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Abstract
Mobile cable-driven parallel robots (MCDPRs) offer expanded motion capabilities and workspace compared to traditional
cable-driven parallel robots (CDPRs) by incorporating mobile bases. However, additional mobile bases introduce more
degree-of-freedom (DoF) and various constraints to make their motion planning a challenging problem. Despite several
motion planning methods for MCDPRs being developed in the literature, they are only applicable to known environments,
and autonomous navigation in unknown environments with obstacles remains a challenging issue. The ability to navigate
autonomously is essential for MCDPRs, as it opens up possibilities for the robot to perform a broad range of tasks in real-
world scenarios. To address this limitation, this study proposes an online motion planning method for MCDPRs based on
the pipeline of rapidly exploring random tree (RRT). The presented approach explores unknown environments efficiently to
produce high-quality collision-free trajectories for MCDPRs. To ensure the optimal execution of the planned trajectories, the
study introduces two indicators specifically designed for the mobile bases and the end-effector. These indicators take into
account various performance metrics, including trajectory quality and kinematic performance, enabling the determination of
the final following trajectory that best aligns with the desired objectives of the robot. Moreover, to effectively handle unknown
environments, a vision-based system utilizing an RGB-D camera is developed, allowing for precise MCDPR localization and
obstacle detection, ultimately enhancing the autonomy and adaptability of the MCDPR. Finally, the extensive simulations
conducted using dynamic simulation software (CoppeliaSim) and the on-board real-world experiments with a self-built
MCDPR prototype demonstrate the practical applicability and effectiveness of the proposed method.

Keywords Mobile cable-driven parallel robot · Autonomous navigation · Rapidly exploring random tree · Stability and
kinematic performance · Vision system

Introduction

Cable-driven parallel robots (CDPRs) have emerged as a
promising class of robotic devices for a wide range of indus-
trial and service applications. Typically, CDPRs are parallel
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robotic manipulators that employ multiple flexible cables to
control the motion of a moving platform (or end-effector).
The cables are wound around fixedmotorized winch systems
to control the position of the end-effector by adjusting their
lengths. CDPRs can provide several advantages such as low
inertia, largeworkspace, and high load capacitymaking them
suitable for a variety of tasks of such robots in large-scale
construction [1], painting [2] and rehabilitation mechanisms
[3].

In spite of the promising performance ofCDPRs in numer-
ous applications, several challenges still remain. One of the
major drawbacks of classical CDPR is the fixed cable layout,
i.e, fixed pulley position and winch system which signif-
icantly increases the probability of collision between the
cable and the surrounding environment, thereby the avail-
able workspace of CDPRs was reduced [4]. Moreover, the
fixed cable layout leads to the position of the pulleys must be
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Fig. 1 A self-built MCDPR prototype with a vision system

carefully optimized in order to maximize the workspace [5].
Consequently, Reconfigurable Cable-Driven Parallel Robots
(RCDPRs) have been developed by researchers in which
cable robots have the ability to change their configurations
[6–8]. However, the reconfigurability of most existing RCD-
PRs is limited due to they still require manually adjusted
cable layouts and the base frame cannot be freely moved.

To achieve autonomous reconfigurability of RCDPRs,
mobile cable-driven parallel robots (MCDPRs) were devel-
oped by researchers [9], in which the additional mobile bases
were introduced to mobilize the cable layout and the base
frame. The MCDPR developed in this work is shown in
Fig. 1, it consists of a classical CDPR with eight cables
and a six degree-of freedom (DoF) end-effector mounted on
four mobile bases. A mobile base consists of a differential
wheeled robot with three wheels and a lifting column. More-
over, an RGB-D camera (Intel RealSenseTM Depth Camera
D435i) is mounted on the mobile base to sense the envi-
ronment. However, additional mobile bases involve complex
constraints and high-dimensional configuration space, result-
ing in motion planning of MCDPRs becoming a challenging
issue and requiring to be addressed.

Accordingly, sampling-based motion planning methods
have demonstrated promising performance in addressing
high-dimensional problems and accommodating various
constraints by randomly sampling the configuration space
[10]. One of the representative sampling-based path plan-
ning algorithms is theRapidly exploringRandomTree (RRT)
method, and some variants of RRT such as RRT* and RRT-
connect are proposed [11–13]. In recent years, researchers
have developed different RRT-based online motion plan-
ning methods for a wide range of robotic systems, including
self-driving cars, unmanned aerial vehicles (UAVs), and
unmanned ground vehicles (UGVs). Sotirios et al. [14]
developed an RRT*-NH method to generate real-time paths
for nonholonomic self-driving cars in quasi-static unknown
environments. Lin et al. [15] developed a closed-Loop RRT
method for UAV dynamic obstacle collision avoidance. Wen
et al. [16] developed a heuristic dual sampling domain

reduction-based RRT* method to complete the online plan-
ning of an unmanned surface vehicle (USV). However,
MCDPR consists of multiple mobile bases and CDPR, pre-
senting a unique challenge compared to the aforementioned
conventional robotic systems. The mobile bases collaborate
and coordinate their movements to achieve a common objec-
tive, which involved multi-agent motion planning problem,
and high-dimensional state spaces are required to be consid-
ered.

One of the main advantages of the RRT algorithm is that
it can be easily extended to multidimensional spaces [17].
Zhang et al. [16] proposed an optimization-basedmap explo-
ration strategy by extending the RRT algorithm, enabling
multiple robots to actively explore and construct environment
maps. In a similar vein, Lau et al. [18] introduced a tem-
poral memory-based RRT (TM-RRT) exploration strategy
designed for multi-robot systems to execute robust explo-
ration tasks within unknown environments. Additionally,
Neto et al. [19] presented a Multi-agent Rapidly-exploring
Pseudo-random Tree (MRPT) approach, which combines
rapid exploration and pseudo-random tree construction,
providing real-time motion planning and control for under-
actuated robots. While the aforementioned methods have
showcased their adaptability and potential in multi-robotic
systems, the CDPR brings forth additional constraints that
necessitate careful consideration. Specifically, in the context
of CDPR, there are unique challenges related to cable inter-
ference and the intricate kinematics of the robots, which are
required to be considered in the present study.

In the pursuit of generating safe trajectories for CDPRs, an
adaptive RRT method was proposed in [20] to facilitate the
moving obstacle avoidance of moving obstacles. Xiang et al.
[21] developed an RRT-based dynamic trajectory planning
method specifically tailored for three degrees-of-freedom
(DOFs) suspended CDPRs. Mishra et al. [22] introduced
the AFG-RRT* method, which considers multiple perfor-
mance constraints to generate optimized paths for CDPRs.
However, these studies only generate feasible trajectories
for classic CDPRs. In the case of MCDPRs, Rasheed et
al. [23] proposed a sampling-based algorithm that generates
collision-free paths while maximizing the wrench capability.
Furthermore, the Direct Transcription method was proposed
in [24] to provide an optimized path for mobile bases and the
end-effector by minimizing the cost function with a series of
given constraints. However, the scope of previous MCDPR
studies is restricted to scenarios where the environmental
information is known a priori. Most recently, Liu et al. [25]
introduced a novel approach based on reinforcement learning
(RL) to address dynamic obstacle avoidance in real time for
CDPRswithmobile bases, further expanding the possibilities
for motion planning in the context of MCDPRs.

In this work, we propose an online motion planning
method for navigating Mobile Cable-Driven Parallel Robots
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(MCDPRs) in uncertain environments. Our approach utilizes
RGB-D camera data and introduces a novelmulti-time-based
RRT algorithm. While recent learning-based approaches
have gained attention, they suffer from computational com-
plexity and limited transferability to different environments
[26, 27]. Additionally, optimal cascade control for parallel
robot platforms has been developed in prior works [28–30],
where heuristic algorithmswere employed.We also highlight
the potential use of a novel exploration-exploitation-based
policy for model-free control [31]. However, to simplify the
analysis, we have designed two controllers based on the kine-
matic models of the mobile base and CDPR. The specific
contributions of this paper are as follows:

(1) An online motion planning algorithm for MCDPR nav-
igation in real-world scenarios. To address the diverse
constraints inherent to MCDPRs and ensure real-time
performance, our developed approach employs a contin-
uously constructed time-based tree for the four mobile
bases through forward simulation. Consequently, a set
of reference trajectories can be generated, allowing for
effective motion planning of the MCDPR system.

(2) The novel heuristic functions were designed to determine
the final following trajectory for MCDPR in each time
interval. These heuristic functions take into account mul-
tiple performance metrics, including kinematics stability
and distance to the goal, to ensure the generation of a
favorable trajectory. Once the trajectories for the four
mobile bases have been obtained, we employ a devel-
oped partial sampling method to generate the trajectory
for the end-effector. This approach allows for the effi-
cient planningof theMCDPR’smotionwhile considering
the unique requirements and characteristics of the end-
effector.

(3) A vision-based system is developed for MCDPR local-
ization and detecting obstacles by using the RGB-D
camera. The system incorporates the proposed method,
and we conducted real-world experiments to validate its
performance. The experimental results demonstrate the
compelling performance of the proposed approach, high-
lighting its efficacy in accurately localizing the MCDPR
and effectively detecting obstacles in a real-world envi-
ronment.

The remainder of this paper is organized as follows: Robot
parameterization and problem formulation are introduced
in Sect. “System Modeling”. The kinematics and stabil-
ity model for MCDPRs is established in Sect. “Method
Description”. In Sect. “Method Validation”, the proposed
path planning method for MCDPRs is introduced in detail.
The method validation is carried out in Sect. “Conclusion
and Future Work”. Finally, Section 6 concludes the research
work.

Systemmodeling

MCDPR parameterization

As shown in Fig. 2, the MCDPR studied in this work con-
sists of m = 8 cables and p = 4 mobile bases. For j-th
mobile base, denoted asM j , j = 1, ..., 4 carries two cables
(m j = 2) and has three wheels (c = 3) including one
caster wheel and two driven wheels. The cable exit points are
dependent on the position and orientation of the mobile base.
The origin of the global coordinate system is represented as
O0 and the local coordinate system located at the center of
the end-effector is denoted as Oe. The mobile bases enable
autonomous reconfiguration of the CDPRwithin a plane par-
allel to the ground. It should be noted that the mobile base
operates as a planar robot, thus limiting the reconfiguration
of the plane. As a result, the height of the cable exit points
remains constant.

In this study, cables are treated as massless line segments
for simplicity. Let i-th cable exit point and anchor point
associated with M j denote as Ai j and Bi j , respectively.
Moreover, Ai j is designed to lie on the axis pj z ofM j . Based
on the properties of parallel robots, i-th cable vector attached
onto M j , l i j , can be expressed as follows

l i j = ai j − P − R·ebi j (1)

where ai j is the position vector of Ai j in O0 coordinate
system. ebi j represents the position vector of Bi j in the mov-
ing coordinate system Oe. P and R is a three-dimensional
position vector and rotation matrix of the end-effector,
respectively. Hence, the velocity relationship between the
cable vector and the end-effector can be obtained via the
differentiation of (1) with respect to time
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Fig. 2 Structural diagram of MCDPR
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l̇ i, j = -JT Ṗ (2)

J(X) =
[

u1,1 · · · u2, j
u1,1 × (R · eb1,1) · · · u2, j × (R · ebm, j )

]
(3)

where J ∈ R
n×m is the Jacobianmatrix of the carriedCDPR.

ui, j is the unit vector of l i j . In this work, we limit the end-
effector to perform only translational motion. By using (1)
and (3), the position and the velocity of the end-effector can
be controlled by varying the length of the cable.

Problem formulation

Toaccomplish autonomousnavigationofMCDPR inunknown
environments, the sampling-based motion planning method
requires searching the state space to construct a graph.
We first define the state of j-th mobile base and the end-
effector at k-th time step is m j,k = [0x j,k, 0y j,k] and
Pk = [0xk, 0yk, 0zk], k = 1, ..., N , respectively. The sys-
tem state was constructed by multiple mobile bases at kth
time step is Mk = [mT

1,k,m
T
2,k,m

T
3,k,m

T
4,k]T . Therefore, the

system state of MCDPR at kth time step can be expressed as
Xk = [PT

k , MT
k ]T .

TheMCDPR involves planning the movement of multiple
mobile bases in a constrained environment with internal and
external constraints. To simplify the computation, the mobile
bases and obstacles are modeled as cylindrical structures. At
each time step, the path planning algorithm takes into account
the following constraints for the j th mobile base:

∥∥mh,k − m j,k
∥∥ > Lm, for h = 1, .., 4, h �= j (4)∥∥m j,k − oq

∥∥ > rm + ro, for q = 1, .., s, (5)

β j,k = cos−1 d j,k−1 · d j,k

‖d j,k−1‖‖d j,k‖ < βmax (6)

where (4)–(6) impose the distance and angle constraints of
mobile bases. Equation (4) imposes a distance constraint
between the current mobile base position m j,k and the
positions of other mobile bases mh,k , ensuring a minimum
separation distance Lm between them and promotes safe
navigation for the MCDPR. Equation (5) represents a dis-
tance constraint between the mobile base position m j,k and
the positions of obstacles oq , which ensures that the dis-
tance between the mobile base and any obstacle is greater
than the sum of their respective radii, rm and ro, to pre-
vent collision between theMCDPRand obstacles. To address
the nonholonomic constraints, the algorithm uses directional
vectors dk = m j,k − m j,k−1 in Eq. (6), which represent
the movement of the mobile base between adjacent states
M j . The algorithm ensures smooth and continuous move-
ment of mobile bases by imposing a limit on the maximum
turning angle, denoted by βmax. Moreover, due to the limited
workspace and cable length of the CDPR, the end-effector

requires to satisfy the following constraints

‖ck − bk‖ > Lc (7)

lmin ≤
∥∥∥[m j,k

T hi ]T − Pk

∥∥∥ ≤ lmax, for i = 1, 2 (8)

Pk ∈ Wk (9)

where ck and bk denotes the two closest point between cables
and obstacles at kth time step, respectively. Therefore, Eq. (7)
ensures a safe distance Lc between the cables and obsta-
cles, preventing collisions and maintaining the safety of the
MCDPR system. Equation (12) imposes a constraint on the
cable lengths by limiting them to lie within the range lmin

and lmax, which ensures that the cable lengths are within
acceptable limits and facilitates the proper functioning of the
MCDPR. Moreover, Eq. (9) specifies that the end-effector’s
position Pk should lie within the defined workspace Wk

to ensure the end-effector to operate within the designated
workspace, allowing the MCDPR to perform its intended
tasks effectively.

Let X (M, P) ⊂ R
2p+3 denotes the state space of

MCDPR and the obstacle spaceXobs ⊆ X refers to the states
that the robot collides with the obstacle. The free space that
satisfy (4)–(9) contraints given by X f ree ⊆ X /Xobs . Let
�k denote the set of feasible trajectories obtained by the pro-
posedmethod at time k. The autonomous navigation problem
for MCDPR can be defined by

σ ∗ = argmin
σ∈�k

c(σ )

s.t. σ (0) = Xini t

σ (t f ) ∈ Xgoal

σ (t) ∈ X f ree(t),∀t ∈ [ 0,t f ].

(10)

where Xinit and Xgoal denote the initial and goal state of
mobile bases. c : � 
→ R ≥ 0 is the defined cost function
forMCDPR. In the next section, wewill discuss the details of
the aforementioned problem and propose the sampling-based
motion planning method to solve it in real-time.

Method description

We now present the sampling-based method to deal with the
autonomous navigation problem for MCDPR. The proposed
method utilizes RRT-based approach to generate feasible tra-
jectories at each time step by constructing a tree-structured
graph, denoted by T (V, E), where V is the set of nodes rep-
resenting the state ofmobile basesM and E is the set of edges
connecting them with state transition. The proposed method
is summarized in Algorithm 1.

InAlgorithm1, the complete loop of the suggestedmethod
includes several steps or stages that are carried out in a spe-
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Algorithm 1 Multi Time-based RRT (MTB-RRT)
Input: Xini t , Xgoal , Xobs
Output: σ ∗
1: Check the feasibility of the initial state
2: X0 ← Xini t
3: Initialize tree T ← X0
4: while goal not reached do
5: Observe the current state of MCDPR Xk(Mk , P)

6: Observe the state of obstacle Xobs,k by using vision sensor.
7: t0 ← clock()
8: while clock() ≤ t0 + �t do
9: Tk ← MultiTreeExtend(Tk−1,Xobs,k ,Xgoal , Q)
10: end while
11: M P

k ← BackPropagation(Tk )
12: M P∗

k ← FindCheapest(M P
k )

13: for each Mk ∈ M P∗
k do

14: PM
k ← GridSampling(Mk )

15: P∗
k ← FindBest(PM

k )
16: P P∗

k ← P P∗
k ∪ P∗

k
17: end for
18: σ ∗

k ← M P∗
k ∪ P P∗

k
19: if σ ∗

k is empty then
20: Brake()
21: else
22: Tk+1 ← UpdateTree(Tk ,σ ∗

k )
23: end if
24: t0 ← clock()
25: Send control commands to MCDPR to follow the trajectory σ ∗

k
26: end while

cific sequence. Checking the feasibility of the initial state
is the first step in this process, and it is essential for ensur-
ing that the method can proceed successfully. If the initial
state satisfies (4)–(9), the initial state has been assigned as
the root of the tree T . If the goal point has not been reached,
we observe the current state of MCDPR Xk(Mk, P), which
can be done by using vision-based simultaneous localiza-
tion and mapping (SLAM) technique and also the state of
obstacles can be estimated using RGB-D camera. Based on
the observed state of both MCDPR and the environment, the
tree Tk is constructed during limited time step �t . After the
tree has been constructed, a series of feasible trajectories of
mobile bases M P

k are obtained by continuously propagating
the sub-node of the parent node and the optimized trajectories
with minimum cost, M P∗

k , can be generated.
Consequently, each state inM P∗

k represents a specific con-
figuration of four mobile bases and is denoted as Mk . For
each Mk , a sequence of potential end-effector positions PM

k
are sampled and the best end-effector position P∗

k is obtained
by minimizing the given cost. By continuously accumulat-
ing nodes P∗

k , the final path of the end-effector P P∗
k can be

generated, and the trajectory for MCDPR that minimizes a
given cost function σ ∗

k can be found. In cases where the set
σ ∗
k is found to be empty, indicating the absence of a feasi-

ble trajectory, the Brake() function is invoked to bring the
robot to a halt until a new viable trajectory can be generated.
This mechanism ensures that the robot does not proceed with

an invalid or unsafe trajectory, thereby preventing any unde-
sired actions or potential hazards. Otherwise, the tree will be
updated to obtain a new tree Tk+1 for the next loop. Finally,
the MCDPR is controlled to follow σ ∗

k for one-time step.
The proposed tree construction method was illustrated in

Fig. 3. For more clarity and to avoid overlap, we only show
two trees associated withM1 andM2, in which qM i, j rep-
resent the qth node on the i th tree of j th mobile base. For
every time interval, the feasible tree is constructed shown
in Fig. 3a, and the depth of the tree is limited to accommo-
date the unknown environment. Hence, a series of feasible
trajectories can be generated by continuously propagating
from the leaf node to the root node. As shown in Fig. 3b,
five feasible trajectories can be found and the final following
trajectory is obtained by using the cost function. During the
MCDPR follow the trajectory in one step, the tree is pruned
and unnecessary branches are removed for growing a new
tree, as shown in Fig. 3c.

Multiple tree extension and rewiring

In this subsection, the tree extension algorithm is presented
in detail. As shown in Algorithm 2, the feasibility of the
remained tree Tk is checked. In certain situations where
the environment significantly changes, some branches of the
algorithm may not be feasible or practical to execute, which
can negatively impact the real-time performance of the algo-
rithm.

After the feasibility of the Tk is checked, the algorithm
proceeds in a loop, where in each iteration, it generates a new
state Mnew for the robot using adaptive sampling, which is a
sampling strategy that attempts to bias the sampling towards
unexplored areas of the state space. As a result, for the case of
four mobile bases, we only need to sample an 8-dimensional
vector, and for each subtree comprising the mobile bases, a
two-dimensional vector suffices for sampling. This dimen-
sion reduction enables the acquisition of valid nodes within
small time intervals, addressing the challenges associated
with handling such high-dimensional data in the algorithm.
Then, the algorithm attempts to connect this new state to the
nearest node in the tree Mnearest using a steering function,
which generates a path from the nearest node to the new
state. Moreover, Mnew are obtained with a fixed expansion
angle Mnew = Mnear + η ∗ [cos(θ), sin(θ)]. If Mnew is fea-
sible by checking constraints (Eqs. 4–9), then the new state
is added to the tree as a new node, and an edge is added to
connect it to the nearest node.

Furthermore, the heuristic method of Algorithm 2 was
introduced, which aims to optimize the path by utilizing
neighbor vertices. After generating a feasible new node
Mnew, its neighbor verticeswere obtained, denoted asMnear,
by employing a search radius r∗. Specifically, each mnear, j

that is directly connected tomnew, j and attempts to minimize
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Fig. 3 Illustrations of proposed sampling-based path planning method
for CDPRmoving obstacle avoidance. Every node on the tree is feasible
in its time stamp according to the prediction of the moving obstacle. a

Time-based tree was constructed with a certain depth. bOptimal trajec-
tory was obtained from the tree. cDelete additional branches and move
one step

Algorithm 2 MultiTreeExtend
Input: Tk−1,Xobs,k ,Xgoal , Q
Output: Tk
1: Check the feasibility of Tk
2: Mrand ← AdaptiveSampling(Mgoal ,M parent ,T )
3: Mnearest ← Nearest( Mrand ,T ,Vj )
4: unew, Mnew ←Steer(Mnearest ,Mrand ,η,θ)
5: if Mnew is feasible then
6: if Depth(Mnew) is Q then
7: Assign Mnew as leaf node
8: Continue
9: else
10: Mnear ← NearestNeighbors(Mnew ,T ,r∗)
11: cmin = h(Mnew) + d(Mnew, Mnearest )

12: for each Mnear ∈ Mnear do
13: (Vnew, j ,Enew, j ) ← Connect(mnear , j ,mnew, j )
14: if Path(mnear , j ,mnew, j ) is feasible then
15: cnew, j = h(mnear , j ) + dist(mnew, j ,mnear , j )

16: if cnew, j < cmin, j then
17: cmin, j ← cnew, j ,

Mnear ←ReSetParent(mnear , j ,T )
18: if Mnear is feasible then
19: Continue
20: end if
21: end if
22: end if
23: end for
24: end if
25: T .V ←InsertVertexToTree(Mnew , T )
26: T .E ←InsertEdgeToTree(Mnew ,M parent ,T )
27: else
28: Update Mnew.Failure_rate
29: end if

the heuristic cost. Here, h(Mnew) represents the total path
length from the initial node M init to Mnew. However, assign-

ing mnear, j as the parent node may disrupt the tree structure,
leading to vertex disjunction. To address this issue, ReSetPar-
ent() method was proposed, which resets the passed vertices
on the edge (mnear, j , mnew, j ) while preserving the parent
node. By adopting this approach, we ensure the stability of
the tree structure and maintain the integrity of the graph.
The Heuristic method and the ReSetParent() technique are
specifically designed to enhance the algorithm’s efficiency
and reliability. Through careful selection of neighbor ver-
tices and preservation of the tree structure, our algorithm is
capable of generating high-quality paths that satisfy the given
constraints and objectives.

Finally, the algorithm iteratively executes this process
until the time limit is reached. The resulting final tree rep-
resents a feasible path from the current root state to the
goal state, providing guidance for the robot to traverse along
the determined trajectory. This approach ensures that the
robot can navigate the environment effectively and reach the
desired goal state.

Feasible paths generation for the end-effector

After the RRT tree Tk is obtained from Algorithm 2, the path
for mobile bases M P∗

k can be generated by consecutively
finding Mparent from the root of the tree. In this work, the
grid sampling method is developed to generate the feasible
path for the end-effector, and the proposed method is shown
in Algorithm 3.
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Algorithm 3 Grid Sampling Method

Input: Pk
P ,Q

Output: PM
k

1: Check the end-effector current state M∗
k

2: Determine the search area Sp with radius rs
3: Discrete Sp to obtain Qp cells {c1, ..., cQ}
4: for n = 1 to Q do
5: if not feasible (cn) then
6: Continue
7: else
8: PM

k ← PM
k ∪ cn

9: end if
10: end for

The Algorithm 3 takes two inputs: Pk
P and Q. Pk

P rep-
resents the current state of an end-effector, which denotes
the three-dimensional coordinates of the end-effector. Q is a
user-defined parameter that specifies the number of cells to
be generated in the search area. The algorithmfirst checks the
current state of the end-effector, denoted as Mk∗. This step
is necessary to determine the starting position for the search.
The algorithm then determines the search area, denoted as
S p, which is a circular region around the current end-effector
position with a radius of rs . Next, the algorithm discretizes
the search area into Q cells, denoted as c1, ..., cQ . Each cell
represents a possible location for the end-effector. The algo-
rithm then iterates over each cell to determine if it is a feasible
location for the end-effector to move to. If a cell is not feasi-
ble, the algorithm skips it and moves on to the next cell. If a
cell is feasible, it is added to the output set PM

k , which con-
tains all the feasible locations for the end-effector to move
to. Finally, the algorithm returns PM

k as the output.

Cost function

In this subsection, the cost functions for generating the
optimal path for themobile bases and the end-effector are pre-
sented. Formobile bases, theFindCheapest(M P

k ,Xgoal,Xobs)
function in Algorithm 1 was used to obtain the optimal paths
for mobile bases by minimizing the following cost function
cm , which consists of three terms, considering the state error,

Infeasible position

End-effector position

Fig. 4 illustration of the path planning for end-effector

potential collision avoidance, and the distance to the target.

cm =
Q∑

k=1

Jr (M
p
k , M p

kref
) + Jc(M

p
k ,Xobs) + Jg(M

p
l ,Xgoal)

(11)

Where the first term Jr (M
p
k , M p

kref
) penalizes the devia-

tion of the predicted state M p
k from the desired state vector

M p
kref

in a quadratic sense. Itmeasures the difference between
these two states using the Qm-weighted Euclidean norm,
encouraging the mobile bases to closely follow the desired
trajectory as shown follows

Jr (M
p
k , M p

kre f
) = ‖M p

k − M p
kref

‖2Qm
(12)

The collision cost term in (11), Jc(M
p
k ,Xobs), is shown

in (13) and designed to avoid collisions with obstacles. It
is computed as a sum over all obstacles, where each term
considers the distance between the predicted state M p

k and
a specific obstacle. This term utilizes the logistic function to
create a smooth and bounded cost function, with Qc,q and
kq as tuning parameters controlling its shape and sensitivity.

Jc =
s∑

q=1

Qc,q

1 + exp kq(
∥∥M p

k − oq
∥∥ − rm − ro)

(13)

Moreover, the cost-to-go function is givenby Jg(M
p
l ,Xgoal)

can be expressed in (14). aims to guide the mobile bases to
reach the goal state quickly. It measures the distance between
the leaf node M p

l in the path M p
k and the goal state Xgoal.

The Gm-weighted Euclidean norm is used to compute this
cost, providing a measure of how close the mobile bases are
to reaching the goal.

Jg = ‖M p
l − Mgoal‖2Gm

(14)

After obtaining the final following path of the mobile
bases, denoted as M P∗

k , the path for the end-effector can be
obtained using theGridSampling (Mk) function. The optimal
path for the end-effector, denoted as P∗

k , is then determined
by the FindBest(Mk) function by using following equation

Je = αγk + βγs (15)

where kinematic cost, γk =
√
det(J JT ), measures the

manipulability of the robot along the trajectory, which is
computed based on the determinant of the Jacobian matrix,
providing information about the robot’s ability to perform
desired tasks effectively.Moreover, The smoothness cost, γs ,
characterizes the smoothness of the trajectory. It evaluates the
squared differences between consecutive points in the path,

123



404 Complex & Intelligent Systems (2024) 10:397–412

-2 -1 0 1 2 3

x (m)

-6

-5

-4

-3

-2

-1

0

1

y(
m

)

1

2 3

4

1

2
3

4

-2 -1 0 1 2 3

x (m)

-6

-5

-4

-3

-2

-1

0

1

y (
m

)

1

2 3

4

1

2

3

4

-2 -1 0 1 2 3

x (m)

-6

-5

-4

-3

-2

-1

0

1

y(
m

)

1

2 3

4

1

2
3

4

-2 -1 0 1 2 3

x (m)

-6

-5

-4

-3

-2

-1

0

1

y(
m

)

1

2 3

4

1

2

3

4

-2 -1 0 1 2 3

x (m)

-6

-5

-4

-3

-2

-1

0

1

y (
m

)

1

2 3

4

1

2

3

4

-2 -1 0 1 2 3

x (m)

-6

-5

-4

-3

-2

-1

0

1
y(

m
)

1

2 3

4

1

2 3

4

(a) (b) (d) (c) 

(e) (f) (h) (g) 

(i) (j) (l) (k) 

Fig. 5 Results of simulation and verification in CoppeliaSim. The red, green, blue, yellow, and black represent the M1, M2, M3, M4 and the
end-effector a, b t = 0s. c, d t = 6s. e, f t = 12s. g, h t = 18s. i, j t = 24s. k, l t = 30s

PM
k+1−2PM

k + PM
k−1, where PkM represents the position of

the end-effector at time step k. This term promotes smooth
and continuous motion of the end-effector. The weighting
factors α and β determine the relative importance of dexter-
ity, obstacle avoidance, and smoothness costs in the overall
evaluation. These factors can be adjusted according to the
specific requirements of the application, allowing customiza-
tion of the optimization process based on desired priorities.

Method validation

Initialization set-up and results

Within this section, we present a series of simulations aimed
at demonstrating the effectiveness and efficiency of our pro-
posed algorithm. The cluttered environment in which the
simulations are performed consists of the dynamic model

123



Complex & Intelligent Systems (2024) 10:397–412 405

Table 1 Simulation parameter

Parameters Value Parameters Value

Lm 0.38 m lmin 0.5 m

rm 0.2 m lmax 4m

βmax 65◦ rc 0.5 m

Lc 0.05 m rgc, j 0.3 m

r∗ 0.5 m η 0.2 m

α 0.5 β 0.5

Q 10 ω2 0.5

of our MCDPR prototype, developed through the utilization
of the CoppeliaSim (formerly V-REP) robot simulator soft-
ware [32]. Specifically, we have implemented ten obstacles
within the environment, all of which are modeled as cylin-
ders with varying radii of 0.15 m, 0.25 m, and 0.4 m. These
obstacles possess an equivalent height of 0.4 m and are ran-
domly positioned throughout the environment. Additionally,
five distinct goal points have been designated around the dark
blue obstacle, which serves as the target obstacle where the
robot executes tasks, such as picking and/or releasing oper-
ations.

The proposed method is initialized using the parameters
listed in Table 1. To achieve high accuracy during the consec-
utive state transition from Xk to Xk+1, a relatively small �t
of 0.5 s is used in this work. If�t is too large, more nodes can
be explored, but there is also a higher likelihood of overskip-
ping or overlooking obstacles in the environment. Moreover,
�t is a constant in this work to maintain the integrity and
coherence of the tree structure, as changes in sample spac-
ing may disrupt connectivity and introduce computational
complexity. For each M p

k , a set of pulleys’ coordinates can
be determined using h1 = 0.285 m and h2 = 0.926 m. As
a result, the mass center of the mobile base can be directly
obtained from the MCDPR dynamic model in CoppeliaSim,
which is given by [0.12, 0.34, 0.36]T with respect to Op j
coordinate system. Therefore, γk and γs can be computed
based on the configuration of the mobile bases.

The results of the simulation depicted in Fig. 5 demon-
strate the generation of feasible paths for both the mobile
bases and end-effector in each time interval. The final paths
for both the end-effector and mobile bases are highlighted
in bold and determined by minimizing Eqs. 11 and (15).
As the maximum tree length is constrained, it is observed
that the tree’s predicted distance during growth is limited
by assuming the tree is confined by the unknown aspects
of the environment and sensor accuracy. Furthermore, in
this simulation, we can acquire specific states of the robot
and obstacles through the software, which allows for the
direct acquisition of feasibility detection within the algo-
rithm. Figure7 illustrates the variation of the end-effector’s

z-coordinate. One should note that the end-effector’s z-
coordinate is determined by using the cost function (15). In
order to illustrate the impact of path optimization, we con-
ducted a comparative analysis of the performance change in
the end-effector movement with and without optimization.
As all obstacleswere set to the sameheight of 0.4ms, the non-
optimized process involved fixing the Z -coordinate of the
end-effector at 0.43 m to ensure collision avoidance and the
results were shown in Fig. 9. The behavior of Je with respect
to a fixed Z -coordinate exhibits an initial marginal increase
followed by a subsequent decline with oscillatory patterns.
Conversely, with the implementation of optimization pro-
cesses, Je experiences a rapid escalation and oscillates at
higher levels. This phenomenon exemplifies the efficacy of
the optimization techniques utilized.

To streamline the problem, the end-effector is repre-
sented as a single point to facilitate collision detection.
Figure8 depicts the three minimum distances that pertain
to mobile bases/mobile bases, mobile bases/obstacles, and
cables/obstacles. It is noteworthy that the distance constraints
specified by Eqs. (4), (5), and (7) can be met by adhering to
the aforementioned distances.

MCDPR verification in CoppeliaSim

In this section, we demonstrate the resulting MCDPR trajec-
tories σ ∗ in each iteration are simulated in the CoppeliaSim
environment to verify the proposed method. The software
simulation framework is depicted in Fig. 11, which describes
a process for simulating the proposed method for MCDPR.
The process begins with the input of parameters required for
the simulation. These parameters could include the robot’s
physical characteristics, the properties of the environment,
and the initial conditions of the simulation. Once the param-
eters have been inputted, the next step is to create the
simulation environment and load the MCDPR model in
which the simulation will take place. Then, the simulation
will continue to run until the robot has reached the target.

In the course of the simulation, the state of the robot is
acquired periodically and a path is generated by using the
proposed MTB-RRT method for the robot to follow. Next,
control commands are computed based on the generated path.
Then, control directives are derived based on the path that
was generated. To control the mobile bases, the continuous
velocity profiles of the mobile bases are transformed into the
rotational velocities of the mobile base’s wheels via its kine-
matic model. As demonstrated in Fig. 10, the continuity of
the velocity profiles of the mobile bases and the end-effector
is guaranteed in each iteration. In addition, to control the end-
effector, we use (1) and (2) to regulate the length and speed
of the cables shown in Fig. 12. The obtained rotational veloc-
ities of the wheels are dispatched to the revolute joints linked
with the wheels to control the mobile bases in the simulation
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Fig. 6 Simulation environment
developed using CoppeliaSim
software [32]
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softwareCoppeliaSim.Besides, the length of the cable can be
regulated via prismatic joints connected with the cables. As
a result, the MCDPR model is actuated by these joints. The
state of the MCDPR can be directly obtained from the Cop-
peliaSim throughout the movement, which will be compared
with the intended path to obtain the error.

The simulation clips presented in Fig. 5 demonstrate that
the MCDPR effectively adheres to desired paths while suc-

cessfully avoiding collisions. Additionally, Fig. 13 depicts
the discrepancy between the simulatedMCDPR’s actual path
and the desired path, revealing a maximum error of roughly
3.8 cm at both the mobile base and end-effector. These find-
ings confirm the validity and stability of the proposedmotion
planning method. These results demonstrate the feasibility
of utilizing the MCDPR for complex tasks requiring precise
control and maneuverability in dynamic environments.
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Fig. 10 Velocity profiles of
MCDPR during the simulation

Experimential verification

Experimental setup

The proposed approach has been experimentally validated
using a self-built MCDPR. A specific scenario was designed,
wherein the MCDPR passed through the first obstacle illus-

trated in Fig. 5. The MCDPR system in our study utilized
the NVIDIA Jetson Nano Developer Kit as the control com-
puter,which plays a crucial role in orchestrating the operation
of the MCDPR by transmitting the prescribed cable lengths
and mobile base velocities necessary for its functioning.
To enhance the system’s perception capabilities, an RGB-
D camera was strategically mounted on the mobile base.
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Fig. 11 Software simulation framework

This camera facilitated environment sensing, enabling the
MCDPR to capture visual and depth information about its
surroundings. Prior to conducting the experiment, the cables
were pre-tensed to 20N to ensure that cable tension remained
positive during MCDPR movement. Moreover, the MCDPR
incorporates two primary control systems. First, for the end-
effector control, an inverse kinematic approach (equation
2) was employed to regulate its position accurately, which
enables the determination of joint angles or cable lengths
necessary to achieve the desired end-effector position, con-
sidering the kinematic constraints of the system. The control
strategy for the mobile base systems involved the utiliza-
tion of a differential drive control algorithm. This algorithm
facilitates the tracking of a reference path by computing the
required velocities of the left and right wheels of the robot.

Vision system

In this work, a vision system was designed to enable the
MCDPR to accurately perceive its surroundings and deter-
mine its location. By leveraging the acquired self-state and
environmental data, the proposed MTB-RRT algorithm con-
sistently generates feasible paths for theMCDPR to navigate.
To detect the obstacle, the YOLOv5 pre-trained model was
employed, which can detect 80 different object categories
[33]. YOLOv5 is a popular object detection algorithm that
builds upon the success of the YOLO (You Only Look Once)
family of models. It is a state-of-the-art real-time object
detection system that achieves high accuracy and fast infer-
ence speeds. The YOLOv5 pre-trained model will output
bounding boxes that indicate the location and size of each
detected object. Moreover, the visual odometry simultane-
ous localization and mapping(OdoSLAM) was used [34]. In
visual OdoSLAM, visual features such as corners or edges
are detected and tracked over time to estimate the camera or
robot’s motion. By comparing the location of visual features
between consecutive frames, visual OdoSLAM can estimate
the relative pose of the camera with respect to the environ-
ment and thus the location of MCDPR can be realized.

Experimental results

The experimental results presented in Fig. 17 provide com-
pelling evidence of the effectiveness of the MTB-RRT
algorithm in acquiring accurate information about the robot’s
state and detecting the presence of obstacles. In the depicted
scenario, as illustrated in Fig. 17a, the algorithm demon-
strates its capability to identify the green static obstacle.
Subsequently, by employing sampling and tree construction
techniques in the state space, the algorithm successfully gen-
erates an optimal path that enables the robot to avoid the
obstacle, as depicted in Fig. 17b. These experimental find-
ings serve as a testament to the robustness and efficacy of the
proposed algorithm in addressing obstacle avoidance chal-
lenges. The consistent acquisition of pertinent information
and the ability to generate obstacle-free trajectories further
validate the performance and potential of the MA-RRT algo-
rithm.

Evaluation

Within this section, the comparative analysis of our proposed
online motion planning method for MCDPRs against exist-
ing approaches was conducted. To ensure a fair evaluation,
we specifically selected sampling-based online path plan-
ning methods for comparison. Our assessment encompassed
three key aspects: path length, simulation time, and kinematic
performance (Je). To account for the stochastic nature of the
proposed method, a comprehensive batch evaluation consist-
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Fig. 12 Cable length change
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ing of 1000 simulationswas conducted. To ensure the realism
and complexity of the scenarios, the environment was ran-
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Fig. 15 Illstruation of OdoSLAM

domly generated for each simulation, carefully controlling
the location, size, and number of obstacles. The maximum
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number of obstacles was limited to nine, and their sizes were
randomly assigned across three distinct scenarios. However,
the starting and target points remained consistent through-
out. This deliberate manipulation of obstacle characteristics
aimed to create diverse and challenging environments, allow-
ing for the evaluation of the proposed onlinemotion planning
approach’s robustness and adaptability. By incorporating
varying obstacle sizes and configurations, the study aimed
to assess the method’s performance in handling complex
and unpredictable scenarios that resemble real-world con-
ditions. The random generation of the environment provided
a comprehensive assessment of the method’s effectiveness,
offering valuable insights into its capabilities for navigating
through diverse and challenging environments encountered
inMCDPR applications. Finally, the average values resulting

Table 2 The evaluation result

Method CPU time Path length Average Je

CL-RRT [15] 41.7 s 10.68 m 2.8

Reduction-based RRT* [16] 45.2 s 7.21 m 3.2

MRPT [19] 35.7 s 9.41 m 2.6

Adaptive RRT [20] 38.5 s 8.35 m 2.2

Proposed method 30.5 s 7.82 m 4.1

from these simulationswere used to evaluate the performance
of the proposed method. All simulations were performed
using MATLAB, utilizing the CPU computations of an Intel
i7-9750 CPU @ 2.60 GHz with a 32 GB RAM Windows
10 system. To ensure consistency and comparability, the ini-
tialization parameters employed in the previous simulations
were retained for these evaluations.

The results of the batch evaluation are summarized in
Table 2. The proposed method outperforms the other meth-
ods with a significantly reduced CPU time, which can be
primarily attributed to the introduction of the proposed cost
function (Eq. 11). This improvement represents an impres-
sive enhancement of approximately 18.6% when compared
to the fastest competitor, MRPT. Furthermore, the proposed
method exhibits a shorter path length with a reduction of
26.8% compared to CL-RRT. Although Reduction-based
RRT* has the shortest path length, it is important to acknowl-
edge that its optimization process detrimentally affects
real-time performance, thereby limiting its practicality for
online motion planning scenarios. Furthermore, since the
proposed algorithm takes into account the kinematic perfor-
mance of the robot (Eq. 15), the kinematic performance of the
proposed method is the highest compared to other methods,
especially compared to Adaptive RRT, with an improvement
of 86.3%. Unlike another recent method that may rely on
extensive training processes or data-driven models in [25],
the proposed algorithm can be directly implemented with-
out requiring such preparatory steps. These results serve as
compelling evidence, validating the effectiveness and superi-
ority of the proposed approach in the realm of online motion
planning for MCDPRs.

Conclusion and future work

This paper presents an online motion planning method
tailored for MCDPR systems, enabling them to generate
feasible trajectories in unknown environments. The method
involves the continuous generation of a time-based tree
through a sampling of the state space as the MCDPR moves.
The heuristic approach was employed in each iteration
to determine the final path. By considering various con-
straints and employing designed cost functions, the proposed
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method ensures constraint satisfaction while maximizing
system performance. Simulation in a complex environment
using CoppeliaSim demonstrates that the technique creates
practical trajectories for mobile bases and the end-effector
within a shorter duration, resulting in enhanced kinematic
performance and path quality. Empirical testing on a self-
built MCDPR prototype, incorporating a vision system with
YOLOv5 for environment perception and OdoSLAM for
self-localization, validates the approach’s validity. The sim-
ulation and experimental results substantiate the reliability
of the proposed method.

Despite the promising performance of the proposed
approach in real-world operations such as picking and
releasing, there are several challenges that require fur-
ther attention. Limited computational resources can impact
execution time and overall performance. Environmental dis-
turbances, including uneven terrain, dynamic obstacles, and
varying lighting conditions, complicate trajectory planning.
The parameter settings of the proposed method were based
on experience and algorithm generality, necessitating fur-
ther experiments and simulations to optimize performance.
The assumption of prior knowledge of obstacle locations in
simulations reduces viable trajectories in real-world scenar-
ios. Imposed speed limits on mobile base and end-effector
motionswere necessary for localization accuracy, but explor-
ing safe higher-speed operation remains a future research
direction. Future work aims to enhance the intelligence and
adaptability ofMCDPR systems in navigating complex envi-
ronments, contributing to their versatility and applicability in
real-world operations.
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