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Abstract
Workflow scheduling is vital to simultaneously minimize execution cost and makespan for cloud platforms since data depen-
dencies among large-scale workflow tasks and cloud workflow scheduling problem involve large-scale interactive decision
variables. So far, the cooperative coevolution approach poses competitive superiority in resolving large-scale problems by
transforming the original problems into a series of small-scale subproblems. However, the static transformation mechanisms
cannot separate interactive decision variables, whereas the random transformation mechanisms encounter low efficiency. To
tackle these issues, this paper suggests a decision-variable-contribution-based adaptive evolutionary cloud workflow schedul-
ing approach (VCAES for short). To be specific, the VCAES includes a new estimation method to quantify the contribution
of each decision variable to the population advancement in terms of both convergence and diversity, and dynamically classi-
fies the decision variables according to their contributions during the previous iterations. Moreover, the VCAES includes a
mechanism to adaptively allocate evolution opportunities to each constructed group of decision variables. Thus, the decision
variables with a strong impact on population advancement are assigned more evolution opportunities to accelerate popula-
tion to approximate the Pareto-optimal fronts. To verify the effectiveness of the proposed VCAES, we carry out extensive
numerical experiments on real-world workflows and cloud platforms to compare it with four representative algorithms. The
numerical results demonstrate the superiority of the VCAES in resolving cloud workflow scheduling problems.
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Introduction

Workflows have been commonly used to describe data pro-
cessing applications from diversified fields, such as the
Internet of Things and bio-informatics [1–3]. These work-
flows often comprise of large-scale data-dependent tasks,
which are computation and data intensive. Then, execut-
ing various workflow applications calls for powerful high-
performance infrastructures. With substantial advantages,
such as economies of scale, on demand supply of resources,
high elasticity, and reliability, cloud computing is attracting
more and more enterprises or individuals to deploy their big
data processing workflows [4, 5].

Workflow scheduling in cloud computing is a key tech-
nology for achieving the reduction of both execution cost
and makespan to gain more profits for cloud providers and
ensure the quality of service for cloud consumers [6]. Work-
flow scheduling problem involves determining the mappings
from tasks to resources and the task order on each resource,
and is a classic NP-complete [7, 8]. Also, the execution cost
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and makespan of workflow scheduling are two conflicting
optimization objectives [9]. So far, multi-objective evolu-
tionary algorithms have become popular to search a set of
compromise solutions within an acceptable time [10–12]. To
solve the workflow scheduling problem in cloud computing,
some studies design new evolution and selection operators
to improve the classical multi-objective evolutionary algo-
rithms.

Over the past decade or so, designing efficient evolu-
tion operators to reproduce new solutions for multi-objective
workflow scheduling problem has attracted considerable
research interest [13]. First of all, the popular list-based
workflow schedulingmethodswere embedded into themulti-
objective evolutionary optimization framework as evolution
operators [14–16]. Secondly, bio-inspired evolution opera-
tors, such as artificial neural network [17–19], ant colony
optimization [20], firefly algorithm [21], particle swarm opti-
mization [22–24], and grey wolf optimization [25], were
modified as evolution operators to solve the multi-objective
workflow scheduling problem. Thirdly, integrating heuristic
rules and bio-inspired optimization techniques to reproduce
offspring populations has become a popular technological
path. For instance, Choudhary et al. [26] combined the
gravitational search method and the list-based workflow
scheduling method to solve bi-objective workflow schedul-
ing problem in cloud computing. Hosseini et al. [27] merged
the simulated annealing and a task duplication strategy to
optimize the makespan and execution cost of workflows.
Mohammadzadeh et al. [28] integrated the antlion and
grasshopper optimization algorithms to balance throughput,
makespan, cost, and energy consumption of executing work-
flows in cloud platforms. Zhang et al. [29] enhanced the
list-based workflow scheduling method with a local search
mechanism to balance the makespan and energy consump-
tion of workflow execution.

At the same time, some studies went into designing selec-
tion operators to balance multiple conflicting objectives of
workflow execution in cloud computing. For example, Zhou
et al. [30] merged a fuzzy-dominance-based environmental
selection and a list-based workflow scheduling method to
minimize execution cost andmakespan ofworkflows in cloud
computing. Kumar et al. [31] integrated the entropy weight
mechanism into a multi-criteria decision-making framework
to balance makespan, execution cost, reliability, and energy
consumption. Ye et al. [32] improved a knee point driven evo-
lutionary method to balance makespan, reliability, execution
cost, and the mean durations of all workflow tasks. Pham
et al. [33] focused on the volatility of spot cloud resources
and improved the multi-objective evolutionary algorithm to
make a trade-off between makespan and execution cost for
workflows in cloud computing.

In the evolutionary optimization community, a multi-
objective optimizationproblem is generally considered large-

scale if it has at least one hundred decision variables [34]. The
multi-objective cloud workflow scheduling involves hun-
dreds or even thousands of decision variables, and is a typical
large-scale multi-objective optimization problem. However,
the existing relevant studies evolve all decision variables as
a whole and allocate evolution opportunities to each variable
equally. This results in the low efficiency of these existing
studies.

The recent research results in the evolutionary compu-
tation community demonstrate that cooperative coevolution
[34, 35] has become a crucial and effective way to solve
large-scale multi-objective optimization problems. In coop-
erative coevolution approaches, all the decision variables
are classified into multiple groups, and decision variables
in different groups are evolved in a round-robin manner [36,
37]. These static classification techniques work well when
problems’ decision variables are fully or partially separable.
However, this is not the case for multi-objective cloud work-
flow scheduling with nonseparable decision variables caused
by data dependencies among tasks.

Besides,multi-objective cloudworkflow scheduling poses
an imbalance feature among decision variables regarding
their contributions to optimization objectives. For instance,
delaying the completion of a workflow task on the critical
paths [38] often successively delays the completion of many
tasks, including its successor tasks and other tasks being
executed after the delayed tasks and their successor tasks.
Whereas slightly delaying other tasks on the non-critical
paths may not cause this chain reaction. The imbalance
feature means that we should equip different decision vari-
ables with different evolution opportunities. This motivates
us to design a decision variable contribution based adaptive
mechanism to dynamically adjust the variable grouping and
allocate evolution opportunities during the evolution process.
Our main contributions in this paper are as follows.

• We define the contribution of a decision variable as the
fitness improvement of the solution generated by perturb-
ing this decision variable. Then, we try to dynamically
measure the contribution of each decision variable and
classify them according to their contributions.

• We design an adaptive mechanism to dynamically allo-
cate more evolution opportunities for the variable groups
with more contributions to generate offspring solutions
efficiently.

• In the context of fifteen real-world workflows and the
Amazon Elastic Compute Cloud, we compare the pro-
posal with four state-of-the-art multi-objective cloud
workflow scheduling algorithms. The results demon-
strate the competitive performance of the proposal in
simultaneously optimizing execution cost andmakespan.
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Fig. 1 An example workflow of seven tasks

This paper is organized as follows. In the second section
formulates the multi-objective workflow scheduling prob-
lem. In the third section designs the proposed VCAES,
followed by experimental verifications in the fourth section.
In the final section concludes this paper.

Problem formulation

This section first describes the models of workflows and
cloud resources, and then formulates the model for multi-
objective workflow scheduling in cloud computing.

Workflowmodel

Without loss of generality, a workflow application is
described by a Directed Acyclic Graph (DAG), whose
vertices and directed edges represent workflow tasks and
data dependencies, respectively. Formally, we construct the
directed acyclic graph for a workflow application as Ψ =
{T , D}, where T = {t1, t2, . . . , tn} denotes the vertex set
corresponding to task set, D ⊆ T × T denotes the edge set
corresponding to data dependencies among tasks. The exis-
tence of an edge di, j ∈ D means that t j ’s start demands ti ’s
output results. Generally, task ti is referred to as an direct
predecessor of task t j , and t j is referred to as an direct suc-
cessor of ti . Regarding a task ti , all its direct predecessors
is expressed as a set P(ti ), and all its direct successors is
expressed as a set S(ti ).

Figure 1 gives a visual example of a directed acyclic graph
for a workflowwith seven tasks, i.e., T = {t1, t2, . . . , t7}. An
edge d1,2 denotes the data dependency from t1 to t2, meaning
that t2’s start have to wait for t1’s output results. In Fig. 1,
regarding task t6, the set of its direct predecessors is P(t6) =
{t3, t4}, and the set of its direct successors is S(t6) = {t7}.

Cloud resource model

This paper targets the popular cloud paradigm, i.e., Infras-
tructure as a Service (IaaS). In this paradigm, cloud providers
offer multiple types of cloud resources on demand [39, 40].

The differences between different types of cloud resources
mainly lie in their charging prices and performance con-
figurations, such as number of CPU cores, memory size,
and network bandwidth. Assuming that cloud platforms
offer m types of resources, then we model them as Γ =
{1, 2, . . . ,m}, where τ ∈ Γ denotes the τ -th resource type.
Regarding a type τ , we employ pr(τ ) and con(τ ) to represent
its price and configurations. Then, a cloud resource of type τ

is modeled as r τ
k = {k, pr(τ ), con(τ )}, where k denotes the

index of resource r τ
k .

Refer to well-known cloud providers (e.g., Amazon EC21

and Alibaba Cloud ECS2), this study follows the resource
charging basis of pay-as-you-use. Under this rule, any con-
sumer can rent any number of resources on demand and is
charged according to the real usage time. In general, cloud
resources are charged based on the number of billing peri-
ods, and the partial period will be rounded up to one more. In
case that the period length is 60.0min, the number of billing
periods for 60.01min is two.

Multi-objective scheduling cloud workflows

Since cloud resources are available on demand, we build a
resource pool based on the maximum resource requirements
for running a workflow. Assuming the maximum parallelism
of the workflow is p, the resource pool includes p resources
of each type. Then, we describe the resource pool as: R ={
r11 , r

1
2 , . . . , r

1
p, r

2
p+1, r

2
p+1, . . . , r

2
2·p, . . . , rmm·p

}
.

The decision vector x = {x1, x2, . . . , xn} is used to repre-
sent the mappings from workflow tasks to cloud resources,
where the value of decision variable xi is decoded as the
index of the cloud resource mapped to the i-th task. It is
worth noting that the value range of each decision variable
is an integer from 1 to m · p.

Given a decision vector, assume that the task ti is mapped
to resource r τ

k . The start time sti,k of task ti refers to the max-
imum time of receiving all the input data and the available
time of the mapping resource.

On resource r τ
k , we assume the set of tasks being executed

before task ti as follows:

Bi = {
tp|I (tp) < I (ti )

}
, (1)

where I (tp) indicates tp’s order number on resource r τ
k .

Then, the start time sti,k of task ti on cloud resource r τ
k

can be described as follows:

sti,k = max

{
max
tb∈Bi

ftb,k, max
tp∈P(ti )

{
ftp,∗ + dtp,i

}}
, (2)

1 https://aws.amazon.com/ec2/?nc2=h_ql_prod_fs_ec2.
2 https://www.aliyun.com/.
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where ftb,k indicates tb’s finish time on resource r τ
k , ftp,∗

indicates the finish time of task tp, and dtp,i indicates the
data transfer time from tp to ti .

Before scheduling, task ti ’s execution time eti,k on cloud
resource r τ

k can be predicted by the computation length of
task ti and the CPU frequency of the mapped resource r τ

k .
The relationship among sti,k , eti,k , and fti,k is described as
follows:

fti,k = sti,k + eti,k . (3)

Given a decision vector, the set of all tasks mapped to
cloud resource r τ

k can be formulated as:

Tk = {ti |xi = k, i ∈ {1, 2, . . . , n}}. (4)

With the task set Tk , the start time utk and end time ntk of
renting resource r τ

k can be computed as follows:

utk = min
ti∈Tk

{
sti,k − max

tp∈P(ti )
dtp,i

}
,

ntk = max
ti∈Tk

{
fti,k + max

ts∈S(ti )
dti,s

}
.

(5)

Based on the above analysis, the first optimization objec-
tive, i.e., minimizing the execution cost, can be formulated
as follows:

Min f1(x) =
∑
rτ
k ∈R

pr(τ ) ×
⌈
ntk − utk

C

⌉
, (6)

where C indicates the length of a billing period for cloud
resources.

The second optimization objective of this paper is to min-
imize the workflow’s makespan, which corresponds to the
maximum finish time of all the tasks in this workflow. The
second optimization objective can be formulated as follows:

Min f2(x) = max
ti∈T

fti,∗. (7)

Thus, the model for multi-objective workflow scheduling
problem in cloud computing can be summarised as follows:

⎧⎨
⎩
Min f (x) = [ f1(x), f2(x)] ,
S.t.

x ∈ {1, 2, . . . ,m · p}n .
(8)

Pareto-dominance has been widely employed to compare
solutions in the multi-objective optimization field.

Pareto-dominance: Assuming x1 and x2 are two feasible
solutions. x1 is regarded to dominate x2 (denoted as x1 ≺ x2)
if and only if the two objectives of x1 are not inferior to that of

x2 (i.e., f j (x1) ≤ f j (x2),∀ j ∈ {1, 2}) andx1 is better thanx2
on at least one objective (i.e., f j (x1) < f j (x2), ∃ j ∈ {1, 2}).
Pareto-optimal solution: Solution x∗ ∈ {1, 2, . . . ,m · p}n is
regarded as Pareto-optimal if there exist no feasible solution
dominating it.

Pareto Set/Front: All the Pareto-optimal solutions are
defined as Pareto-Set (PS) in the decision space and Pareto-
Front (PF) in the objective space.

Algorithm design

Given a workflow scheduling solution, the importance of
each workflow task varies greatly. For instance, adjusting the
mapping from a critical task to a resource often successively
affects the execution of many tasks, including its successors
and other tasks being executed after these tasks and their suc-
cessors. Whereas adjusting the mapping from a non-critical
task to a resource may have no impact on the execution
cost and makespan of the workflow. Also, the importance of
each workflow task varies from solution to solution. Then,
decision variables corresponding to different workflow tasks
pose an imbalance feature to optimization objectives. To deal
with the large-scale decision variables in cloud workflow
scheduling, the VCAES incorporates a novel cooperative
coevolution (CC) mechanism to dynamically measure the
contributions of decision variables and adaptively allocate
evolution opportunities for each group of decision variables
based on their contributions. The proposed VCAES follows
the framework of traditional multi-objective evolutionary
optimization, including initialization, reproduction operator,
and selection operator, as shown in Algorithm 1.

Algorithm 1 The overall framework of VCAES
Input: The problem in (8); population size N ; memory length l;

group
size of decision variables s

Output: A final population P
1: P ← Randomly generate a population
2: M ← Ol×n
3: V ← Generate a set of reference vectors
4: g ← Initialize the number of generations for CC
5: while does not reach termination condition do
6: [P, K ] ← AdaptiveCoEvolution(P, M, V , g)
7: for j = 1 → l − 1 do
8: for i = 1 → n do
9: M( j, i) ← M( j + 1, i)
10: end for
11: end for
12: for i = 1 → n do
13: M(l, i) ← K (i)
14: end for
15: Q ← Generate a new population
16: P ← EnvironmentalSelection(P

⋃
Q, N )

17: end while
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As illustrated in Algorithm 1, the inputs of the proposed
VCAES are the multi-objective cloud workflow scheduling
problem, the population size, memory length for recording
the variable contributions, the number of decision variables
in one group. Once the VCAES reaches the termination con-
dition, it will output an up-to-date population.

In the initialization stage, one population is generated ran-
domly (Line 1). Next, an l × n matrix M is initialized to
collect the contribution of each variable over the past l itera-
tions (Line 2). The element in row j and column i represents
the contribution of the i-th variable in the previous j-th iter-
ation. Also, a set of uniformly distributed reference vectors
are initialized to assist in calculating variable contributions
(Line 3). In addition, the number of iterations for cooperative
co-evolution during each generation is initialized (Line 4).
These iterations will be allocated to each group of variables
in proportion to the overall contribution of variables in the
corresponding group.

After the initialization stage, the VCAES enters the main
loop. During each generation, the proposed adaptive coop-
erative coevolution mechanism is triggered to distribute
the decision variables into many groups and allocate evo-
lution opportunities to each group according to variable
contributions (Line 6). Next, the memory matrix of variable
contributions is updated (Lines 7–14). It is worth noting that
the decision variables in the cloud workflow scheduling are
related to each other. The VCAES generates a new popula-
tion by evolving all variables in each generation (Line 15).
After that, the non-dominated sorting and elitist-preserving
method in NSGA-II [41] is employed to select an offspring
population P from the combined population P

⋃
Q (Line

16).
Before introducing the proposed adaptive cooperative co-

evolution mechanism, we define and illustrate the variable
contributions.

Suppose Q is a population that generated by evolving the
decision variables in group G(i) and fixing other decision
variables, the contribution of each variable in G(i) is defined
as:

K ( j) =
∑
q∈Q

FI(q),∀ j ∈ G(i), (9)

where FI(q) denotes the fitness improvement of solution q.
For a set of reference vector V , the one associated with

solution q is defined as v∗ = argv∈V min〈 f (q), v〉, where
〈 f (q), v〉 represents the acute angle between two vectors.
Suppose p is the associated solution of the reference vec-
tor v∗, then the fitness improvement of solution q can be
calculated as follows:

FI(q) = max{0,Fit( p, v∗) − Fit(q, v∗)}, (10)

1f

2f

( ) (1.3,1.0)=f p

o

( ) (0.7,0.8)=f q

=(0.5, 0.5)v

Fig. 2 An example workflow of seven tasks

where Fit(q, v) denotes the fitness value of solution q with
respect to the reference vector v, which can be calculated as

Fit(q, v) = ‖ f ′‖ · (cos < f ′, v > + sin < f ′, v >), (11)

where f ′ = f (q)− z denotes the translated objective vector,
and z denotes the ideal point.

An intuitive example on calculating contribution is given
in Fig. 2. Suppose previous solution p and the new solution
q are associated to the reference vector v = (0.5, 0.5), and
their objective vectors are f ( p) = (1.3, 1.0) and f (q) =
(0.7, 0.8), respectively. The ideal point is supposed to be
z = (0, 0). Based on the definition in (11), we can obtain
the fitness of these two solutions as Fit( p, v) = 1.8385 and
Fit(q, v) = 1.1314. Then, the fitness improvement of solu-
tion q is FI(q) = max{0, 1.8385− 1.1314} = 0.7071. If the
solution q is generated by evolving variables {1, 3, 5}, then
the contribution of these variables are defined as K (1) =
K (3) = K (5) = 0.7071.

Algorithm 2 gives the pseudo-code of the proposed adap-
tive cooperative coevolution mechanism, which dynamically
distributes the variables with higher contributions into the
same groups and assigns more evolution opportunities to
accelerate the population convergence.

As illustrated in Algorithm 2, the inputs of the function
AdaptiveCoEvolution() are the current population, the con-
tribution of each variable during the previous l generations,
the set of reference vectors, the population size, and the num-
ber of generations for cooperative coevolution search. Then,
the outputs of this function are the updated population and
the contribution of each variable.

At first, function AdaptiveCoEvolution() calculates the
total contribution of each variable during the previous gen-
erations (Lines 1–4), where the notation H(i) represents the
total contribution of the i-th variable during the previous l
generations. Then, it sorts the variables in a non-ascending
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Algorithm 2 Function AdaptiveCoEvolution()
Input:Current population P; contribution matrixM; reference vec-

tors V ; population size N ; number of generations g
Output: A new population P; Contribution for each variable K

1: H ← O1×n
2: for i = 1 → n do
3: H(i) ← ∑l

j=1 M( j, i) + �

4: end for
5: Sort variables by their contributions H in a non-ascending order
6: G ← Divide decision variables into � n

s � groups
7: K ← O1×n
8: for j = 1 →| G | do
9: g′ ← g ·

∑
i∈G( j) H(i)∑n
i=1 H(i)

10: for k = 1 → g′ do
11: Q ←Generate an offspring population by evolving variables

in G( j)
12: P ← EnvironmentalSelection(P

⋃
Q, N )

13: end for
14: c ← Calculate the contributions of variables in G( j) as (9)
15: for i = 1 → n do
16: K (i) ← c

g′
17: end for
18: end for

order according to their total contributions (Line 5) and dis-
tributes the variables into a series of groups (Line 6). In this
way, the variables with similar contributions are distributed
into the same group, which is helpful to distribute variables
with larger contributions into the same groups to gain more
evolution opportunities.

After that, function AdaptiveCoEvolution() successively
evolves each group of variables, and measure their contribu-
tions. For a group of variables, the number of evolutionary
iterations is calculated based on the sum of their contribu-
tions (Line 9). During each iteration, this function performs
the reproduction operator on the corresponding variables to
generate a new population (Line 11), and performs the selec-
tion operator to select the offspring population (Line 12).
After evolving a group of variables, this function measures
their contributions (Line 14).Also, it updates the contribution
of the corresponding variables (Lines 15–17), where notation
K (i) represents the contribution of the i-th variable.

Regarding Function AdaptiveCoEvolution(), it costs
O(n ·l) to calculate the contribution of each decision variable
(Lines 1–4, Algorithm 2). The time complexity of sorting
decision variables is O(n log n) (Line 5, Algorithm 2). This
function takes O(N · n) to reproduce an offspring popula-
tion (Line 11, Algorithm 2). According to the analysis [41],
the time complexity of the environmental selection is O(N 2)

(Line 12, Algorithm 2). Then, it takes O(n · (N ·n+ N 2)) =
O(n · N · (n + N )) = O(n2 · N ) to adaptively each
group of decision variables (Lines 8–18, Algorithm 2). Then,
the time complexity of Function AdaptiveCoEvolution() is
O

(
n · l + n log n + n2 · N) = O(n2 · N ), since l is often

less than n.

Regarding the algorithm VCAES, the time complexity of
updating the memory matrix is O(n · l) (Lines 7–11, Algo-
rithm 1). The time complexities of reproducing an offspring
population and selecting elitist solutions are O(N · n) and
O(N 2) (Lines 15-16, Algorithm 1), respectively. Thus, the
time complexity of the VCAES during one generation is
O

(
n2 · N + n · l + N · n + N 2

) = O(n2 · N ).

Numerical experiments

To investigate the performance of the proposed VCAES, we
compare it with four representative multi-objective cloud
workflow scheduling algorithms: MOELS [42], EMS-C [9],
WOF[43],LSMOF[44].TheMOELSandEMS-C follow the
framework of NSGA-II [41] and incorporate new reproduc-
tion operators to generate offspring populations by evolving
all the variables. The WOF and LSMOF are representative
large-scale multi-objective evolutionary algorithms based on
problem transformation.

Experimental setting

The eight types of workflows from different application
domains, i.e., Inspiral (Gravitational physics), CyberShake
(Earthquake), EpiGenomics (Biology), Montage (Astron-
omy), Sipht (Bioinformatics), BLAST (bioinformatics),
Cycles (agroecosystems), and Seismology (seismology),
have beenwidely used in evaluating cloudworkflow schedul-
ing algorithms. We select multiple task sizes from each
workflow in the experiments. Besides, the DAG diagrams
of some workflow instances with around 30 tasks are illus-
trated in Fig. 3. It is clear that these workflow instances cover
various complicated structures, including in-tree, out-tree,
fork-join, pipeline, and mixture. For more details on these
workflows, please refer to the Pegasus repository.3

Five types of resources instances, i.e., t3.nano, t3.micro,
t3.small, t3.medium, t3.medium, and t3.large, from Ama-
zon EC24 are employed to simulate the cloud environments.
We summarize the parameters of the five resource types in
Table 1. Besides, we set the length of a billing period to 60s
and the bandwidth among resource instances to 5.0 Gbps.

Hypervolume [45] metric is designed to measure the
quality of a population concerning both convergence and
diversity, and has been frequently used to evaluate the perfor-
mance of multi-objective evolutionary algorithms. Assume
r = {r1, r2} is a reference point. The hypervolume value of
a population P , corresponding to the volume between the
reference point and the objective vectors of the solutions in

3 https://confluence.pegasus.isi.edu/display/pegasus.
4 https://aws.amazon.com/cn/ec2/pricing/on-demand/.
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Fig. 3 DAG diagrams of
workflows with about 30 tasks

(a) Montage (b) Cybershake (c) LIGO

(d) Epigenomics (e) SIPHIT

Table 1 Parameters for five types of cloud resource

Type Price ($/h) vCPU Memory (GB)

t3.nano 0.0062 2 0.5

t3.micro 0.0125 2 1.0

t3.small 0.025 2 2.0

t3.medium 0.0499 2 4.0

t3.large 0.0998 2 8.0

P , can be calculated as follows.

HV (P) = L
(⋃

p∈P [ f1(p), r1] × [ f2(p), r2]
)

, (12)

where L(�) represents the Lebesgue measure.
Referring to the settings inMOELSandEMS-C,we set the

population size of the five algorithms as 100. The maximum
number of fitness evaluations is set as the stop condition for
all the five algorithms and is set as 500,000.

The five algorithms are independently repeated 31 times
on each workflow instance to mitigate random effects. We
run all the experiments on a PC with two Cores i7-6500U
CPU @ 2.50 GHz 2.59 GHz, 8.00 GB RAM, Windows 10.

Comparison result

Tables 2 and 3 report the average and standard deviation
(in brackets) of the hypervolume values for the algorithms
MOELS, EMS-C,WOF, LSMOF, andVCAES in scheduling
the 27workflow instances to cloud resources. For each work-
flow instance, the largest hypervolume value among the five
algorithms is highlighted in bold. Besides, the Wilcoxon’s
rank-sum test with α = 0.05 is used to examine the sig-
nificant differences between the comparison algorithm and
the proposed VCAES in terms of hypervolume metric. The
marks−,+, and≈ represent that the comparison algorithm is
significantly worse than, better than, and similar to VCAES.

The comparison results in Tables 2 and 3 show that
the proposed VCAES performs significantly better than the
four baseline algorithms. Specifically, the proposal gener-
ates larger hypervolume values thanMOELS, EMS-C,WOF,
and LSMOF on 20, 22, 26, and 25 out of the 27 workflow
instances respectively.

An interesting phenomenon is that the more decision vari-
ables, the more pronounced the advantages of the proposed
VCAES. For example, in workflow instances with about 30
tasks, the VCAES obtains larger hypervolume values than
algorithm LSMOF on 3 out of 5. Whereas, in workflow
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Table 2 Comparison results for the five algorithms on 15 workflows in terms of the hypervolume metric

Workflows n MOELS EMS-C WOF LSMOF VCAES

CyberShake 50 8.8926e−1 − 8.8903e−1 − 8.6131e−1 − 9.0899e−1 + 8.9113e−1

(3.49e−3) (2.83e−3) (8.28e−3) (2.98e−3) (2.21e−3)

100 9.3101e−1 − 9.3105e−1 − 9.1743e−1 − 9.2054e−1 − 9.3232e−1

(4.43e−3) (2.67e−3) (6.42e−3) (2.00e−4) (2.83e−3)

1000 9.2383e−1 − 9.2341e−1 − 9.1956e−1 − 9.1274e−1 − 9.2764e−1

(3.19e−3) (2.05e−3) (7.85e−3) (6.11e−4) (5.59e−3)

Epigenomics 46 7.3227e−1 − 7.3273e−1 − 6.1543e−1 − 7.3249e−1 − 7.3318e−1

(1.22e−3) (8.57e−4) (2.24e−3) (2.95e−3) (6.68e−4)

100 7.4749e−1 ≈ 7.4785e−1 ≈ 5.1569e−1 − 7.4067e−1 − 7.4792e−1

(3.61e−3) (2.66e−3) (9.38e−3) (4.30e−3) (4.07e−3)

997 6.4607e−1 ≈ 6.4565e−1 − 6.3796e−1 − 4.1166e−1 − 6.4618e−1

(5.75e−3) (5.45e−3) (1.94e−3) (2.43e−2) (4.61e−3)

Inspiral 50 7.3357e−1 − 7.3415e−1 − 5.7999e−1 − 7.2639e−1 − 7.3735e−1

(2.76e−3) (2.91e−3) (1.23e−3) (3.23e−3) (1.64e−3)

100 7.1702e−1 − 7.1315e−1 − 6.1620e−1 − 6.8122e−1 − 7.2373e−1

(4.29e−3) (4.57e−3) (1.02e−2) (6.72e−3) (6.20e−3)

1000 6.0665e−1 ≈ 6.0641e−1 ≈ 6.0958e−1 ≈ 3.1438e−1 − 6.0681e−1

(2.21e−3) (4.00e−3) (5.40e−3) (1.87e−2) (3.90e−3)

Montage 50 7.5877e−1 ≈ 7.5419e−1 ≈ 6.7955e−1 − 7.7480e−1 + 7.6251e−1

(5.51e−3) (1.03e−2) (2.96e−2) (7.20e−3) (1.02e−2)

100 7.0910e−1 − 7.0575e−1 − 6.8191e−1 − 6.9895e−1 − 7.1334e−1

(7.42e−3) (9.27e−3) (1.73e−2) (9.76e−3) (7.98e−3)

1000 4.4897e−1 − 4.8142e−1 − 5.6040e−1 − 5.2911e−1 − 5.7057e-1

(2.24e−1) (2.13e−1) (5.82e−3) (4.40e−2) (1.77e−1)

Sipht 50 6.1120e−1 − 6.1129e−1 − 5.2895e−1 − 6.1273e−1 − 6.1469e−1

(4.47e−4) (2.68e−4) (2.47e−3) (1.09e−4) (3.34e−4)

100 6.6995e−1 − 6.6972e−1 − 5.4832e−1 − 5.7389e−1 − 6.7067e−1

(6.25e−4) (6.01e−4) (3.03e−3) (5.76e−4) (9.73e−4)

1000 5.6588e−1 − 5.6763e−1 − 5.1232e−1 − 4.0689e−1 − 5.7396e−1

(3.19e−3) (5.44e−3) (6.95e−2) (3.10e−2) (4.47e−3)

instances with 100 and 1000 tasks, the algorithm proposed
in this paper significantly outperforms all the four compari-
son algorithms. Similar to the baseline algorithms MOELS
and EMS-C, the proposed VCAES also follows the frame-
work of NSGA-II. Different from MOELS and EMS-C, the
VCAES integrates a new adaptive strategy based on vari-
able contribution. Although two large-scale multi-objective
evolutionary algorithms based on problem transformation,
i.e., WOF and LSMOF, exhibit competitive performance in
solving continuous problems, their performance in multi-
objective schedulingworkflows is far inferior to the proposed
VCAES. The above comparison results demonstrate that
the proposed adaptive mechanism in this paper can effec-
tively improve the performance of evolutionary algorithms
in solving multi-objective cloud workflow scheduling prob-
lems with large-scale variables.

To intuitively compare the convergence and diversity of
the five multi-objective workflow scheduling algorithms,
Fig. 4 illustrates the distribution of their output populations
on workflow instances Inspiral, Montage, Sipht, and Cycles
with large-scale tasks.

As illustrated in Fig. 4a, in the context of Inspiral with 100
tasks, the distribution ofVCAES’s output population is better
than that of three baseline algorithms, i.e., MOELS, EMS-C,
andWOF. More specifically, the output solutions of VCAES
dominate that of the three algorithms. Although the diversity
of solutions obtained by algorithmLSMOF is superior to that
of the VCAES when the cost is less than 10, it is far inferior
to algorithm VCAES during other range. To sum up, the
proposed VCAES is superior to each baseline algorithm in
terms of convergence and diversity. In the context ofMontage
with 100 tasks, the proposed VCAES has similar advantages
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Table 3 Comparison results for
the five algorithms on 15
workflows in terms of the
hypervolume metric

Workflows n MOELS EMS-C WOF LSMOF VCAES

BLAST 103 6.6608e−1 − 6.6692e−1 − 6.2747e−1 − 5.9458e−1 − 6.6844e−1

(3.21e−3) (1.21e−3) (6.54e−3) (1.13e−2) (1.74e−3)

303 7.2511e−1 ≈ 7.2531e−1 + 7.2039e-1 − 4.3433e−1 − 7.2375e−1

(1.55e−3) (1.59e−3) (1.93e−3) (1.04e−2) (1.89e−3)

Cycles 134 6.2794e−1 6.2718e−1 − 5.6875e−1 − 6.0116e−1 − 6.3257e−1

(7.06e−3) (6.64e−3) (7.54e−3) (7.40e−3) (5.95e−3)

219 5.5909e−1 − 5.5495e−1 − 5.2102e−1 − 4.9570e−1 − 5.6454e−1

(4.12e−3) (4.31e−3) (9.82e−3) (6.49e−3) (6.29e−3)

438 5.7681e−1 ≈ 5.7292e−1 − 5.7542e−1 − 4.8407e−1 − 5.7840e−1

(5.04e−3) (3.60e−3) (3.62e−3) (1.04e−2) (4.99e−3)

657 4.8531e−1 − 4.7824e−1 − 4.8592e−1 − 3.6563e−1 − 4.9047e−1

(7.96e−3) (4.97e−3) (5.93e−3) (1.81e−2) (5.93e−3)

874 4.9787e−1 − 4.9839e−1 − 4.9265e−1 − 3.1602e−1 − 5.0310e−1

(3.82e−3) (4.17e−3) (3.94e−3) (1.32e−2) (3.16e−3)

Seismology 101 8.0189e−1 − 8.0238e−1 − 7.5080e−1 − 7.9124e−1 − 8.0762e−1

(4.66e−3) (5.39e−3) (1.02e−2) (7.67e−3) (4.71e−3)

301 6.3724e−1 − 6.2538e−1 − 5.5509e−1 − 6.5746e−1 − 6.8670e−1

(6.67e−3) (6.39e−3) (2.22e−2) (4.20e−3) (3.75e−3)

501 6.0699e−1 − 6.0807e−1 − 5.2099e−1 − 5.9846e−1 − 6.1478e−1

(5.44e−3) (6.20e−3) (3.07e−2) (6.66e−3) (5.95e−3)

701 6.4371e−1 ≈ 6.4375e−1 ≈ 3.6973e−1 − 6.2789e−1 − 6.4346e−1

(5.11e−3) (5.34e−3) (6.34e−2) (1.44e−2) (4.57e−3)

901 6.0329e−1 − 6.0284e−1 − 3.0147e−1 − 5.2011e−1 − 6.3154e−1

(5.25e−3) (6.72e−3) (8.49e−2) (1.25e−2) (5.78e−3)

over the comparison algorithms in terms of convergence and
diversity, as shown in Fig. 4b.

As can be observed from Fig. 4c, in the context of Sipht
with 100 tasks, the solutions obtained by algorithm VCAES
dominatemost solutions obtained by comparison algorithms.
Thismeans that theVCAES outperforms all the four baseline
algorithms in both convergence and diversity. In the context
of Cycles with 657 tasks, the proposed VCAES has slight
advantages over the comparison algorithms in terms of con-
vergence and diversity, as shown in Fig. 4d.

Performance influence of different mechanisms

The VCAES mainly contains two new mechanisms to
dynamically classify the decision variables and adaptively
allocate evolution opportunities to each constructed group of
decision variables. To measure the respective contributions
of the two mechanisms to the overall performance, we con-
struct three variants of the VCAES for comparison. The first
variant, denoted as Variant 1, is constructed by replacing
the decision variable classification mechanism with a ran-
dom one and iterating each group of decision variables in a
round-robin manner. The second variant, denoted as Variant
2, is constructed by replacing the decision variable classifica-

tion mechanism with a random one and adaptively allocating
evolution opportunities to each group of decision variables.
The third variant, denoted as Variant 3, is constructed by
removing the evolution opportunity allocation mechanism.

The main difference between the VCAES and its Variant
3 is that Variant 3 does not have the adaptive evolution oppor-
tunity allocation mechanism. Then, the improvement in the
hypervolume value of the VCAES relative to Variant 3 can
be attributed to the performance contribution of the adap-
tive evolution opportunity allocation mechanism. Similarly,
the improvement in the hypervolume value of the VCAES
relative to Variant 3 can be attributed to the performance con-
tribution of the decision variable classification mechanism.
The comparison results in Fig. 5 illustrate that the two pro-
posed mechanisms contribute to the overall performance of
the VCAES, with the decision variable classification mech-
anism contributing more. The performance improvement of
theVCAES forVariant 1 can be attributed to the performance
contribution of mixing the two proposed mechanisms. As
shown in Fig. 5, inmost workflow instances, the performance
contribution ofmixing the twomechanisms is better than that
of any one. An exception is shown in Fig. 5b, where we can
see that the overall performance contribution of mixing the
two mechanisms is not as good as the contribution of the
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Fig. 4 Population distributions
of the five algorithms on solving
different workflow scheduling
problems
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decision variable classification mechanism. This is because
a mechanism cannot be efficient in any scenario. Instead, it
has certain advantages in some scenarios and inevitably has
its disadvantages in other scenarios.

Conclusions

This paper focuses on two challenges in multi-objective
cloud workflow scheduling: (1) large-scale decision vari-
ables; (2) and imbalance feature among variables regarding
their contributions to objectives. To deal with these two
challenges, this paper suggests a variable-contribution-based
adaptive evolutionary cloud workflow scheduling approach

that dynamically classifies the variables and adaptively allo-
cates evolution opportunities to each constructed group of
variables. Finally, in the context of real-world workflows
and cloud platforms, this paper conducts comparison exper-
iments to verify the effectiveness of the proposed adaptive
mechanism in enhancing the population to approximate the
Pareto-fronts of multi-objective cloud workflow scheduling
problems.

Cloud workflow scheduling is a representative grey-box
problem, and it is interesting to mine the knowledge on the
workflows and cloud resources to derive efficient scheduling
algorithms. Another potential direction is to design a parallel
evolutionary framework to shorten the time overhead of evo-
lution optimization to support cloud workflow scheduling in
real-time and uncertain situations.
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Fig. 5 Performance influence of
the two proposed components
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