening is reduced by 45%, and it continues to decrease
with increasing coarsening level. This memory reduction is
consistent with our expectation, as both rows and columns in
the factored matrix reduce by almost half with one level of
coarsening.

Choice for Coarsening Level

The results of the experiments are presented in Figs. 3 and
4 for coarsening levels 1 to 2 on PPI, Fig. 5 for coarsen-
ing level 5 on Reddit, and Table 2 for coarsening level 6 on
Flickr. In addition, the optimal coarsening levels for CORA
and DBLP are shown in Table 3, which are 1 and 4, respec-
tively. Based on the results, this study suggests that using only
a limited range of coarsening levels (0 to 3) generally pro-
vides the best quality embeddings and efficient computation
for graphs with a moderate number of nodes (i.e.,< 10,000).

0
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2
3
4
5
6
7
8
9

0 1 2 3 4 5 6
MERIT(PPI) MERIT(Flickr) MERIT(DBLP)

Fig. 6 Figure 6 illustrates the memory overhead of MERIT (NetMF) at
different coarsening levels on PPI, Flicker, and DBLP datasets. The
horizontal axis shows the coarsening level (m = 0 is the baseline
embedding), and the vertical axis shows the memory consumption in
GB

However, for large-scale graphs (i.e.,>10,000 nodes), higher
coarsening levels (above 3) can produce high-quality embed-
dings with considerably faster computation time. Therefore,
considering the appropriate coarsening level is crucial for
generating the most refined embeddings while greatly reduc-
ing the computation time. Modifications made are listed in
the table below.

Multi-level Framework Comparison

In order to further demonstrate the advantages of the multi-
level graph embedding refinement framework proposed in
this paper on large-scale graphs, this compared three basic
embeddingmethods (DeepWalk,Node2vec, andNetMF) and
three other graph embedding frameworks (MILE, Graph-
Zoom, and MERIT) in terms of their performance on node
classification and link prediction tasks using preprocessed
PPI dataset, as shown in Tables 4 and 5. These three methods
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Table 4 Node classification results on PPI dataset

Method Micro-F1 Time (mins)

DeepWalk 0.232 11

MILE (DW, m=1) 0.235 5.87 (1.9×)

MILE (DW, m=2) 0.224 1.25 (8.8×)

MILE (DW, m=3) 0.210 0.59 (18.6×)

GZoom (DW, m=1) 0.258 4.16 (2.4×)

GZoom (DW, m=2) 0.261 0.92 (12.0×)

GZoom (DW, m=3) 0.244 0.42 (26×)

MERIT (DW, m=1) 0.271 2.95 (3.7×)

MERIT (DW, m=2) 0.263 0.61 (18×)

MERIT (DW, m=3) 0.254 0.46 (24×)

Node2vec 0.242 6.2

MILE (N2V, m=1) 0.249 3.02 (2.1×)

MILE (N2V, m=2) 0.251 1.75 (3.5×)

MILE (N2V, m=3) 0.243 0.48 (13.0×)

GZoom (N2V, m=1) 0.258 3.38 (1.8×)

GZoom (N2V, m=2) 0.256 1.21 (5.1×)

GZoom (N2V, m=3) 0.248 0.36 (17.2×)

MERIT (N2V, m=1) 0.261 2.72 (2.3×)

MERIT (N2V, m=2) 0.253 1.04 (15.2×)

MERIT (N2V, m=3) 0.245 0.28 (22×)

NetMF 0.245 2.1

MILE (NM, m=1) 0.259 1.05 (2.0×)

MILE (NM, m=2) 0.253 0.55 (3.8×)

MILE (NM, m=3) 0.247 0.34 (6.2×)

GZoom (NM, m=1) 0.264 0.58 (3.6×)

GZoom (NM, m=2) 0.259 0.17 (12.4×)

GZoom (NM, m=3) 0.258 0.1 (21×)

MERIT (NM, m=1) 0.269 0.52 (4.0×)

MERIT (NM, m=2) 0.267 0.14 (15.2×)

MERIT (NM, m=3) 0.254 0.12 (17×)

(MILE, GraphZoom, andMERIT) all showed improvements
in terms of accuracy and speed, but their performance levels
varied as the coarsening degree increased. For example, as
shown in Table 4, the use of coarsening levels can improve
the performance of the three basic embedding methods. The
micro-f1 score was significantly improved in the range of
coarsening levels fromm = 1 to 2, while the speed was also
significantly improved. It is worth noting that the proposed
framework demonstrated the best node classification results
at all coarsening levels and outperformed other models in
terms of acceleration ratio by 22×. As for the link prediction
results in Table 5, the proposed MERIT framework outper-
formed other models at coarsening level m = 2, although
it did not achieve the best results at m = 1 or m = 3. In
addition, at coarsening level m = 3, the MERIT framework
showed an acceleration ratio of up to 29×, indicating its
ability to generate high-quality embeddings while perform-

Table 5 Link prediction results on PPI dataset

Method AUROC Time (mins)

Deepwalk 0.748 6.95

MILE (DW, m=1) 0.763 2.98 (2.3×)

MILE (DW, m=2) 0.751 1.75 (4.0×)

MILE (DW, m=3) 0.742 0.45 (15.4×)

GZoom (DW, m=1) 0.834 2.2 (3.2×)

GZoom (DW, m=2) 0.785 1.23 (5.7×)

GZoom (DW, m=3) 0.755 0.39 (17.8×)

MERIT (DW, m=1) 0.825 2.1 (3.3×)

MERIT (DW, m=2) 0.809 0.85 (8.2×)

MERIT (DW, m=3) 0.762 0.24 (29.0×)

Node2vec 0.725 3.97

MILE (N2V, m=1) 0.742 1.92 (2.1×)

MILE (N2V, m=2) 0.737 0.75 (5.3×)

MILE (N2V, m=3) 0.728 0.28 (14.2×)

GZoom (N2V, m=1) 0.791 1.75 (2.3×)

GZoom (N2V, m=2) 0.801 0.94 (4.2×)

GZoom (N2V, m=3) 0.779 0.31 (12.8×)

MERIT (N2V, m=1) 0.807 1.43 (2.8×)

MERIT (N2V, m=2) 0.784 0.59 (6.7×)

MERIT (N2V, m=3) 0.769 0.18 (22.0×)

NetMF 0.715 3.65

MILE (NM, m=1) 0.748 1.83 (2.0×)

MILE (NM, m=2) 0.758 0.85 (4.3×)

MILE (NM, m=3) 0.722 0.45 (8.1×)

GZoom (NM, m=1) 0.803 1.6 (2.3×)

GZoom (NM, m=2) 0.771 0.91 (4.0×)

GZoom (NM, m=3) 0.764 0.11 (32.3×)

MERIT (NM, m=1) 0.785 1.43 (2.6×)

MERIT (NM, m=2) 0.798 0.68 (5.4×)

MERIT (NM, m=3) 0.759 0.17 (21×)

ing basic tasks. Since performance results can be influenced
by different datasets and affected by computer performance
and memory, this paper does not compare different datasets
in this regard.

In summary, the experiments demonstrate that the pro-
posed multi-level graph embedding refinement framework
preserved the black box characteristics of the original multi-
level graph embedding frameworkwhile enhancing its coars-
ening and thinning methods to achieve a better balance
between effectiveness and efficiency.

Ablation analysis onMERIT kernels

To investigate the effectiveness of the proposed MERIT
kernels, this study compared each MERIT kernel with the
corresponding kernel from MILE while fixing other ker-
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Fig. 7 This study compared the classification accuracy of different ker-
nel combinations of MERIT and MILE on the CORA, PPI, and DBLP
datasets. DeepWalk (DW) was selected as the embedding kernel, and
MERIT C and MERIT R respectively denote the proposed coarsening

and refining kernels in MERIT, while MILE C and MILE R represent
the coarsening and refining kernels in MILE. The blue curves represent
the results of MERIT, and the yellow curves represent those of MILE

nels. As shown in Fig. 7, when fixing the coarsening kernel
and comparing the refining kernels of MERIT and MILE,
the refining kernel of the proposed framework can improve
the graph embedding results over that of MILE, especially
when the coarsening level is high. This indicates that the
improved graph convolutional network for refinement in this
study can effectively alleviate over-smoothing and improve
the embedding quality. Similarly, when comparing the coars-
ening kernels of MERIT and MILE while fixing the refining
kernels, the coarsening kernel of MERIT can also improve
the quality of graph embedding over that of MILE, indicat-
ing that the spectral distance-constrained graph coarsening
algorithm in this study can indeed preserve the critical graph
structure and provide a useful input to the underlying graph
embedding method. When combining the MERIT coarsen-
ing and refining kernels, the algorithm outperforms any other
kernel in MILE in terms of classification accuracy. This sug-
gests that the MERIT coarsening and refining kernels play a
useful and unique role in improving embedding performance
and their combination can further enhance the embedding
results.

Conclusion

This paper proposes a multi-level graph embedding refine-
ment (MERIT) framework. The coarsening part of the
framework is improved using a spectral distance approach
that limits the difference between the original and coars-
ened graphs.Additionally, the proposed framework enhances
the graph convolutional network model by incorporating ini-
tial values and identity mapping to solve the over-smoothing

problem that arises during the embedding refinement process.
The multi-level graph embedding refinement framework
treats the graph embedding method as a black box, enabling
the application of existing graph embedding methods to
large-scale graphs, thereby shortening the embedding time
and improving its efficiency. Future researchwill build on this
work by exploring methods and frameworks for large-scale
dynamic graph embedding and by adopting the graph embed-
ding framework proposed in this paper for further research.
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