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Abstract
Unsupervised domain adaptation (UDA) aims to transfer knowledge from a labeled source domain to a related unlabeled target
domain. Most existing works focus on minimizing the domain discrepancy to learn global domain-invariant representation
using CNN-based architecture while ignoring both transferable and discriminative local representation, e.g, pixel-level and
patch-level representation. In this paper, we propose the Transferable Adversarial Masked Self-distillation based on Vision
Transformer architecture to enhance the transferability of UDA, named TAMS. Specifically, TAMS jointly optimizes three
objectives to learn both task-specific class-level global representation and domain-specific local representation. First, we
introduce adversarialmasked self-distillation objective to distill representation froma full image to the representation predicted
from a masked image, which aims to learn task-specific global class-level representation. Second, we introduce masked
image modeling objectives to learn local pixel-level representation. Third, we introduce an adversarial weighted cross-
domain adaptation objective to capture discriminative potentials of patch tokens, which aims to learn both transferable and
discriminative domain-specific patch-level representation. Extensive studies on four benchmarks and the experimental results
show that our proposed method can achieve remarkable improvements compared to previous state-of-the-art UDA methods.

Keywords Unsupervised domain adaptation · Masked self-distillation · Masked image modeling · Adversarial weighted
cross-domain adaptation

Introduction

Deep neural networks (DNNs) have shown remarkable
achievements in a wide range of computer vision problems
[1, 2]. However, the impressive success heavily relies on an
amount of labeled training data and still suffers poor general-
ization performance to other emerging application domains
because of the domain shift problem [3, 4]. To handle these
problems, much unsupervised domain adaptation (UDA)
methods [5, 6] are proposed to transfer knowledge from a
labeled source domain to a different unlabeled target domain,
which can be divided intomain two categories: domain align-
ment methods [7–9] and adversarial learning methods [10,
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11]. However, these methods mainly adopt CNN backbone
(e.g., ResNet [12]) to learn class-level alignment,which is not
robust to the generalized large-scale datasets (e.g., VisDA-
2017 [13]) for satisfactory performance. For example, the
ResNet-101 average results is only 52.4% [14] on VisDA-
2017.

Recently, instead of CNN-based architecture, Vision
Transformer (ViT) [15] is a more powerful backbone and
has been used to improve transferable performance on UDA
tasks. For example, Yang et al. [16] proposed a transferable
vision transformer method to investigate the transferability
of ViT. Sun et al. [17] proposed transformer-based self-
refinement SSRT to refine the domain adaptation model. Xu
et al. [18] explored cross-domain transformer for unsuper-
vised domain adaptation. However, these ViT-basedmethods
do not take full advantage of different complementary super-
vision information to improveUDAperformance, e.g., global
class-level representation, local pixel-level, and patch-level
representation.

With the above discussions, we focus on solving UDA
tasks from three aspects:
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First, from the global class-level representation aspect,
masked image modeling [19], which trains the model to
predict missing information from masked image patches,
has recently revealed very strong representation learning
performance. We follow ViT [15] to divide it into regular
non-overlapping patches. As shown in Fig. 1, given an image,
we randomly mask some proportion of image patches and
replace them with a special mask embedding [MSK], which
aims to learn local pixel-level representation at masked posi-
tions using missing information of contextual patches. In
addition, a [CLS] token is a special symbol added to extract
global information, which is helpful to classifier prediction.
Specifically, we extend the masked self-distillation frame-
work to integrate the vision transformer to UDA, thus [CLS]
embedding is taken to learn discriminative and global task-
specific class prediction for UDA.

Second, from the local pixel-level representation aspect,
most of the existing UDA methods ignore another source of
supervision obtained from the raw target domain images. We
follow SimMIM [19] and simply predict the RGB pixel val-
ues for masked patches, which aims to learn local pixel-level
representation at masked positions using missing informa-
tion of contextual patches.

Third, from the local patch-level representation aspect,
we aim to bridge the two sources of gap (i.e., cross-domain
adaptation alignment) such as the local [MSK] features can
improve the global [CLS] feature for better classification
performance. Sowe introduce an adversarial weighted cross-
domain adaptation objective to capture the discriminative
potentials of patch tokens to learn both transferable and dis-
criminative domain-specific patch-level representation.

Based on these three aspects, in this paper, we propose a
novel UDA solution named TAMS (Transferable Adversar-
ial Masked Self-distillation for UDA). As shown in Fig. 1,
TAMS takes a vision transformer as the backbone network
and utilizes a self-distillation framework for unsupervised
domain adaptation. Different from existing ViT-based meth-
ods [16–18], TAMS jointly optimizes three key designs to
take global and local representation into account, which
effectively exploits the transferability of ViT to improve
UDA performance.

In summary, the major contributions of this work are:

1. We present a novel masked self-distillation framework
for UDA, called TAMS. Specifically, TAMS distills
representation from a full image to the representation
predicted from a masked image, which effectively intro-
duces the masked self-distillation of ViT in transferring
knowledge on the UDA task.

2. TAMS jointly optimizes three objectives to transfer
knowledge for UDA task: (1) adversarial masked self-
distillation objective to learn task-specific global class-
level representation; (2) masked image modeling objec-

tive to learn local pixel-level representation; (3) adversar-
ial weighted cross-domain adaptation objective to learn
domain-specific patch-level representation.

3. Extensive experiments are conducted on widely tested
benchmarks. TAMS achieves competitive performance
compared to state-of-the-art methods including 94.18%
on Office-31, 85.63% on Office-Home and 88.38%
VisDA-2017.

Related work

Unsupervised domain adaptation Traditional machine
learning assumes that training and test data are drawn from
the same distribution. However, in practical application sce-
narios, the target data usually follows a different distribution
from the training source data. Thus, transfer learning [20]
has been used to transfer generalized knowledge across
different domains based on different distributions, i.e., unsu-
pervised domain adaptation (UDA), where no labels are
available for the target domain. Existing UDA methods
can be roughly divided into two categories: domain-level
methods [6, 8, 21–23] and class-level methods [24–27].
Domain-level methods aim to align distribution between
the source and target domain using different measures such
as Maximum Mean Discrepancy (MMD) [7, 8, 28] and
Correlation Alignment (CORAL) [29, 30]. Another line of
effort was introduced on the fine-grained class-level label
distribution alignment by adversarial learning [31], which
focuses on learning domain-invariant representations by a
feature extractor and a domain discriminator [32, 33]. Unlike
coarse-grained domain-level alignment, class-level aligns
each category distribution between the source and target
domain data. Different from the above two methods, our
methods adopt ViT to simultaneously take class-level, patch-
level andpixel-level into account,which exploits fine-grained
alignment onTransformer by adversarial cross-domain adap-
tation objective.

Vision transformer for UDA Many Vision Transformer
(ViT) [15] variants have been applied successfully to various
vision tasks such as image classification, object detection
and segmentation, which models long-range dependencies
among visual features by self-attention mechanism. To
improve UDA performance, many ViT-based methods have
been proposed. For example, Sun et al. [17] proposed
transformer-based self-refinement SSRT to refine the domain
adaptation model. Yang et al. [16] proposed a transferable
vision transformer method to investigate the transferability
of ViT. Xu et al. [18] explored cross-domain transformer for
unsupervised domain adaptation. However, these methods
neglect to take full advantage of different complementary
supervision information, e.g., masked image modeling [19],
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Fig. 1 The overall framework of TAMS. We introduce a masked self-
distillation teacher-student network to learn the latent representation for
the target domain,where the student branch consists of encoder–decoder
architecture that feedsmasked images,while the teacher branch contains
an encoder to produce latent representation and updates weights from
the student network using EMA. We randomly replace image patches
with [MSK] tokens on target images, where a mask token [MSK] is
taken to learn local pixel-level representation at masked positions using
missing information of contextual patches while a [CLS] token is a
special symbol added to extract global information. In our method,

we jointly optimize three objectives to transfer knowledge for the
UDA task: (1) adversarial masked self-distillation objective (“Adver-
sarial masked self-distillation”) to learn global task-specific class-level
global representation; (2) masked image modeling objective (“Masked
imagemodeling”) to learn local pixel-level representation; (3) adversar-
ial weighted cross-domain adaptation objective (“Adversarial weighted
cross-domain adaptation”) to learn domain-specific patch-level repre-
sentation. Denote that the labeled data in the source domain are used to
train the student branch, which has been omitted

which can introduce mask image modeling into UDA to
improve UDA performance.We present a novel masked self-
distillation framework to jointly optimize three objectives to
transfer knowledge for UDA tasks.

The proposedmethod

Wefirst take problem formulation in “Problem formulation”,
then we introduce the proposed method TAMS, where we
jointly optimize three objectives to transfer knowledge for the
UDA task: (1) adversarial masked self-distillation objective
to learn global task-specific class-level global representation;
(2) masked image modeling objective to learn local pixel-
level representation; (3) adversarial cross-domain adaptation
objective to learn domain-specific patch-level representation.
The overall framework has been shown in Fig. 1.

Problem formulation

In UDA, there is a source domain with labeled data Ds =
{(xsi , ysi )}nsi=1 fromX ×Y and a target domain with unlabeled

dataDt = {(xti )}nti=1 from X , where X is the input space and
Y is the label space.We employ aViT encoderG f for feature
learning, and a classifier Gc for classification. We can derive
cross-entropy loss for the source domain:

Lcls(x
s, ys) = 1

ns

∑

xi∈Ds

Lce(Gc(G f (x
s
i )), y

s
i ). (1)

Adversarial masked self-distillation

Following the typical adversarial adaptation method [31], let
Dg be a domain discriminator for global feature alignment,
which is applied to the output of [CLS] token between the
source and target domain. For adversarial domain adapta-
tion [32, 33], G f and Dg play a minimax game: G f uses
domain-invariant features to rival, while Dg discriminate
source-domain features from target-domain. The adversar-
ial objective can be formulated as:

Ladv(x
s, xt ) = − 1

ns + nt

∑

xi∈Ds∪Dt

Lce(Dg(G f (x
∗
i )), ydi ),

(2)
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where Lce is the cross-entropy loss and the superscript ∗ can
be either the source domain s or the target domain t . When
ydi = 1 denotes the source domain labels and ydi = 0 denotes
the target domain labels.

To leverage more complimentary information, we intro-
duce self-distillation [34, 35] to fully utilize previous knowl-
edge to drive the model itself training. This idea also has
been used to solve UDA tasks, e.g., pseudo-label learning
[36] and self-ensemble learning [37]. Here, we introduce a
masked self-distillation teacher–student network to produce
the latent representation for the target domain, where the
student branch consists of encoder–decoder architecture that
feeds masked images, while the teacher branch contains an
encoder to produce latent representation and updates weights
θ̂ from the student network parameter θ using Exponential
Moving Average (EMA) [38], i.e., θ̂ = μθ̂ + (1− μ)θ . Fol-
lowing FixMatch [39], we setμ to 0.99, andwe can introduce
self-distillation loss to rectify target domain labels with max-
imum scores above a threshold λ [37]:

Lself-KD(xt ; θ) = 1

B

B∑

b=1

I(max qb ≥ λ)Lce(pb, q̂b), (3)

where pb is the prediction of the student branch, qb is the
prediction of the teacher branch, q̂b = argmax qb and B
is the number of batch on unlabeled target domain. In our
experiments, we set λ to the 0.5. So we can derive adversarial
masked self-distillation objection as

Lmask-KD(xs, xt ) = Ladv(x
s, xt ) + Lself-KD(xt ; θ), (4)

where Lmask-KD not only considers model itself compli-
mentary information, but also can learn task-specific global
class-level representation.

Masked imagemodeling

Although Eq. (4) can learn task-specific global class-level
representation, Eq. (3) may introduce noisy pseudo-label
into training. Thus we introduce another complimentary
information from the raw image to learn local pixel-level rep-
resentation. We follow SimMiM [19] and predict the RGB
pixel values for masked patches. Specifically, given the out-
put embedding zmb of the m-th [MSK] token, we first input
it into a linear decode head to generate the predicted RGB
values ymb ∈ RK for the patch, where K denotes the num-
ber of RGB pixels per patch. Then masked image modeling
objective can be formulated as

LMIM(xt ; θ) = 1

BMK

B∑

b=1

M∑

m=1

∥∥ymb − xmb
∥∥
1, (5)

where M denotes the number of masked patches per image,
and xmb denote the ground-truth RGB values. In our exper-
iments, we also explore the influence of different masking
ratios ε in “Experiments”.

Adversarial weighted cross-domain adaptation

Let (H ,W ) denote the resolution of the original image, C is
the number of channels and (P, P) denotes the resolution of
each image patch. The number of patches can be computed
by N = HW/P2. For the self-attention of Transformer,
the patches are projected into three vectors, i.e., queries
Q ∈ RN×d , keys K ∈ RN×d and values V ∈ RN×d , which
aims to emphasize relationships among patches by comput-
ing inner product. Different from traditional self-attention,
inspired by [16, 18], as shown in Fig. 2, we leverage the
weighted cross-attention to learn mix-up feature represen-
tations for both source and target domains, which can be
formulated as:

Attncross(x
s, xt )

= softmax

(
QsK T

t√
d

)
×

[
1

H(Dp(K
patch
t ))

]
Vt

︸ ︷︷ ︸
s→t

+ softmax

(
Qt K T

s√
d

)
×

[
1

H(Dp(K
patch
s ))

]
Vs

︸ ︷︷ ︸
t→s

, (6)

where Dp is introduced for patch-level domain discriminator
to match cross-domain local features. Here, instead of using
masked target vector (Q ∈ RN×d , keys K ∈ RN×d and val-
uesV ∈ RN×d ), we use the complete target vector to prevent
pixel loss and thus achieve cross attention. Using entropy
H(Dp(K patch)) to assign weights to different patches, the
cross-attention in Eq. (6) not only considers semantic impor-

tance (softmax( QKT√
d

)) but also considers the transferability
of each patch token. As shown in Eq. (2), we can introduce
adversarial cross-domain adaptation objective as

Lpatch(x
s, xt )

= − 1

(ns + nt )P

∑

xi∈Ds∪Dt

P∑

j=1

Lce(Dp(G f (x
∗
i j )), y

d
i j ),

(7)

where P is the number of patches. Following the adversar-
ial learning, Dp tries to assign 1 for a source-domain patch
and 0 for the target-domain patch, while G f combats such
situations. As a result, adversarial cross-domain adaptation
manages to aggregate the two input images based on differ-
ent weights of patches, which aligns the information from
patch-level representation.
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Fig. 2 The weighted cross-attention for Transformer. Using entropy H(Dp(K patch)) to assign weights to different patches, the cross-attention

mechanism (Eq. (6)) can not only capture semantic importance (softmax( QKT√
d

)) on attention map, but also can capture the transferability of each
patch token

Following the literature [16, 40, 41], we also introduce
maximizing mutual information on target label distribution
to avoid every target data being assigned to the same class as

I (pt ; xt ) = H( p̄t ) − 1

nt

nt∑

i=1

H(pti ), (8)

where pti = softmax(Gc(G f (xti )) and p̄t = Ext [pt ],
by maximizing mutual information, our model can further
improve the generalization to the target domain.

To summarize, the objective function of TAMS can be
defined as

LTAMS = Lcls(x
s, ys) + αLmask-KD(xs, xt ) + βLMIM(xt ; θ)

+γLpatch(x
s, xt ) − δ I (pt ; xt ), (9)

whereα,β,γ and δ are hyper-parameters. In our experiments,
α, β and δ are set to 0.1, while γ is set to 0.01.

Experiments

In this section, we evaluate and analyze the proposed TAMS
methods on benchmark datasets.

Experiment setup

Datasets To verify the effectiveness of TAMS, we conduct
comprehensive experiments on benchmark datasets, includ-
ing Office-31 [42], Office-Home [43] and VisDA-2017 [13].
Office-31 [42] contains 4,652 images of 31 classes from three
domains: Amazon (A), DSLR (D), and Webcam (W). As
shown inTable 1, ‘A→W’ refers thatA as the source domain
and W as the target domain. Office-Home [43] consists of
15,500 images of 65 classes from four domains: Artistic (Ar),
Clip Art (Cl), Product (Pr), and Real-world (Rw) images.

VisDA-2017 [13] is a Synthetic-to-Real dataset, which con-
tains about 0.2 million images in 12 classes.

BaselinemethodsWe investigate experimental comparisons
against state-of-the-art UDA methods, including RevGrad
[10], DDC [7], JAN [44], MinEnt [45], DAN [8], DANN
[10], CDAN [46], MCD [24], SWD [47], BNM [48], DCAN
[49], SHOT [14], ATDOC-NA [50], ALDA [51], TVT [16],
CDTrans [18] and SSRT [17]. For a fair comparison, we use
the original results on paper. We also compare our method
with different backbones such as ResNet-50 and ViT.

Implementation details In our experiments, we use the ViT-
small (ViT-S) and ViT-base (ViT-B) with 16× 16 patch size
[1], pre-trained on ImageNet, as the vision transformer back-
bones, which contain 12 transformer layers in the encoder.
ViT-S (22Mparameters) is a comparablemodelwithResNet-
50. In our experiments, the ’Baseline’ indicates training
ViT-S/ViT-B with the adversarial domain adaptation method
(i.e., Eq. (2)). We train ViT-S/ViT-B models using a mini-
batch SGD optimizer with a momentum of 0.9, which
initializes the learning rate as 0 and linearly increase it to
lr = 0.03 after 500 training steps except with lr = 0.003 for
D → A and W → A in Office-31 dataset. For another, we
set the masking ratio ε to 0.4 for masked image modeling.

Experimental results

The detailed experimental results have been shown in
Tables 1, 2 and 3, we can observe that those transformer-
basedUDAmethods perform better than ResNet-basedUDA
models, which shows that the transformer has more power
than ResNet on UDA tasks. The detailed experimental anal-
yses of different datasets have been shown below.

Office-31 results As shown in Table 1, the proposed
TAMSoutperforms the otherResNet-basedUDAmodels and
obtains better performance than the other ViT-based UDA
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Table 1 Accuracy (%) on the
Office-31 dataset

Backbone Methods A → W D → W W → D A → D D → A W → A Avg

AlexNet Source-only 61.6 95.4 99.0 63.8 51.1 49.8 70.1

DDC 61.8 95.0 98.5 64.4 52.1 52.2 70.6

DAN 68.5 96.0 99.0 67.0 54.0 53.1 72.9

RevGrad 73.0 96.4 99.2 72.3 53.4 51.2 74.3

JAN 75.2 96.6 99.6 72.8 57.5 56.3 76.3

CDAN 78.3 97.2 100.0 76.3 57.3 57.3 77.7

PFAN 83.0 99.0 99.9 76.3 63.3 60.8 80.4

ResNet-50 Source-only 68.4 96.7 99.3 68.9 62.5 60.7 76.1

DDC 75.6 96.0 98.2 76.5 62.2 61.5 78.3

DAN 80.5 97.1 99.6 78.6 63.6 62.8 80.4

RevGrad 82.0 96.9 99.1 79.7 68.2 67.4 82.2

JAN 86.0 96.7 99.7 85.1 69.2 70.7 84.6

CDAN 94.1 98.6 100.0 92.9 71.0 69.3 87.7

TADA 94.3 98.7 99.8 91.6 72.9 73.0 88.4

TAT 92.5 99.3 100.0 93.2 73.1 72.1 88.4

SHOT 90.1 98.4 99.9 94.0 74.7 74.3 88.6

ALDA 95.6 97.7 100.0 94.0 72.2 72.5 88.7

ViT-S Source-only 86.9 98.6 100.0 88.6 76.0 75.9 87.7

Baseline 91.9 99.1 100.0 89.2 78.4 77.9 89.4

CDTrans 93.5 98.2 99.6 94.6 78.4 78.0 90.4

TAMS 94.02 99.2 100.0 95.1 78.9 78.6 90.97

ViT-B Source-only 91.2 99.2 100.0 90.4 81.1 80.6 90.4

Baseline 92.5 99.2 100.0 93.6 80.7 80.7 91.1

TVT 96.35 99.37 100.0 96.39 84.91 86.05 93.85

CDTrans 96.7 99.0 100.0 97.0 81.1 81.9 92.6

SSRT-B 97.7 99.2 100.0 98.6 83.5 82.2 93.5

TAMS 96.48 99.5 100.0 96.99 85.87 86.26 94.18

The best results have been shown in bold face

methods. For example, on some transfer tasks (e.g., D → A
and W → A), the proposed TAMS performs better than
CDTrans [18], TVT [16] and SSRT-B [17].

Office-Home results As shown in Table 2, our method has
the highest average accuracy of 85.63%. Compared with the
ResNet-based models, the ViT-based models have a larger
improvement. In particular, the proposedTAMS significantly
improves the performance in all the transfer tasks. Compared
with SSRT-B [17], ourmethod performs better on some trans-
fer tasks (e.g., Cl → Pr and Rw → Ar). When transferring
to the CL domain, many methods have lower accuracy (e.g.,
CDTrans [18] and TVT [16]), our method can achieve better
performance, which implicitly indicates that our method has
better generalization ability on different transfer tasks.

VisDA-2017 results As shown in Table 3, our method
achieves a better average accuracy of 88.4%. Compared with
the other methods, our TAMS achieves the best performance
on three classes including bicycle, horse, and skateboard.

Ablation study

We conduct ablation studies to verify the effects of the dif-
ferent loss functions, including Lcls(xs, ys), Ladv(xs, xt ),
Lself-KD(xt ; θ), LMIM(xt ; θ), Lpatch(xs, xt ) and I (pt ; xt ).
We also explore the effects of the different ViT encoders,
including traditional self-attention with cross-attention of
Eq. (6). Comparing the second, third and fourth rows in
Table 4, we can see that self-distillation loss and masked
image modeling are effective for ViT backbones in UDA
tasks. Comparing the fourth and fifth rows, the patch-level
adversarial loss further improves the performance of the
Office-31 dataset. In addition, the proposed TAMS with
cross-attention in Eq. (6) achieves better performance than
traditional self-attention in ViT, which demonstrates the
effectiveness of the weighted cross-attention mechanism
used in TAMS.
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Table 3 Accuracy (%) on the VisDA-2017 dataset

Backbone Methods Plane bcycl Bus Car Horse Knife mcycl Person Plant sktbrd Train Truck Avg

ResNet-101 ResNet-101 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81 26.5 73.5 8.5 52.4

DANN 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4

CDAN 85.2 66.9 83 50.8 84.2 74.9 88.1 74.5 83.4 76 81.9 38 73.9

SAFN 93.6 61.3 84.1 70.6 94.1 79 91.8 79.6 89.9 55.6 89 24.4 76.1

MCD 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9

SWD 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4

BNM 89.6 61.5 76.9 55.0 89.3 69.1 81.3 65.5 90.0 47.3 89.1 30.1 70.4

SHOT 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9

ViT-B Baseline 99.09 60.66 70.55 82.66 96.5 73.06 97.14 19.73 64.48 94.74 97.21 15.36 72.6

CDTrans 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4

TVT 92.92 85.58 77.51 60.48 93.6 98.17 89.35 76.4 93.56 92.02 91.69 55.73 83.92

SSRT-B 98.93 87.6 89.1 84.77 98.34 98.7 96.27 81.08 94.86 97.9 94.5 43.13 88.76

TAMS 98.77 93.58 88.12 76.34 98.81 97.64 96.27 79.45 91.07 98.68 97.03 44.79 88.38

The best results have been shown in bold face

Diversity analysis withmasked imagemodeling

We examine the attention diversity of heads and observe
whether masked image modeling (MIM) is conducive to
improving the transferable performance of UDA. Following
the [15], we use the average attention distance to measure
whether it is local attention or global attention, which can
partially reflect the receptive field size for each attention
head. Figure3 shows the average attention distance per head
and layer depth using the ViT-B/16 architectures. We visual-
ize the average attention distance between MIM and without
MIM. It can be seen that: (1)Without MIM (the top row), the
average attention distances of different heads in deeper lay-
ers collapse to locate within a very small distance range. This
suggests that different heads learn very similar visual cues
and may be wasting model capacity. (2) After using MIM
(the bottom row), the attention representations become more
diverse regarding the average attention distance, especially
for deeper layers. As analyzed in [52], masked image mod-
eling brings locality inductive bias to the trained model and
more diversity on attention heads, which is useful to enhance
the transferable performance of UDA.

Effect of different masking ratio

As shown in Fig. 4, we analyze the influence of different
masking ratios ε on Office-31. When ε = 0.4, the model
can obtain better test accuracy, which implicitly shows that
it is beneficial to enhance the transferable performance of
UDA by making full use of the supervision information of
pixel-level in the target domain.

Effect of different masking strategies

For UDA tasks, we present a simple random masking strat-
egy. Furthermore, we also study how different masking
strategies affect the effectiveness of UDA. In our experi-
ments, we try other masking strategies (i.e., square [53],
block-wise [54], and random) with different masked patch
sizes (i.e., 16 and 32). The detailed experimental results have
been shown in Table 5. We first notice that the best test accu-
racy of our simple randommasking strategy reaches 94.18%,
which is + 0.12% higher than the best block-wise masking
strategy. In addition, when a large masked patch size of 32 is
adopted, the different masking strategies perform stably well
on a small range of precision.

Effect of adversarial cross-domain adaptation

To further verify the effectiveness of adversarial cross-
domain adaptation (ACA), we use t-SNE to visualize the
feature representation between with ACA and without ACA,
as shown in Fig. 5. Blue and red points represent the source
domain and target domain samples, respectively. It can be
seen that without ACA, it is not well aligned such as A→W
andW → A. In addition, when using ACA, TAMS has good
feature alignment, as shown in W → A, our method not
only has compressed intra-class representations and sepa-
rable inter-class representations but also can align feature
distribution more effectively than without ACA. This shows
that adversarial cross-domain adaptation can capture dis-
criminative information and better alignment.
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Fig. 3 The average attention distance in different attention heads (dots). Top row: TAMS does not use masked image modeling (MIM); Bottom
row: TAMS uses masked image modeling (MIM)

Fig. 4 The influence of different masking ratios on Office-31. When
ε = 0.4, the model can obtain better test accuracy

Effect of masked self-distillation training

On UDA tasks, the predicted class distribution on target
domain data may collapse, so we analyze whether our

method is safety training. In [17], Sun et al. proposed a
self-refinement strategy to avoid collapse. Our method can
avoid such situations because of using the self-distillation
of the teacher–student framework, where the teacher branch
updates weights from the student network using the Expo-
nential Moving Average (EMA). Following the [17], we also
use the diversity curve of model predictions on the target
domain to analyze whether our method is safety training.
As shown in Fig. 6a, our method keeps stability training on
different transfer tasks. In addition, Fig. 6b, c plot results of
class-level adversarial and patch-level adversarial loss, our
method can converge well on the training.

Parameter sensitivity analysis

Weanalyze the parameter sensitivity of TAMSby conducting
experiments on Office-31 datasets. The parameters α, β, γ

and δ were searched in {0.01, 0.1, 1}. For the sake of simplic-
ity, we set the parameter α = β = δ to take the same weights
on three components and analyze the influence of different
parameters γ on the performance. As shown in Fig. 7, it can

Table 5 Experiments on different masking strategies (i.e., square [53], block-wise [54], and random) with different masked patch sizes (i.e., 16
and 32), mask ratio is set to 0.4

Mask type Masked patch size A → W D → W W → D A → D D → A W → A Avg

Square [53] 16 96.33 99.39 100 96.76 85.43 86.17 94.01

32 96.21 99.21 100 96.63 85.38 86.11 93.93

Block-wise [54] 16 96.43 99.4 100 96.78 85.56 86.17 94.06

32 96.22 99.25 100 96.69 85.42 86.13 93.96

Random (ours) 16 96.48 99.5 100 96.99 85.87 86.26 94.18

32 96.37 99.3 100 96.68 85.65 86.14 94.02
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Fig. 5 t-SNE visualization of feature alignment. Blue points are source samples, and red points are target samples. Top row: TAMS does not use
adversarial cross-domain adaptation (Eq. (6)); Bottom row: TAMS uses adversarial cross-domain adaptation (Eq. (6))

Fig. 6 Training curve on three tasks (i.e., D → W, A → D andW → A) of Office-31. a Plots of the diversity of model predictions on target domain
data [17]; b class-level adversarial loss curve on Eq. (2); c patch-level adversarial loss curve on Eq. (7)

Fig. 7 Parameter sensitivity analysis. When γ = 0.01, the candidate sets for α = β = δ can be employed in {0.01, 0.1, 1} to obtain satisfactory
performance. When α = β = δ = 0.1, γ = 0.01, three difficult tasks (i.e., A → W, D → A and W → A) can obtain the best performance

be seen thatwhen γ = 0.01, the candidate sets forα = β = δ

can be employed in {0.01, 0.1, 1} to obtain satisfactory per-
formance. When α = β = δ = 0.1, γ = 0.01, three difficult
tasks (i.e., A → W, D → A and W → A) can obtain the
best performance. Therefore, in our experiments, α, β and

δ are set to 0.1, while γ is set to 0.01. In addition, when
γ = 0.1, there is no significant decrease in test accuracy,
which implicitly indicates that our method is not parameter
sensitive.
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Fig. 8 Attention maps of images on Office-31 dataset. a D → A; b W → A. The hotter the color, the higher the attention

Attention visualization analysis

We visualize the attention map using Grad-CAM [55] to ver-
ify that our model can capture important local regions, where

Grad-CAM uses the gradients of any target concept flowing
into the final layer to produce a coarse localization map high-
lighting the important regions in the image for predicting the
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concept. We randomly sample Office-31 images from two
more difficult tasks (i.e., D → A and W → A) to visu-
alize the attention map. As shown in Fig. 8, the proposed
TAMS captures more accurate regions than the baseline. For
instance, in the keyboard and cup, the TAMS method owns
more hot areas on the target object than the baseline method.
In addition, we also compare the difference between TAMS
without weights by entropy and using weights. It can be seen
that TAMS with weights can focus more attention on hot
regions, which promotes the transferability of ViT in UDA
tasks.

Conclusion

In this paper, we propose the transferable adversarial masked
self-distillation to improve the performance of UDA, which
consists of three parts including adversarial masked self-
distillation, masked image modeling, and adversarial cross-
domain adaptation objective. The proposed TAMS simulta-
neously takes class-level, pixel-level, and patch-level rep-
resentations into account. Experimental results show that
the proposed TAMS outperforms existing state-of-the-art
ResNet-based and ViT-based methods on three benchmark
datasets. In future work, wewill further apply TAMS to other
computer vision tasks such as object detection and semantic
segmentation.
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