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Abstract
Face clustering groups massive unlabeled face images according to their underlying identities and has proven to be a valuable
tool for data analysis. Most recent studies have utilized graph convolutional networks (GCNs) to explore the structural
properties of faces, thereby effectively achieving improved clustering performance. However, these methods usually suffer
from computational intractability for large-scale graphs and tend to be sensitive to some postprocessing thresholds that serve to
purify the clustering results. To address these issues, in this paper, we consider each pairwise relationship between two samples
as a learning unit and infer clustering assignments by evaluating a group of pairwise connections. Specifically, we propose
a novel clustering framework, named structure-enhanced pairwise feature learning (SEPFL), which mixes neighborhood
information to adaptively produce pairwise representations for cluster identification. In addition, we design a combined
density strategy to select representative pairs, thus ensuring training effectiveness and inference efficiency. The extensive
experimental results show that SEPFL achieves better performance than other advanced face clustering techniques.

Keywords Face clustering · Pairwise relationship · Neighborhood mixing · Density clustering

Introduction

Benefiting from the development of deep learning and the
emergence of large-scale face datasets [9,14,16,48], face
recognition techniques have made significant progress in
recent years [6,15,20,24,35]. However, manually annotating
amassive number of face images is time consuming and labor
intensive. To alleviate these limitations, several face clus-
tering methods have been proposed [29,36,37,41,42]. These
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approaches not only provide high-quality pseudo-labels for
model learning but also extend their applications from fam-
ily photo albummanagement [46] to automatic data cleaning
[25,45].

Most traditional clustering algorithms have relatively
strict assumptions. For example,K-means [22] requires spec-
ifying the number of clusters, spectral clustering favors
balanced clustering results, and density-based spatial clus-
tering of applications with noise (DBSCAN) [7] may not
work in cases with large cluster density variations. While
hierarchical clustering methods [18,26,47] generate clusters
with arbitrary shapes and numbers, they are not suitable for
large-scale face datasets due to the high complexity of the
proximity matrix computation in each iteration.

Recently, researchers have attempted to incorporate a
small amount of supervised information into the clustering
process, resulting in several supervised face clustering meth-
ods [19,29,41]. Considering the nature of clustering, those
methods do not yield clustering results in a straightforward
manner. Instead, they seek to generalize the structural knowl-
edge learned from labels, such as sample density [8,19,41]
and inter-sample connectivity [27,29,37], to unknown obser-
vations. Thus, the key issue is, given partial labels, how to
effectively and efficiently model these structural character-
istics. Due to the great power of propagating and aggregat-
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(a) Conventional pairwise
features

(b) Enhanced pairwise fea-
tures

Fig. 1 The motivation of our approach. a Conventional pairwise fea-
tures mainly focus on neighbor-to-center properties. b Our enhanced
pairwise features further encode intra-neighbor relationships

ing information over graphs, graph convolutional networks
(GCNs) [38] are widely used to describe intra-cluster and
inter-cluster relationships [2,13,17], and they significantly
improve the performance of face clustering [29,36,37,41].
However, GCN-based approaches bring excessive computa-
tional cost and memory consumption. While some sampling
strategies [37,40] have been proposed to improve scalabil-
ity, they also suffer from overlapping subgraphs [37] and a
lack of global views [40]. Moreover, one or more thresholds
are usually employed in the post-processing phase to remove
noisy edges, thus limiting the adaptability of these methods.

Concurrently, following the link prediction approach
[3,43,44], some methods uncover clustering patterns from
pairwise relationships [19], which can alleviate the influ-
ences of redundant and noisy connections in graphs [41].
Specifically, when constructing the pairwise features of two
target faces, their k-nearest neighbor (k-NN) features are
also involved to improve contextual awareness (as shown
in Fig. 1(a)). However, the explicit exchange of information
among neighbors is usually ignored during pairwise learn-
ing, but this process also plays an essential role in outlining
local variations. This fact is highlighted in Fig. 1(b).

To resolve these problems, in this paper, we propose a
structure-enhancedpairwise feature learningmethod (SEPFL)
for face clustering. Unlike existing methods that employ
some trivial functions to aggregate the neighbors around each
sample [19], in SEPFL, the relationships between a sample
and its neighbors, as well as the inherent intra-neighbor pat-
terns, are jointly encoded to adaptively weight the candidate
neighbors. Thus, the elements of the pair features ensure that
the local relationships are sufficiently mixed, which is par-
ticularly beneficial for clustering learning.

Moreover, the two samples forming a pair should have
some differences to characterize the local structural changes.
Thus, in terms of density, a density gap should be present
between them. To achieve this goal, a combined density is
proposed to enhance the density decay from high-density
samples, usually cluster centers, to low-density samples, such
as boundary samples or outliers. Guided by the combined

density,many redundant pairs are discarded, resulting in both
clustering performance and inference efficiency improve-
ments.

The main contributions of this paper are summarized as
follows.

1. We propose a novel face clustering framework that per-
forms data grouping at the pair level. Compared to graph-
based approaches, our framework incorporates pairwise
feature learning for connectivity classification, reducing
the computational cost and alleviating the dependence on
thresholds in the inference phase.

2. We propose a neighborhood mixing mechanism for
learning structure-enhanced pairwise representations, in
which information interchange among neighbors is effec-
tively promoted to characterize the local structural vari-
ations.

3. We design a combined density strategy to assist in
selecting more representative pairs for both training and
inference, thus further improving the clustering accuracy
of our method.

4. Our method is more competitive than other advanced
methods and demonstrates effectiveness in other clus-
tering tasks, such as fashion clustering.

The paper is organized as follows. In Related work, we
briefly introduce the related work on face clustering regard-
ing the aspect ofwhether supervision information is involved.
In Methodology, we present the innovation points of this
paper in detail. Experiments such as comparisons with differ-
ent face clustering algorithms are presented in Experiments.
Conclusion is the conclusion of this paper.

Related work

Due to their restrictive assumptions regarding data distri-
bution and scalability issues, traditional clustering methods
[7,11,22] are unable to be directly applied for large-scale
face clustering. Therefore, we briefly review unsupervised
and supervised face clustering methods in this section.

Unsupervised face clustering

Hierarchical clustering can handle complex data distributions
and does not require the number of clusters to be specified
in advance, resulting in the proposal of a series of methods
that group faces in an agglomerative manner. Lin et al. [18]
proposed a proximity-aware hierarchical clustering (PAHC)
method, which separates positive and negative samples in
the feature space to simplify the subsequent clustering pro-
cedure; however, this approach is inadequate when dealing
with unbalanced clustering sizes. By introducing neighbor-
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hood structures, Zhu et al. [47] proposed a rand-order (RO)
distancemetric to alleviate the nonuniformdistribution issues
that are typically related to face data. As an extended version
of the RO metric, Otto et al. [26] adopted an approxima-
tion mechanism for faster nearest-neighbor searching, which
supports the clustering of millions of faces. The above meth-
ods usually work under transductive settings, leading to
model retraining when new faces are encountered. There-
fore, some recentmethods have taken inductive or supervised
approaches for face clustering.

Supervised face clustering

Supervised face clustering leverages the structural descrip-
tions learned from labels to guide the clustering process for
unknown samples. These methods can be roughly divided
into two categories: two-stage methods and one-stage meth-
ods.

Two-stage methods

The two-stage approaches usually follow a coarse-to-fine
procedure, in which the first stage provides an overall view
of the input data, commonly in the form of a full graph or
multiple subgraphs. Each vertex in the graph represents a
face, and the edges indicate the relationships between pairs
of vertices. Ideally, two faces belonging to the same identity
are linked by an edge. The second stage gradually refines the
relationships to discard the influences of noisy vertices and
outliers. For instance, consensus-driven propagation (CDP)
[42] first builds a multiview representation of the given data
based on k-NN graphs through a base model and several
proposed committee models, which are then merged into a
single graph for label propagation. Most two-stage meth-
ods use GCNs as the base feature extractors due to their
powerful representation capabilities. Wang et al. devised an
L-GCNmethod [37] that takes a subgraph as a learning unit.
It first utilizes a GCN to reason the linkage likelihood of a
pivot and its nearest neighbors and then obtains consistent
clustering results by merging the predicted links of multiple
subgraphs. Among its variants, Qi et al. proposed a residual
GCN (RGCN) [27] method, which cascades multiple GCN
blocks with residual connections. Yang also invented a two-
stage clustering framework; the first stage, called GCN-D,
detects high-quality cluster proposals with high recall and
purity, and the second stage, called GCN-S, refines the pro-
posals by removing outliers [40]. Similarly, in a later work
[41], the clustering process was divided into two sequen-
tial subtasks, GCN-V, which predicted node confidence, and
GCN-E, which estimated edge connectivity. Notably, GCN-
V was trained on the entire graph rather than subgraphs,
resulting in less learning bias. However, only a one-layer
GCN was deployed to reduce the computational cost, limit-

ing the representation power of the GCN. Guo et al. designed
a density-aware feature embedding network (DA-Net) [8],
which consisted of two subnetworks, one based on a GCN
and one based on a long short-term memory (LSTM) unit.
The first subnetwork is used to enable information propaga-
tion over each subgraph, and the second subnetwork covers
remote dependencies via a proposed density chain module.
To improve the graph quality, Wang et al. [36] transformed
the input samples into a structured space with fewer noise
edges and identified the candidate neighbors of each vertex
with a designed adaptive filter module.

In short, these two-stage-based algorithms not only
achieve improved clustering performance but also provide
richer structural descriptions, including the quality of graphs
[40], the centrality of points [41], the connectivity of edges
[27,37], and the more discriminative feature representations
[36], which can support further decision making. However,
these methods also have the following drawbacks. First, the
use of multiple phases or subtasks may lead to subopti-
mal results, in addition to the fact that they require more
hyperparameters to be tuned. Second, although GCNs have
shown advantages in aggregating features, they significantly
increase the computational burden. Even though the resource
usage can be reduced by sampling subgraphs, additional
mechanisms need to be designed for subgraph merging.

One-stage methods

Recently, by designing sampling strategies at different scales,
some single-stage face clustering methods have been inves-
tigated to simplify the training processes of two-stage
techniques. The structure-aware face clustering (STAR-FC)
algorithm [29] takes clusters as the smallest sampling units
instead of points and achieves large-scaleGCN trainingwhile
preserving the important structural information of the entire
graph. In addition, STAR-FC takes a full graph as input to
ensure inference efficiency [19] performs face clustering at
the pair level, and it uses a breadth-first search (BFS) algo-
rithm to deduce the final clustering results from the predicted
pairwise relationships. Pair-based approaches have demon-
strated competitive performance in face clustering. However,
how to learn effective pair representations and how to con-
struct pairwise data that are less subject to structural biases
are topics have not been effectively explored.

Methodology

As previously stated, existing methods for learning pairwise
embeddings usually ignore the relationships among neigh-
bors. Therefore, we propose an SEPFL method that employs
a neighborhood mixing module to better capture structural
properties. Moreover, a combined density strategy, which
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Fig. 2 Overview of the proposed SEPFL framework. First, we calculate
the combined density of each sample based on a k-NN graph, which is
used to select representative sample pairs. Then, these selected pairs are
fed into a neighborhood mixing module where structure-enhanced pair-

wise representations are derived. Next, by utilizing a binary multilayer
perceptron (MLP) classifier, two samples are directly assigned to one
or more clusters. Finally, we perform a breadth-first search (BFS) over
the selected relationships, which produces the output clustering results

selects more representative pairs for training and testing, is
further proposed. The entire framework is shown in Fig. 2.

For a given face dataset with C identities, image features
are extracted by a pretrained convolutional neural network
(CNN) [6] and normalized to a set F = { fi }Ni=1, where fi ∈
R

D is the i-th face, N is the total number of samples, and D
denotes the dimensionality of the features. To obtain a broad
view of F , a k-NN graph is constructed based on cosine
similarity. The goal of face clustering is to assign a unique
pseudo-label y′ to each cluster, where y′ ∈ {1, 2, . . . ,C ′}
and C ′ denotes the number of predicted clusters.

Ideally, all faces associated with the same identity should
be grouped together. Therefore, a variety of metrics are intro-
duced to measure the gap between the predicted clustering
results and the ground-truth labels [1,30].

Structure-enhanced pairwise feature learning

Learning better structural descriptions is essential for face
clustering. To handle large-scale clustering problems, most
existing methods adopt GCNs to learn the structural pat-
terns of predivided subgraphs, which are typically based on
vertex confidence [41], edge or subgraph connectivity [29],
and so on. Subsequently, the patterns obtained from the sub-
graphs are fused to restore the clustering results. However,
this multistage cluster generation schema increases the com-
putational cost of the overall method, and each stage may
also introduce some hyperparameters. For instance, Table 1

summarizes the main hyperparameters used in the differ-
ent stages of several face clustering algorithms. The k-NN
method provides the initial structure of the input data for
all the mentioned methods. In addition, some hyperparam-
eters are applied at different stages to control the sparsity
[40], connectivity [36,37] or randomness [29] of the graphs.
Generally, at least one cutting threshold is applied during
the postprocessing step to eliminate the noisy connections
between samples or clusters [29,36,37,41]. As a result, these
additional hyperparameters may affect the generalizability
and scalability of the associated methods.

Based on the above observations, instead of graphs, we
use more primitive structural descriptions, i.e., pairwise
relationships, as learnable units. Specifically, a single-stage
clustering framework that integrates pairwise feature learn-
ing and pairwise relationship classification is proposed. A
binary MLP classifier is used to directly predict whether two
samples belong to the same cluster. Consequently, according
to these filtered positive pairs, each connected component
found by a simple search strategy can be taken as a cluster.

The key challenges of the proposed approach are twofold.
First, the simplicity of the paired structure comes at the cost
of limited representational power. A pairwise relationship is
dominated by the two samples contained in it, leading to a
lack of local structure perception. To solve the representa-
tion problem, we propose a neighborhood mixing approach
for pairwise feature learning. Details are provided in “Neigh-
borhood mixing module section”. Second, while pairwise
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Table 1 Comparison of the main hyperparameters adopted by different methods

Methods Preprocessing Stage 1 Stage 2 Postprocessing

L-GCN [37] K : Number of neighbors (K1, K2): Sizes of 1-hop
and 2-hop neighbors

maxsz : Maximum number
of samples in each cluster
step: A threshold for
removing weak edges

LTC [40] K : Number of neighbors eτ : A threshold for
removing weak edges
smax : Maximum number
of samples in each
subgraph

GCN(V+E) [41] K : Number of neighbors ρ: Portion of vertices for
GCN-E

τ : A threshold for removing
weak edges

STAR-FC [29] K : Number of neighbors (M ,N ): Numbers of seeds
and clusters, respectively
(K1,K2): Cluster
randomness and sample
randomness, respectively

τ1: A threshold for
removing weak edges τ2:
A threshold for removing
edges with low node
intimacy

Ada-NETS [36] K : Number of neighbors δ: A parameter for the
Huber loss β: Q-value
parameter

β1,β2,λ: Parameters for the
Hingle loss

θ : A threshold for
preserving
high-confidence edges

CFPC [19] K : Number of neighbors p: A parameter of the
weighting function

Ours K : Number of neighbors θ : Spherical density radius

structures allow for greater flexibility, they give rise to large
amounts of redundant relationships. For example, for N sam-
ples, at most N×(N−1)/2 pairs can be extracted from them.
To ensure the sufficiency of the training data and the effi-
ciency of the inference process, we propose a density-guided
pair selection strategy for the construction of candidate pairs.
The mechanism of this strategy is presented in “Density-
guided pair selection section”.

Neighborhoodmixingmodule

As a key component of the GCN, neighborhood aggrega-
tion captures each center node’s contextual information to
enhance its local structure awareness. For the same rea-
son, combining pairwise features and their neighborhood
embeddings is necessary to classify pairwise relationships.
Specifically, given a pair of feature vectors, fa and fb, as well
as their neighborhood vectors, fNa and fNb , the combined
pair representation is defined as:

fab = [ fa, fNa , fb, fNb ] (1)

where [, ] is the concatenation operation, and Na is the set
of neighbors of fa .

Leaving linear transformations and nonlinear activations
aside, a common aggregation mechanism is to calculate the

weighted combination of the neighboring features of fa :

fNa =
∑

i∈Na

wai fi (2)

where wai denotes the contribution of the i th neighbor in
Na to fa . Therefore, the effectiveness of the aggregator is
mainly dependent on the weighting scheme and the represen-
tation power of the feature vectors of the neighboring sample.
Table 2 summarizes some typical weight setting methods,
which are based on neighborhood sizes [37], attention coef-
ficients [34], the distance decay between two samples [19],
etc. These weight values are only learned through center-
neighbor pairs, which may fail to reflect complex similarity
relationships. While some approaches perform multiplica-
tion pooling over each neighbor pair [32], more collaborative
relationships among the neighbors should be explored. To
leverage local interactions for weight learning, we design a
module for neighborhood mixing. It consists of three steps:
center-neighbor relation embedding, neighborhood informa-
tion mixing and neighboring weight generation (as shown in
Fig. 3). Each of these three steps is elaborated below.

Center-neighbor relation embedding: In this step,we focus
on learning the relations between a center and its first-order
neighbors. First, a featurematrix Xi ∈ R

K×2D is built, where
the j th row is the concatenated result of fi and its j th neigh-
bor of size K . To obtain primitive relational representations,
Xi is passed to an MLP consisting of two fully connected
layers and a nonlinear activation function, which is followed
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Table 2 List of different weight setting methods

Methods Weight formula Aggregation formula

GCN [37] w j = 1
deg(i) or w j = 1√

deg(i)
√
deg( j)

f aggi = ∑K
j=0 w j f j

Similarity aggregation [41] w j = Similari t y( fi , f j )

GAT [34] w j = so f tmax(σ
(
aT

[
W fi ||W f j

])
)

NIA-GCN [32] w = 1
K f aggi = ∑K

j=0
∑K

k=0 w jk f j � fk *

Rank weight aggregation [19] w j = (k − j)p f aggi = ∑K
j=0 w j f j

Ours w j = NMM( fi , f j )**

* � is the element-wise multiplication operator
** NMM stands for the proposed neighborhood mixing module

Fig. 3 Neighbor weight
learning procedure via the
neighborhood mixing module

by a batch normalization (BatchNorm) layer for stable opti-
mization. In addition, a skip connection is added between the
input and the output of the MLP. The whole process can be
written as follows:

Ẋi = Xi + BatchNorm(σ (XiW1)W2) (3)

where σ is the Gaussian error linear unit (GELU) activation
function [10], andW1 ∈ R

2D×4D andW2 ∈ R
4D×2D are two

learnable weight matrices.
Neighborhood information mixing: When measuring the

importance of one neighbor point j ∈ Ni to the center point
i , it is not sufficient to exchange information between the two
members of the pair. Indeed, all the neighbors in Ni should
be considered. To achieve this goal, we devise a neighbor-
hood mixing mechanism, which was initially introduced in
[33] to support information communication along the spatial
dimension. Specifically, we assign a similar MLP that is fed
with the output feature matrix Ẋi of the previous step and
aggregate features across neighbors as follows:

X̂i = Ẋi + BatchNorm(W4σ(W3 Ẋi )) (4)

where W3 ∈ R
2K×K and W4 ∈ R

K×2K . As shown in 3, the
neighborhood interactions are encoded along each row of Ẋi .

Neighboring weight generation: Finally, a two-layer MLP
is used to obtain the weight assignment of the j th neighbor
of point i :

wi j = σ(X̂i [ j, :]W5)W6 (5)

where X̂i [ j, :] denotes the i th row of X̂i , W5 ∈ R
2D×D and

W6 ∈ R
D×1.

Density-guided pair selection

Due to the redundancy of pairwise connections, it is unneces-
sary to evaluate all the possible pairs extracted from a dataset.
We assume that a data point should be attracted to some clus-
ter center or to another point that is closer to the cluster center
than it is. Consequently, the set of candidate pairs can be
constructed by concentrating on such directed relationships.
Since cluster centers usually lie in the high-density regions
of the feature space [41], the two samples forming a pair are
expected to differ in terms of density.
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(a)

(b)

Fig. 4 Comparison between the similarity density and combined den-
sity

Face images belonging to the same individual should be
clustered together. The informative faces with near-frontal
views and normal illuminations are found in higher density
regions, while the low-quality faces with complex expres-
sions and extreme lighting conditions appear at lower density
cluster boundaries. Thus, candidate pairs can be collected
along a path that starts from one sample and ends at a density
peak.

Most existing face clustering methods adopt density set-
tings based on neighborhood distances or similarities [8,41].
Given a sample fi , its density ρd

i can be written as:

ρd
i =

∑

j∈Ni

ai j (6)

where ai j is the similarity between fi and its j th near-
est neighbors. However, due to the complex distribution of
faces, samples with higher density levels may be located at
the boundaries of the clusters. As shown in Fig. 4(a), those
samples lead to some undesirable connections between two
clusters, which degrade the resulting clustering performance.
To suppress the densities of the boundary samples, we pro-
pose a density fusion mechanism. In particular, a spherical
density is added to adjust the initial value of ρd

i , which is

Algorithm 1 Density-Guided Pair Selection
Require: feature sets F , number of neighbors k, threshold θρ .
Ensure: Candidate pairs E
1: procedure DENSITY- GUIDED PAIR SELECTION
2: E = ∅
3: ρ = CALCULATE DENSITY(F, k, θρ ).
4: for all samples i in F do
5: Find the first neighbor node j satisfying ρ j > ρi .
6: if j exists then
7: E = E ∪ {(i, j)}
8: end if
9: end for
10: return E

11: end procedure
12:
13: function CALCULATE DENSITY(F, k, θρ )
14: ρ=∅;
15: for all sample i in F do
16: Calculate the sum of the similarity values of k neighbors ρd

i
by Eq. (6).

17: Calculate the number of neighbors ρs
i with similarity values

greater than θρ by Eq. (7).
18: Calculate the combined density ρi by Eq. (8).
19: ρ = ρ ∪ ρi
20: end for
21: return ρ

22: end function

written as follows:

ρs
i =

∑

j∈Ni

(ai, j ≥ θρ) · 1 (7)

where θρ is the threshold value used to identify neighbors
with high similarities. The introduction of spherical density
is motivated by the fact that samples farther away from the
cluster center often exhibit more significant neighborhood
differences. Hence, the combined density for sample i is
defined as:

ρi = ρd
i

2max({ρd
i }Ni=1)

+ ρs
i

2max({ρs
i }Ni=1)

(8)

Fig. 4(b) illustrates the results obtained after applying the
combined density, whosemain steps are summarized in algo-
rithm 1.

Construction of training and testing sets

Unlike graph-based face clustering methods, our method
takes a pair of samples as the underlying processing unit,
so it becomes crucial to identify pairs of data. As described
in “Density-guided pair selection section”, a density-guided
pair selection strategy is proposed for constructing training
and testing sets.

As a result of algorithm 1, a set of candidate pairs can
be constructed for model training. Specifically, pairs with
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Algorithm 2 Pairwise Clustering
Require: candidate pairs E
Ensure: clusters C
1: procedure CLUSTERING
2: for all pairs e in E do
3: Predicting the connectivity of e via the network.
4: if the connectivity of e is False then
5: E = E \ e
6: end if
7: end for
8: C = Use the BFS algorithm to generate clusters according to E.
9: return C

10: end procedure

the same label are regarded as positive pairs; otherwise, they
are negative pairs. However, this splitting approach tends to
cause an imbalance between the positive and negative pairs,
leading to an excess of positive pairs. To address this issue,
we select pairs of samples and their K-nearest neighbors to
augment the training set and keep the ratio of positive and
negative pairs at 1:1.

In addition, for the testing set, the experimental results
suggest that the aforementioned pair selection strategy is
capable of characterizing the structures of clusters. There-
fore, to guarantee the efficiency of the inference process, the
set of testing pairs is not augmented. The main steps of the
proposed framework are summarized in algorithm 2.

Complexity analysis

The computational complexity of algorithm 2 mainly arises
from the k-NN graph construction and pair selection steps.
The k-NNsearch is the bottleneck of the algorithm,which has
a complexity of O(n2). With the approximate nearest search
technique [39], the time complexity is reduced to O(n log n).
Since the size of the candidate set used for inference does not
exceed the number of samples, the time cost of pair selection
is O(n). Due to the pair augmentation process employed
for training, the pair selection cost is O(nk), where k 	 n
is the neighbor size for the pair search. Hence, the overall
complexity is approximately O(n log n).

Experiments

Datasets

MS-Celeb-1M (MS1M) [9] is a widely used large-scale face
dataset. It contains approximately 100K identities and 10M
face images, with varying numbers of images associatedwith
each identity. Following the protocol used in [19,29,36,41],
we clean the dataset in terms of the annotations fromArcface
[6], producing approximately 86K identities and 5.82M face
images. Then, we divide the dataset into 10 equal parts and

select the first part for training and the rest for testing. In par-
ticular, the five testing sets are constructed by selecting 1, 3,
5, 7 and 9 parts, and the numbers of images are 584K, 1.74M,
2.89M, 4.05M, and 5.21M, respectively. Additionally, to ver-
ify the feasibility of the proposed method, we test it on the
DeepFashion [21] dataset for fashion clustering. We follow
the settings in [41], where the training set includes about 26K
images and 4K categories, and the testing set includes about
27K images and 4K categories.

Evaluationmetrics

Two common metrics are used to assess the performance of
clustering algorithms, namely, the Pairwise F-score (FP ) [30]
and BCubed F-score (FB) [1], which are harmonic means of
precision and recall.

The Pairwise F-score is calculated based on sample pairs.
The pairwise precision indicates the proportion of sample
pairs that are correctly predicted among all pairs predicted
to belong to the same class, which is written as:

Pairwise Precision = T P

T P + FP
(9)

where TP and FP are the abbreviations of true-positive pairs
and false-positive pairs, respectively. Similarly, the pairwise
recall is written as:

Pairwise Recall = T P

T P + FN
(10)

where FN denotes false-negative pairs.
The BCubed F-score measures the difference between the

ground-truth labels and the cluster results. LetG(i) and P(i)
denote sets of samples that have the same annotation and
cluster assignments as sample i , respectively, and let C(i, j)
indicate the consistency of samples i and j , which is formu-
lated as:

C(i, j) =
{
1, G(i) = G( j) and P(i) = P( j)
0, otherwise

(11)

The precision and recall are defined as

BCubedPrecision = 1

N

N∑

i=1

∑

j∈P(i)

C(i, j)

|P(i)| (12)

and

BCubedRecall = 1

N

N∑

i=1

∑

j∈G(i)

C(i, j)

|G(i)| (13)

where |G(i)| and |P(i)| denote the sample sizes of sets G(i)
and P(i), respectively. The following formula calculates the
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F-score for both metrics:

F-score = 2 × Precision × Recall

Precision + Recall
(14)

Implementation details

In this study, we follow the settings in [19,29,36,40,41] and
utilize Arcface [6] as a base feature extractor to obtain 256-
dimensional input features. We also use the k-NN algorithm
[5] to search K neighbors for each sample, where K is set to
80 and 20 for theMS1Mdataset and theDeepFashion dataset,
respectively. For the construction of the combined density,
we set θρ = 0.7 for the MS1M dataset and θρ = 0.9 for
the DeepFashion dataset to properly increase the density gap
between the cluster center and boundary. During the training
phase, we use the cross-entropy loss to optimize the network.
The stochastic gradient descent (SGD) optimizer is usedwith
an initial learning rate of 0.01, a momentum of 0.9 and a
weight decay of 1e-4. The batch size is set to 512, and the
training process ends after 100 epochs.

Method comparison

To demonstrate the validity of our approach, we compare
SEPFL with a series of clustering baselines, including six
traditional clusteringmethods and seven deep learning-based
methods. A brief description of each algorithm is given
below.

• K-Means [22]: The most commonly used clustering
method, K-means produces clustering results with a pre-
defined number of clusters.

• HAC[31]:Hierarchical clustering is a bottom-upapproach
that iteratively merges samples through various distance
metrics.

• DBSCAN [7]: DBSCAN is a density-based method that
has demonstrated advantages in handling data with com-
plex distributions.

• MeanShift [4]: The convergence of multiple sets of sam-
ples to the same local maximum density constitutes the
resultant cluster.

• Spectral Clustering [12]: The similarity matrix of the
data is eigen-decomposed and clustered according to the
eigenvectors.

• ARO [26]: A newmetric is proposed to achieve improved
rank-order clustering [47].

• CDP [42]: This is a graph-based clustering method. By
fusing the information of multiple samples, better pair-
wise features can be obtained.

• L-GCN [37]: L-GCN is a supervised clustering algorithm
that uses a GCN to learn sample structure information for
connection prediction.

• LTC [40]: This is a two-stage clustering method. The
input data are processed separately using the ideas of
classification and segmentation.

• GCN(V+E) [41]: This is a two-stage clustering method.
The whole constructed graph is fed into a GCN to pre-
dict the confidence levels of the samples and construct
subgraphs. After that, the noise points in the subgraphs
are predicted.

• CFPC [19]: This is a pairwise learning-based clustering
method. CFPC assists the pairwise learning process by
fusing neighbor sample information to obtain structural
information, differing from the GCN-based approaches.

• STAR-FC [29]: This method suggests a structure-
preserving sampling strategy to build a subgraph that pre-
serves enough structural information to make training on
tens of millions of face data possible.

• Ada-NETS [36]: Ada-NETS solves the problem of
introducing too many noisy edges when constructing
graph-structured data via the adaptive neighbor discovery
method.

Result comparison

Table 3 shows the results obtained by our method and
other clustering baselines, including four conventional clus-
tering methods and seven supervised clustering methods,
on the MS1M dataset. It can be seen that the proposed
method obtains the best results on all five testing datasets,
which possess varying sizes. Compared to the second-best
approach, i.e., Ada-NETS, the proposed SEPFL method
achieves greater performance gains as the dataset volume
increases. For instance, SEPFL outperforms Ada-NETS by
0.55% and 0.29% on the 584K data in terms of FP and
FB , and when the data size increases to 5.21M, the perfor-
mance gaps are enlarged to 2.28% and 1.77%, respectively.
These results suggest that our method is able to learn more
generalized representations for clustering. In addition, by
introducing the neighborhood learning strategy, SEPFL con-
sistently outperforms CFPC, which also works at the pair
level. Note that out of the four conventional clustering meth-
ods, only K-means achieves competitive results, because the
ground-truth number of clusters is given in advance.

To demonstrate the applicability of our model to nonface
images,we conduct experiments on theDeepFashion dataset.
As shown in Table 4, our approach produces the best results.
In terms of the two utilized metrics, SEPFL is ahead of Ada-
NETS by 2.77% and 1.76%, respectively, which indicates the
generalization ability of the proposed model on clustering
tasks.

Figure5 compares the efficiency and accuracy of our
method with several clustering baselines on the MS1M
dataset (part 1). Since ARO does not obtain competitive per-
formance (as shown in Table 3), its results are not included.
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Table 3 Comparison among the
face clustering results obtained
with different numbers of
unlabeled images from the
MS1M dataset

Number of images 584K 1.74M 2.89M 4.05M 5.21M
Methods/ Metrics FP FB FP FB FP FB FP FB FP FB

K-Means [22] 79.21 81.23 73.04 75.20 69.83 72.34 67.90 70.57 66.47 69.42

HAC [31] 70.63 70.46 54.40 69.53 11.08 68.62 1.40 67.69 0.37 66.96

DBSCAN [7] 67.93 67.17 63.41 66.53 52.50 66.26 45.24 44.87 44.94 44.74

ARO [26] 13.60 17.00 8.78 12.42 7.30 10.96 6.86 10.50 6.35 10.01

CDP [42] 75.02 78.70 70.75 75.82 69.51 74.58 68.62 73.62 68.06 72.92

L-GCN [37] 78.68 84.37 75.83 81.61 74.29 80.11 73.70 79.33 72.99 78.60

LTC [40] 85.66 85.52 82.41 83.01 80.32 81.10 78.98 79.84 77.87 78.86

GCN(V+E) [41] 87.93 86.09 84.04 82.84 82.10 81.24 80.45 80.09 79.30 79.25

CFPC [19] 90.67 89.54 86.91 86.25 85.06 84.55 83.51 83.49 82.41 82.40

STAR-FC [29] 91.97 90.21 88.28 86.26 86.17 84.13 84.70 82.63 83.46 81.47

Ada-NETS [36] 92.79 91.40 89.33 87.98 87.50 86.03 85.40 84.48 83.99 83.28

SEPFL 93.34 91.69 90.20 88.63 88.63 87.09 87.35 85.92 86.27 85.05

Best results are given in bold

Table 4 Comparison results obtained on DeepFashion

Methods FP FB

K-means [22] 32.86 53.77

HAC [31] 22.54 48.77

DBSCAN [7] 25.07 53.23

MeanShift [4] 31.61 56.73

Spectral [12] 29.02 46.40

ARO [26] 26.03 53.01

CDP [42] 28.28 57.83

L-GCN [37] 28.85 58.91

GCN(V+E) [41] 38.47 60.06

CFPC [19] 37.67 62.17

STAR-FC [29] 37.07 60.60

Ada-NETS [36] 39.30 61.05

SEPFL 42.07 62.81

Best results are given in bold

The results indicate that our method achieves the highest
accuracy as well as being time-efficient with a faster infer-
ence time than most clustering methods.

Parameter analysis

In this section, we explore the effects of different numbers
of neighbors K and density thresholds θ on the clustering
results.

Influence of the number of neighbors k

In our model, the number of neighbors k is mainly used
to establish the regions for density calculation and pair
selection. For simplicity, we set the same k for the above
operations. To investigate the influence of different values

of k on the clustering performance, we increase the param-
eter from 20 to 80 with a step size of 10, and the results are
shown in Fig. 6. We observe similar trends in the metrics on
all testing partitions. More candidate pairs are included as k
increases, resulting in a higher recall. A larger k brings more
false-positive pairs, which decreases the precision rate. In
short, the performance is stable when k is greater than 30,
demonstrating that our model is not sensitive to k.

Influence of the density threshold�

As defined in Eq. (8), the proposed combined density ρ is the
average of the similarity density ρd and the spherical density
ρs . The parameter θ is employed to adjust the importance of
ρd to ρ. Figure7 presents the influences of θ on the MS1M
and DeepFashion datasets. Apparently, the performance of
the proposed approach can be improved when θ is set within
a certain range (e.g., from 0.6 to 0.75 on the MS1M dataset).
This is because as θ tends to 0 or 1, ρs approximates a con-
stant, resulting in the degradation from ρ to ρd . Moreover,
due to the differences in the distributions and sizes of datasets,
a larger θ is required to activate ρs on DeepFashion than on
MS1M.

Influence of postprocessing thresholds

In “Structure-enhanced pairwise feature learning” section,
we argue that somemanual-setting postprocessing thresholds
may limit the applicability of existing clustering methods
to different datasets and scenarios. To verify the sensitiv-
ity of the clustering results to the threshold values, we take
STAR-FC [29] as an example, which includes two postpro-
cessing thresholds, i.e., τ1 and τ2. Specifically, τ1 represents
the threshold for removing weak edges and τ2 represents the
threshold for removing edges with low node intimacy. For
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(a) (b) (c)

(d) (e) (f)

Fig. 6 Comparison of the FP and FB results obtained with different values of K from the MS1M dataset

Fig. 5 Comparison of efficiency and accuracy between our method and
other clustering methods

comparison, we first adjust them to achieve the best perfor-
mance, then fix one of them and change the value of the other.
The experimental results are illustrated in Fig. 8.

It can be observed that (1) the clustering results are sensi-
tive to the value of the threshold. (2) Some dataset-specific
thresholds should be established due to distribution differ-
ences between datasets, and (3) the two metrics (FP and FB)
show different trends with the same group of thresholds. As
a result, these inconsistencies increase the difficulty of set-
ting thresholds. Since our method requires no postprocessing
threshold, it provides better robustness and stability.

Ablation study

In this section, we further analyze the effectiveness of our
algorithm through a large number of ablation experiments
on the MS1M dataset.

Design of pairwise features

We explore different designs of pairwise features for cluster-
ing purposes. According to Eq. (1), we can formulate a pair
representation by directly concatenating the features of two
faces without any neighborhood information; this process is
denoted as simple concatenation. To investigate the benefits
of local relations with respect to pairwise descriptors, we
compare several neighborhood aggregation strategies. Mean
aggregation computes the average of neighbors [37]. Sim-
ilarity aggregation obtains the weighted sum of neighbors
based on cosine similarity [41]. As discussed in Neighbor-
hood mixing module Section, the proposed SEPFL approach
employs a neighborhoodmixing schema for weight learning.

As shown in Fig. 9, the performances are significantly
improved when the contextual properties are considered. In
addition, these aggregation strategies differ mainly in their
weighting procedures. Mean aggregation assigns the same
weight to each neighbor. Since this setting does not reveal
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Fig. 7 Effects of different
density thresholds on the
clustering results

(a) (b)

Fig. 8 Effects of different
postprocessing thresholds on the
clustering results. τ1 and τ2 are
two edge-cutting thresholds
employed in STAR-FC [29]. Our
results are shown as two lines

(a) (b)

(c) (d)

Table 5 Comparison among the results obtained with different densities

Dataset MS1M Part 1 MS1M Part 3 MS1M Part 5 MS1M Part 7 MS1M Part 9 DeepFashion
methods/ metrics FP FB FP FB FP FB FP FB FP FB FP FB

Similarity density 92.85 91.38 89.68 88.15 87.96 86.46 86.61 85.23 85.50 84.30 39.97 62.19

Spherical density 74.12 77.01 70.67 74.18 69.38 72.91 68.28 71.87 67.59 71.17 28.12 53.32

Combined density 93.34 91.69 90.20 88.63 88.63 87.09 87.35 85.92 86.27 85.05 42.07 62.81

Best results are given in bold
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Fig. 9 Compare the results of different feature designs on the FP and FB evaluation metrics

(a) (b)

Fig. 10 Comparison of different weighting strategies. a Given a face
sample, we list the top ten most similar samples based on the calculated
weights (a larger weight indicates a higher similarity value). The faces
with the same identity are outlined by green boxes, and the rest are out-

lined by red boxes. bWe plot the weight distributions of two weighting
strategies. As we can see, our method can generate more discriminative
weights to reduce the influence of noisy or unreliable face images

the importance levels of the neighbors, the performance of
this technique is inferior to similarity-weighted aggregation.
Our model enhances the exchange of information within the
neighborhood for weight learning and thus achieves the best
results.

Furthermore, to evaluate the quality of the weights
produced by different weighting strategies, we illustrate
the weights assigned to the neighbors of a given sample
in Fig. 10. The results obtained based on cosine similar-
ity weighting are included for comparison. As shown in
Fig. 10(a), after ranking the neighbors by their weights, the
similarity weighting method yields two false-positive sam-
ples (outlined by red boxes). In contrast, SEPFL generates
more robust weight assignments. Additionally, Fig. 10(b)
shows the distributions of the weight values of the two
weighting schemes. The results suggest that our model can
assign more discriminative weights to the neighborhood
samples, by which the importance of irrelevant samples is
effectively suppressed.

Design of the combined density

As discussed in “Density-guided pair selection section”, we
combine two densities for pair selection. Based on a fixed-
size neighborhood centered at a sample fi , the first density
is computed by the sum of the similarities to fi , which is
called the similarity density and defined by Eq. (6), and
the second density is derived from the number of samples
whose similarities to fi are higher than a threshold, which is
called the spherical density and defined by Eq. (7). Table 5
shows the effects of different density settings. It can be seen
that the spherical density performs the worst since it outputs
discrete values. However, it can improve the similarity den-
sity by increasing the density gap between the cluster center
and boundary samples. This enables the combined density to
achieve the best results.

In addition, Fig. 11 visualizes the feature distribution of 6
identities sampled from theMS1Mdataset using t-distributed
stochastic neighbor embedding (t-SNE) [23]. As shown in
Fig. 11(a), in terms of the similarity density, the samples in
the dense regions share relatively high densities and therefore
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(a)

(b)

Fig. 11 Visualization of the feature distributions of two types of den-
sities

may result in excessive low-information pairs. We present
the updated densities in Fig. 11(b). It is clearly seen that the
density variations within clusters are appropriately enlarged.
Hence, the combined density can effectively improve the
quality of the pairs output by algorithm 1.

Influence of the number of pairs

Unlike graph-based face clusteringmethods, ourmethoduses
a sample pair as the underlying processing unit, so it is cru-
cial to identify data pairs. As described in “Construction

of training and testing sets”, a density-guided pair selec-
tion strategy is proposed for constructing training and testing
sets. Basically, each sample serves as the starting point for
the construction of at least one pair. However, the resulting
imbalance between positive and negative pairs may cause
training bias, and insufficient data lead to overfitting. To solve
these issues, we adjust the numbers of positive and negative
pairs to be equal by adding random pairs. To investigate how
the number of pairs affects the clustering performance, we
vary the parameter over a wide range on the MS1M dataset.

For the training phase, we include the results obtained
without the balancing procedure for comparison and report
the F-scores in Fig. 12. The experimental results reveal that
(1) both the FP and FB metrics gradually improve as the
training size increases, and when the performance saturates,
adding more training data does not yield better results. (2)
The balance between positive and negative pairs is essen-
tial for achieving performance improvement, and (3) this
imbalance also affects the generalizability of the model; for
example, as the volume of the testing set increases (i.e., from
part 1 to part 9), the performance loss is enlarged.

Given testing pairs with a size of N ′, we begin with a
random selection of samples to construct the corresponding
pairs. The process continues until each sample is selected
once as the starting point in a pair. After that, the size of
the candidate set for testing is further increased to 2.0 mil-
lions by adding the remaining pairs. A baseline, by which
the positive and negative pairs are equally randomly selected
from all possible pairs, is utilized for comparison purposes.
As summarized in Fig. 13, we observe that (1) the density-
guided pair selection method consistently outperforms its
counterpart based on random selection as the number of pairs
increases, and (2) its performance peaks when the number
of pairs reaches N ′ and deteriorates thereafter. The reason
for this is that our method can identify sufficient representa-
tive pairs, while adding extra noise pairs would degrade the
achieved performance. According to these observations, the
proposed method provides a simple method for pair selec-
tion, yielding improved clustering accuracy and inference
efficiency.

Statistical testing

In this section, we investigate the significant difference
between SEPFL and other clustering methods using the
Wilcoxon signed-rank test [28], which is a non-parametric
statistical hypothesis test method. The null hypothesis H0

in this experiment indicates that there is no significant dif-
ference between the two methods, while the alternative
hypothesis H1 indicates the opposite conclusion. P-value is
used to determine whether the null hypothesis holds, and
if p-value is less than the significance level α then the null
hypothesis is rejected.
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(a) (b) (c)

(d) (e)

Fig. 12 Comparison among the F-scores obtained under different numbers of training pairs from the MS1M dataset. FB (b) or FB (wb) stands for
the results obtained with or without the balancing procedure (the Fp metric is denoted in the same way)

(a) (b) (c)

(d) (e)

Fig. 13 Comparison among the Bcubed F-scores obtained under different numbers of testing pairs from the MS1M dataset
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Table 6 Statistical analysis results of Wilcoxon signed-rank test

Datasets Metrics vs. STAR-FC vs. ADA-NETS

MS1M Part1 FP 1.953125 × 10−3 1.953125 × 10−3

FB 1.953125 × 10−3 1.953125 × 10−3

MS1M Part3 FP 1.953125 × 10−3 1.953125 × 10−3

FB 1.953125 × 10−3 1.953125 × 10−3

MS1M Part5 FP 1.953125 × 10−3 1.953125 × 10−3

FB 1.953125 × 10−3 1.953125 × 10−3

MS1M Part7 FP 1.953125 × 10−3 1.953125 × 10−3

FB 1.953125 × 10−3 1.953125 × 10−3

MS1M Part9 FP 1.953125 × 10−3 1.953125 × 10−3

FB 1.953125 × 10−3 1.953125 × 10−3

DeepFashion FP 1.953125 × 10−3 1.953125 × 10−3

FB 1.953125 × 10−3 1.953125 × 10−3

As shown in Tables 3 and 4, there are large gaps between
the traditional clusteringmethods and our method in terms of
the two clustering metrics. Therefore, we choose to compare
our method with two deep learning-based methods, namely
STAR-FC [29] and Ada-NETS [36], which achieve compet-
itive results among the compared methods.

To ensure the robustness of the results,we repeat the exper-
iments 10 times using different random seeds on each dataset,
and the results are shown in Table 6. It can be seen that the
obtained p-values are all less than the common significance
level of 0.05, indicating that our method is significantly dif-
ferent from other clustering methods.

Conclusion

A GCN efficiently obtains sample structure information by
aggregating neighboring features but requires large levels
of memory and time consumption. This paper proposes a
novel pairwise learning method for face clustering, denoted
as SEPFL. In particular, we design a neighborhood mixing
block to weight the aggregation of neighborhood features as
structural information by learning the correlations between
samples and neighbors. Unlike other methods, the neighbor-
hood mixing block considers both the relationships between
samples and neighbors and the relationships between neigh-
bors to learn more comprehensive structural information. In
addition, a density-guided pair selection strategy is used to
select candidate pairs, which avoids the influence of exces-
sive redundant pairs on the clustering results.

We conduct extensive experiments on the MS1M and
DeepFashion datasets. The experimental analysis proves that
(1) SEPFL reduces the computational cost and alleviates
the dependence on thresholds. (2) The neighborhood mixing
block has a powerful ability to obtain structural informa-
tion. (3) The density-guided pair selection strategy is capable
of selecting representative candidate pairs. (4) SEPFL has

higher accuracy than other advanced face clustering meth-
ods. As the amount of data increases, SEPFL exhibits better
robustness.

Although SEPFL achieves good performance in various
experiments, the method performs clustering on the original
feature space, which is limited by the utilized feature extrac-
tion model. Problems such as complex sample distributions
and large numbers of noisy samples or difficult samples may
be encountered, which largely affect the clustering effect.
In future works, we will explore an efficient feature learning
method to transform the given data into an easily distinguish-
able feature space to assist with data clustering.
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