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Abstract
Hesitant Fermatean fuzzy sets (HFFS) can characterize the membership degree (MD) and non-membership degree (NMD) of
hesitant fuzzy elements in a broader range, which offers superior fuzzy data processing capabilities for addressing complex
uncertainty issues. In this research, first, we present the definition of the hesitant Fermatean fuzzy Bonferroni mean operator
(HFFBM). Further, with the basic operations of HFFS in Einstein t-norms, the definition and derivation process of the
hesitant Fermatean fuzzy Einstein Bonferroni mean operator (HFFEBM) are given. In addition, considering how weights
affect decision-making outcomes, the hesitant Fermatean fuzzy weighted Bonferroni mean (HFFWBM) operator and the
hesitant Fermatean fuzzy Einstein weighted Bonferroni mean operator (HFFEWBM) are developed. Then, the properties of
the operators are discussed. Based on HFFWBM and HFFEWBM operator, a new multi-attribute decision-making (MADM)
approach is provided. Finally, we apply the proposed decision-making approach to the case of a depression diagnostic
evaluation for three depressed patients. The three patients’ diagnosis results confirmed the proposed method’s validity and
rationality. Through a series of comparative experiments and analyses, the proposedMADMmethod is an efficient solution for
decision-making issues in the hesitant Fermatean fuzzy environment.

Keywords Hesitant Fermatean fuzzy set · Einstein operation · Bonferroni mean · Aggregation operator · Decision-making

Introduction

The fuzzy sets (FS) theory [1] has been utilized in sev-
eral fields to address the uncertainty problem, since its
introduction by Zadeh in 1965. Atanassov extended FS to

B Xiuqin Ma
maxiuqin@nwnu.edu.cn

Yibo Wang
2021212147@nwnu.edu.cn

Hongwu Qin
qinhongwu@nwnu.edu.cn

Huanling Sun
2021212133@nwnu.edu.cn

Weiyi Wei
weiwy@nwnu.edu.cn

1 College of Computer Science and Engineering, Northwest
Normal University, Lanzhou 730070, Gansu, China

2 Institute for Big Data Analytics and Artificial Intelligence
(IBDAAI), Universiti Teknologi MARA, 40450 Shah Alam,
Selangor, Malaysia

intuitionistic fuzzy sets (IFS) [2], which employ member-
ship and non-membership degree to describe the fuzziness
of things. To accommodate an increasingly complex social
context, FS theory has been extensive researched [3, 4].
Nowadays, fuzzy set theory and its extensions are widely
utilized in many fields [5, 6]. Multi-criteria decision-making
(MCDM) in uncertain environments is a popular field of
study. Alali et al. [7] applied the TODIMmethod to the port-
folio allocation process. Tolga et al. [8] proposed a finite
interval Type-2 Gaussian fuzzy number and then applied
its extended TODIM method to the economic evaluation of
medical device selection. Tolga et al. [9] evaluated the tech-
nical types of three vertical farm alternatives usingWeighted
Euclidean Distance-Based Approximation (WEDBA) and
Measuring Attractiveness by a Categorical-Based Evalua-
tion Technique (MACBETH). Deveci et al. [10] developed
an integrated decision model based on the fuzzy Dombi
norms-based LogarithmicMethodology of AdditiveWeights
(LMAW) and Evaluation based on the Distance from the
Average Solution (EDAS). Then, they applied it to a mea-
surement scheme for a goods mobility application.
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Decision-makers may be hesitant to assessments when
making decisions in uncertain complex situations, such as
mental health assessments, making it difficult to reach a con-
sensus on the assessments. As an extension of FS, Torra et al.
[11] introduced the notion of hesitant fuzzy sets (HFS) in
2009. The MD of HFS is represented by a set of probable
values. This feature of HFS is appropriate for describing
hesitant information. Consequently, HFS has been exten-
sively investigated and developed [12–14]. In 2012, Zhu
and Xu extended HFS with dual-hesitant fuzzy sets (DHFS)
[15]. DHFS employs hesitant MD and NMD functions to
characterize hesitancy, which goes a step further in address-
ing uncertain hesitant complicated situations. Consequently,
after DHFS was proposed, it garnered considerable interest
from researchers. Chen and Peng et al. [16] analyzed the
correlation coefficient of DHFS and studied it by MADM
method. Yu and Li et al. [17] applied DHFS to the supplier
selection issues and presented a dual-hesitant fuzzy multi-
attribute group decision-making (MAGDM) method. Singh
[18] introduced the DHFS distance and similarity measure-
ment techniques. Then, they established the ranking by the
distance between the ideal solution and alternatives to solve
MADMproblem. The DHFS constraints ensure that the total
of all possible MD and NMD is in the interval 0 and 1,
which carries some disadvantages. Liang et al. [19] devel-
oped the hesitant Pythagorean fuzzy sets (HPFS) in 2017.
At the same time, Wei et al. [20] developed the dual-hesitant
Pythagorean fuzzy sets (DHPFS). As a combination of HFS
and Pythagorean fuzzy sets [21, 22], the constraint of HPFS
is 0 ≤ max{MD}2 + max{NMD}2 ≤ 1. In addition, Liang
andXu [19] also applied theHPFS toMCDMand presented a
new extension of TOPSISmethod. The proposal of HPFS has
attracted the extensive attention of researchers. And HPFS
has undergone significant development in recent years. Wu
et al. [23] presented a MAGDM flexibility enhancement
method based on information fusion HPFS. Akram et al.
[24] presented a comprehensive ELECTRE-I method for
risk assessment based on HPFS. Geetha et al. [25] extended
the ELECTRE-III method under HPFS. Then, they used the
method to the problem of plastic recycling.

In fuzzy environments, the key of MADM is information
aggregation. The HFS information aggregation offers dis-
tinct benefits in uncertain MADM issues. In general, The
HFS aggregation operations are based on Archimedean t-
norms [26, 27]. Combining basic algebraic products and
algebraic sums of Archimedean t-norms is the most com-
monly used fuzzy aggregation operation approach. As is
commonly known, Algebraic t-norms and Einstein t-norms
are typical examples of the strictly Archimedean t-norms
class [28–30]. Einstein’s product and sum yield the same
smooth approximation as algebraic product and sum. There-
fore, it is a suitable replacement for algebraic t-norms. Zhou

and Li [31] developed the hesitant fuzzy geometric aggrega-
tion operator, which is based on Einstein t-norms. Zhao and
Xu [32] proposed some Einstein aggregation operators under
dual-hesitant fuzzy environments. Farid et al. [33] improved
the basic fuzzy algorithm and proposed the Einstein interac-
tive geometric aggregation operator on q-rung orthogonal
pair fuzzy sets. Anusha and Sireesha [34] developed an
aggregation operator for interval-valued intuitionistic fuzzy
sets, which combinedwith theHeronianmean operator based
on Einstein t-norms. It is known that traditional aggregation
operators have significant limitations. Traditional aggrega-
tion operators, for instance, cannot eliminate the influence
of extreme values, and each element of aggregation opera-
tions is independent of the other. Real complex situations
must take the above restrictions into account. As a mean
operator, Bonferroni mean (BM) [35] can effectively tackle
abovementioned problems. Researchers have paid consid-
erable attention to BM due to its capacity to characterize
the interrelationships between input data. In 2009, Yager
[36] formulated this operator. Then, Beliakov et al. [37]
researched systematically a family of extended BM com-
binatorial aggregation functions in an effort to expand the
limitation that BM can only handle exact numbers. Zhu and
Xu [38] addressed the details of the hesitant fuzzy BM oper-
ator in their study of the hesitant fuzzy aggregation operator.
In addition, they explained the concept of the hesitant Bon-
ferroni element as bonding satisfaction.

Fermatean hesitant fuzzy sets [39, 40] and hesitant Fer-
matean fuzzy sets [41] are the generalization of Fermatean
fuzzy sets (FFS) [42] and DHFS. The condition of HFFS
is 0 ≤ max{MD}3 + max{NMD}3 ≤ 1. Therefore, HFFS
is more advantageous than FFS and DHFS in addressing
uncertainty issues. In decision-making in complex fuzzy
environments, the evaluation of attributes is sometimes
hesitant. Meanwhile, specific correlations occur between
multiple attributes. As mentioned, fuzzy information aggre-
gation is an effective approach, particularly based on HFFS.
Consequently, this paper primarily proposes several newBM
aggregation operators based on HFFS. Then, a new MADM
method is presented by the proposed aggregation operators.
Moreover, the diagnostic evaluation of depression is a com-
plex issue. On the one hand, the description of depression
symptoms by patient may be ambiguous and hesitant. On the
other hand, there is a correlationbetween each symptomdiag-
nostic evaluation by doctors. In this paper, three depressed
patients were diagnosed and analyzed using the proposed
MADM method in the context of HFFS. The experimental
results and comparative analysis demonstrate that our pro-
posed method is reasonable and effective, and has obvious
advantages. The main contributions of this paper are as fol-
lows:
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(1) This paper first extends the HFFS aggregation operation
basedon algebraic t-norms to theBMoperator. Then, the
hesitant Fermatean fuzzy Bonferroni mean (HFFBM)
operator and hesitant Fermatean fuzzy weighted Bon-
ferroni mean (HFFWBM) operator are proposed.

(2) This paper further proposes the fundamental opera-
tions and theorems of HFFS under Einstein t-norms.
The HFFS aggregation operation based on Einstein
operation rules is then extended to the BM operator.
Hesitant Fermatean fuzzy Einstein Bonferroni mean
(HFFEBM) operator and hesitant Fermatean fuzzy Ein-
stein weighted Bonferroni mean (HFFEWBM) operator
are given next.

(3) A novel MADM method based on the HFFWBM and
HFFEWBM operators is presented. The method is then
applied to a case of depression diagnosis. By evaluating
the depression diagnosis of three depressed patients, the
effectiveness of the proposed method is demonstrated.
Finally, compared to the existingdecision-makingmeth-
ods, the proposedmethodhasmore advantages andmore
reasonable.

The structure of this paper is as follows: the section “Pre-
liminaries” describes several fundamental notions, including
the basic concepts of HFFS, the Einstein product, and Ein-
stein sum and Bonferroni mean. The form and derivation of
the hesitant Fermatean fuzzy BM operators and the hesitant
Fermatean fuzzy weighted BM operators are introduced in
the section “Hesitant Fermatean fuzzy aggregation operator”.
The section “ANewmethod forMADMbased onHFFWBM
and HFFEWBM aggregation operator” presents a novel
MADM method based on the HFFWBM and HFFEWBM
operators. The section “Case study and comparative analy-
sis” verifies the rationality and effectiveness of the proposed
method through a case study of three patients with depres-
sion diagnosis and evaluation. In addition, the advantages of
the proposed method are illustrated using a series of compar-
isons. In the section “Conclusion”, a conclusion is presented.

Preliminaries

This section begins with a review of t-norm and t-conorm,
which are crucial to fuzzy operations. The concept of DHFS
is then reviewed. DHFS extends IFS from the perspective of
hesitation. Similarly, HFFS is an extension of FFS from a
hesitant perspective. Consequently, we then review the basic
operation of DHFS from the perspective of t-norm and t-
conorm. In addition, the concept of HFFS is given, and the
basic operations of HFFS in terms of t-norm and t-conorm
are reviewed. Finally, the concepts of Einstein sum, Einstein
product, and Bonferroni mean are reviewed.

t-Norm and t-conorm

Definition 2.1 [43] A function T : [0, 1] × [0, 1] → [0, 1]
is called a t-norm if it meets the following conditions:

(1) T (1, x) � x , for all x .
(2) T (x , y) � T (y, x), for all x and y.
(3) T (x , T (y, z)) � T (T (x , y), z),for all x , y, and z.
(4) If x ≤ x ′ and y ≤ y′, then T (x , y) ≤ T

(
x ′, y′).

Definition 2.2 [43] A function S : [0, 1] × [0, 1] → [0, 1]
is called a t-conorm if it meets the following conditions:

(1) S(0, x) � x , for all x .
(2) S(x , y) � S(y, x), for all x and y.
(3) S(x , S(y, z)) � S(S(x , y), z), for all x , y, and z.
(4) If x ≤ x ′ and y ≤ y′, then S(x , y) ≤ S

(
x ′, y′).

As we all know [44], a strict Archimedean t-norm
is represented by its additive generator k as T (a, b) �
k−1(k(a) + k(b)). Similarly, the dual t-conorm of t-norm,
a strict Archimedean t-conorm, is represented by its addi-
tive generator l as S(a, b) � l−1(l(a) + l(b)) with l(t) �
k(1 − t). On the basis of Archimedean t-norm and t-conorm,
the sum operation of IFS is then given by Beliakov et al.
[45], that is, α1 ⊕ α2 � (S(μ1, μ2), T (ν1, ν2)), where
α1 � (μ1, ν1) and α2 � (μ2, ν2) are two intuitionistic fuzzy
numbers. Expanding the sum operation yields the following
formula:

α1 ⊕ α2 � (S (μ1, μ2) , T (ν1, ν2))

�
(
l−1 (l (μ1) + l (μ2)) , k

−1 (k (ν1) + k (ν2))
)

.

Next, the concept of DHFS and the basic operations of
DHFS from the perspective of Archimedean t-norm and t-
conorm are reviewed.

Dual hesitant fuzzy sets

Definition 2.3 [15] Let X be a finite set, then a DHFS D on
X is described as

D � {〈x , h(x), g(x)〉 | x ∈ X },

where h(x)andg(x) are two sets of some values in [0, 1],
denoting the possible MDs and NMDs of element x ∈ X to
the set D, respectively, with the condition 0 ≤ θ , ϑ ≤ 1, 0 ≤
θ++ϑ+ ≤ 1, where θ ∈ h(x), ϑ ∈ g(x),θ+ � maxθ∈h(x){θ},
and ϑ+ � maxg(x){ϑ} for allx ∈ X . For convenience, the
pair d(x) � (h(x), g(x)) is called a dual-hesitant fuzzy ele-
ment (DHFE), simply as d � (h, g).

According to [15], IFS can be viewed as a particular case
of DHFS. When all possible MDs and NMDs of elements in
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a DHFS only have one value, the DHFS is reduced to an IFS.
Next, the basic DHFS operations from the perspective of t-
norm and t-conorm are reviewed. In 2016, Wang et al. [46]
provided the basic operational laws of DHFS, which were
inspired by Beliakov et al. [45] and based on Archimedean
t-norm and t-conorm.

Definition 2.4 [46] For any three DHFEs d � (h, g), d1 �
(h1, g1) and d2 � (h2, g2), then

(1) dγ � ⋃θ∈h,ϑ∈g
{{
k−1(γ k(θ))

}
,
{
l−1(γ l(ϑ))

}}
, γ >

0
(2) γ d � ⋃θ∈h,ϑ∈g

{{
l−1(γ l(θ))

}
,
{
k−1(γ k(ϑ))

}}
, γ >

0
(3) d1 ⊗ d2 � ⋃

θ1∈h1, θ2∈h2,ϑ1∈g1,ϑ2∈g2{{T (θ1, θ2)},
{S(ϑ1, ϑ2)}} � ⋃

θ1∈h1, θ2∈h2,ϑ1∈g1,ϑ2∈g2{{
k−1(k(θ1) + k(θ2))

}
,
{
l−1(l(ϑ1) + l(ϑ2))

}}

(4) d1 ⊕ d2 � ⋃
θ1∈h1, θ2∈h2,ϑ1∈g1,ϑ2∈g2{{S(θ1, θ2)},

{T (ϑ1, ϑ2)}} � ⋃
θ1∈h1, θ2∈h2,ϑ1∈g1,ϑ2∈g2{{

l−1(l(θ1) + l(θ2))
}
,
{
k−1(k(ϑ1) + k(ϑ2))

}}
.

Let k(t) � −log(t), l(t) � k(1 − t) � −log(1 − t).
Then, we have the operational laws of DHFS in [15] as fol-
lows:

(1) dγ �⋃θ∈h,ϑ∈g{{θγ }, {1 − (1 − ϑ)γ }}, γ > 0
(2) γ d �⋃θ∈h,ϑ∈g{{1 − (1 − θ)γ }, {ϑγ }}, γ > 0
(3) d1 ⊗ d2 �⋃θ1∈h1, θ2∈h2,ϑ1∈g1,ϑ2∈g2 {{θ1θ2}, {ϑ1 + ϑ2 − ϑ1ϑ2}}
(4) d1 ⊕ d2 �⋃θ1∈h1, θ2∈h2,ϑ1∈g1,ϑ2∈g2 {{θ1 + θ2 − θ1θ2}, {ϑ1ϑ2}}.

Hesitant Fermatean fuzzy sets

IFS can be regarded asDHFSwith only one value forMDand
NMD for all elements. Likewise, FFS can be viewed asHFFS
when each element has a single value forMDandNMD. This
section begins with a review of the concept of HFFS. Then,
the basic operational laws of HFFS are reviewed from the
t-norm and t-conorm perspectives.

Definition 2.5 [41] Let X be a finite set. The definition of a
HFFS on X is

F � {〈u, (μF (u), νF (u))〉 | u ∈ X },

where μF (u) and νF (u) are two sets, denoting the prob-
able MDs and NMDs of the element u ∈ X to the set
F respectively, with the conditions 0 ≤ θ , ϑ ≤ 1, 0 ≤(
θ+
)3 +

(
ϑ+
)3 ≤ 1, where θ ∈ μF (u), ϑ ∈ νF (u) θ+ �

maxθ∈μF (u){θ}, and ϑ+ � maxϑ∈νF (u){ϑ} for allu ∈ X .
The pair ζF (u) � (μF (u), νF (u)) is represented as the Hes-
itant Fermatean Fuzzy element (HFFE). For convenience,
HFFE is simplified to ζ � (μ, ν).

Definition 2.6 [39] Let ζ � (μ, ν) be an HFFE. The score
function SF and the accuracy function PF of the HFFE are
depicted as follows:

SF (ζ ) � 1
lμ

∑

θ∈μ

θ3 − 1
lν

∑

ϑ∈ν

ϑ3

PF (ζ ) � 1
lμ

∑

θ∈μ

θ3 + 1
lν

∑

ϑ∈ν

ϑ3,

where lμ and lν are the cardinal number of elements in μ

and ν, respectively. Let ζi � (ui , νi )(i � 1, 2) be any two
HFFEs, then

(1) if SF (ζ1) > SF (ζ2), then ζ1 > ζ2

(2) ifSF (ζ1) � SF (ζ2), then

(a) ifPF (ζ1) � PF (ζ2), thenζ1 � ζ2

(b) i f PF (ζ1) > PF (ζ2), thenζ1 > ζ2.

As the basic operational laws of IFS based on
Archimedean t-norm and t-conorm given by Beliakov et al.
[45], the basic operational laws of FFS can also be proposed.
For example, the sum operation of Fermatean fuzzy numbers

can be written as α1 ⊕ α2 �
(

3
√
S
(
μ3
1, μ3

2

)
, 3
√
T
(
ν31 , ν32

))
,

where α1 � (μ1, ν1) and α2 � (μ2, ν2) are two Fermatean
fuzzy numbers. Expanding the sum operation yields the fol-
lowing formula:

α1 ⊕ α2

�
(

3
√
S
(
μ3
1, μ3

2

)
, 3
√
T
(
ν31 , ν32

))

�
(

3
√
l−1
(
l
(
μ3
1

)
+ l
(
μ3
2

))
, 3
√
k−1
(
k
(
ν31

)
+ k
(
ν32

)))
.

Let k(t) � −log(t), then l(t) � k(1 − t) � −log(1 − t).
Then, we have the sum operation of FFS in [42] is shown as
follows:

α1 ⊕ α2

�
(

3
√
S
(
μ3
1, μ3

2

)
, 3
√
T
(
ν31 , ν32

))

�
(

3
√
l−1
(
l
(
μ3
1

)
+ l
(
μ3
2

))
, 3
√
k−1
(
k
(
ν31

)
+ k
(
ν32

)))

�
(

3
√

μ3
1 + μ3

2 − μ3
1μ

3
2, ν1ν2

)
.

Extending the operational laws of FFS based on
Archimedean t-norm and t-conorm to HFFS, we can derive
the operational laws of HFFS based on Archimedean t-
norm and t-conorm. For any three HFFEs ζ � (μ, ν),ζ1 �
(μ1, ν1) and ζ2 � (μ2, ν2), then the operational laws are
shown as follows:
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(1) ζ γ �
⋃

θ∈μ,ϑ∈ν

{{
3
√
k−1
(
γ k
(
θ3
))}

,

{
3
√
l−1
(
γ l
(
ϑ3
))}}

, γ > 0;

(2)

γ ζ �
⋃

θ∈μ,ϑ∈ν

{{
3
√
l−1
(
γ l
(
θ3
))
}
,

{
3
√
k−1
(
γ k
(
ϑ3
))
}}

, γ > 0;

(3)
ζ1 ⊗ ζ2

�
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

{{
3
√
T
(
θ31 , θ32

)
}
,

{
3
√
S
(
ϑ3
1 , ϑ3

2

)
}}

�
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

{{
3
√
k−1
(
k
(
θ31

)
+ k
(
θ32

))
}
,

{
3
√
l−1
(
l
(
ϑ3
1

)
+ l
(
ϑ3
2

))
}}

;

(4)

ζ1 ⊕ ζ2

�
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

{{
3
√
S
(
θ31 , θ32

)
}
,

{
3
√
T
(
ϑ3
1 , ϑ3

2

)
}}

�
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

{{
3
√
l−1
(
l
(
θ31

)
+ l
(
θ32

))
}
,

{
3
√
k−1
(
k
(
ϑ3
1

)
+ k
(
ϑ3
2

))
}}

.

Let k(t) � −log(t), then l(t) � k(1 − t) � −log(1 − t),
and then, the operational laws of HFFS in [41] can be derived
as follows.

Definition 2.7 [41] For any three HFFEs,ζ � (μ, ν),ζ1 �
(μ1, ν1) and ζ2 � (μ2, ν2), we have the following basic
operations:

(1) ζ c � ⋃θ∈μ,ϑ∈ν {{ϑ}, {θ}}, i f ν �� ∅, μ �� ∅

(2) ζ γ �⋃θ∈μ,ϑ∈ν

{
{θγ },

{
3
√
1 − (1 − ϑ3)γ

}}
, γ > 0

(3)
γ ζ �⋃θ∈μ,ϑ∈ν

{{
3
√
1 − (1 − θ3)γ

}
, {ϑγ }

}
, γ > 0

(4)
ζ1 ⊗ ζ2 � ⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2{
{θ1θ2},

{
3
√

ϑ3
1 + ϑ3

2 − ϑ3
1ϑ3

2

}}

(5)
ζ1 ⊕ ζ2 � ⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2{{
3
√

θ31 + θ32 − θ31 θ32

}
, {ϑ1ϑ2}

}
.

The operations of fuzzy sets are crucial in fuzzy sets
theory. Archimedean t-norm and t-conorm contain fuzzy
operations and satisfy the requirements of conjunction and
disjunction operator, respectively. The t-norm and t-conorm
are, in fact, the most general families of binary functions that
map the unit square to the unit interval [28]. Einstein product
and Einstein sum, also called Einstein t-norm and t-conorm,
is a commonly used fuzzy logic operation.

Definition 2.8 [28, 29] TheEinstein productTE andEinstein
sum SE are related by the De Morgan duality SE (s, t) �
1 − TE (1 − s, 1 − t). For any (s, t) ∈ [0, 1]2

TE (s, t) � st

1 + (1 − s)(1 − t)

SE (s, t) � s + t

1 + st
.

Then, SE (s, t) is called the dual t-conorm of TE . Analo-
gously, TE (s, t) is called the dual t-norm of SE .

Bonferroni mean

BM is an aggregation operation that considers aggregation
elements independently [47]. Yager [36] interprets BM as a
product of each argument with the mean of the other argu-
ments. The BM operator can also be seen as an aggregation
of the correlation of any element with other elements. The
definition of BM is shown below.

Definition 2.9 [35, 48] Let ui ≥ 0, u j ≥
0(i , j � 1, 2, . . . , n) be from a same set of nonnegative
numbers. p, q ≥ 0. Then, the Bonferroni mean is defined
as

BMp, q (u1, u2, · · · , un) �
(

1
n(n−1)

n∑

i , j�1; i �� j

(
u p
i · uqj

)
) 1

p+q

.

Hesitant Fermatean fuzzy aggregation
operator

In this section, four hesitant Fermatean fuzzy aggregation
operators are introduced. First and foremost, the definition
and derivation of the HFFBM operator are presented. In
addition, in conjunction with the fundamental operations of
HFFS in Einstein t-norms, the HFFEBM operator is defined
and derived. We also develop the HFFWBM operator and
the HFFEWBM operator in consideration of the impact of
weights on decision-making results. The characteristics of
the HFFEBM and HFFEWBM operators are then discussed.

HFFBM and HFFWBM operators

This subsection introduces the HFFBM aggregation operator
based on the algebraic operations of HFFEs. And then, the
HFFWBM aggregation operator is given. Before the opera-
tors have shown, we list some HFFS theorems of [41], and
then, the more detailed proofs are given.

Theorem 3.1 For any three HFFEs ζ1 � (μ1, ν1) and ζ2 �
(μ2, ν2), γ ≥ 0, then we have
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(1) ζ1 ⊕ ζ2 � ζ2 ⊕ ζ1
(2) ζ1 ⊗ ζ2 � ζ2 ⊗ ζ1
(3) γ (ζ1 ⊕ ζ2) � γ ζ1 ⊕ γ ζ2
(4) (ζ1 ⊗ ζ2)γ � ζ

γ
1 ⊗ ζ

γ
2 .

The proof of Theorem 3.1 can be found in the Appendix.

HFFBM operator

According to Definitions 2.7 and 2.9, we extend the hesitant
Fermatean fuzzy aggregation operations to the BM operator
as follows.

Definition 3.1 Let ζi � (μi , νi )ζ j �(
μ j , ν j

)
(i , j � 1, 2, · · ·, n) be from a same collection of

HFFEs, p, q > 0. For any i , j and i �� j , then

HFFBMp, q (ζ1, ζ2, · · · , ζn) �
(

1
n(n−1)

(
n⊕

i , j�1; i �� j
ζ
p
i ⊗ ζ

q
j

)) 1
p+q

(1)

is called hesitant Fermatean fuzzy Bonferroni mean operator.

Lemma 3.1 Let p, q > 0, ζi � (μi , νi ), ζ j �(
μ j , ν j

)
(i �� j) be from a same HFFS. Then

(
ζ
p
i ⊗ ζ

q
j

)
⊕
(
ζ
q
i ⊗ ζ

p
j

)

�
⋃

θi∈μi , θ j∈μ j ,ϑi∈νi ,ϑ j∈ν j

⎧
⎪⎪⎨

⎪⎪⎩

{
3

√

1 −
(
1 − Ap

i A
q
j

)(
1 − Aq

i A
p
j

) }
,

{
3

√(
1 − B p

i B
q
j

)(
1 − Bq

i B
p
j

) }

⎫
⎪⎪⎬

⎪⎪⎭

(2)

is hesitant Fermatean fuzzy Bonferroni elements
(HFFBEs), where

Ai � θ3i , A j � θ3j , Bi � 1 − ϑ3
i , Bj � 1 − ϑ3

j .

The proof of Lemma 3.1 can be found in the Appendix.

Theorem 3.2 Let p, q > 0, ζi � (μi , νi )ζ j �(
μ j , ν j

)
(i , j � 1, 2, · · ·, n) be from a same HFFS. δi , j �

(
ρi , j , �i , j

) �
(
ζ
p
i ⊗ ζ

q
j

)
⊕
(
ζ
q
i ⊗ ζ

p
j

)
is a collection ofHFF-

BEs with i �� j . Then, HFFBMp,q(ζ1, ζ2, · · · , ζn) ∈ HFFE
and

HFFBMp, q (ζ1, ζ2, · · · , ζn)

�
(

1

n(n − 1)

(
n⊕

i , j�1; i �� j
δi , j

)) 1
p+q ⋃

θi , j∈ρi , j ,ϑi , j∈�i , j

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3

√√
√√
√
√
√
√
√√

(

1 −
n∏

i , j�1; i �� j

((
1 − Ap

i A
q
j

)(
1 − Aq

i A
p
j

)) 1
n(n−1)

) 1
p+q

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3

√√
√
√√
√
√
√
√
√ 1 −

(

1 −
n∏

i , j�1; i �� j

((
1 − B p

i B
q
j

)(
1 − Bq

i B
p
j

)) 1
n(n−1)

) 1
p+q

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)

where

Ai � θ3i , A j � θ3j , Bi � 1 − ϑ3
i , Bj � 1 − ϑ3

j .

The proof of Theorem 3.1 can be found in the Appendix.

Property 3.1 (Monotonicity) Let {ζϕ1 , ζϕ2 , · · · , ζϕn } and
{ζψ1 , ζψ2 , · · · , ζψn } be two sets of HFFEs, p, q > 0. ζϕi �(
μϕi , νϕi

)
, ζψi � (μψi , νψi

)
. For any i , θϕi ∈ μϕi , ϑϕi ∈ νϕi

and θψi ∈ μψi , ϑψi ∈ νψi , if θϕi ≤ θψi , ϑϕi ≥ ϑψi , then

HFFBMp, q
(
ζϕ1 , ζϕ , · · · , ζϕn

) ≤ HFFBMp, q
(
ζψ1 , ζψ2 , · · · , ζψn

)
.

Property 3.2 (Idempotency) Let ζi � (μi , νi )(i � 1, 2,
· · · , n) from anHFFS. p, q > 0. Assume that all ζi are equal
and ζi � ζ (μ, ν), then HFFBMp,q(ζ1, ζ2, · · · , ζn) � ζ .

Property 3.3 (Boundedness) Let ζi � (μi , νi )(i � 1, 2,
· · · , n) from an HFFS

ζ +
i �

⋃

θi∈μi ,ϑi∈νi

{max{θi }, min{ϑi }}

ζ−
i �

⋃

θi∈μi ,ϑi∈νi

{min{θi }, max{ϑi }},

θ+i ∈ μ+
i , θ−

i ∈ μ−
i , ϑ+

i ∈ ν+i , ϑ−
i ∈ ν−

i , then we have

ζ−i ≤ HFFBMp,q(ζ1, ζ2, · · · , ζn) ≤ ζ+i .

Example 1 Assume that ζ1 � ({0.7}, {0.1, 0.2}), ζ2 �
({0.6, 0.9}, {0.5}), ζ3 � ({0.8}, {0.4}) are three HFFEs,
then we use the HFFBM operator to aggregate these three
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HFFEs. Let p � 1, q � 2, then the aggregated HFFE is as
follows:

HFFBM1, 2 (({0.7} , {0.1, 0.2}) , ({0.6, 0.9} , {0.5}) , ({0.8} , {0.4}))

�

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎧
⎨

⎩
0.710, 0.750, 0.726, 0.760, 0.744, 0.773, 0.755, 0.781,

0.766, 0.789, 0.775, 0.796, 0.786, 0.804, 0.793, 0.810

⎫
⎬

⎭
,

⎧
⎨

⎩
0.383, 0.383, 0.385, 0.385, 0.384, 0.384, 0.386, 0.387,

0.387, 0.387, 0.389, 0.390, 0.388, 0.389, 0.390, 0.391

⎫
⎬

⎭

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then, we calculate the score value of this aggregation
result based on Definition 2.2, and the result is 0.400.

HFFWBM operator

Considering the influence of weights on aggregation oper-
ations, we extend the weighted hesitant Fermatean fuzzy
aggregation operation to BM operator. According to Defi-
nitions 2.7 and 2.9, the weighted extended BM operator is
shown below.

Definition 3.2 Let ζi � (μi , νi )ζ j �(
μ j , ν j

)
(i , j � 1, 2, · · ·, n) be from a same collection

of HFFEs, p, q > 0. For any i , j and i �� j . The weight
vector ω is (ω1, ω2, · · · , ωn)

T , with
∑n

i�1ωi � 1 and
ωi ∈ [0, 1], then

HFFWBMp, q
ω (ζ1, ζ2, · · · , ζn)

�
(

1
n(n−1)

n⊕
i , j�1; i �� j

(
(ωiζi )

p ⊗ (ω jζ j
)q)
) 1

p+q (4)

is called hesitant Fermatean fuzzyweightedBonferronimean
operator.

Lemma 3.2 Let p, q > 0, ζi � (μi , νi ), ζ j �(
μ j , ν j

)
(i �� j) be from a same HFFS. The weight vector

ω is (ω1, ω2, · · · , ωn)
T , with

∑n
i�1ωi � 1 and ωi ∈ [0, 1],

then
(
(ωi ζi )

p ⊗ (ω j ζ j
)q)⊕ ((ωi ζi )

q ⊗ (ω j ζ j
)p)

�
⋃

θi∈μi , θ j∈μ j ,ϑi∈νi ,ϑ j∈ν j

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
3

√

1 −
(
1 − Ap

i A
q
j

) (
1 − Aq

i A
p
j

)
}

,
{

3

√(
1 − B p

i B
q
j

) (
1 − Bq

i B
p
j

)
}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(5)

is called hesitant Fermatean fuzzy weighted Bonferroni
elements (HFFWBEs), where

Ai � 1 − (1 − θ3i )
ωi , A j � 1 − (1 − θ3j )

ω j ,

Bi � 1 − (ϑ3
i )

ωi , Bj � 1 − (ϑ3
j )

ω j .

The proof of Lemma 3.2 can be found in the Appendix.

Theorem 3.3 Let p, q > 0, ζi � (μi , νi )ζ j �(
μ j , ν j

)
(i , j � 1, 2, · · ·, n) be from a same HFFS. The

weight vectorω is (ω1, ω2, · · · , ωn)
T ,with

∑n
i�1ωi � 1and

ωi ∈ [0, 1]. δi , j � (ρi , j , �i , j
) � ((ωiζi )

p ⊗ (ω jζ j
)q) ⊕(

(ωiζi )
q ⊗ (ω jζ j

)p) is a collection of HFFWBEs with i ��
j . Then, HFFWBMp,q

ω (d1, d2, · · · , dn) ∈ HFFEs and

HFFWBMp, q
ω (ζ1, ζ2, · · · , ζn) �

(
1

n(n − 1)

n⊕
i , j�1; i �� j

δi , j

) 1
p+q

⋃

θi , j∈ρi , j ,ϑi , j∈�i , j

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3

√√
√
√√
√

⎛

⎝1 −
n∏

i , j�1; i �� j

((
1 − Ap

i A
q
j

)(
1 − Aq

i A
p
j

)) 1
n(n−1)

⎞

⎠

1
p+q

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

⎧
⎪⎪⎨

⎪⎪⎩

3

√√
√√
√
√ 1 −

(

1 −
n∏

i , j�1; i �� j

((
1 − B p

i B
q
j

)(
1 − Bq

i B
p
j

)) 1
n(n−1)

) 1
p+q

⎫
⎪⎪⎬

⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(6)

where

Ai � 1 − (1 − θ3i )
ωi , A j � 1 − (1 − θ3j )

ω j ,

Bi � 1 − (ϑ3
i )

ωi , Bj � 1 − (ϑ3
j )

ω j .

Similar to the proof of the HFFBMp,q in Lemma 3.2, we
can obtain the HFFWBMp,q

ω , so omitted in this section.

Example 2 Here, we use the same HFFEs as in Example 1
with p � 1 and q � 2. ω � (0.3, 0.2, 0.5)T is the weighted
vector of the three HFFEs. Then, the aggregation result is as
follows:

HFFWBM1, 2
ω (({0.7} , {0.1, 0.2}) , ({0.6, 0.9} , {0.5}) , ({0.8} , {0.4}))

�

⎛

⎜⎜⎜
⎜
⎝

{
0.533, 0.548, 0.540, 0.554, 0.569, 0.578, 0.573, 0.582,
0.567, 0.577, 0.571, 0.580, 0.591, 0.598, 0.594, 0.601

}

,
{
0.686, 0.687, 0.691, 0.692, 0.693, 0.694, 0.698, 0.699,
0.703, 0.704, 0.708, 0.709, 0.710, 0.711, 0.716, 0.716

}

⎞

⎟⎟⎟
⎟
⎠

.

Then, we calculate the score value of this aggregation
result based on Definition 2.2, and the result is − 0.157.

HFFEBM and HFFEWBM operators

This subsection first gives the basic operations of HFFE
based on Einstein t-norm and t-conorm of Definition 2.8.
Further, this subsection develops the HFFEBM Operator.
Then, the idea and derivation process of HFFEWBM are
given. In particular, let additive generator k(t) � log

( 2−t
t

)

ofArchimedean t-norm, thenwehave the basicEinstein oper-
ations of HFFEs.

Definition 3.3 For any three HFFEs ζ � (μ, ν), ζ1 �
(μ1, ν1), ζ2 � (μ2, ν2), the basic Einstein operations of
HFFEs are as follows:

(1) ζ γ � ⋃
θ∈μ,ϑ∈ν

{{
3
√

2(θ3)γ

(2−θ3)γ +(θ3)γ

}
,
{

3
√

(1+ϑ3)γ −(1−ϑ3)γ

(1+ϑ3)γ +(1−ϑ3)γ

}}
,

γ > 0
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(2) γ ζ � ⋃
θ∈μ,ϑ∈ν

{{
3
√

(1+θ3)γ −(1−θ3)γ

(1+θ3)γ +(1−θ3)γ

}
,
{

3
√

2(ϑ3)γ

(2−ϑ3)γ +(ϑ3)γ

}}
,

γ > 0

(3)
ζ1 ⊗ ζ2 � ∪

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

{{
θ1θ2

3
√
1+
(
1−θ31

)(
1−θ32

)

}

,

{
3

√
ϑ3
1 +ϑ3

2
1+ϑ3

1ϑ3
2

}}

(4)
ζ1⊕ζ2 � ∪

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

{{
3

√
θ31 +θ32
1+θ31 θ32

}
,

{
ϑ1ϑ2

3
√
1+
(
1−ϑ3

1

)(
1−ϑ3

2

)

}}

.

Theorem 3.4 Let ζ1 � (μ1, ν1),ζ2 � (μ2, ν2), and ζ3 �
(μ3, ν3) be three HFFEs with γ ≥ 0. Then, we have the
associativity and commutativity of HFFEs based on Defini-
tion 3.1 are as follows:

(1) ζ1 ⊕ ζ2 � ζ2 ⊕ ζ1
(2) ζ1 ⊗ ζ2 � ζ2 ⊗ ζ1
(3) γ (ζ1 ⊕ ζ2) � γ ζ1 ⊕ γ ζ2
(4) (ζ1 ⊗ ζ2)γ � ζ

γ
1 ⊗ ζ

γ
2

(5) ζ1 ⊕ (ζ2 ⊕ ζ3) � (ζ1 ⊕ ζ2) ⊕ ζ3
(6) ζ1 ⊗ (ζ2 ⊗ ζ3) � (ζ1 ⊗ ζ2) ⊗ ζ3.

The proof of Theorem 3.3 can be found in the Appendix.

HFFEBM operator

According to Definition 3.3 and Definition 2.9, we extend
the hesitant Fermatean fuzzy aggregation operations based
on Einstein operations to the BM operator as follows.

Definition 3.4 Let ζi � (μi , νi )ζ j �(
μ j , ν j

)
(i , j � 1, 2, · · ·, n) be from a same collection

of HFFEs. p, q > 0. For any i , j , i �� j, then

HFFEBMp, q(ζ1, ζ2, · · · , ζn)

�
(

1

n(n − 1)

n⊕
i , j�1; i �� j

(
ζ
p
i ⊗ ζ

q
j

)) 1
p+q

(7)

is called hesitant Fermatean fuzzy Einstein Bonferroni mean
operator.

Lemma 3.3 Let p, q > 0, ζi � (μi , νi ), ζ j �(
μ j , ν j

)
(i �� j) be from a same HFFS. Then

(
ζ
p
i ⊗ ζ

q
j

)
⊕
(
ζ
q
i ⊗ ζ

p
j

)

�
⋃

θi∈μi , θ j∈μ j ,ϑi∈νi ,ϑ j∈ν j

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3

√√
√√
√
√√
√√
√
√√
√
√√
√
√√
√

(
B p
i Bqj + 3Ap

i Aqj

)(
Bqi B

p
j + 3Aqi A

p
j

)

−
(
B p
i Bqj − Ap

i Aqj

)(
Bqi B

p
j − Aqi A

p
j

)

(
B p
i Bqj + 3Ap

i Aqj

)(
Bqi B

p
j + 3Aqi A

p
j

)

+
(
B p
i Bqj − Ap

i Aqj

)(
Bqi B

p
j − Aqi A

p
j

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3

√√√
√
√√
√√
√
√√
√
√√

2
(
Mp
i Mq

j − N p
i Nq

j

)(
Mq
i M

p
j − Nq

i N p
j

)

(
Mp
i Mq

j + 3N p
i Nq

j

)(
Mq
i M

p
j + 3Nq

i N p
j

)

+
(
Mp
i Mq

j − N p
i Nq

j

)(
Mq
i M

p
j − Nq

i N p
j

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

is calledhesitant Fermatean fuzzyEinsteinBonferroni ele-
ments (HFFEBEs), where

Ai � θ3i , Bi � 2 − θ3i , Mi � 1 + ϑ3
i , Ni � 1 − ϑ3

i .

The proof of Lemma 3.3 can be found in the Appendix.

Theorem 3.5 Let p, q > 0, ζi � (μi , νi )ζ j �(
μ j , ν j

)
(i , j � 1, 2, · · ·, n) be from a same HFFS. δi , j �

(
ρi , j , �i , j

) �
(
ζ
p
i ⊗ ζ

q
j

)
⊕
(
ζ
q
i ⊗ ζ

p
j

)
is a collection of

HFFEBEs with i �� j . Then, HFFBMp,q(ζ1, ζ2, · · · , ζn) ∈
HFFE and
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HFFEBMp, q(ζ1, ζ2, · · · , ζn) �
(

1

n(n − 1)

(
n⊕

i , j�1; i �� j
δi , j

)) 1
p+q

�
⋃

θi , j∈ρi , j ,ϑi , j∈�i , j

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a

√√√√√√
√√√√√
√√√√√√
√√√√

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

1 −
n∏

i , j�1; i �� j

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1 −

(
B p
i B

q
j + 3Ap

i A
q
j

)(
Bq
i B

p
j + 3Aq

i A
p
j

)
−

(
B p
i B

q
j − Ap

i A
q
j

)(
Bq
i B

p
j − Aq

i A
p
j

)

(
B p
i B

q
j + 3Ap

i A
q
j

)(
Bq
i B

p
j + 3Aq

i A
p
j

)
+

(
B p
i B

q
j − Ap

i A
q
j

)(
Bq
i B

p
j − Aq

i A
p
j

)

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

1
n(n−1)

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

1
p+q

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a

√√√√
√√√√√
√√√√√√
√√√√√√

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

1 −
n∏

i , j�1; i �� j

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

1 −
2
(
Mp

i M
q
j − N p

i N
q
j

)(
Mq

i M
p
j − Nq

i N
p
j

)

(
Mp

i M
q
j + 3N p

i N
q
j

)(
Mq

i M
p
j + 3Nq

i N
p
j

)
+

(
Mp

i M
q
j − N p

i N
q
j

)(
Mq

i M
p
j − Nq

i N
p
j

)

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

1
n(n−1)

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

1
p+q

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)

where

Ai � θ3i , Bi � 2 − θ3i , Mi � 1 + ϑ3
i , Ni � 1 − ϑ3

i .

Similar to the proof of the HFFBMp,q in Lemma 3.2, we
can obtain the HFFEBMp, q by Lemma 3.3 and Theorem 3.4,
so omitted in this section.

Property 3.4 (Monotonicity) Let {ζϕ1 , ζϕ2 , · · · , ζϕn } and
{ζψ1 , ζψ2 , · · · , ζψn } be two sets of HFFEs, p, q > 0.HFFEs,
ζϕi � (

μϕi , νϕi

)
, ζψi � (

μψi , νψi

)
. For anyi,θϕi ∈ μϕi ,

ϑϕi ∈ νϕi and θψi ∈ μψi , ϑψi ∈ νψi , if θϕi ≤ θψi , ϑϕi ≥ ϑψi ,
then

HFFEBMp, q
(
ζϕ1 , ζϕ2 , · · · , ζϕn

) ≤ HFFEBMp, q
(
ζψ1 , ζψ2 , · · · , ζψn

)
.

Property 3.5 (Idempotency) Let ζi � (μi, νi)(i � 1, 2, · · · ,
n) be from an HFFS. p, q > 0. Assume that all ζi are equal
and ζi � ζ(μ, ν), then HFFEBMp,q(ζ1, ζ2, · · · , ζn) � ζ.

Property 3.6 (Boundedness) Let ζi � (μi , νi )(i � 1, 2,
· · · , n) be from an HFFS, and

ζ +
i �

⋃

θi∈μi ,ϑi∈νi

{max{θi }, min{ϑi }}

ζ−
i �

⋃

θi∈μi ,ϑi∈νi

{min{θi }, max{ϑi }},

θ+i ∈ μ+
i , θ−

i ∈ μ−
i , ϑ+

i ∈ ν+i , ϑ−
i ∈ ν−

i , then we have

ζ−
i ≤ HFFEBMp, q(ζ1, ζ2, · · · , ζn) ≤ ζ +

i .

Example 3 Here, we use the same HFFEs as in Example
1 with p � 1 and q � 2, then the aggregate HFFE is as
follows:

HFFEBM1, 2 (({0.7} , {0.1, 0.2}) , ({0.6, 0.9} , {0.5}) , ({0.8} , {0.4}))

�

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

⎧
⎪⎪⎨

⎪⎪⎩

0.714, 0.758, 0.731, 0.767, 0.752, 0.780, 0.762, 0.787,

0.775, 0.797, 0.783, 0.802, 0.793, 0.811, 0.799, 0.815

⎫
⎪⎪⎬

⎪⎪⎭
,

⎧
⎪⎪⎨

⎪⎪⎩

0.383, 0.383, 0.385, 0.386, 0.384, 0.385, 0.386, 0.387,

0.387, 0.387, 0.389, 0.390, 0.388, 0.389, 0.390, 0.391

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

.
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Then, we calculate the score value of this aggregation
result based on Definition 2.2, and the result is 0.413.

HFFEWBM operator

Without considering the weights, we obtain the aggregation
operator as shown in Theorem 3.3, while, in general, the
weights is a crucial factor in the dual-hesitant fuzzy decision-
making. The weights refer to the weight of each HFFE, and
different weights will lead to different final decision results.
We extend the weighted hesitant Fermatean fuzzy aggrega-
tion operation based on Einstein operations to BM operator.
According to Definitions 3.3 and 2.9, the HFFEWBM oper-
ator is shown below.

Definition 3.5 Let ζi � (μi , νi )ζ j �(
μ j , ν j

)
(i , j � 1, 2, · · ·, n) be from a same set of HFFEs.

p, q > 0. And, for any i , j , i �� j . The weight vector ω

is (ω1, ω2, · · · , ωn)
T , with

∑n
i�1ωi � 1 and ωi ∈ [0, 1].

Then

HFFEWBMp, q
ω (ζ1, ζ2, · · · , ζn)

�
(

1
n(n−1)

n⊕
i , j�1; i �� j

(ωiζi )
p ⊗ (ω jζ j )q

) 1
p+q

(10)

is called hesitant Fermatean fuzzy Einstein weighted Bon-
ferroni mean operator.

Lemma 3.4 Let p, q > 0, ζi � (μi , νi ), ζ j �(
μ j , ν j

)
(i �� j) be from a same HFFS. The weight vector

ω is (ω1, ω2, · · · , ωn)
T , with

∑n
i�1ωi � 1 and ωi ∈ [0, 1].

Then

((
ωi ζi

)p ⊗ (ω j ζ j
)q )⊕ ((ωi ζi

)q ⊗ (ω j ζ j
)p)

�
⋃

θi∈μi , θ j∈μ j ,ϑi∈νi ,ϑ j∈ν j

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3

√√√
√√
√
√√
√
√√
√
√√
√
√√
√

(
B p
i Bqj + 3Ap

i Aqj

)(
Bqi B

p
j + 3Aqi A

p
j

)

−
(
B p
i Bqj − Ap

i Aqj

)(
Bqi B

p
j − Aqi A

p
j

)

(
B p
i Bqj + 3Ap

i Aqj

)(
Bqi B

p
j + 3Aqi A

p
j

)

+
(
B p
i Bqj − Ap

i Aqj

)(
Bqi B

p
j − Aqi A

p
j

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3

√√
√
√√
√√
√
√√
√
√√

2
(
Mp
i Mq

j − N p
i Nq

j

)(
Mq
i M

p
j − Nq

i N p
j

)

(
Mp
i Mq

j + 3N p
i Nq

j

)(
Mq
i M

p
j + 3Nq

i N p
j

)

+
(
Mp
i Mq

j − N p
i Nq

j

)(
Mq
i M

p
j − Nq

i N p
j

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)

is called Hesitant Fermatean Fuzzy Einstein weighted
Bonferroni Elements (HFFEWBEs), where

Ai � (1 + θ3i )
ωi − (1 − θ3i )

ωi , Bi � (1 + θ3i )
ωi + 3(1 − θ3i )

ωi ,
Mi � (2 − ϑ3

i )
ωi + 3(ϑ3

i )
ωi , Ni � (2ϑ3

i )
ωi − 3(ϑ3

i )
ωi .

The proof of Lemma 3.4 can be found in the Appendix.

Theorem 3.6 Let p, q > 0, ζi � (μi , νi )ζ j �(
μ j , ν j

)
(i , j � 1, 2, · · ·, n) be from a same HFFS. The

weight vectorω is (ω1, ω2, · · · , ωn)
T ,with

∑n
i�1ωi � 1and

ωi ∈ [0, 1]. δi , j � (ρi , j , �i , j
) � ((ωiζi )

p ⊗ (ω jζ j
)q) ⊕(

(ωiζi )
q ⊗ (ω jζ j

)p) is a collection of HFFEWBEs with
i �� j . Then, HFFEWBMp,q

ω (d1, d2, · · · , dn) ∈ HFFEs and
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HFFEWBMp, q
ω (ζ1, ζ2, · · · , ζn) �

(
1

n(n − 1)

(
n⊕

i , j�1; i �� j
δi , j

)) 1
p+q

�
⋃

θi , j∈ρi , j ,ϑi , j∈�i , j

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a

√√
√√√√√
√√√√√√
√

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

1 −
n∏

i , j�1; i �� j

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 −

(
B p
i B

q
j + 3Ap

i A
q
j

)(
Bq
i B

p
j + 3Aq

i A
p
j

)
−

(
B p
i B

q
j − Ap

i A
q
j

)(
Bq
i B

p
j − Aq

i A
p
j

)

(
B p
i B

q
j + 3Ap

i A
q
j

)(
Bq
i B

p
j + 3Aq

i A
p
j

)
+

(
B p
i B

q
j − Ap

i A
q
j

)(
Bq
i B

p
j − Aq

i A
p
j

)

⎞

⎟⎟⎟⎟⎟⎟
⎠

1
n(n−1)

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

1
p+q

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a

√√√
√√√√√
√√√√√√

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

1 −
n∏

i , j�1; i �� j

⎛

⎜⎜
⎜⎜⎜⎜
⎝

1 −
2
(
Mp

i M
q
j − N p

i N
q
j

)(
Mq

i M
p
j − Nq

i N
p
j

)

(
Mp

i M
q
j + 3N p

i N
q
j

)(
Mq

i M
p
j + 3Nq

i N
p
j

)
+

(
Mp

i M
q
j − N p

i N
q
j

)(
Mq

i M
p
j − Nq

i N
p
j

)

⎞

⎟⎟
⎟⎟⎟⎟
⎠

1
n(n−1)

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

1
p+q

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)

where

Ai � (1 + θ3i )
ωi − (1 − θ3i )

ωi , Bi � (1 + θ3i )
ωi + 3(1 − θ3i )

ωi ,
Mi � (2 − ϑ3

i )
ωi + 3(ϑ3

i )
ωi , Ni � (2ϑ3

i )
ωi − 3(ϑ3

i )
ωi .

Similar to the proof of the HFFEBMp,q in Lemma 3.3,
we can obtain the HFFEWBMp, q

ω by Lemma 3.4 and Theo-
rem 3.4, so omitted in this section.

Example 4 Here, we use the same HFFEs as in Example
2with p � 1 and q � 2.ω � (0.3, 0.2, 0.5)T is the weighted
vector of the three HFFEs. Then, the aggregation result is as
follows:

HFFEWBM1, 2
ω (({0.7} , {0.1, 0.2}) , ({0.6, 0.9} , {0.5}) , ({0.8} , {0.4}))

�

⎛

⎜
⎜⎜⎜
⎝

{
0.522, 0.532, 0.527, 0.536, 0.553, 0.559, 0.556, 0.561,
0.547, 0.554, 0.550, 0.557, 0.569, 0.574, 0.571, 0.576

}

,
{
0.722, 0.723, 0.728, 0.728, 0.730, 0.730, 0.735, 0.736,
0.739, 0.740, 0.745, 0.746, 0.748, 0.749, 0.754, 0.755

}

⎞

⎟
⎟⎟⎟
⎠

.

Then, we calculate the score value of this aggregation
result based on Definition 2.2, and the result is − 0.233.

A newmethod for MADMbased on HFFWBM
and HFFEWBM aggregation operator

This section will examine MADM under the hesitant
Fermatean fuzzy environment. In this environment, each
alternative is aggregated using HFFWBM or HFFEWBM
operator and then ranked by the score function. Assume
that there are m alternatives and n attributes. A �
{A1, A2, · · · , Am} be a discrete collection of alternatives,

and C � {C1, C2, · · ·, Cn} be a collection of attributes.
The hesitant MD and NMD under each attribute of each
alternative are given by the decision-makers. i.e., they can
be considered as HFFEs ζi j � (

μi j , νi j
)
. Then, we get

the hesitant Fermatean fuzzy decision matrix (HFF-DM)
D � (ζi j

)
m×n and is as follows:

Dm×n �

⎡

⎢⎢⎢
⎢
⎣

ζ11 ζ12

ζ21 ζ22
· · · ζ1n

ζ2n
...

. . .
...

ζm1 ζm2 · · · ζmn

⎤

⎥⎥⎥
⎥
⎦

. (13)

Next, we use the HFFWBM and HFFEWBM operator
to handle this MADM problem. The specific algorithm is
described as follows.

Step 1. The HFF-DM D � (
ζi j
)
m×n is generated by

evaluating the decision-makers under each attribute of the
alternatives. Here, the evaluation of the cost attributes needs
to be converted into a benefits evaluation by the complemen-
tary operation in Definition 2.7. The conversion is as follows:

ζ
′
i j �

⎧
⎨

⎩
ζi j for benefit attributeC j ,

ζCi j for cost attributeC j

(14)

where i � 1, 2, · · ·, m and j � 1, 2, · · ·, n. ζCi j is the
complement ofζi j . After converted, we have the HFF-DM
D′ from D as follows:
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D′
m×n �

⎡

⎢⎢⎢⎢
⎣

ζ ′
11 ζ ′

12

ζ ′
21 ζ ′

22
· · · ζ ′

1n

ζ ′
2n

...
. . .

...

ζ ′
m1 ζ ′

m2 · · · ζ ′
mn

⎤

⎥⎥⎥⎥
⎦

. (15)

Step 2. If weights are considered, the HFFEWBMp,q and
HFFWBMp,q operators are used to aggregate the multi-
attribute evaluations of the m alternatives in the decision
matrix D′ into one evaluation value. Alternatively, using
the HFFEBM and HFFBM operator to aggregate attributes
without considering the weight of each attribute. Using The-
orem 3.3 or 3.6 is as follows:

ζ̃i � HFFWBMp, q
ω

(
ζ ′
i1, ζ ′

i2, · · · , ζ ′
in

)
(16)

ζ̃i � HFFEWBMp, q
ω

(
ζ ′
i1, ζ ′

i2, · · · , ζ ′
in

)
, (17)

where i � 1, 2, · · ·, m and ωi indicate the weight of i th
attribute.

Step 3. The score and accuracy values are calculated for
each evaluation by the score function and accuracy function
in Definition 2.6.

Step 4. Them alternatives are ranked by the comparison rule
of the score function and the accuracy function. This rank-
order solves the MADM under the hesitant Fermatean fuzzy
environment.

Case study and comparative analysis

To demonstrate the viability and efficacy of our proposed
method, this section illustrates a case of depression diag-
nosis. First, the proposed method based on the HFFWBM
and HFFEWBM operators is used to diagnose depression
for three patients. Second, we analyzed how parameters in
the HFFWBM and HFFEWBM operators affect depression
diagnosis. The analysis indicates that the parameters can be
regarded as the risk preference of the patient or the doc-
tor. Finally, a comparison experiment among the existing
MADM methods and the proposed method is conducted.

Case study

Depression is a prevalent chronic disease that impacts both
physical and mental health. Studies indicate that depression
is a chronic disease with a low mortality rate and a high rate
of disability. As social pressure has increased over the past
3 decades, depression has been one of the top three causes
of nonfatal health impairment and the incidence of depres-
sion has increased yearly. Estimated 173 million adults in
China suffer from mental health issues, with 4.30 million

having severe mental health issues [49]. The global rank-
ing of disability-adjusted life years (DALY) for China rose
from 15th in 1990 to 10th in 2017 as the burden of depres-
sion increased [50]. According to studies, the risk of death
due to depression doubles [51]. Consequently, the diagnosis
and treatment of depression is a significant concern in China.
Individual diagnosis of depression is based on the Diagnos-
tic and Statistical Manual of Mental Disorders, Fifth Edition
(DSM-5) [52], and the Chinese Classification and Diagnos-
tic Criteria for Mental Disorders, Third Edition (CCMD-3)
[53], which require consideration of four criteria: symptom
criteria, course criteria, exclusion criteria, and severity crite-
ria. The main symptoms of depression are loss of interest,
unhappiness, decreased energy, fatigue, trauma, low self-
esteem, self-blame or guilt, difficulty associating or thinking,
sleep disturbances, significant weight loss, less sexual desire,
and severe cases, suicide [54]. The existing assessment cri-
teria for depression are based on the depression score scale.
The Hamilton Depression Scale (HAMD) and the nine-item
Patient Health Questionnaire Depression Scale (PHQ-9) are
typically used to determine severity [55–58].

The currentmethod of diagnosis is an initial assessment by
the doctor using the HAMD or PHQ-9 based on the patient’s
clinical depressive symptomswithin 2 weeks. However, both
the score on the Depression Score Scale for patients and the
evaluation of the depressive status value of doctors contain
uncertainty and ambiguity. Diagnostic evaluation for exist-
ing depressive symptoms is complicated by the fuzziness
and uncertainty of symptoms under precise values, which
makes diagnosis difficult. Additionally, due to the ambiguity
of depressive symptoms, it is difficult for patients to describe
their specific symptoms clearly, causing doctors to hesitate
in diagnosing them.

Fuzzy sets, a powerful tool for dealing with uncertainty
and fuzziness, can also be helpful in the diagnosis of depres-
sion. Considering the possibility of correlations between
depressive symptoms, we employ the proposed hesitant
Fermatean fuzzy BM operators and the MADM method
to diagnose depression. The HAMD and PHQ-9 classify
individualswith depression according to three types of symp-
toms: mild depression (D1), moderate depression (D2), and
major depression (D3). In this case, we use it as a diag-
nostic option set D � {D1, D2, D3}. According to [54],
the core symptoms of major depressive disorder are anxi-
ety state (C1), sleep disturbance (C2), decreased interest and
fatigue (C3), cognitive dysfunction (C4), and sexual dysfunc-
tion (C5). Then, the diagnostic set of depressive symptoms
is C � {C1, C2, C3, C4, C5}. The weight vector for the
five core symptoms isω � (0.2, 0.15, 0.2, 0.3, 0.15). Three
patients were then diagnosed. Suppose the depression diag-
nostic evaluation tables for patient PA, patient PB , andpatient
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Table 1 Depression diagnostic evaluation for PA

C1 C2 C3 C4 C5

D1 {{0.3,0.5}, {0.6}} {{0.6}, {0.4,0.6}} {{0.4}, {0.2}} {{0.5}, {0.4}} {{0.3}, {0.6}}

D2 {{0.8}, {0.2}} {{0.6,0.7}, {0.1}} {{0.7}, {0.3,0.4}} {{0.3}, {0.2}} {{0.6}, {0.1}}

D3 {{0.2}, {0.3}} {{0.3}, {0.5}} {{0.5,0.8}, {0.2}} {{0.3}, {0.7}} {{0.5}, {0.4,0.5}}

Table 2 Depression diagnostic evaluation for PB

C1 C2 C3 C4 C5

D1 {{0.7}, {0.2}} {{0.8}, {0.4}} {{0.4}, {0.5, 0.6}} {{0.5}, {0.2}} {{0.6, 0.4}, {0.1}}

D2 {{0.3}, {0.8}} {{0.5}, {0.2}} {{0.5, 0.8}, {0.7}} {{0.5}, {0.5}} {{0.2}, {0.5, 0.7}}

D3 {{0.1, 0.3}, {0.4}} {{0.7}, {0.6}} {{0.2}, {0.5}} {{0.6}, {0.6}} {{0.3}, {0.4, 0.5}}

Table 3 Depression diagnostic evaluation for PC

C1 C2 C3 C4 C5

D1 {{0.6}, {0.7}} {{0.3,0.6}, {0.2}} {{0.7}, {0.7,0.8}} {{0.2}, {0.4}} {{0.1}, {0.3,0.5}}

D2 {{0.6,0.7}, {0.4}} {{0.5}, {0.3,0.4}} {{0.2}, {0.8}} {{0.6}, {0.5}} {{0.3}, {0.3}}

D3 {{0.9}, {0.1,0.2}} {{0.6,0.7}, {0.4}} {{0.5}, {0.4}} {{0.8}, {0.2}} {{0.5}, {0.1}}

Table 4 Comprehensive diagnostic score based on HFFWBM aggrega-
tion operator

D1 D2 D3

PA −0.5989 −0.3117 −0.5898

PB −0.4139 −0.6806 −0.6499

PC −0.6241 −0.6119 −0.3305

PC are shown in Tables 1, 2, 3. The diagnostic process is
shown below.

Step 1. The symptoms of depression can be regarded as neg-
ative attributes (cost attributes). The final diagnosis ranking
result is mainly symptom severity, so there is no need to
convert.

Setp 2.Aggregate each depression type for each patient using
theHFFWBMoperator byEq. (16) and theHFFEWBMoper-
ator by Eq. (17). The weight vector of depression symptoms
is ω � (0.2, 0.15, 0.2, 0.3, 0.15). The aggregation param-
eters are set to p � 1 and q � 1. Then, the aggregation
results represent the comprehensive diagnostic evaluation of
each patient under each depression type.

Step 3. Score function in Definition 2.6 is used to calcu-
late the diagnostic evaluation score of each patient under
each depression type. The diagnostic evaluation scores by
HFFWBM are shown in Table 4, and the diagnostic evalua-
tion scores by HFFEWBM are shown in Table 5.

Table 5 Comprehensive diagnostic score based on HFFEWBM aggre-
gation operator

D1 D2 D3

PA −0.6715 −0.4309 −0.6706

PB −0.5151 −0.7382 −0.7221

PC −0.6949 −0.6909 −0.4438

Table 6 Depression diagnosis for three patients

Patients Diagnosis result

HFFWBM (p � 1, q � 1) PA D2 � D3 � D1

PB D1 � D3 � D2

PC D3 � D2 � D1

HFFEWBM (p � 1, q � 1) PA D2 � D3 � D1

PB D1 � D3 � D2

PC D3 � D2 � D1

Step 4. According to the comprehensive diagnostic evalua-
tion score of eachpatient under eachdepression typeobtained
in step 3, the depression type of each patient is sorted. The
results are shown in Table 6. From the diagnostic evalua-
tion results, we know that the diagnosis of PA is moderate
depression, the diagnosis of PB is mild depression, and the
diagnosis of PC is major depression.
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Influence of the parameter on the diagnosis result

BM operation has two parameters, p and q, which can
be regarded as a parameter vector. Variations in parame-
ters make aggregation operators more flexible and result in
distinct outcomes. Let the three depressed patients in the sec-
tions “Case study” be an example. The diagnosis results vary
based on the parameter vector, as shown in Tables 7, 8, 9, 10,
11, 12. We can find that the parameter vector impacts the
diagnosis ranking results, but the diagnosis results remain
the same. PA is still diagnosed with moderate depression.
PB has mild depression, while PC is diagnosed with major

depression. In addition, the score increases as the parameter
increases, and the score decreases as the parameter decreases.
Therefore, the parameter vector can be regarded as the risk
preference of the doctors or patients.

Comparative analysis with other method

This section discusses the comparative analysis of the pro-
posedmethod and existing approaches to verify the reliability
of the proposed MADM method. Kirişci [39] presented
a MADM method based on the Fermatean hesitant fuzzy

Table 7 The influence of
parameter vector changes of
HFFWBM operator on the
depression diagnosis for PA

Parameters D1 D2 D3 Diagnosis result

p � 1, q � 1 −0.5989 −0.3118 −0.5898 D2 � D3 � D1

p � 1, q � 2 −0.5766 −0.3001 −0.5684 D2 � D3 � D1

p � 1, q � 3 −0.5500 −0.2871 −0.5397 D2 � D3 � D1

p � 2, q � 3 −0.5520 −0.2893 −0.5498 D2 � D3 � D1

p � 3, q � 3 −0.5413 −0.2857 −0.5439 D2 � D1 � D3

p � 3, q � 4 −0.5270 −0.2797 −0.5308 D2 � D1 � D3

p � 3, q � 5 −0.5128 −0.2728 −0.5152 D2 � D1 � D3

p � 4, q � 5 −0.5050 −0.2715 −0.5134 D2 � D1 � D3

p � 5, q � 5 −0.4960 −0.2685 −0.5082 D2 � D1 � D3

Table 8 The influence of
parameter vector changes of
HFFEWBM operator on the
depression diagnosis for PA

Parameters D1 D2 D3 Diagnosis result

p � 1, q � 1 −0.6715 −0.4309 −0.6706 D2 � D3 � D1

p � 1, q � 2 −0.6449 −0.4168 −0.6479 D2 � D1 � D3

p � 1, q � 3 −0.6171 −0.4000 −0.6194 D2 � D1 � D3

p � 2, q � 3 −0.6162 −0.4019 −0.6275 D2 � D1 � D3

p � 3, q � 3 −0.6044 −0.3974 −0.6214 D2 � D1 � D3

p � 3, q � 4 −0.5910 −0.3898 −0.6092 D2 � D1 � D3

p � 3, q � 5 −0.5790 −0.3807 −0.5957 D2 � D1 � D3

p � 4, q � 5 −0.5995 −0.3801 −0.5996 D2 � D1 � D3

p � 5, q � 5 −0.5923 −0.3771 −0.6207 D2 � D1 � D3

Table 9 The influence of
parameter vector changes of
HFFWBM operator on the
depression diagnosis for PB

Parameters D1 D2 D3 Diagnosis result

p � 1, q � 1 −0.4139 −0.6806 −0.6498 D1 � D3 � D2

p � 1, q � 2 −0.3921 −0.6506 −0.6367 D1 � D3 � D2

p � 1, q � 3 −0.3677 −0.6161 −0.6247 D1 � D2 � D3

p � 2, q � 3 −0.3694 −0.6188 −0.6217 D1 � D2 � D3

p � 3, q � 3 −0.3598 −0.6063 −0.6163 D1 � D2 � D3

p � 3, q � 4 −0.3473 −0.5900 −0.6106 D1 � D2 � D3

p � 3, q � 5 −0.3346 −0.5738 −0.6052 D1 � D2 � D3

p � 4, q � 5 −0.3286 −0.5670 −0.6023 D1 � D2 � D3

p � 5, q � 5 −0.3212 −0.5584 −0.5991 D1 � D2 � D3
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Table 10 The influence of
parameter vector changes of
HFFEWBM operator on the
depression diagnosis for PB

Parameters D1 D2 D3 Diagnosis result

p � 1, q � 1 −0.5151 −0.7382 −0.7221 D1 � D3 � D2

p � 1, q � 2 −0.4861 −0.7103 −0.7093 D1 � D3 � D2

p � 1, q � 3 −0.4555 −0.6807 −0.6979 D1 � D2 � D3

p � 2, q � 3 −0.4554 −0.6813 −0.6951 D1 � D2 � D3

p � 3, q � 3 −0.4449 −0.6702 −0.6901 D1 � D2 � D3

p � 3, q � 4 −0.4319 −0.6570 −0.6849 D1 � D2 � D3

p � 3, q � 5 −0.4187 −0.6445 −0.6800 D1 � D2 � D3

p � 4, q � 5 −0.4146 −0.6402 −0.6774 D1 � D2 � D3

p � 5, q � 5 −0.4087 −0.6397 −0.6737 D1 � D2 � D3

Table 11 The influence of
parameter vector changes of
HFFWBM operator on the
depression diagnosis for PC

Parameters D1 D2 D3 Diagnosis result

p � 1, q � 1 −0.6241 −0.6119 −0.3305 D3 � D2 � D1

p � 1, q � 2 −0.5959 −0.5929 −0.2990 D3 � D2 � D1

p � 1, q � 3 −0.5671 −0.5761 −0.2666 D3 � D1 � D2

p � 2, q � 3 −0.5650 −0.5717 −0.2645 D3 � D1 � D2

p � 3, q � 3 −0.5528 −0.5638 −0.2503 D3 � D1 � D2

p � 3, q � 4 −0.5388 −0.5563 −0.2343 D3 � D1 � D2

p � 3, q � 5 −0.5254 −0.5499 −0.2192 D3 � D1 � D2

p � 4, q � 5 −0.5183 −0.5457 −0.2107 D3 � D1 � D2

p � 5, q � 5 −0.5103 −0.5417 −0.2013 D3 � D1 � D2

Table 12 The influence of
parameter vector changes of
HFFEWBM operator on the
depression diagnosis for PC

Parameters D1 D2 D3 Diagnosis result

p � 1, q � 1 −0.6949 −0.6909 −0.4438 D3 � D2 � D1

p � 1, q � 2 −0.6666 −0.6732 −0.4071 D3 � D1 � D2

p � 1, q � 3 −0.6391 −0.6581 −0.3702 D3 � D1 � D2

p � 2, q � 3 −0.6375 −0.6549 −0.3658 D3 � D1 � D2

p � 3, q � 3 −0.6271 −0.6485 −0.3504 D3 � D1 � D2

p � 3, q � 4 −0.6151 −0.6421 −0.3338 D3 � D1 � D2

p � 3, q � 5 −0.6037 −0.6363 −0.3184 D3 � D1 � D2

p � 4, q � 5 −0.5985 −0.6332 −0.3103 D3 � D1 � D2

p � 5, q � 5 −0.5944 −0.6402 −0.3016 D3 � D1 � D2

weighted average (FHFWA) operator and the Fermatean hes-
itant fuzzy weighted geometric (FHFWG) operator. Grag
[59] proposed an MADM method that is based on weighted
hesitant Pythagorean fuzzyMaclaurin symmetricmean oper-
ator (WHPFMSM). Considering HFFS as an extension of
HPFS, we compare the proposed method to the approach of
[59]. Furthermore, Hadi et al. [60] examined in detail the
Fermatean fuzzy Hamacher hybrid average (FFHHA) oper-
ator and the Fermatean fuzzy Hamacher hybrid geometric
(FFHHG) operator and proposed a MADM approach. Since
FFS can be considered a particular case of HFFS, we can
compare them analytically with [60] approach. HFF-DMs
can be converted into Fermatean fuzzy decision matrices

under certain conditions. Therefore, the maximum, min-
imum, and mean values of HFFE MDs and NMDs are
considered for use as the MD and NMD of Fermatean fuzzy
numbers. After this conversion, a comparison analysis is con-
ducted. Hamacher operations [61] as a generalized t-norm
degenerate to Einstein t-norm and t-conormwhen the param-
eter is equal to 2.Weonly investigate the scenario inwhich the
Hamacher parameter equals 2. Finally, the depression diag-
nostic methods of three patients are compared. The weight
vector ω � (0.2, 0.15, 0.2, 0.3, 0.15) is still utilized. The
diagnostic results of different diagnostic methods for the
three patients are listed in Tables 13, 14, 15.
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Table 13 Results of comparative
analysis of different diagnostic
methods for PA

Methods Operators Conditions D1 D2 D3 Diagnosis result

The proposed
method

HFFWBM p � 1, q �
1

− 0.5989 − 0.3117 − 0.5898 D2 � D3 � D1

HFFEWBM p � 1, q �
1

− 0.6715 − 0.4309 − 0.6706 D2 � D3 � D1

The method of
Hadi et al.
[60]

FFHHWA Maximum 0.0262 0.3010 0.1021 D2 � D3 � D1

Minimum 0.0261 0.2769 0.0070 D2 � D1 � D3

Average 0.0232 0.2875 0.0373 D2 � D3 � D1

FFHHWG Maximum − 0.0588 0.1871 − 0.0827 D2 � D1 � D3

Minimum − 0.0518 0.1767 − 0.0837 D2 � D1 � D3

Average − 0.0511 0.1826 − 0.0822 D2 � D1 � D3

The method of
Garg [59]

WHPFMSM k � 1 0.0421 0.3714 0.0318 D2 � D1 � D3

WHPFMSM k � 2 − 0.6779 − 0.4197 − 0.6768 D2 � D3 � D1

The method of
Kirişci [39]

FHFWA 0.0330 0.2692 0.0423 D2 � D3 � D1

FHFWG − 0.0398 0.1427 − 0.1126 D2 � D1 � D3

Table 14 Results of comparative
analysis of different diagnostic
methods for PB

Methods Operators Conditions D1 D2 D3 Diagnosis result

The proposed
method

HFFWBM p � 1, q �
1

−0.4139 −0.6806 −0.6499 D1 � D3 � D2

HFFEWBM p � 1, q �
1

−0.5151 −0.7382 −0.7221 D1 � D3 � D2

The method of
Hadi et al.
[60]

FFHHWA Maximum 0.2556 0.0413 −0.0009 D1 � D2 � D3

Minimum 0.2309 −0.0335 0.0116 D1 � D3 � D2

Average 0.2402 −0.0133 0.0041 D1 � D3 � D2

FFHHWG Maximum 0.1347 −0.2177 −0.0979 D1 � D3 � D2

Minimum 0.1127 −0.1930 −0.1121 D1 � D3 � D2

Average 0.1257 −0.2004 −0.1029 D1 � D3 � D2

The method of
Garg [59]

WHPFMSM k � 1 None None None None

WHPFMSM k � 2 None None None None

The method of
Kirişci [39]

FHFWA 0.2205 −0.0058 0.0014 D1 � D3 � D2

FHFWG 0.1141 −0.1958 −0.1077 D1 � D3 � D2

Comparative analysis experiments demonstrated that the
diagnostic results for PA using the existing decision-making
methodwere the same as the proposedmethod. Similarly, the
diagnostic results for PB and PC were identical. Although
there was inconsistency in the diagnostic ranking results for
the three patients, this did not affect their final diagnoses. PA

had moderate depression, PB had mild depression, and PC
hadmajor depression. Based on the results of a comparison of
three patients, the proposed method is effective and feasible.
Next, we discuss the advantages of the proposed method.

Advantage analysis

The proposedmethod is in the hesitant Fermatean fuzzy envi-
ronment,which can describe a larger fuzzy information space

and handle uncertainty. In addition, we extended the hesi-
tant Fermatean fuzzy aggregation operation by combining
with the Bonferroni mean operator, which has two advan-
tages. First, the decision result is guaranteed less affected by
extreme values. Second, the hesitant Fermatean fuzzy BM
operator can capture the relationship between two HFFEs.

Describing larger fuzzy information space

HFFS can describe a larger fuzzy information space than
DHFS and HPFS. Garg [59] proposes a multi-attribute
decision-making approach based on hesitant Pythagorean
fuzzy sets. According to Table 13, this approach can diagnose
depression for PA, but not for PB and PC shown in Tables 14
and 15. Because, in the depression diagnosis evaluation table
of PB shown in Table 2, the decreased interest and fatigue
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Table 15 Results of comparative
analysis of different diagnostic
methods for PC

Methods Operators Conditions D1 D2 D3 Diagnosis result

The proposed
method

HFFWBM p � 1, q �
1

−0.6241 −0.6119 −0.3305 D3 � D2 � D1

HFFEWBM p � 1, q �
1

−0.6949 −0.6909 −0.4438 D3 � D2 � D1

The method of
Hadi et al.
[60]

FFHHWA Maximum 0.0650 0.0600 0.4063 D3 � D1 � D2

Minimum 0.0611 0.0444 0.3895 D3 � D1 � D2

Average 0.0562 0.0503 0.3966 D3 � D1 � D2

FFHHWG Maximum −0.1941 −0.1105 0.2591 D3 � D2 � D1

Minimum −0.1441 −0.1106 0.2350 D3 � D2 � D1

Average −0.1636 −0.1100 0.2475 D3 � D2 � D1

The method of
Garg [59]

WHPFMSM k � 1 None None None None

WHPFMSM k � 2 None None None None

The method of
Kirişci [39]

FHFWA 0.0492 0.0542 0.4260 D3 � D2 � D1

FHFWG −0.1717 −0.1087 0.2790 D3 � D2 � D1

(C3) of moderate depression (D2) are exceeded the infor-
mation representation range of HPFS. As shown in Table 3,
the decreased interest and fatigue (C3) for mild depression
(D1) on the depression diagnostic evaluation table of PB also
exceeded the information representation range of the HPFS.

The Hadi et al.’s [60] MADM method is based on FFS.
In contrast to HFFS, this method does not account for hes-
itation situations. For complex diagnostic situations, such
as diagnosing depression, the processing of FFS is limited.
In the comparative analysis, the MDs and NMDs of HFFEs
are degenerated into Fermatean fuzzy numbers according to
their maximum, minimum, and mean values. This way of
dealing with fuzzy numbers loses the hesitant fuzzy infor-
mation. Therefore, the MADM method based on the HFFS
is superior to the MADM method based on the FFS when
considering complex hesitation situations.

Reducing the impact of extreme values

The influence of extreme values may result in unreasonable
result. However, the hesitant Fermatean fuzzy BM operator
can effectively reduce the impact of extreme values. Kirişci’s
[39] MADM method is based on the FHFWA and FHFWG,
which is sensitive to extreme values and then renders the final
decision unreasonable. Next, we illustrate with Example 5.

Example 5 As shown in Table 2, we performed a diagnostic
evaluation for depression on PB . Particularly, the diagnostic
evaluation of cognitive dysfunction(C4)withmild depression
(D1) in Table 2 was changed to {{0.001}, {0.999}}. The new
depression diagnostic for PB is shown in Table 16, and the
final diagnosis results are shown in Table 17.

As seen in Table 17, the diagnosis for PB by our proposed
method is still mild depression. However, the diagnosis for
PB by Kirişci’s method may be mild depression or major
depression, which is unreasonable.

Flexibility and reasonability

Depression diagnosis is a complex issue.Whether the patient
describes the symptoms or the doctor diagnoses the symp-
toms, there is ambiguity, hesitation, and correlation. The
method of [60] requires the diagnosis for a patient by doctor
must be a definite Fermatean fuzzy number and ignores the
correlation between symptoms. The method of [39] is hesi-
tancy, because it is based on the Fermatean hesitation fuzzy
set, but its aggregation operator does not account for the cor-
relation between individual symptoms. Not only does the
proposedmethod consider the correlation between attributes,
but can also describe hesitance in a larger fuzzy space.

Comparative experiments verify that the proposedmethod
based on theHFFWBMandHFFEWBMoperators is reason-
able and effective. Further research shows that the proposed
method has obvious advantages. First, the propose MADM
method based on HFFS, which can describe a larger fuzzy
information space. Second, the BM operators of HFFEs are
given, which allowing the proposed method to consider the
correlation between multiple attributes. Finally, due to the
advantages of the BM operator, the proposed method can
reduce the impact of extreme values. The characteristics
of the proposed method and existing MADM methods are
shown in Table 18.
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Table 16 The new depression diagnostic evaluation for PB

C1 C2 C3 C4 C5

D1 {{0.7}, {0.2}} {{0.8}, {0.4}} {{0.4}, {0.5, 0.6}} {{0.001}, {0.999}} {{0.6, 0.4}, {0.1}}

D2 {{0.3}, {0.8}} {{0.5}, {0.2}} {{0.5, 0.8}, {0.7}} {{0.5}, {0.5}} {{0.2}, {0.5, 0.7}}

D3 {{0.1, 0.3}, {0.4}} {{0.7}, {0.6}} {{0.2}, {0.5}} {{0.6}, {0.6}} {{0.3}, {0.4, 0.5}}

Table 17 The depression
diagnostic results for PB in
Example 5

Method Operator D1 D2 D3 Diagnosis result

The proposed
method

HFFWBM (p � 1, q
� 1)

− 0.5851 − 0.6806 − 0.6498 D1 � D3 � D2

HFFEWBM (p � 1,
q � 1)

− 0.6639 − 0.7382 − 0.7221 D1 � D3 � D2

The method of
Kirişci [39]

FHFWA 0.1415 − 0.0058 0.0014 D1 � D3 � D2

FHFWG − 0.8328 − 0.1958 − 0.1077 D3 � D2 � D1

Table 18 Comparison of characteristics of different methods

Whether to consider the
correlation between
aggregated attributes

Whether it is hesitant
fuzzy information

Describe a larger fuzzy
information space

Low impact on extreme
values

The method of Hadi et al.
[60]

No No Yes No

The method of Kirişci [39] No Yes Yes No

The method of Garg [59] Yes Yes No Yes

The Proposed method Yes Yes Yes Yes

Conclusion

HFFS is an extension of DHFS and FFS and is more flexi-
ble in addressing uncertainty issues. On the one hand, HFFS
can represent a larger fuzzy information space than DHFS.
On the other hand, different from FFS, HFFS can handle
hesitant information. Two types of aggregation operators
based on HFFS are developed in this paper. This paper
extends the HFFS aggregation operation to the BM opera-
tion and proposes theHFFBMandHFFWBMoperators. And
the HFFEBM and HFFEWBM operators are then proposed
based on Einstein’s t-norm and t-conorm. The proposed
operator has the BM property, which allows it to consider
the interrelationships between aggregate elements. In addi-
tion, a novel MADM approach based on HFFWBM and
HFFEWBM is also proposed. Finally, depression diagnosis
is a complex issue. Sometimes, it may be difficult for patients
to describe symptoms and their relationships accurately.
Similarly, doctors may make hesitant symptom diagnoses
based on fuzzy patient descriptions. Consequently, a diag-
nostic scheme based on HFFS is an effective solution. This

paper uses the proposed method for diagnosing depression
in three patients as a case study. It analyzes the influence
of HFFWBM and HFFEWBM parameters on the diagnosis
results. The final results demonstrate the effectiveness and
rationality of the proposed operator and MADM method.
Experiment also shows that the proposed method is better
than [39, 59, 60], concerning the representation of fuzzy
information space, the influence of extreme values, and flex-
ibility and rationality.

For future work, the proposed method can be extended to
q-rung orthopair hesitant fuzzy sets [62] and complex q-rung
orthopair hesitant fuzzy sets [63]. The proposed method can
also be combined with other aggregation operations, such
as MSM [59], power averaging [46], and Choquet Integral
operator [64]. Moreover, group decision-making is crucial
to decision-making issues. Finally, in reality, there are often
some uncertain decision-making problems that are ambigu-
ous and hesitant. These decision-making problems include
not only the diagnosis of depression but also anxiety dis-
orders, bipolar disorder, and other mental illness problems.
Consequently, new decision-making schemes based on more
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extended hesitant fuzzy sets can be used to research such
issues. The proposed method is hoped to provide a viable
solution for these decision-making problems.
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Appendix

The Proof of Theorem 3.1

Proof (1) From operation (5) in Definition 2.7, we have

ζ1 ⊕ ζ2 �
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2{{
3
√

θ31 + θ32 − θ31 θ32

}
, {ϑ1ϑ2}

}

ζ2 ⊕ ζ1 �
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2{{
3
√

θ32 + θ31 − θ32 θ31

}
, {ϑ2ϑ1}

}
.

Obviously, for any θ1 ∈ μ1, θ2 ∈ μ2 and ϑ1 ∈ ν1, ϑ2 ∈
ν2,

3
√

θ31 + θ32 − θ31 θ32 � 3
√

θ32 + θ31 − θ32 θ31

ϑ1ϑ2 � ϑ2ϑ1.

Then, ζ1 ⊕ ζ2 � ζ2 ⊕ ζ1.
(2) From operation (4) in Definition 2.7, we have

ζ1 ⊗ ζ2 �
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2{
{θ1θ2},

{
3
√

ϑ3
1 + ϑ3

2 − ϑ3
1ϑ3

2

}}

ζ2 ⊗ ζ1 �
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2{
{θ2θ1},

{
3
√

ϑ3
2 + ϑ3

1 − ϑ3
2ϑ3

1

}}
.

Obviously, for any θ1 ∈ μ1, θ2 ∈ μ2 andϑ1 ∈ ν1, ϑ2 ∈ ν2

θ1θ2 � θ2θ1

3
√

ϑ3
1 + ϑ3

2 − ϑ3
1ϑ3

2 � 3
√

ϑ3
2 + ϑ3

1 − ϑ3
2ϑ3

1 .

Then, ζ1 ⊗ ζ2 � ζ2 ⊗ ζ1 .
(3) According to the operations (3) and (5) of Definition

2.7

γ (ζ1 ⊕ ζ2) � γ

⎛

⎝
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

{{
3
√

θ31 + θ32 − θ31 θ32

}
, {ϑ1ϑ2}

}⎞

⎠

�
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

{{
3
√
1 − (1 − (θ31 + θ32 − θ31 θ32

))γ
}
,
{
(ϑ1ϑ2)

γ
}}

�
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

{{
3
√
1 − (1 − θ31 − θ32 + θ31 θ32

)γ
}
,
{
(ϑ1ϑ2)

γ
}
}

�
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

{{
3
√
1 − ((1 − θ31

)(
1 − θ32

))γ
}
,
{
(ϑ1ϑ2)

γ
}}

.
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Likewise according to operations (3) and (5) of Definition
3.3

γ ζ1 ⊕ γ ζ2 �
⋃

θ1∈μ1,ϑ1∈ν1

{{
3
√
1 − (1 − θ31 )

γ

}
,
{
ϑ

γ
1

}}⊕
⋃

θ2∈μ2,ϑ2∈ν2

{{
3
√
1 − (1 − θ32 )

γ

}
,
{
ϑ

γ
2

}}

�
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

⎧
⎪⎨

⎪⎩

⎧
⎪⎨

⎪⎩
3

√√√
√√
(
1 − (1 − θ31 )

γ
)
+
(
1 − (1 − θ32 )

γ
)

−(1 − (1 − θ31 )
γ
)(
1 − (1 − θ32 )

γ
)

⎫
⎪⎬

⎪⎭
,
{
ϑ

γ
1 ϑ

γ
2

}

⎫
⎪⎬

⎪⎭

�
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

{{
3
√
1 − (1 − θ31 )

γ (1 − θ32 )
γ

}
,
{
ϑ

γ
1 ϑ

γ
2

}}
.

Then, we can obtain γ (ζ1 ⊕ ζ2) � γ ζ1 ⊕ γ ζ2.
(4) According to the operations (2) and (4) of Definition

2.7

(ζ1 ⊗ ζ2)
γ �

⎛

⎝
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

{
{θ1θ2},

{
3
√

ϑ3
1 + ϑ3

2 − ϑ3
1ϑ3

2

}}⎞

⎠

γ

�
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

{{
(θ1θ2)

γ
}
,

{
3
√
1 − (1 − (ϑ3

1 + ϑ3
2 − ϑ3

1ϑ3
2

))γ
}}

�
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

{{
(θ1θ2)

γ
}
,

{
3
√
1 − ((1 − ϑ3

1

)(
1 − ϑ3

2

))γ
}}

.

Likewise according to operations (2) and (4) of Definition
2.7

ζ
γ
1 ⊗ ζ

γ
2 �

⋃

θ1∈μ1,ϑ1∈ν1

{{
θ

γ
1

}
,

{
3
√
1 − (1 − ϑ3

1 )
γ

}}
⊗

⋃

θ2∈μ2,ϑ2∈ν2

{{
θ

γ
2

}
,

{
3
√
1 − (1 − ϑ3

2 )
γ

}}

�
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

⎧
⎪⎨

⎪⎩

{
θ

γ
1 θ

γ
2

}
,

⎧
⎪⎨

⎪⎩
3

√√√√√
(
1 − (1 − ϑ3

1 )
γ
)
+
(
1 − (1 − ϑ3

2 )
γ
)

−(1 − (1 − ϑ3
1 )

γ
)(
1 − (1 − ϑ3

2 )
γ
)

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭

�
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

{{
θ

γ
1 θ

γ
2

}
,

{
3
√
1 − (1 − ϑ3

1 )
γ (1 − ϑ3

2 )
γ

}}
.

Then, we can obtain (ζ1 ⊗ ζ2)γ � ζ
γ
1 ⊗ ζ

γ
2 . The proof of

Theorem 3.1 is completed. The Proof of Lemma 3.1

Proof From the operation (2) in Definition 2.7, we have
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ζ
p
i � ⋃

θi∈μi ,ϑi∈νi

{{
θ
p
i

}
,

{
3
√
1 − (1 − ϑ3

i )
p

}}

ζ
q
j � ⋃

θ j∈μ j ,ϑ j∈ν j

{{
θ
q
j

}
,
{

3
√
1 − (1 − ϑ3

j )
q
}}

;

then from the operation (4) in Definition 2.7, we have

ζ
p
i ⊗ ζ

q
j �

⋃

θi∈μi , θ j∈μ j ,ϑi∈νi ,ϑ j∈ν j
{{

θ
p
i θ

q
j

}
,
{

3
√
1 − (1 − ϑ3

i )
p(1 − ϑ3

j )
q
}}

.

Similarly, we can obtain ζ
q
i ⊗ζ

p
j .Then, from the operation

(5) from Definition 2.7, we have

(
ζ
p
i ⊗ ζ

q
j

)
⊕
(
ζ
q
i ⊗ ζ

p
j

)
�

⋃

θi∈μi , θ j∈μ j ,ϑi∈νi ,ϑ j∈ν j
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
3

√

1 − (1 − (θ3i )
p
(
θ3j )

q
)
(1 − (θ3i )

q
(
θ3j )

p
)
}

,
{

3

√

(1 − (1 − ϑ3
i )

p
(
1 − ϑ3

j )
q
)
(1 − (1 − ϑ3

i )
q
(
1 − ϑ3

j )
p
)
}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Let

Ai � θ3i , A j � θ3j , Bi � 1 − ϑ3
i , Bj � 1 − ϑ3

j ;

then we have

(
ζ
p
i ⊗ ζ

q
j

)
⊕
(
ζ
q
i ⊗ ζ

p
j

)

�
⋃

θi∈μi , θ j∈μ j ,ϑi∈νi ,ϑ j∈ν j
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
3

√

1 −
(
1 − Ap

i A
q
j

)(
1 − Aqi A

p
j

) }

,
{

3

√(
1 − B p

i Bq
j

)(
1 − Bq

i B
p
j

)
}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

The proof of Lemma 3.1 is completed.

The Proof of Theorem 3.2

Proof From the operation law (3) of Theorem 3.1, we have

1

n(n − 1)

(
n⊕

i , j�1; i �� j
δi , j

)
� n⊕

i , j�1; i �� j

(
1

n(n − 1)
δi , j

)
.

From Lemma 3.1, we can obtain

1

n(n − 1)
δi , j � 1

n(n − 1)

(
ζ
p
i ⊗ ζ

q
j

)
⊕
(
ζ
q
i ⊗ ζ

p
j

)

� 1

n(n − 1)

⎛

⎜⎜⎜
⎜
⎝

⋃

θi∈μi , θ j∈μ j ,ϑi∈νi ,ϑ j∈ν j

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
3

√

1 −
(
1 − Ap

i A
q
j

)(
1 − Aq

i A
p
j

)}

,
{

3

√(
1 − B p

i B
q
j

)(
1 − Bq

i B
p
j

)
}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎞

⎟⎟⎟
⎟
⎠

�
⋃

θi∈μi , θ j∈μ j ,ϑi∈νi ,ϑ j∈ν j

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩
3

√

1 −
((

1 − Ap
i A

q
j

)(
1 − Aq

i A
p
j

)) 1
n(n−1)

⎫
⎬

⎭
,

{
3

√
((

1 − B p
i B

q
j

)(
1 − Bq

i B
p
j

)) 1
n(n−1)

}

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

where

Ai � θ3i , A j � θ3j , Bi � 1 − ϑ3
i , Bj � 1 − ϑ3

j .

Then, from the operation (5) in Definition 2.7, we have

n⊕
i , j�1; i �� j

(
1

n(n − 1)
δi , j

)
� n⊕

i , j�1; i �� j
⎛

⎜
⎜
⎜⎜
⎜
⎝

⋃

θi∈μi , θ j∈μ j ,ϑi∈νi ,ϑ j∈ν j

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩
3

√

1 −
((

1 − Ap
i Aqj

)(
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p
j

)) 1
n(n−1)

⎫
⎬

⎭
,

{
3

√
((

1 − B p
i Bqj

)(
1 − Bqi B

p
j

)) 1
n(n−1)

}

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

⎞

⎟
⎟
⎟⎟
⎟
⎠

Let Ci , j �
((

1 − Ap
i A

q
j

)(
1 − Aq

i A
p
j

)) 1
n(n−1)

, Di , j �
((

1 − B p
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q
j

)(
1 − Bq

i B
p
j

)) 1
n(n−1)

. Then
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n⊕
i , j�1; i �� j

(
1

n(n − 1)
δi , j

)
� n⊕

i , j�1; i �� j

⎛

⎝
⋃

θi∈μi , θ j∈μ j ,ϑi∈νi ,ϑ j∈ν j

{{
3
√
1 − Ci , j

}
,

{
3
√

Di , j

}}⎞

⎠

�
⋃
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⎧
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⎩

⎧
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⎩
3

√√√
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⎫
⎬

⎭
,
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3

√
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Di , j

}⎫⎬

⎭
.

Finally, according to the operation (2) in Definition 2.7,
we can obtain the following.

The proof of Theorem 3.2 is completed

(
n⊕

i , j�1; i �� j

(
1

n(n − 1)
δi , j
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p+q �

⋃
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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⎪⎪⎪⎩
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⎪⎪⎪⎬

⎪⎪⎪⎭
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The Proof of Lemma 3.2

Proof From operations (2) and (3) in Definition 2.7, we have

(ωiζi )
p �

⋃

θi∈μi ,ϑi∈νi

{{
3
√(

1 − (1 − θ3i

)ωi
)p
}
,

{
3
√
1 − (1 − (ϑ3

i )
ωi
)p
}}

(ω jζ j )
q �

⋃

θ j∈μ j ,ϑ j∈ν j

{{
3

√(
1 −
(
1 − θ3j

)ω j
)q
}

,

{
3

√

1 −
(
1 − (ϑ3

j )
ω j

)q
}}

.

From the operation (4) in Definition 2.7, we have
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(ωiζi )
p ⊗ (ω jζ j )

q �
⋃

θi∈μi , θ j∈μ j ,ϑi∈νi ,ϑ j∈ν j

⎧
⎪⎪⎨

⎪⎪⎩

{
3
√
(1 − (1 − θ3i )

ωi )p(1 − (1 − θ3j )
ω j )q

}
,

{
3
√
1 − (1 − (ϑ3

i )
ωi )p(1 − (ϑ3

j )
ω j )q

}

⎫
⎪⎪⎬

⎪⎪⎭
.

Let

Ai � 1 − (1 − θ3i )
ωi , A j � 1 − (1 − θ3j )

ω j ,

Bi � 1 − (ϑ3
i )

ωi , Bj � 1 − (ϑ3
j )

ω j .

Then, we have

(ωiζi )
p ⊗ (ω jζ j )

q �
⋃

θi∈μi , θ j∈μ j ,ϑi∈νi ,ϑ j∈ν j
{{

3
√
Ap
i A

q
j

}
,
{

3
√
1 − B p

i B
q
j

}}
.

Similarly, we can obtain (ωi ζi )
q ⊗ (ω j ζ j

)p. Then, from
the operation (5) and Definition 2.7, we have

(
(ωiζi )

p ⊗ (ω jζ j
)q)⊕ ((ωiζi )

q ⊗ (ω jζ j
)p) �

⋃

θi∈μi , θ j∈μ j ,ϑi∈νi ,ϑ j∈ν j

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
3

√

1 −
(
1 − Ap

i A
q
j

)(
1 − Aq

i A
p
j

)}

,
{

3

√(
1 − B p

i B
q
j

)(
1 − Bq

i B
p
j

)}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

The proof of Lemma 3.2 is completed.

The Proof of Theorem 3.4

Proof (1) From the operation (4) in Definition 3.3, we have

ζ1 ⊕ ζ2 �
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

⎧
⎨

⎩

{
3

√
θ31 + θ32

1 + θ31 θ32

}

,

⎧
⎨

⎩
ϑ1ϑ2

3
√
1 +
(
1 − ϑ3

1

)(
1 − ϑ3

2

)

⎫
⎬

⎭

⎫
⎬

⎭

ζ2 ⊕ ζ1 �
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

⎧
⎨

⎩

{
3

√
θ32 + θ31

1 + θ32 θ31

}

,

⎧
⎨

⎩
ϑ2ϑ1

3
√
1 +
(
1 − ϑ3

2

)(
1 − ϑ3

1

)

⎫
⎬

⎭

⎫
⎬

⎭
.

Obviously, for any θ1 ∈ μ1, θ2 ∈ μ2 andϑ1 ∈ ν1, ϑ2 ∈ ν2

3

√
θ31 + θ32

1 + θ31 θ32
� 3

√
θ32 + θ31

1 + θ32 θ31

ϑ1ϑ2

3
√
1 +
(
1 − ϑ3

1

)(
1 − ϑ3

2

) � ϑ2ϑ1

3
√
1 +
(
1 − ϑ3

2

)(
1 − ϑ3

1

) .

Then, ζ1 ⊕ ζ2 � ζ2 ⊕ ζ1.
(2) From the operation (3) in Definition 3.3, we have
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ζ1 ⊗ ζ2 �
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

⎧
⎨

⎩

⎧
⎨

⎩
θ1θ2

3
√
1 +
(
1 − θ31

)(
1 − θ32

)

⎫
⎬

⎭
,

{
3

√
ϑ3
1 + ϑ3

2

1 + ϑ3
1ϑ3

2

}⎫⎬

⎭

ζ2 ⊗ ζ1 �
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

⎧
⎨

⎩

⎧
⎨

⎩
θ2θ1

3
√
1 +
(
1 − θ32

)(
1 − θ31

)

⎫
⎬

⎭
,

{
3

√
ϑ3
2 + ϑ3

1

1 + ϑ3
2ϑ3

1

}⎫⎬

⎭
.

Obviously, for any θ1 ∈ μ1, θ2 ∈ μ2 andϑ1 ∈ ν1, ϑ2 ∈ ν2

θ1θ2

3
√
1 +
(
1 − θ31

)(
1 − θ32

) � θ2θ1

3
√
1 +
(
1 − θ32

)(
1 − θ31

)
3

√
ϑ3
1 + ϑ3

2

1 + ϑ3
1ϑ3

2

� 3

√
ϑ3
2 + ϑ3

1

1 + ϑ3
2ϑ3

1

.

Then, ζ1 ⊗ ζ2 � ζ2 ⊗ ζ1.
(3) According to the operations (2) and (4) of Definition

3.3

γ (ζ1 ⊕ ζ2) � γ

⎛

⎝
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

⎧
⎨

⎩

{
3

√
θ31 + θ32

1 + θ31 θ32

}

,

⎧
⎨

⎩
ϑ1ϑ2

3
√
1 +
(
1 − ϑ3

1

)(
1 − ϑ3

2

)

⎫
⎬

⎭

⎫
⎬

⎭

⎞

⎠

�
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3

√√√√
√√√√

(
1 +

θ31 +θ32
1+θ31 θ32

)γ

−
(
1 − θ31 +θ32

1+θ31 θ32

)γ

(
1 +

θ31 +θ32
1+θ31 θ32

)γ

+

(
1 − θ31 +θ32

1+θ31 θ32

)γ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3

√√√
√√√√√√
√√√

2

(
ϑ3
1ϑ3

2
1+
(
1−ϑ3

1

)(
1−ϑ3

2

)

)γ

(
2 − ϑ3

1ϑ3
2

1+
(
1−ϑ3

1

)(
1−ϑ3

2

)

)γ

+

(
ϑ3
1ϑ3

2
1+
(
1−ϑ3

1

)(
1−ϑ3

2

)

)γ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3

√√√√
√√√√

(
1 + θ31 + θ32 + θ31 θ32

)γ

−(1 − θ31 − θ32 + θ31 θ32

)γ
(
1 + θ31 + θ32 + θ31 θ32

)γ

+
(
1 − θ31 − θ32 + θ31 θ32

)γ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
⎧
⎨

⎩
3

√√
√√ 2

(
ϑ3
1ϑ3

2

)γ
(
22 − 2ϑ3

1 − 2ϑ3
2 + ϑ3

1ϑ3
2

)γ
+
(
ϑ3
1ϑ3

2

)γ

⎫
⎬

⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩
3

√√√√
(
1 + θ31

)γ (
1 + θ32

)γ − (1 − θ31

)γ (
1 − θ32

)γ
(
1 + θ31

)γ (
1 + θ32

)γ
+
(
1 − θ31

)γ (
1 − θ32

)γ

⎫
⎬

⎭
⎧
⎨

⎩
3

√√√√ 2
(
ϑ3
1ϑ3

2

)γ
(
2 − ϑ3

1

)γ (
2 − ϑ3

2

)γ
+
(
ϑ3
1ϑ3

2

)γ

⎫
⎬

⎭

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.
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Let

A1 � (1 + θ31
)γ
, A2 � (1 + θ32

)γ
, B1 � (1 − θ31

)γ
, B2 � (1 − θ32

)γ
,

M1 � (ϑ3
1

)γ
, M2 � (ϑ3

2

)γ
, N1 � (2 − ϑ3

1

)γ
, N2 � (2 − ϑ3

2

)γ
.

Then, we have

γ (ζ1 ⊕ ζ2) �
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2
{{

3

√
A1A2 − B1B2

A1A2 + B1B2

}

,

{
3

√
2M1M2

N1N2 + M1M2

}}

.

Likewise, according to operations (2) and (4) ofDefinition
3.3

γ ζ1 ⊕ γ ζ2 �
⋃

θ1∈μ1,ϑ1∈ν1

{{
3

√
(1 + θ31 )

γ − (1 − θ31 )
γ

(1 + θ31 )
γ + (1 − θ31 )

γ

}

,

{
3

√
2(ϑ3

1 )
γ

(2 − ϑ3
1 )

γ + (ϑ3
1 )

γ

}}

⊕
⋃

θ2∈μ2,ϑ2∈ν2

{{
3

√
(1 + θ32 )

γ − (1 − θ32 )
γ

(1 + θ32 )
γ + (1 − θ32 )

γ

}

,

{
3

√
2(ϑ3

2 )
γ

(2 − ϑ3
2 )

γ + (ϑ3
2 )

γ

}}

�
⋃

θ1∈μ1,ϑ1∈ν1

{{
3

√
A1 − B1

A1 + B1

}

,

{
3

√
2M1

N1 + M1

}}

⊕
⋃

θ2∈μ2,ϑ2∈ν2

{{
3

√
A2 − B2

A2 + B2

}

,

{
3

√
2M2

N2 + M2

}}

�
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩
3

√√√√
A1−B1
A1+B1

+ A2−B2
A2+B2

1 + A1−B1
A1+B1

· A2−B2
A2+B2

⎫
⎬

⎭
⎧
⎨

⎩
3

√√√√
2M1

N1+M1
· 2M2
N2+M2

1 + N1−M1
N1+M1

· N2−M2
N2+M2

⎫
⎬

⎭

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

�
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{
3

√
(A1 − B1)(A2 + B2) + (A1 + B1)(A2 − B2)

(A1 + B1)(A2 + B2) − (A1 − B1)(A2 − B2)

}

,
⎧
⎨

⎩
3

√
22M1M2

(N1 + M1)(N2 + M2) + (N1 − M1)(N2 − M2)

⎫
⎬

⎭

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

�
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

{{
3

√
A1A2 − B1B2

A1A2 + B1B2

}

,

{
3

√
2M1M2

N1N2 + M1M2

}}

.

Then, we can obtain γ (ζ1 ⊕ ζ2) � γ ζ1 ⊕ γ ζ2.
(4) From the operations (1) and (3) in Definition 3.3
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(ζ1 ⊗ ζ2)
γ �

⎛

⎝
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

⎧
⎨

⎩

⎧
⎨

⎩
θ1θ2

3
√
1 +
(
1 − θ31

)(
1 − θ32

)

⎫
⎬

⎭
,

{
3

√
ϑ3
1 + ϑ3

2

1 + ϑ3
1ϑ3

2

}⎫⎬

⎭

⎞

⎠

γ

�
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3

√√√√√
√√√√√√
√

2

(
θ31 θ32

1+
(
1−θ31

)(
1−θ32

)

)γ

(
2 − θ31 θ32

1+
(
1−θ31

)(
1−θ32

)

)γ

+

(
θ31 θ32

1+
(
1−θ31

)(
1−θ32

)

)γ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3

√√√√√
√√√

(
1 +

ϑ3
1 +ϑ3

2
1+ϑ3

1ϑ3
2

)γ

−
(
1 − ϑ3

1 +ϑ3
2

1+ϑ3
1ϑ3

2

)γ

(
1 +

ϑ3
1 +ϑ3

2
1+ϑ3

1ϑ3
2

)γ

+

(
1 − ϑ3

1 +ϑ3
2

1+ϑ3
1ϑ3

2

)γ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩
3

√√√√ 2
(
θ31 θ32

)γ
(
22 − 2θ31 − 2θ32 + θ31 θ32

)γ
+
(
θ31 θ32

)γ

⎫
⎬

⎭
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3

√√√√√√
√√

(
1 + ϑ3

1 + ϑ3
2 + ϑ3

1ϑ3
2

)γ

−(1 − ϑ3
1 − ϑ3

2 + ϑ3
1ϑ3

2

)γ
(
1 + ϑ3

1 + ϑ3
2 + ϑ3

1ϑ3
2

)γ

+
(
1 − ϑ3

1 − ϑ3
2 + ϑ3

1ϑ3
2

)γ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩
3

√√√√ 2
(
θ31 θ32

)γ
(
2 − θ31

)γ (
2 − θ32

)γ
+
(
θ31 θ32

)γ

⎫
⎬

⎭
⎧
⎨

⎩
3

√√√√
(
1 + ϑ3

1

)γ (
1 + ϑ3

2

)γ − (1 − ϑ3
1

)γ (
1 − ϑ3

2

)γ
(
1 + ϑ3

1

)γ (
1 + ϑ3

2

)γ
+
(
1 − ϑ3

1

)γ (
1 − ϑ3

2

)γ

⎫
⎬

⎭

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

Let

A1 � (θ31
)γ
, A2 � (θ32

)γ
, B1 � (2 − θ31

)γ
, B2 � (2 − θ32

)γ
,

M1 � (1 + ϑ3
1

)γ
, M2 � (1 + ϑ3

2

)γ
, N1 � (1 − ϑ3

1

)γ
, N2 � (1 − ϑ3

2

)γ
.

Then, we have

(ζ1 ⊗ ζ2)
γ �

⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2
{{

3

√
2A1A2

B1B2 + A1A2

}

,

{
3

√
M1M2 − N1N2

M1M2 + N1N2

}}

.

Likewise, according to operations (1) and (3) in Definition
3.3
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ζ
γ
1 ⊗ ζ

γ
2 �

⋃

θ1∈μ1,ϑ1∈ν1

{{
3

√
2(θ31 )

γ

(2 − θ31 )
γ + (θ31 )

γ

}

,

{
3

√
(1 + ϑ3

1 )
γ − (1 − ϑ3

1 )
γ

(1 + ϑ3
1 )

γ + (1 − ϑ3
1 )

γ

}}

⊗
⋃

θ2∈μ2,ϑ2∈ν2

{{
3

√
2(θ32 )

γ

(2 − θ32 )
γ + (θ32 )

γ

}

,

{
3

√
(1 + ϑ3

2 )
γ − (1 − ϑ3

2 )
γ

(1 + ϑ3
2 )

γ + (1 − ϑ3
2 )

γ

}}

�
⋃

θ1∈μ1,ϑ1∈ν1

{{
3

√
2A1

B1 + A1

}

,

{
3

√
M1 − N1

M1 + N1

}}

⊗
⋃

θ2∈μ2,ϑ2∈ν2

{{
3

√
2A2

B2 + A2

}

,

{
3

√
M2 − N2

M2 + N2

}}

�
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩
3

√√
√√

2A1
B1+A1

· 2A2
B2+A2

1 + B1−A1
B1+A1

· B2−A2
B2+A2

⎫
⎬

⎭
,

⎧
⎨

⎩
3

√√√
√

M1−N1
M1+N1

+ M2−N2
M2+N2

1 + M1−N1
M1+N1

· M2−N2
M2+N2

⎫
⎬

⎭

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

�
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩
3

√
22A1A2

(B1 + A1)(B2 + A2) + (B1 − A1)(B2 − A2)

⎫
⎬

⎭
,

{
3

√
(M1 − N1)(M2 + N2) + (M1 + N1)(M2 − N2)

(M1 + N1)(M2 + N2) − (M1 − N1)(M2 − N2)

}

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

�
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

{{
3

√
2A1A2

B1B2 + A1A2

}

,

{
3

√
M1M2 − N1N2

M1M2 + N1N2

}}

.

Then, we can obtain (ζ1 ⊗ ζ2)γ � ζ
γ
1 ⊗ ζ

γ
2 .

(5) From the operation (4) in Definition 3.3, we have

ζ1 ⊕ (ζ2 ⊕ ζ3) � ζ1 ⊕
⎛

⎝
⋃

θ2∈μ2, θ3∈μ3,ϑ2∈ν2,ϑ3∈ν3

⎧
⎨

⎩

{
3

√
θ32 + θ33

1 + θ32 θ33

}

,

⎧
⎨

⎩
ϑ2ϑ3

3
√
1 +
(
1 − ϑ3

2

)(
1 − ϑ3

3

)

⎫
⎬

⎭

⎫
⎬

⎭

⎞

⎠

�
⋃

θ1 ∈ μ1, θ2 ∈ μ2, θ3 ∈ μ3,
ϑ1 ∈ ν1, ϑ2 ∈ ν2, ϑ3 ∈ ν3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎨

⎪⎪⎩

3

√√√√√√
θ31 +

θ32 +θ33
1+θ32 θ33

1 + θ31
θ32 +θ33
1+θ32 θ33

⎫
⎪⎪⎬

⎪⎪⎭
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϑ1
ϑ2ϑ3

3
√
1+
(
1−ϑ3

2

)(
1−ϑ3

3

)

3

√

1 +
(
1 − ϑ3

1

)(
1 − ϑ3

2ϑ3
3

1+
(
1−ϑ3

2

)(
1−ϑ3

3

)

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�
⋃

θ1 ∈ μ1, θ2 ∈ μ2, θ3 ∈ μ3,
ϑ1 ∈ ν1, ϑ2 ∈ ν2, ϑ3 ∈ ν3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
3

√
θ31 + θ32 + θ33 + θ31 θ32 θ33

1 + θ32 θ33 + θ31 θ32 + θ31 θ33

}

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϑ1ϑ2ϑ3

3

√
3 − ϑ3

1 − ϑ3
2 − ϑ3

3
+
(
1 − ϑ3

1

)(
1 − ϑ3

2

)(
1 − ϑ3

3

)
+ ϑ3

1ϑ3
2ϑ3

3

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
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Likewise, we have

(ζ1 ⊕ ζ2) ⊕ ζ3 �
⎛

⎝
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

⎧
⎨

⎩

{
3

√
θ31 + θ32

1 + θ31 θ32

}

,

⎧
⎨

⎩
ϑ1ϑ2

3
√
1 +
(
1 − ϑ3

1

)(
1 − ϑ3

2

)

⎫
⎬

⎭

⎫
⎬

⎭

⎞

⎠⊕ ζ3

�
⋃

θ1 ∈ μ1, θ2 ∈ μ2, θ3 ∈ μ3,
ϑ1 ∈ ν1, ϑ2 ∈ ν2, ϑ3 ∈ ν3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎨

⎪⎪⎩

3

√√
√√√√

θ33 +
θ31 +θ32
1+θ31 θ32

1 + θ33
θ31 +θ32
1+θ31 θ32

⎫
⎪⎪⎬

⎪⎪⎭
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϑ3
ϑ1ϑ2

3
√
1+
(
1−ϑ3

1

)(
1−ϑ3

2

)

3

√

1 +
(
1 − ϑ3

3

)(
1 − ϑ3

1ϑ3
2

1+
(
1−ϑ3

1

)(
1−ϑ3

2

)

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�
⋃

θ1 ∈ μ1, θ2 ∈ μ2, θ3 ∈ μ3,
ϑ1 ∈ ν1, ϑ2 ∈ ν2, ϑ3 ∈ ν3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
3

√
θ31 + θ32 + θ33 + θ31 θ32 θ33

1 + θ32 θ33 + θ31 θ32 + θ31 θ33

}

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϑ1ϑ2ϑ3

3

√
3 − ϑ3

1 − ϑ3
2 − ϑ3

3
+
(
1 − ϑ3

1

)(
1 − ϑ3

2

)(
1 − ϑ3

3

)
+ ϑ3

1ϑ3
2ϑ3

3

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Then, we can obtain ζ1 ⊕ (ζ2 ⊕ ζ3) � (ζ1 ⊕ ζ2) ⊕ ζ3
(6) From the operation (3) in Definition 3.3, we have

ζ1 ⊗ (ζ2 ⊗ ζ3) � ζ1 ⊗
⎛

⎝
⋃

θ2∈μ2, θ3∈μ3,ϑ2∈ν2,ϑ3∈ν3

⎧
⎨

⎩

⎧
⎨

⎩
θ2θ3

3
√
1 +
(
1 − θ32

)(
1 − θ33

)

⎫
⎬

⎭
,

{
3

√
ϑ3
2 + ϑ3

3

1 + ϑ3
2ϑ3

3

}⎫⎬

⎭

⎞

⎠

�
⋃

θ1 ∈ μ1, θ2 ∈ μ2, θ3 ∈ μ3,
ϑ1 ∈ ν1, ϑ2 ∈ ν2, ϑ3 ∈ ν3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ1
θ2θ3

3
√
1+
(
1−θ32

)(
1−θ33

)

3

√

1 +
(
1 − θ31

)(
1 − θ32 θ33

1+
(
1−θ32

)(
1−θ33

)

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎨

⎪⎪⎩

3

√√√√√√
ϑ3
1 +

ϑ3
2 +ϑ3

3
1+ϑ3

2ϑ3
3

1 + ϑ3
1

ϑ3
2 +ϑ3

3
1+ϑ3

2ϑ3
3

⎫
⎪⎪⎬

⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�
⋃

θ1 ∈ μ1, θ2 ∈ μ2, θ3 ∈ μ3,
ϑ1 ∈ ν1, ϑ2 ∈ ν2, ϑ3 ∈ ν3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ1θ2θ3

3

√
3 − θ31 − θ32 − θ33

+
(
1 − θ31

)(
1 − θ32

)(
1 − θ33

)
+ θ31 θ32 θ33

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
{

3

√
ϑ3
1 + ϑ3

2 + ϑ3
3 + ϑ3

1ϑ3
2ϑ3

3

1 + ϑ3
2ϑ3

3 + ϑ3
1ϑ3

2 + ϑ3
1ϑ3

3

}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
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Likewise, we have

(ζ1 ⊗ ζ2) ⊗ ζ3 �
⋃

θ1∈μ1, θ2∈μ2,ϑ1∈ν1,ϑ2∈ν2

⎧
⎨

⎩

⎧
⎨

⎩
θ1θ2

3
√
1 +
(
1 − θ31

)(
1 − θ32

)

⎫
⎬

⎭
,

{
3

√
ϑ3
1 + ϑ3

2

1 + ϑ3
1ϑ3

2

}⎫⎬

⎭
⊗ ζ3

�
⋃

θ1 ∈ μ1, θ2 ∈ μ2, θ3 ∈ μ3,
ϑ1 ∈ ν1, ϑ2 ∈ ν2, ϑ3 ∈ ν3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ3
θ1θ2

3
√
1+
(
1−θ31

)(
1−θ32

)

3

√

1 +
(
1 − θ33

)(
1 − θ31 θ32

1+
(
1−θ31

)(
1−θ32

)

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
⎧
⎪⎪⎨

⎪⎪⎩

3

√√
√√√√

ϑ3
3 +

ϑ3
1 +ϑ3

2
1+ϑ3

1ϑ3
2

1 + ϑ3
3

ϑ3
1 +ϑ3

2
1+ϑ3

1ϑ3
2

⎫
⎪⎪⎬

⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�
⋃

θ1 ∈ μ1, θ2 ∈ μ2, θ3 ∈ μ3,
ϑ1 ∈ ν1, ϑ2 ∈ ν2, ϑ3 ∈ ν3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ1θ2θ3

3

√
3 − θ31 − θ32 − θ33

+
(
1 − θ31

)(
1 − θ32

)(
1 − θ33

)
+ θ31 θ32 θ33

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
{

3

√
ϑ3
1 + ϑ3

2 + ϑ3
3 + ϑ3

1ϑ3
2ϑ3

3

1 + ϑ3
2ϑ3

3 + ϑ3
1ϑ3

2 + ϑ3
1ϑ3

3

}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Then, we can obtain ζ1⊗ (ζ2 ⊗ ζ3) � (ζ1 ⊗ ζ2)⊗ζ3. The
proof of Theorem 3.4 is completed.

The Proof of Lemma 3.3

Proof From the operation (1) in Definition 3.3, we have

ζ
p
i �

⋃

θi∈μi ,ϑi∈νi

⎧
⎨

⎩

⎧
⎨

⎩
3

√√√
√ 2(θ3i )

p

(2 − θ3i )
p + (θ3i )

p

⎫
⎬

⎭
,

⎧
⎨

⎩
3

√√√
√ (1 + ϑ3

i )
p − (1 − ϑ3

i )
p

(1 + ϑ3
i )

p + (1 − ϑ3
i )

p

⎫
⎬

⎭

⎫
⎬

⎭

ζ
q
j �

⋃

θ j∈μ j ,ϑ j∈ν j

⎧
⎪⎨

⎪⎩

⎧
⎪⎨

⎪⎩
3

√√
√√
√

2(θ3j )
q

(2 − θ3j )
q + (θ3j )

q

⎫
⎪⎬

⎪⎭
,

⎧
⎪⎨

⎪⎩
3

√√
√√
√

(1 + ϑ3
j )
q − (1 − ϑ3

j )
q

(1 + ϑ3
j )
q + (1 − ϑ3

j )
q

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭
.

Let Ai � θ3i , Bi � 2 − θ3i , Mi � 1 + ϑ3
i , Ni � 1 − ϑ3

i ,
then ζ

p
i and ζ

q
j can be replaced as follows:

ζ
p
i �

⋃

θi∈μi ,ϑi∈νi

{{
3

√
2Ap

i

B p
i + Ap

i

}

,

{
3

√
Mp

i − N p
i

M p
i + N p

i

}}

ζ
q
j �

⋃

θ j∈μ j ,ϑ j∈ν j

⎧
⎨

⎩

⎧
⎨

⎩
3

√√√√ 2Aq
j

Bq
j + Aq

j

⎫
⎬

⎭
,

⎧
⎨

⎩
3

√√√√Mq
j − Nq

j

Mq
j + Nq

j

⎫
⎬

⎭

⎫
⎬

⎭
.

Then, from the operation (3) in Definition 3.3, we have

ζ
p
i ⊗ ζ

q
j � ⋃

θi∈μi , θ j∈μ j ,ϑi∈νi ,ϑ j∈ν j

⎧
⎨

⎩

⎧
⎨

⎩
3

√√
√√ 2Ap

i A
q
j

B p
i B

q
j + Ap

i A
q
j

⎫
⎬

⎭
,

⎧
⎨

⎩
3

√√
√√Mp

i M
q
j − N p

i N
q
j

M p
i M

q
j + N p

i N
q
j

⎫
⎬

⎭

⎫
⎬

⎭
.

Similarly, we can obtain ζ
q
i ⊗ ζ

p
j . From the operation (4)

in Definition 3.3, we can obtain Eq. (8). The proof of Lemma
3.3 is completed.

The Proof of Lemma 3.4

Proof From the operation (2) in Definition 3.3, we have
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ωiζi �
⋃

θi∈μi ,ϑi∈νi

{{
3

√
(1 + θ3i )

ωi − (1 − θ3i )
ωi

(1 + θ3i )
ωi + (1 − θ3i )

ωi

}

,

{
3

√
2(ϑ3

i )
ωi

(2 − ϑ3
i )

ωi + (ϑ3
i )

ωi

}}

ω jζ j �
⋃

θ j∈μ j ,ϑ j∈ν j

⎧
⎨

⎩

⎧
⎨

⎩
3

√√√√ (1 + θ3j )
ω j − (1 − θ3j )

ω j

(1 + θ3j )
ω j + (1 − θ3j )

ω j

⎫
⎬

⎭
,

⎧
⎨

⎩
3

√√√√ 2(ϑ3
j )

ω j

(2 − ϑ3
j )

ω j + (ϑ3
j )

ω j

⎫
⎬

⎭

⎫
⎬

⎭
.

Then, from the operation (1) in Definition 3.3, we have

(ωiζi )
p �

⋃

θi∈μi ,ϑi∈νi

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩
3

√√√√ 2
((
1 + θ3i

)ωi − (1 − θ3i

)ωi
)p

((1 + θ3i )
ωi + 3

(
1 − θ3i )

ωi
)p

+ ((1 + θ3i )
ωi − (1 − θ3i )

ωi
)p

⎫
⎬

⎭
⎧
⎨

⎩
3

√√√√ ((2 − ϑ3
i )

ωi + 3
(
ϑ3
i )

ωi
)p − ((2 − ϑ3

i )
ωi − 3

(
ϑ3
i )

ωi
)p

((2 − ϑ3
i )

ωi + 3
(
ϑ3
i )

ωi
)p

+ ((2 − ϑ3
i )

ωi − 3
(
ϑ3
i )

ωi
)p

⎫
⎬

⎭

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭
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.

Let

Ai � (1 + θ3i )
ωi − (1 − θ3i )

ωi , Bi � (1 + θ3i )
ωi + 3(1 − θ3i )

ωi ,
Mi � (2 − ϑ3

i )
ωi + 3(ϑ3

i )
ωi , Ni � (2ϑ3

i )
ωi − 3(ϑ3

i )
ωi ;

then (ωi ζi )
p and

(
ω j ζ j

)q can be replaced as follows:
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From the operation (3) in Definition 3.3, we have

(ωi ζi )
p ⊗ (ω j ζ j )

q �
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i M
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i Nq
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⎫
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⎭
.

Similarly, we can obtain (ωiζi )
q ⊗ (ω jζ j

)p. Then, from
the operation (4) in Definition 3.3, we can obtain Eq. (11).
The proof of Lemma 3.4 is completed.
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The code of HFFWBM and HFFEWBM

Python code of HFFWBM and HFFEWBM

def HFFWBM(alter, qrung, weight=None, p=1, q=1):

def bonferroni_element(d1, d2, p_, q_):

s1 = fns.algeb_multiply(d1.algeb_power(p_), d2.algeb_power(q_))

s2 = fns.algeb_multiply(d1.algeb_power(q_), d2.algeb_power(p_))

return fns.algeb_plus(s1, s2)

dlist = []

if weight is None:

dl = alter

for i, d1 in enumerate(dl):

for j, d2 in enumerate(dl[:i]):

dlist.append(bonferroni_element(d1, d2, p, q))

else:

dl = []

assert len(alter) == len(weight), 'The number of alter is not equal to 

the number of weight!'

for i in range(len(alter)):

dl.append(alter[i].algeb_times(weight[i]))

for i, d1 in enumerate(dl):

for j, d2 in enumerate(dl[:i]):

dlist.append(bonferroni_element(d1, d2, p, q))

agge = fns.qrungdhfe(qrung, [0], [1])

for agg in dlist:

agge = fns.algeb_plus(agg, agge)

agge = (agge.algeb_times(1 / (len(alter) * (len(alter) - 1)))).algeb_power(1 

/ (p + q))

return agge

def HFFEWBM(alter, qrung, weight=None, p=1, q=1):

def bonferroni_element(d1, d2, p_, q_):

s1 = fns.eins_multiply(d1.eins_power(p_), d2.eins_power(q_))

s2 = fns.eins_multiply(d1.eins_power(q_), d2.eins_power(p_))

return fns.eins_plus(s1, s2)

dlist = []

if weight is None:

dl = alter

for i, d1 in enumerate(dl):

for j, d2 in enumerate(dl[:i]):

dlist.append(bonferroni_element(d1, d2, p, q))

else:

dl = []

assert len(alter) == len(weight), 'The number of alter is not equal to 

the number of weight!'

for i in range(len(alter)):

dl.append(alter[i].eins_times(weight[i]))

for i, d1 in enumerate(dl):

for j, d2 in enumerate(dl[:i]):

dlist.append(bonferroni_element(d1, d2, p, q))

agge = fns.qrungdhfe(qrung, [0], [1])

for agg in dlist:

agge = fns.eins_plus(agg, agge)

agge = (agge.eins_times(1 / (len(alter) * (len(alter) - 1)))).eins_power(1 / 

(p + q))

return agge
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